i915_request.c 46.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"

35
#include "i915_active.h"
36
#include "i915_drv.h"
37
#include "i915_globals.h"
38
#include "i915_trace.h"
39
#include "intel_pm.h"
40

41 42 43 44
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
45 46
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
47 48
};

49
static struct i915_global_request {
50
	struct i915_global base;
51 52
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
53
	struct kmem_cache *slab_execute_cbs;
54 55
} global;

56
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 58 59 60
{
	return "i915";
}

61
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62
{
63 64
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
65 66 67 68 69 70 71 72 73 74
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

75
	return to_request(fence)->gem_context->name ?: "[i915]";
76 77
}

78
static bool i915_fence_signaled(struct dma_fence *fence)
79
{
80
	return i915_request_completed(to_request(fence));
81 82
}

83
static bool i915_fence_enable_signaling(struct dma_fence *fence)
84
{
85
	return i915_request_enable_breadcrumb(to_request(fence));
86 87
}

88
static signed long i915_fence_wait(struct dma_fence *fence,
89
				   bool interruptible,
90
				   signed long timeout)
91
{
92 93 94
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
95 96
}

97
static void i915_fence_release(struct dma_fence *fence)
98
{
99
	struct i915_request *rq = to_request(fence);
100

101 102
	/*
	 * The request is put onto a RCU freelist (i.e. the address
103 104 105 106 107
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
108
	i915_sw_fence_fini(&rq->submit);
109
	i915_sw_fence_fini(&rq->semaphore);
110

111
	kmem_cache_free(global.slab_requests, rq);
112 113
}

114
const struct dma_fence_ops i915_fence_ops = {
115 116 117 118 119 120 121 122
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

167
static inline void
168
remove_from_client(struct i915_request *request)
169
{
170
	struct drm_i915_file_private *file_priv;
171

172
	if (!READ_ONCE(request->file_priv))
173 174
		return;

175 176 177 178
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
179
		list_del(&request->client_link);
180
		spin_unlock(&file_priv->mm.lock);
181
	}
182
	rcu_read_unlock();
183 184
}

185
static void free_capture_list(struct i915_request *request)
186
{
187
	struct i915_capture_list *capture;
188 189 190

	capture = request->capture_list;
	while (capture) {
191
		struct i915_capture_list *next = capture->next;
192 193 194 195 196 197

		kfree(capture);
		capture = next;
	}
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
	list_del(&rq->sched.link);
	spin_unlock(&locked->active.lock);
}

219
static bool i915_request_retire(struct i915_request *rq)
220
{
221 222
	if (!i915_request_completed(rq))
		return false;
223

224 225 226 227
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
228

229 230
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
231

232 233 234 235 236 237 238 239 240
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
241 242
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
243
	rq->ring->head = rq->postfix;
244

245
	local_irq_disable();
246

247 248 249 250 251 252
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
253
	remove_from_engine(rq);
254

255 256 257 258 259 260
	spin_lock(&rq->lock);
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
261
	if (i915_request_has_waitboost(rq)) {
262 263 264
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
265 266 267 268 269
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
270 271 272
	spin_unlock(&rq->lock);

	local_irq_enable();
273

274
	remove_from_client(rq);
275
	list_del(&rq->link);
276

277 278 279
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

280 281 282 283 284
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
285 286
}

287
void i915_request_retire_upto(struct i915_request *rq)
288
{
289
	struct intel_timeline * const tl = i915_request_timeline(rq);
290
	struct i915_request *tmp;
291

292
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
293 294
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
295
		  hwsp_seqno(rq));
296

297
	GEM_BUG_ON(!i915_request_completed(rq));
298

299
	do {
300
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
301
	} while (i915_request_retire(tmp) && tmp != rq);
302 303
}

304
static int
305 306 307 308 309
__i915_request_await_execution(struct i915_request *rq,
			       struct i915_request *signal,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal),
			       gfp_t gfp)
310 311 312
{
	struct execute_cb *cb;

313 314 315
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
316
		return 0;
317
	}
318 319 320 321 322 323 324 325 326

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

327 328 329 330 331 332
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

333 334
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
335 336 337 338
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
339 340 341 342 343 344 345 346 347 348
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

349
bool __i915_request_submit(struct i915_request *request)
350
{
351
	struct intel_engine_cs *engine = request->engine;
352
	bool result = false;
353

354
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
355
		  engine->name,
356
		  request->fence.context, request->fence.seqno,
357
		  hwsp_seqno(request));
358

