i915_guc_submission.c 35.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
#include "i915_drv.h"
26
#include "intel_uc.h"
27

28 29
#include <trace/events/dma_fence.h>

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 *
 * i915_guc_client:
 * We use the term client to avoid confusion with contexts. A i915_guc_client is
 * equivalent to GuC object guc_context_desc. This context descriptor is
 * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
 * and workqueue for it. Also the process descriptor (guc_process_desc), which
 * is mapped to client space. So the client can write Work Item then ring the
 * doorbell.
 *
 * To simplify the implementation, we allocate one gem object that contains all
 * pages for doorbell, process descriptor and workqueue.
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
51
 * See intel_guc_send()
52 53 54 55 56 57 58 59 60 61 62
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
63
 * See guc_wq_item_append()
64 65 66 67 68 69 70
 *
 */

/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

71 72
static int guc_allocate_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
73
{
74 75 76 77
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
		client->ctx_index
	};
78

79
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
80 81
}

82 83
static int guc_release_doorbell(struct intel_guc *guc,
				struct i915_guc_client *client)
84
{
85 86 87 88
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
		client->ctx_index
	};
89

90
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
91 92
}

93 94 95 96 97 98 99
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

100 101 102
static int guc_update_doorbell_id(struct intel_guc *guc,
				  struct i915_guc_client *client,
				  u16 new_id)
103
{
104
	struct sg_table *sg = guc->ctx_pool_vma->pages;
105
	void *doorbell_bitmap = guc->doorbell_bitmap;
106
	struct guc_doorbell_info *doorbell;
107 108
	struct guc_context_desc desc;
	size_t len;
109

110
	doorbell = client->vaddr + client->doorbell_offset;
111

112 113 114 115
	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
	    test_bit(client->doorbell_id, doorbell_bitmap)) {
		/* Deactivate the old doorbell */
		doorbell->db_status = GUC_DOORBELL_DISABLED;
116
		(void)guc_release_doorbell(guc, client);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
		__clear_bit(client->doorbell_id, doorbell_bitmap);
	}

	/* Update the GuC's idea of the doorbell ID */
	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;
	desc.db_id = new_id;
	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;

	client->doorbell_id = new_id;
	if (new_id == GUC_INVALID_DOORBELL_ID)
		return 0;

	/* Activate the new doorbell */
	__set_bit(new_id, doorbell_bitmap);
	doorbell->db_status = GUC_DOORBELL_ENABLED;
138
	doorbell->cookie = client->doorbell_cookie;
139
	return guc_allocate_doorbell(guc, client);
140 141
}

142 143 144
static void guc_disable_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
{
145
	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
146 147 148 149 150

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static uint16_t
select_doorbell_register(struct intel_guc *guc, uint32_t priority)
{
	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 * Note that logically higher priorities are numerically less than
	 * normal ones, so the test below means "is it high-priority?"
	 */
	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
	const uint16_t half = GUC_MAX_DOORBELLS / 2;
	const uint16_t start = hi_pri ? half : 0;
	const uint16_t end = start + half;
	uint16_t id;

	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
	if (id == end)
		id = GUC_INVALID_DOORBELL_ID;

	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
			hi_pri ? "high" : "normal", id);

	return id;
}

177 178 179 180
/*
 * Select, assign and relase doorbell cachelines
 *
 * These functions track which doorbell cachelines are in use.
181
 * The data they manipulate is protected by the intel_guc_send lock.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
 */

static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
{
	const uint32_t cacheline_size = cache_line_size();
	uint32_t offset;

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
	guc->db_cacheline += cacheline_size;

	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cacheline_size);

	return offset;
}

/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
204
static void guc_proc_desc_init(struct intel_guc *guc,
205 206 207 208
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

209
	desc = client->vaddr + client->proc_desc_offset;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	memset(desc, 0, sizeof(*desc));

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

	desc->context_id = client->ctx_index;
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
 * Initialise/clear the context descriptor shared with the GuC firmware.
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */

236
static void guc_ctx_desc_init(struct intel_guc *guc,
237 238
			      struct i915_guc_client *client)
{
239
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
240
	struct intel_engine_cs *engine;
241
	struct i915_gem_context *ctx = client->owner;
242 243
	struct guc_context_desc desc;
	struct sg_table *sg;
244
	unsigned int tmp;
245
	u32 gfx_addr;
246 247 248 249 250 251 252 253

	memset(&desc, 0, sizeof(desc));

