i915_request.c 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33 34
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"

35
#include "i915_active.h"
36
#include "i915_drv.h"
37
#include "i915_globals.h"
38
#include "i915_trace.h"
39
#include "intel_pm.h"
40

41 42 43 44
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
45 46
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
47 48
};

49
static struct i915_global_request {
50
	struct i915_global base;
51 52
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
53
	struct kmem_cache *slab_execute_cbs;
54 55
} global;

56
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 58 59 60
{
	return "i915";
}

61
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62
{
63 64
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
65 66 67 68 69 70 71 72 73 74
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

75
	return to_request(fence)->gem_context->name ?: "[i915]";
76 77
}

78
static bool i915_fence_signaled(struct dma_fence *fence)
79
{
80
	return i915_request_completed(to_request(fence));
81 82
}

83
static bool i915_fence_enable_signaling(struct dma_fence *fence)
84
{
85
	return i915_request_enable_breadcrumb(to_request(fence));
86 87
}

88
static signed long i915_fence_wait(struct dma_fence *fence,
89
				   bool interruptible,
90
				   signed long timeout)
91
{
92 93 94
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
95 96
}

97
static void i915_fence_release(struct dma_fence *fence)
98
{
99
	struct i915_request *rq = to_request(fence);
100

101 102
	/*
	 * The request is put onto a RCU freelist (i.e. the address
103 104 105 106 107
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
108
	i915_sw_fence_fini(&rq->submit);
109
	i915_sw_fence_fini(&rq->semaphore);
110

111
	kmem_cache_free(global.slab_requests, rq);
112 113
}

114
const struct dma_fence_ops i915_fence_ops = {
115 116 117 118 119 120 121 122
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

167
static inline void
168
remove_from_client(struct i915_request *request)
169
{
170
	struct drm_i915_file_private *file_priv;
171

172
	file_priv = READ_ONCE(request->file_priv);
173 174 175 176
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
177 178 179 180
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
181 182 183
	spin_unlock(&file_priv->mm.lock);
}

184
static void free_capture_list(struct i915_request *request)
185
{
186
	struct i915_capture_list *capture;
187 188 189

	capture = request->capture_list;
	while (capture) {
190
		struct i915_capture_list *next = capture->next;
191 192 193 194 195 196

		kfree(capture);
		capture = next;
	}
}

197
static bool i915_request_retire(struct i915_request *rq)
198
{
199
	struct i915_active_request *active, *next;
200

201
	lockdep_assert_held(&rq->timeline->mutex);
202 203
	if (!i915_request_completed(rq))
		return false;
204

205 206 207 208
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
209

210 211
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
212

213 214 215 216 217 218 219 220 221 222 223
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
	rq->ring->head = rq->postfix;
224

225 226
	/*
	 * Walk through the active list, calling retire on each. This allows
227 228 229 230 231 232 233 234
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
235
	list_for_each_entry_safe(active, next, &rq->active_list, link) {
236 237
		/*
		 * In microbenchmarks or focusing upon time inside the kernel,
238 239 240
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
241 242 243 244
		 * cache misses when jumping around the list of
		 * i915_active_request.  So we try to keep this loop as
		 * streamlined as possible and also prefetch the next
		 * i915_active_request to try and hide the likely cache miss.
245 246 247 248
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
249
		RCU_INIT_POINTER(active->request, NULL);
250

251
		active->retire(active, rq);
252 253
	}

254
	local_irq_disable();
255

256 257 258 259 260 261
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
262 263 264
	spin_lock(&rq->engine->active.lock);
	list_del(&rq->sched.link);
	spin_unlock(&rq->engine->active.lock);
265

266 267 268 269 270 271
	spin_lock(&rq->lock);
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
272
	if (i915_request_has_waitboost(rq)) {
273 274 275
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
276 277 278 279 280
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
281 282 283
	spin_unlock(&rq->lock);

	local_irq_enable();
284

285
	remove_from_client(rq);
286
	list_del(&rq->link);
287

288 289 290
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

291 292 293 294 295
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
296 297
}

298
void i915_request_retire_upto(struct i915_request *rq)
299
{
300
	struct intel_timeline * const tl = rq->timeline;
301
	struct i915_request *tmp;
302

303
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
304 305
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
306
		  hwsp_seqno(rq));
307

308
	lockdep_assert_held(&tl->mutex);
309
	GEM_BUG_ON(!i915_request_completed(rq));
310

311
	do {
312
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
313
	} while (i915_request_retire(tmp) && tmp != rq);
314 315
}

316
static int
317 318 319 320 321
__i915_request_await_execution(struct i915_request *rq,
			       struct i915_request *signal,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal),
			       gfp_t gfp)
322 323 324
{
	struct execute_cb *cb;

325 326 327
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
328
		return 0;
329
	}
330 331 332 333 334 335 336 337 338

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

339 340 341 342 343 344
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

345 346
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
347 348 349 350
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
351 352 353 354 355 356 357 358 359 360
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

361
void __i915_request_submit(struct i915_request *request)
362
{
363
	struct intel_engine_cs *engine = request->engine;
364