359
	GEM_BUG_ON(!irqs_disabled());
360
	lockdep_assert_held(&engine->active.lock);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

381 382 383
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
402
		engine->saturated |= request->sched.semaphores;
403

404 405
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
406

407 408 409
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
410

411 412 413 414 415
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
		list_move_tail(&request->sched.link, &engine->active.requests);
416

417
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
418
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
419 420
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
421

422 423
	__notify_execute_cb(request);

424 425
	spin_unlock(&request->lock);

426
	return result;
427 428
}

429
void i915_request_submit(struct i915_request *request)
430 431 432
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
433

434
	/* Will be called from irq-context when using foreign fences. */
435
	spin_lock_irqsave(&engine->active.lock, flags);
436

437
	__i915_request_submit(request);
438

439
	spin_unlock_irqrestore(&engine->active.lock, flags);
440 441
}

442
void __i915_request_unsubmit(struct i915_request *request)
443
{
444
	struct intel_engine_cs *engine = request->engine;
445

446
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
447
		  engine->name,
448
		  request->fence.context, request->fence.seqno,
449
		  hwsp_seqno(request));
450

451
	GEM_BUG_ON(!irqs_disabled());
452
	lockdep_assert_held(&engine->active.lock);
453

454 455
	/*
	 * Only unwind in reverse order, required so that the per-context list
456 457
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
458

459 460
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
461

462
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
463
		i915_request_cancel_breadcrumb(request);
464

465 466
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
467

468 469
	spin_unlock(&request->lock);

470 471 472 473 474 475
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

476 477
	/*
	 * We don't need to wake_up any waiters on request->execute, they
478
	 * will get woken by any other event or us re-adding this request
479
	 * to the engine timeline (__i915_request_submit()). The waiters
480 481 482 483 484
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

485
void i915_request_unsubmit(struct i915_request *request)
486 487 488 489 490
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
491
	spin_lock_irqsave(&engine->active.lock, flags);
492

493
	__i915_request_unsubmit(request);
494

495
	spin_unlock_irqrestore(&engine->active.lock, flags);
496 497
}

498
static int __i915_sw_fence_call
499
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
500
{
501
	struct i915_request *request =
502 503 504 505
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
506
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
507 508 509 510

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

511
		/*
512 513 514 515 516 517
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
518 519
		 */
		rcu_read_lock();
520
		request->engine->submit_request(request);
521
		rcu_read_unlock();
522 523 524
		break;

	case FENCE_FREE:
525
		i915_request_put(request);
526 527 528
		break;
	}

529 530 531
	return NOTIFY_DONE;
}

532 533 534 535 536 537 538 539
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
540
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
541 542 543 544 545 546 547 548 549 550
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

551
static void retire_requests(struct intel_timeline *tl)
552 553 554
{
	struct i915_request *rq, *rn;

555
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
556
		if (!i915_request_retire(rq))
557 558 559 560
			break;
}

static noinline struct i915_request *
561
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
562 563 564
{
	struct i915_request *rq;

565
	if (list_empty(&tl->requests))
566 567
		goto out;

568 569 570
	if (!gfpflags_allow_blocking(gfp))
		goto out;

571
	/* Move our oldest request to the slab-cache (if not in use!) */
572
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
573 574 575 576 577 578 579
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

580
	/* Ratelimit ourselves to prevent oom from malicious clients */
581
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
582 583 584
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
585
	retire_requests(tl);
586 587

out:
588
	return kmem_cache_alloc(global.slab_requests, gfp);
589 590
}

591
struct i915_request *
592
__i915_request_create(struct intel_context *ce, gfp_t gfp)
593
{
594
	struct intel_timeline *tl = ce->timeline;
595 596
	struct i915_request *rq;
	u32 seqno;
597 598
	int ret;

599
	might_sleep_if(gfpflags_allow_blocking(gfp));
600

601 602
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
603

604 605
	/*
	 * Beware: Dragons be flying overhead.
606 607 608 609
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
610
	 * of being read by __i915_active_request_get_rcu(). As such,
611 612
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
613
	 * read the request->global_seqno and increment the reference count.
614 615 616 617
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
618 619
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
620 621 622 623 624 625 626 627 628 629 630 631 632
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
633
	rq = kmem_cache_alloc(global.slab_requests,
634
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
635
	if (unlikely(!rq)) {
636
		rq = request_alloc_slow(tl, gfp);
637
		if (!rq) {
638 639 640
			ret = -ENOMEM;
			goto err_unreserve;
		}
641
	}
642