	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
	desc.context_id = client->ctx_index;
	desc.priority = client->priority;
	desc.db_id = client->doorbell_id;

254
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
255
		struct intel_context *ce = &ctx->engine[engine->id];
256 257
		uint32_t guc_engine_id = engine->guc_id;
		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
258 259 260 261 262 263 264 265

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
266
		if (!ce->state)
267 268
			break;	/* XXX: continue? */

269
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
270 271

		/* The state page is after PPHWSP */
272
		lrc->ring_lcra =
273
			guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
274
		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
275
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
276

277
		lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
278 279
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
280 281
		lrc->ring_current_tail_pointer_value = 0;

282
		desc.engines_used |= (1 << guc_engine_id);
283 284
	}

285 286
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
			client->engines, desc.engines_used);
287 288
	WARN_ON(desc.engines_used == 0);

289
	/*
290 291
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
292
	 */
293
	gfx_addr = guc_ggtt_offset(client->vma);
294
	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
295
				client->doorbell_offset;
296 297
	desc.db_trigger_cpu =
		(uintptr_t)client->vaddr + client->doorbell_offset;
298 299 300
	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc.process_desc = gfx_addr + client->proc_desc_offset;
	desc.wq_addr = gfx_addr + client->wq_offset;
301 302 303
	desc.wq_size = client->wq_size;

	/*
304
	 * XXX: Take LRCs from an existing context if this is not an
305 306 307 308 309
	 * IsKMDCreatedContext client
	 */
	desc.desc_private = (uintptr_t)client;

	/* Pool context is pinned already */
310
	sg = guc->ctx_pool_vma->pages;
311 312 313 314
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

315
static void guc_ctx_desc_fini(struct intel_guc *guc,
316 317 318 319 320 321 322
			      struct i915_guc_client *client)
{
	struct guc_context_desc desc;
	struct sg_table *sg;

	memset(&desc, 0, sizeof(desc));

323
	sg = guc->ctx_pool_vma->pages;
324 325 326 327
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

328
/**
329
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
330 331 332 333 334 335 336
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
337 338
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
339
 *
340
 * Reservation allows the caller to determine in advance that space
341 342 343
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
344
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
345
{
346
	const size_t wqi_size = sizeof(struct guc_wq_item);
347 348 349
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
	struct guc_process_desc *desc = client->vaddr +
					client->proc_desc_offset;
350
	u32 freespace;
351
	int ret;
352

353
	spin_lock_irq(&client->wq_lock);
354 355
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
	freespace -= client->wq_rsvd;
356
	if (likely(freespace >= wqi_size)) {
357
		client->wq_rsvd += wqi_size;
358 359
		ret = 0;
	} else {
360
		client->no_wq_space++;
361 362
		ret = -EAGAIN;
	}
363
	spin_unlock_irq(&client->wq_lock);
364

365
	return ret;
366 367
}

368 369 370 371 372 373 374 375 376
static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
{
	unsigned long flags;

	spin_lock_irqsave(&client->wq_lock, flags);
	client->wq_rsvd += size;
	spin_unlock_irqrestore(&client->wq_lock, flags);
}

377 378
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
379
	const int wqi_size = sizeof(struct guc_wq_item);
380
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
381

382
	GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
383
	guc_client_update_wq_rsvd(client, -wqi_size);
384 385
}

386
/* Construct a Work Item and append it to the GuC's Work Queue */
387
static void guc_wq_item_append(struct i915_guc_client *client,
388
			       struct drm_i915_gem_request *rq)
389
{
390 391 392
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
393
	struct intel_engine_cs *engine = rq->engine;
394
	struct guc_process_desc *desc;
395
	struct guc_wq_item *wqi;
396
	u32 freespace, tail, wq_off;
397

398
	desc = client->vaddr + client->proc_desc_offset;
399

400
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
401
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
402 403 404 405 406 407 408
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
	GEM_BUG_ON(tail & 7);
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
409 410 411 412 413 414 415 416

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
417
	BUILD_BUG_ON(wqi_size != 16);
418
	GEM_BUG_ON(client->wq_rsvd < wqi_size);
419

420
	/* postincrement WQ tail for next time */
421
	wq_off = client->wq_tail;
422
	GEM_BUG_ON(wq_off & (wqi_size - 1));
423 424 425
	client->wq_tail += wqi_size;
	client->wq_tail &= client->wq_size - 1;
	client->wq_rsvd -= wqi_size;
426 427