365
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
366
		  engine->name,
367
		  request->fence.context, request->fence.seqno,
368
		  hwsp_seqno(request));
369

370
	GEM_BUG_ON(!irqs_disabled());
371
	lockdep_assert_held(&engine->active.lock);
372

373 374 375
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
394
		engine->saturated |= request->sched.semaphores;
395

396 397
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
398

399 400
	list_move_tail(&request->sched.link, &engine->active.requests);

401 402
	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
403

404
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
405
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
406 407
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
408

409 410
	__notify_execute_cb(request);

411 412
	spin_unlock(&request->lock);

413 414
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
415

416 417
	engine->serial++;

418
	trace_i915_request_execute(request);
419 420
}

421
void i915_request_submit(struct i915_request *request)
422 423 424
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
425

426
	/* Will be called from irq-context when using foreign fences. */
427
	spin_lock_irqsave(&engine->active.lock, flags);
428

429
	__i915_request_submit(request);
430

431
	spin_unlock_irqrestore(&engine->active.lock, flags);
432 433
}

434
void __i915_request_unsubmit(struct i915_request *request)
435
{
436
	struct intel_engine_cs *engine = request->engine;
437

438
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
439
		  engine->name,
440
		  request->fence.context, request->fence.seqno,
441
		  hwsp_seqno(request));
442

443
	GEM_BUG_ON(!irqs_disabled());
444
	lockdep_assert_held(&engine->active.lock);
445

446 447
	/*
	 * Only unwind in reverse order, required so that the per-context list
448 449
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
450

451 452
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
453

454
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
455
		i915_request_cancel_breadcrumb(request);
456

457 458
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
459

460 461
	spin_unlock(&request->lock);

462 463 464 465 466 467
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

468 469
	/*
	 * We don't need to wake_up any waiters on request->execute, they
470
	 * will get woken by any other event or us re-adding this request
471
	 * to the engine timeline (__i915_request_submit()). The waiters
472 473 474 475 476
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

477
void i915_request_unsubmit(struct i915_request *request)
478 479 480 481 482
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
483
	spin_lock_irqsave(&engine->active.lock, flags);
484

485
	__i915_request_unsubmit(request);
486

487
	spin_unlock_irqrestore(&engine->active.lock, flags);
488 489
}

490
static int __i915_sw_fence_call
491
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
492
{
493
	struct i915_request *request =
494 495 496 497
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
498
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
499 500 501 502

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

503
		/*
504 505 506 507 508 509
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
510 511
		 */
		rcu_read_lock();
512
		request->engine->submit_request(request);
513
		rcu_read_unlock();
514 515 516
		break;

	case FENCE_FREE:
517
		i915_request_put(request);
518 519 520
		break;
	}

521 522 523
	return NOTIFY_DONE;
}

524 525 526 527 528 529 530 531
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
532
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
533 534 535 536 537 538 539 540 541 542
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

543
static void retire_requests(struct intel_timeline *tl)
544 545 546
{
	struct i915_request *rq, *rn;

547
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
548
		if (!i915_request_retire(rq))
549 550 551 552
			break;
}

static noinline struct i915_request *
553
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
554 555 556
{
	struct i915_request *rq;

557
	if (list_empty(&tl->requests))
558 559
		goto out;

560 561 562
	if (!gfpflags_allow_blocking(gfp))
		goto out;

563
	/* Move our oldest request to the slab-cache (if not in use!) */
564
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
565 566 567 568 569 570 571
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

572
	/* Ratelimit ourselves to prevent oom from malicious clients */
573
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
574 575 576
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
577
	retire_requests(tl);
578 579

out:
580
	return kmem_cache_alloc(global.slab_requests, gfp);
581 582
}

583
struct i915_request *
584
__i915_request_create(struct intel_context *ce, gfp_t gfp)
585
{
586
	struct intel_timeline *tl = ce->timeline;
587 588
	struct i915_request *rq;
	u32 seqno;
589 590
	int ret;

591
	might_sleep_if(gfpflags_allow_blocking(gfp));
592

593 594
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
595

596 597
	/*
	 * Beware: Dragons be flying overhead.
598 599 600 601
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
602
	 * of being read by __i915_active_request_get_rcu(). As such,
603 604
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
605
	 * read the request->global_seqno and increment the reference count.
606 607 608 609
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
610 611
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
612 613 614 615 616 617 618 619 620 621 622 623 624
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
625
	rq = kmem_cache_alloc(global.slab_requests,
626
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
627
	if (unlikely(!rq)) {
628
		rq = request_alloc_slow(tl, gfp);
629
		if (!rq) {
630 631 632
			ret = -ENOMEM;
			goto err_unreserve;
		}
633
	}
634

635
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
636 637 638
	if (ret)
		goto err_free;

639
	rq->i915 = ce->engine->i915;
640
	rq->hw_context = ce;
641 642
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
643
	rq->ring = ce->ring;
644 645 646 647
	rq->timeline = tl;
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
648