643
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
644 645 646
	if (ret)
		goto err_free;

647
	rq->i915 = ce->engine->i915;
648
	rq->hw_context = ce;
649 650
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
651
	rq->ring = ce->ring;
652 653

	rcu_assign_pointer(rq->timeline, tl);
654 655
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
656

657
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
658

659
	spin_lock_init(&rq->lock);
660 661
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
662

663
	/* We bump the ref for the fence chain */
664
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
665
	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
666

667
	i915_sched_node_init(&rq->sched);
668

669
	/* No zalloc, must clear what we need by hand */
670 671 672
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
673
	rq->flags = 0;
674
	rq->execution_mask = ALL_ENGINES;
675

676 677
	INIT_LIST_HEAD(&rq->execute_cb);

678 679 680
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
681
	 * i915_request_add() call can't fail. Note that the reserve may need
682 683
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
684 685 686 687 688
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
689
	 */
690 691
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
692

693 694
	/*
	 * Record the position of the start of the request so that
695 696 697 698
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
699
	rq->head = rq->ring->emit;
700

701
	ret = rq->engine->request_alloc(rq);
702 703
	if (ret)
		goto err_unwind;
704

705 706
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

707
	intel_context_mark_active(ce);
708
	return rq;
709

710
err_unwind:
711
	ce->ring->emit = rq->head;
712

713
	/* Make sure we didn't add ourselves to external state before freeing */
714 715
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
716

717
err_free:
718
	kmem_cache_free(global.slab_requests, rq);
719
err_unreserve:
720
	intel_context_unpin(ce);
721
	return ERR_PTR(ret);
722 723
}

724 725 726 727
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
728
	struct intel_timeline *tl;
729

730 731 732
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
733 734

	/* Move our oldest request to the slab-cache (if not in use!) */
735 736
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
737 738 739 740 741 742 743 744 745
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
746
	rq->cookie = lockdep_pin_lock(&tl->mutex);
747 748 749 750

	return rq;

err_unlock:
751
	intel_context_timeline_unlock(tl);
752 753 754
	return rq;
}

755 756 757
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
758 759 760
	struct intel_timeline *tl;
	struct dma_fence *fence;
	int err;
761

762 763 764 765 766 767 768 769 770
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

	rcu_read_lock();
	tl = rcu_dereference(signal->timeline);
	if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();
	if (!tl) /* already started or maybe even completed */
771 772
		return 0;

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	fence = ERR_PTR(-EBUSY);
	if (mutex_trylock(&tl->mutex)) {
		fence = NULL;
		if (!i915_request_started(signal) &&
		    !list_is_first(&signal->link, &tl->requests)) {
			signal = list_prev_entry(signal, link);
			fence = dma_fence_get(&signal->fence);
		}
		mutex_unlock(&tl->mutex);
	}
	intel_timeline_put(tl);
	if (IS_ERR_OR_NULL(fence))
		return PTR_ERR_OR_ZERO(fence);

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
795 796
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
812
	return rq->sched.semaphores | rq->engine->saturated;
813 814
}

815 816 817 818 819
static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
820
	const int has_token = INTEL_GEN(to->i915) >= 12;
821
	u32 hwsp_offset;
822
	int len;
823 824 825 826
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

827
	/* Just emit the first semaphore we see as request space is limited. */
828
	if (already_busywaiting(to) & from->engine->mask)
829
		goto await_fence;
830

831 832
	if (i915_request_await_start(to, from) < 0)
		goto await_fence;
833

834
	/* Only submit our spinner after the signaler is running! */
835 836
	if (__i915_request_await_execution(to, from, NULL, gfp))
		goto await_fence;
837

838
	/* We need to pin the signaler's HWSP until we are finished reading. */
839 840
	if (intel_timeline_read_hwsp(from, to, &hwsp_offset))
		goto await_fence;
841

842 843 844 845 846
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
847 848 849 850 851 852 853 854 855 856 857
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
858 859 860 861 862
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
863 864 865
	*cs++ = from->fence.seqno;
	*cs++ = hwsp_offset;
	*cs++ = 0;
866 867 868 869
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
870 871

	intel_ring_advance(to, cs);
872 873
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
874
	return 0;
875 876 877 878 879

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
880 881
}

882
static int
883
i915_request_await_request(struct i915_request *to, struct i915_request *from)
884
{
885
	int ret;
886 887