	/* WQ starts from the page after doorbell / process_desc */
428
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
429

430
	/* Now fill in the 4-word work queue item */
431
	wqi->header = WQ_TYPE_INORDER |
432
			(wqi_len << WQ_LEN_SHIFT) |
433
			(engine->guc_id << WQ_TARGET_SHIFT) |
434 435 436
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
437
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
438 439

	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
440
	wqi->fence_id = rq->global_seqno;
441 442
}

443
static int guc_ring_doorbell(struct i915_guc_client *client)
444 445 446 447 448 449
{
	struct guc_process_desc *desc;
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

450
	desc = client->vaddr + client->proc_desc_offset;
451 452

	/* Update the tail so it is visible to GuC */
453
	desc->tail = client->wq_tail;
454 455 456

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
457
	db_cmp.cookie = client->doorbell_cookie;
458 459 460

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
461
	db_exc.cookie = client->doorbell_cookie + 1;
462 463 464 465
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
466
	db = client->vaddr + client->doorbell_offset;
467 468 469 470 471 472 473 474 475

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
476
			client->doorbell_cookie = db_exc.cookie;
477 478 479 480 481 482 483 484
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

485 486
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
487 488 489 490 491 492 493 494 495 496 497

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

498
/**
499
 * __i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
500
 * @rq:		request associated with the commands
501
 *
502 503 504
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
505 506
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
507 508
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
509 510 511
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
512
 */
513
static void __i915_guc_submit(struct drm_i915_gem_request *rq)
514
{
515
	struct drm_i915_private *dev_priv = rq->i915;
516 517
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
518 519
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
520
	unsigned long flags;
521
	int b_ret;
522

523 524 525 526
	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

527
	spin_lock_irqsave(&client->wq_lock, flags);
528 529

	guc_wq_item_append(client, rq);
530
	b_ret = guc_ring_doorbell(client);
531

532
	client->submissions[engine_id] += 1;
533 534
	client->retcode = b_ret;
	if (b_ret)
535
		client->b_fail += 1;
536

537
	guc->submissions[engine_id] += 1;
538
	guc->last_seqno[engine_id] = rq->global_seqno;
539

540
	spin_unlock_irqrestore(&client->wq_lock, flags);
541 542
}

543 544
static void i915_guc_submit(struct drm_i915_gem_request *rq)
{
545
	__i915_gem_request_submit(rq);
546 547 548
	__i915_guc_submit(rq);
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
	/* If we use dma_fence_enable_sw_signaling() directly, lockdep
	 * detects an ordering issue between the fence lockclass and the
	 * global_timeline. This circular dependency can only occur via 2
	 * different fences (but same fence lockclass), so we use the nesting
	 * annotation here to prevent the warn, equivalent to the nesting
	 * inside i915_gem_request_submit() for when we also enable the
	 * signaler.
	 */

	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &rq->fence.flags))
		return;

	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
	trace_dma_fence_enable_signal(&rq->fence);

	spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
	intel_engine_enable_signaling(rq);
	spin_unlock(&rq->lock);
}

static bool i915_guc_dequeue(struct intel_engine_cs *engine)
{
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *last = port[0].request;
	unsigned long flags;
	struct rb_node *rb;
	bool submit = false;

	spin_lock_irqsave(&engine->timeline->lock, flags);
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *rq =
			rb_entry(rb, typeof(*rq), priotree.node);

		if (last && rq->ctx != last->ctx) {
			if (port != engine->execlist_port)
				break;

			i915_gem_request_assign(&port->request, last);
			nested_enable_signaling(last);
			port++;
		}

		rb = rb_next(rb);
		rb_erase(&rq->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&rq->priotree.node);
		rq->priotree.priority = INT_MAX;

		trace_i915_gem_request_in(rq, port - engine->execlist_port);
		i915_guc_submit(rq);
		last = rq;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
		nested_enable_signaling(last);
		engine->execlist_first = rb;
	}
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

	return submit;
}

static void i915_guc_irq_handler(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq;
	bool submit;

	do {
		rq = port[0].request;
		while (rq && i915_gem_request_completed(rq)) {
			trace_i915_gem_request_out(rq);
			i915_gem_request_put(rq);
			port[0].request = port[1].request;
			port[1].request = NULL;
			rq = port[0].request;
		}

		submit = false;
		if (!port[1].request)
			submit = i915_guc_dequeue(engine);
	} while (submit);
}