	GEM_BUG_ON(to == from);
888
	GEM_BUG_ON(to->timeline == from->timeline);
889

890
	if (i915_request_completed(from))
891 892
		return 0;

893
	if (to->engine->schedule) {
894
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
895 896 897 898
		if (ret < 0)
			return ret;
	}

899 900 901
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
902
						       I915_FENCE_GFP);
903 904 905
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
906 907 908 909
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
910
	}
911 912 913 914 915 916 917 918 919 920
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
921

922
	return 0;
923 924
}

925
int
926
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
927
{
928 929
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
930 931
	int ret;

932 933
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
934 935 936 937 938 939
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
940 941 942 943 944 945 946
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
947

948 949 950 951
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
952

953 954
		/*
		 * Requests on the same timeline are explicitly ordered, along
955
		 * with their dependencies, by i915_request_add() which ensures
956 957
		 * that requests are submitted in-order through each ring.
		 */
958
		if (fence->context == rq->fence.context)
959 960
			continue;

961
		/* Squash repeated waits to the same timelines */
962
		if (fence->context &&
963 964
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
965 966
			continue;

967
		if (dma_fence_is_i915(fence))
968
			ret = i915_request_await_request(rq, to_request(fence));
969
		else
970
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
971
							    fence->context ? I915_FENCE_TIMEOUT : 0,
972
							    I915_FENCE_GFP);
973 974
		if (ret < 0)
			return ret;
975 976

		/* Record the latest fence used against each timeline */
977
		if (fence->context)
978 979
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
980
	} while (--nchild);
981 982 983 984

	return 0;
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook,
							     I915_FENCE_GFP);
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1031
/**
1032
 * i915_request_await_object - set this request to (async) wait upon a bo
1033 1034
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1035
 * @write: whether the wait is on behalf of a writer
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1052 1053 1054
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1055
{
1056 1057
	struct dma_fence *excl;
	int ret = 0;
1058 1059

	if (write) {
1060 1061 1062
		struct dma_fence **shared;
		unsigned int count, i;

1063
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1064 1065 1066 1067 1068
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1069
			ret = i915_request_await_dma_fence(to, shared[i]);
1070 1071 1072 1073 1074 1075 1076 1077 1078
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1079
	} else {
1080
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1081 1082
	}

1083 1084
	if (excl) {
		if (ret == 0)
1085
			ret = i915_request_await_dma_fence(to, excl);
1086

1087
		dma_fence_put(excl);
1088 1089
	}

1090
	return ret;
1091 1092
}

1093 1094 1095 1096 1097 1098 1099 1100
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1101 1102 1103
	if (rq->infix == rq->postfix)
		return;

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1115
	rq->infix = rq->postfix;
1116 1117
}

1118 1119 1120
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1121
	struct intel_timeline *timeline = i915_request_timeline(rq);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1144 1145
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1164 1165 1166 1167 1168
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1169 1170 1171 1172 1173
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1174 1175 1176 1177 1178
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1179
struct i915_request *__i915_request_commit(struct i915_request *rq)
1180
{
1181 1182
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1183
	u32 *cs;
1184

1185
	GEM_TRACE("%s fence %llx:%lld\n",
1186
		  engine->name, rq->fence.context, rq->fence.seqno);
1187

1188 1189 1190 1191 1192
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1193 1194
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1195
	rq->emitted_jiffies = jiffies;
1196

1197 1198
	/*
	 * Record the position of the start of the breadcrumb so that
1199 1200
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1201
	 * position of the ring's HEAD.
1202
	 */
1203
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1204
	GEM_BUG_ON(IS_ERR(cs));
1205
	rq->postfix = intel_ring_offset(rq, cs);
1206

1207
	return __i915_request_add_to_timeline(rq);
1208 1209 1210 1211 1212
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1213 1214
	/*
	 * Let the backend know a new request has arrived that may need
1215 1216 1217 1218 1219 1220 1221 1222 1223
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1224
	i915_sw_fence_commit(&rq->semaphore);
1225 1226
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1227 1228 1229 1230 1231
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1232
	struct i915_sched_attr attr = rq->gem_context->sched;
1233
	struct intel_timeline * const tl = i915_request_timeline(rq);
1234 1235
	struct i915_request *prev;

1236 1237
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1238 1239 1240 1241 1242

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1267
	local_bh_disable();
1268
	__i915_request_queue(rq, &attr);
1269
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1288 1289 1290
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1291
		i915_request_retire_upto(prev);
1292

1293
	mutex_unlock(&tl->mutex);
1294 1295 1296 1297 1298 1299
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1300 1301
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1329 1330
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1331
{
1332
	unsigned int cpu;
1333 1334 1335 1336 1337 1338 1339

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1340 1341 1342 1343
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1344
	 */
1345
	if (!i915_request_is_running(rq))
1346 1347
		return false;

1348 1349
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1361 1362
		if (i915_request_completed(rq))
			return true;
1363

1364 1365 1366 1367 1368 1369
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1370
		cpu_relax();
1371 1372 1373 1374 1375
	} while (!need_resched());

	return false;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1388
/**
1389
 * i915_request_wait - wait until execution of request has finished
1390
 * @rq: the request to wait upon
1391
 * @flags: how to wait
1392 1393
 * @timeout: how long to wait in jiffies
 *
1394
 * i915_request_wait() waits for the request to be completed, for a
1395 1396
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1397
 *
1398 1399 1400 1401
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1402
 */
1403
long i915_request_wait(struct i915_request *rq,
1404 1405
		       unsigned int flags,
		       long timeout)
1406
{
1407 1408
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1409
	struct request_wait wait;
1410 1411

	might_sleep();
1412
	GEM_BUG_ON(timeout < 0);
1413

1414
	if (dma_fence_is_signaled(&rq->fence))
1415
		return timeout;
1416

1417 1418
	if (!timeout)
		return -ETIME;
1419

1420
	trace_i915_request_wait_begin(rq, flags);
1421 1422 1423 1424 1425 1426 1427

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1428
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1454 1455
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1456
		goto out;
1457
	}
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq);
1474
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1475
	}
1476

1477 1478 1479
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1480

1481 1482
	for (;;) {
		set_current_state(state);
1483

1484 1485
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1486
			break;
1487
		}
1488 1489

		if (signal_pending_state(state, current)) {
1490
			timeout = -ERESTARTSYS;
1491 1492 1493
			break;
		}

1494 1495
		if (!timeout) {
			timeout = -ETIME;
1496 1497 1498
			break;
		}

1499
		timeout = io_schedule_timeout(timeout);
1500
	}
1501
	__set_current_state(TASK_RUNNING);
1502

1503 1504 1505
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1506
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1507
	trace_i915_request_wait_end(rq);
1508
	return timeout;
1509
}
1510

1511
bool i915_retire_requests(struct drm_i915_private *i915)
1512
{
1513 1514
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
	struct intel_timeline *tl, *tn;
1515
	unsigned long flags;
1516 1517
	LIST_HEAD(free);

1518
	spin_lock_irqsave(&timelines->lock, flags);
1519 1520 1521
	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
		if (!mutex_trylock(&tl->mutex))
			continue;
1522

1523 1524 1525
		intel_timeline_get(tl);
		GEM_BUG_ON(!tl->active_count);
		tl->active_count++; /* pin the list element */
1526
		spin_unlock_irqrestore(&timelines->lock, flags);
1527

1528 1529
		retire_requests(tl);

1530
		spin_lock_irqsave(&timelines->lock, flags);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

		/* Resume iteration after dropping lock */
		list_safe_reset_next(tl, tn, link);
		if (!--tl->active_count)
			list_del(&tl->link);

		mutex_unlock(&tl->mutex);

		/* Defer the final release to after the spinlock */
		if (refcount_dec_and_test(&tl->kref.refcount)) {
			GEM_BUG_ON(tl->active_count);
			list_add(&tl->link, &free);
		}
1544
	}
1545
	spin_unlock_irqrestore(&timelines->lock, flags);
1546 1547 1548

	list_for_each_entry_safe(tl, tn, &free, link)
		__intel_timeline_free(&tl->kref);
1549

1550
	return !list_empty(&timelines->active_list);
1551
}
1552 1553 1554

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1555
#include "selftests/i915_request.c"
1556
#endif
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1577 1578 1579 1580 1581 1582 1583 1584 1585
int __init i915_global_request_init(void)
{
	global.slab_requests = KMEM_CACHE(i915_request,
					  SLAB_HWCACHE_ALIGN |
					  SLAB_RECLAIM_ACCOUNT |
					  SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_requests)
		return -ENOMEM;

1586 1587 1588 1589 1590 1591 1592
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1593 1594 1595 1596
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1597
		goto err_execute_cbs;
1598

1599
	i915_global_register(&global.base);
1600 1601
	return 0;

1602 1603
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1604 1605 1606 1607
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}