638 639 640 641 642 643
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

644
/**
645
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
646 647
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
648
 *
649 650 651 652 653
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
654
 *
655
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
656
 */
657
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
658
{
659
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
660
	struct drm_i915_gem_object *obj;
661 662
	struct i915_vma *vma;
	int ret;
663

664
	obj = i915_gem_object_create(dev_priv, size);
665
	if (IS_ERR(obj))
666
		return ERR_CAST(obj);
667

668
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
669 670
	if (IS_ERR(vma))
		goto err;
671

672 673 674 675 676
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
677 678
	}

679 680 681 682 683
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
684 685
}

686 687 688
static void
guc_client_free(struct drm_i915_private *dev_priv,
		struct i915_guc_client *client)
689 690 691 692 693 694 695 696 697 698 699
{
	struct intel_guc *guc = &dev_priv->guc;

	if (!client)
		return;

	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

700
	if (client->vaddr) {
701
		/*
702 703
		 * If we got as far as setting up a doorbell, make sure we
		 * shut it down before unmapping & deallocating the memory.
704
		 */
705
		guc_disable_doorbell(guc, client);
706

707
		i915_gem_object_unpin_map(client->vma->obj);
708 709
	}

710
	i915_vma_unpin_and_release(&client->vma);
711 712

	if (client->ctx_index != GUC_INVALID_CTX_ID) {
713
		guc_ctx_desc_fini(guc, client);
714 715 716 717 718 719
		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
	}

	kfree(client);
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/* Check that a doorbell register is in the expected state */
static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
	uint32_t value = I915_READ(drbreg);
	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
	bool expected = test_bit(db_id, guc->doorbell_bitmap);

	if (enabled == expected)
		return true;

	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
			 db_id, drbreg.reg, value,
			 expected ? "active" : "inactive");

	return false;
}

739
/*
740
 * Borrow the first client to set up & tear down each unused doorbell
741 742 743 744 745
 * in turn, to ensure that all doorbell h/w is (re)initialised.
 */
static void guc_init_doorbell_hw(struct intel_guc *guc)
{
	struct i915_guc_client *client = guc->execbuf_client;
746 747
	uint16_t db_id;
	int i, err;
748

749
	guc_disable_doorbell(guc, client);
750 751

	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
752 753
		/* Skip if doorbell is OK */
		if (guc_doorbell_check(guc, i))
754 755
			continue;

756
		err = guc_update_doorbell_id(guc, client, i);
757 758 759
		if (err)
			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
					i, err);
760 761
	}

762 763 764
	db_id = select_doorbell_register(guc, client->priority);
	WARN_ON(db_id == GUC_INVALID_DOORBELL_ID);

765 766
	err = guc_update_doorbell_id(guc, client, db_id);
	if (err)
767 768
		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
			 db_id, err);
769

770 771 772
	/* Read back & verify all doorbell registers */
	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
		(void)guc_doorbell_check(guc, i);
773 774
}

775 776
/**
 * guc_client_alloc() - Allocate an i915_guc_client
777
 * @dev_priv:	driver private data structure
778
 * @engines:	The set of engines to enable for this client
779 780 781 782
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
783 784
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
785
 *
786
 * Return:	An i915_guc_client object if success, else NULL.
787
 */
788 789
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
790
		 uint32_t engines,
791 792
		 uint32_t priority,
		 struct i915_gem_context *ctx)
793 794 795
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
796
	struct i915_vma *vma;
797
	void *vaddr;
798
	uint16_t db_id;
799 800 801 802 803

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
		return NULL;

804
	client->owner = ctx;
805
	client->guc = guc;
806 807 808
	client->engines = engines;
	client->priority = priority;
	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
809 810 811 812 813 814 815 816 817

	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
		client->ctx_index = GUC_INVALID_CTX_ID;
		goto err;
	}

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
818
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
819
	if (IS_ERR(vma))
820 821
		goto err;

822
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
823
	client->vma = vma;
824 825 826 827 828 829

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr))
		goto err;

	client->vaddr = vaddr;
830 831

	spin_lock_init(&client->wq_lock);
832 833 834
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;

835 836 837 838 839
	db_id = select_doorbell_register(guc, client->priority);
	if (db_id == GUC_INVALID_DOORBELL_ID)
		/* XXX: evict a doorbell instead? */
		goto err;

840 841 842 843 844 845 846 847 848 849 850 851
	client->doorbell_offset = select_doorbell_cacheline(guc);

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

852 853
	guc_proc_desc_init(guc, client);
	guc_ctx_desc_init(guc, client);
854 855 856 857 858 859 860

	/* For runtime client allocation we need to enable the doorbell. Not
	 * required yet for the static execbuf_client as this special kernel
	 * client is enabled from i915_guc_submission_enable().
	 *
	 * guc_update_doorbell_id(guc, client, db_id);
	 */
861

862 863
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
		priority, client, client->engines, client->ctx_index);
864 865
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
		client->doorbell_id, client->doorbell_offset);
866 867 868 869

	return client;

err:
870
	guc_client_free(dev_priv, client);
871 872 873
	return NULL;
}

874

875

876
static void guc_policies_init(struct guc_policies *policies)
877 878 879 880 881 882 883 884
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
885
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
886 887 888 889 890 891 892 893 894 895 896 897
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

898
static void guc_addon_create(struct intel_guc *guc)
899 900
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
901
	struct i915_vma *vma;
902 903
	struct page *page;
	/* The ads obj includes the struct itself and buffers passed to GuC */
904 905 906 907 908 909 910 911 912
	struct {
		struct guc_ads ads;
		struct guc_policies policies;
		struct guc_mmio_reg_state reg_state;
		u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
	} __packed *blob;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 base;
913

914 915
	vma = guc->ads_vma;
	if (!vma) {
916
		vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
917
		if (IS_ERR(vma))
918 919
			return;

920
		guc->ads_vma = vma;
921 922
	}

923
	page = i915_vma_first_page(vma);
924
	blob = kmap(page);
925

926
	/* GuC scheduling policies */
927
	guc_policies_init(&blob->policies);
928

929
	/* MMIO reg state */
930
	for_each_engine(engine, dev_priv, id) {
931
		blob->reg_state.mmio_white_list[engine->guc_id].mmio_start =
932
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
933 934

		/* Nothing to be saved or restored for now. */
935
		blob->reg_state.mmio_white_list[engine->guc_id].count = 0;
936 937
	}

938 939 940 941 942 943 944 945 946 947 948 949 950
	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
	blob->ads.golden_context_lrca =
		dev_priv->engine[RCS]->status_page.ggtt_offset;

	for_each_engine(engine, dev_priv, id)
		blob->ads.eng_state_size[engine->guc_id] =
			intel_lr_context_size(engine);
951

952 953 954 955
	base = guc_ggtt_offset(vma);
	blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
	blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
	blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
956

957 958 959
	kunmap(page);
}

960 961 962 963
/*
 * Set up the memory resources to be shared with the GuC.  At this point,
 * we require just one object that can be mapped through the GGTT.
 */
964
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
965
{
966 967 968
	const size_t ctxsize = sizeof(struct guc_context_desc);
	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
969
	struct intel_guc *guc = &dev_priv->guc;
970
	struct i915_vma *vma;
971

972 973 974
	if (!HAS_GUC_SCHED(dev_priv))
		return 0;

975 976
	/* Wipe bitmap & delete client in case of reinitialisation */
	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
977
	i915_guc_submission_disable(dev_priv);
978

979 980 981
	if (!i915.enable_guc_submission)
		return 0; /* not enabled  */

982
	if (guc->ctx_pool_vma)
983 984
		return 0; /* already allocated */

985
	vma = intel_guc_allocate_vma(guc, gemsize);
986 987
	if (IS_ERR(vma))
		return PTR_ERR(vma);
988

989
	guc->ctx_pool_vma = vma;
990
	ida_init(&guc->ctx_ids);
991
	intel_guc_log_create(guc);
992
	guc_addon_create(guc);
993

994 995 996 997 998 999 1000 1001 1002
	guc->execbuf_client = guc_client_alloc(dev_priv,
					       INTEL_INFO(dev_priv)->ring_mask,
					       GUC_CTX_PRIORITY_KMD_NORMAL,
					       dev_priv->kernel_context);
	if (!guc->execbuf_client) {
		DRM_ERROR("Failed to create GuC client for execbuf!\n");
		goto err;
	}

1003
	return 0;
1004 1005 1006 1007 1008 1009

err:
	i915_guc_submission_fini(dev_priv);
	return -ENOMEM;
}

1010
static void guc_reset_wq(struct i915_guc_client *client)
1011
{
1012 1013
	struct guc_process_desc *desc = client->vaddr +
					client->proc_desc_offset;
1014 1015 1016 1017

	desc->head = 0;
	desc->tail = 0;

1018
	client->wq_tail = 0;
1019 1020
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/* tell all command streamers to forward interrupts (but not vblank) to GuC */
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
	dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1060
	dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1061 1062
}

1063
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1064 1065
{
	struct intel_guc *guc = &dev_priv->guc;
1066
	struct i915_guc_client *client = guc->execbuf_client;
1067
	struct intel_engine_cs *engine;
1068
	enum intel_engine_id id;
1069

1070 1071
	if (!client)
		return -ENODEV;
1072

1073
	intel_guc_sample_forcewake(guc);
1074 1075

	guc_reset_wq(client);
1076
	guc_init_doorbell_hw(guc);
A
Alex Dai 已提交
1077

1078
	/* Take over from manual control of ELSP (execlists) */
1079 1080 1081 1082 1083
	guc_interrupts_capture(dev_priv);

	for_each_engine(engine, dev_priv, id) {
		const int wqi_size = sizeof(struct guc_wq_item);
		struct drm_i915_gem_request *rq;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093
		/* The tasklet was initialised by execlists, and may be in
		 * a state of flux (across a reset) and so we just want to
		 * take over the callback without changing any other state
		 * in the tasklet.
		 */
		engine->irq_tasklet.func = i915_guc_irq_handler;
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

		/* Replay the current set of previously submitted requests */
1094
		spin_lock_irq(&engine->timeline->lock);
1095
		list_for_each_entry(rq, &engine->timeline->requests, link) {
1096
			guc_client_update_wq_rsvd(client, wqi_size);
1097
			__i915_guc_submit(rq);
1098
		}
1099
		spin_unlock_irq(&engine->timeline->lock);
1100 1101
	}

1102 1103 1104
	return 0;
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route all GT interrupts to the host */
	I915_WRITE(GUC_BCS_RCS_IER, 0);
	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
	I915_WRITE(GUC_WD_VECS_IER, 0);
1124

1125
	dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1126
	dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1127 1128
}

1129
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1130 1131 1132
{
	struct intel_guc *guc = &dev_priv->guc;

1133 1134
	guc_interrupts_release(dev_priv);

1135 1136 1137 1138
	if (!guc->execbuf_client)
		return;

	/* Revert back to manual ELSP submission */
1139
	intel_engines_reset_default_submission(dev_priv);
1140 1141
}

1142
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1143 1144
{
	struct intel_guc *guc = &dev_priv->guc;
1145 1146 1147 1148 1149 1150 1151
	struct i915_guc_client *client;

	client = fetch_and_zero(&guc->execbuf_client);
	if (!client)
		return;

	guc_client_free(dev_priv, client);
1152

1153
	i915_vma_unpin_and_release(&guc->ads_vma);
1154
	i915_vma_unpin_and_release(&guc->log.vma);
A
Alex Dai 已提交
1155

1156
	if (guc->ctx_pool_vma)
1157
		ida_destroy(&guc->ctx_ids);
1158
	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1159
}
1160 1161 1162

/**
 * intel_guc_suspend() - notify GuC entering suspend state
1163
 * @dev_priv:	i915 device private
1164
 */
1165
int intel_guc_suspend(struct drm_i915_private *dev_priv)
1166 1167
{
	struct intel_guc *guc = &dev_priv->guc;
1168
	struct i915_gem_context *ctx;
1169 1170
	u32 data[3];

1171
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1172 1173
		return 0;

1174 1175
	gen9_disable_guc_interrupts(dev_priv);

1176
	ctx = dev_priv->kernel_context;
1177

1178
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1179 1180 1181
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1182
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1183

1184
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1185 1186 1187 1188 1189
}


/**
 * intel_guc_resume() - notify GuC resuming from suspend state
1190
 * @dev_priv:	i915 device private
1191
 */
1192
int intel_guc_resume(struct drm_i915_private *dev_priv)
1193 1194
{
	struct intel_guc *guc = &dev_priv->guc;
1195
	struct i915_gem_context *ctx;
1196 1197
	u32 data[3];

1198
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1199 1200
		return 0;

1201 1202 1203
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1204
	ctx = dev_priv->kernel_context;
1205

1206
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1207 1208
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1209
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1210

1211
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1212
}
1213

1214