649
	spin_lock_init(&rq->lock);
650 651
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
652

653
	/* We bump the ref for the fence chain */
654
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
655
	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
656

657
	i915_sched_node_init(&rq->sched);
658

659
	/* No zalloc, must clear what we need by hand */
660 661 662
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
663
	rq->flags = 0;
664
	rq->execution_mask = ALL_ENGINES;
665

666 667 668
	INIT_LIST_HEAD(&rq->active_list);
	INIT_LIST_HEAD(&rq->execute_cb);

669 670 671
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
672
	 * i915_request_add() call can't fail. Note that the reserve may need
673 674
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
675 676 677 678 679
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
680
	 */
681 682
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
683

684 685
	/*
	 * Record the position of the start of the request so that
686 687 688 689
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
690
	rq->head = rq->ring->emit;
691

692
	ret = rq->engine->request_alloc(rq);
693 694
	if (ret)
		goto err_unwind;
695

696 697
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

698
	intel_context_mark_active(ce);
699
	return rq;
700

701
err_unwind:
702
	ce->ring->emit = rq->head;
703

704
	/* Make sure we didn't add ourselves to external state before freeing */
705
	GEM_BUG_ON(!list_empty(&rq->active_list));
706 707
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
708

709
err_free:
710
	kmem_cache_free(global.slab_requests, rq);
711
err_unreserve:
712
	intel_context_unpin(ce);
713
	return ERR_PTR(ret);
714 715
}

716 717 718 719
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
720
	struct intel_timeline *tl;
721

722 723 724
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
725 726

	/* Move our oldest request to the slab-cache (if not in use!) */
727 728
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
729 730 731 732 733 734 735 736 737
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
738
	rq->cookie = lockdep_pin_lock(&tl->mutex);
739 740 741 742

	return rq;

err_unlock:
743
	intel_context_timeline_unlock(tl);
744 745 746
	return rq;
}

747 748 749
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
750
	if (list_is_first(&signal->link, &signal->timeline->requests))
751 752
		return 0;

753
	signal = list_prev_entry(signal, link);
754
	if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
755 756 757 758 759 760 761
		return 0;

	return i915_sw_fence_await_dma_fence(&rq->submit,
					     &signal->fence, 0,
					     I915_FENCE_GFP);
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
777
	return rq->sched.semaphores | rq->engine->saturated;
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791
static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	u32 hwsp_offset;
	u32 *cs;
	int err;

	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

792
	/* Just emit the first semaphore we see as request space is limited. */
793
	if (already_busywaiting(to) & from->engine->mask)
794 795 796 797
		return i915_sw_fence_await_dma_fence(&to->submit,
						     &from->fence, 0,
						     I915_FENCE_GFP);

798 799 800 801
	err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

802
	/* Only submit our spinner after the signaler is running! */
803
	err = __i915_request_await_execution(to, from, NULL, gfp);
804 805 806
	if (err)
		return err;

807
	/* We need to pin the signaler's HWSP until we are finished reading. */
808
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	if (err)
		return err;

	cs = intel_ring_begin(to, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_GTE_SDD;
	*cs++ = from->fence.seqno;
	*cs++ = hwsp_offset;
	*cs++ = 0;

	intel_ring_advance(to, cs);
833 834
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
835 836 837
	return 0;
}

838
static int
839
i915_request_await_request(struct i915_request *to, struct i915_request *from)
840
{
841
	int ret;
842 843

	GEM_BUG_ON(to == from);
844
	GEM_BUG_ON(to->timeline == from->timeline);
845

846
	if (i915_request_completed(from))
847 848
		return 0;

849
	if (to->engine->schedule) {
850
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
851 852 853 854
		if (ret < 0)
			return ret;
	}

855 856 857
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
858
						       I915_FENCE_GFP);
859 860 861
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
862 863 864 865
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
866
	}
867 868 869 870 871 872 873 874 875 876
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
877

878
	return 0;
879 880
}

881
int
882
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
883
{
884 885
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
886 887
	int ret;

888 889
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
890 891 892 893 894 895
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
896 897 898 899 900 901 902
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
903

904 905 906 907
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
908

909 910
		/*
		 * Requests on the same timeline are explicitly ordered, along
911
		 * with their dependencies, by i915_request_add() which ensures
912 913
		 * that requests are submitted in-order through each ring.
		 */
914
		if (fence->context == rq->fence.context)
915 916
			continue;

917
		/* Squash repeated waits to the same timelines */
918
		if (fence->context &&
919
		    intel_timeline_sync_is_later(rq->timeline, fence))
920 921
			continue;

922
		if (dma_fence_is_i915(fence))
923
			ret = i915_request_await_request(rq, to_request(fence));
924
		else
925
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
926
							    I915_FENCE_TIMEOUT,
927
							    I915_FENCE_GFP);
928 929
		if (ret < 0)
			return ret;
930 931

		/* Record the latest fence used against each timeline */
932
		if (fence->context)
933
			intel_timeline_sync_set(rq->timeline, fence);
934
	} while (--nchild);
935 936 937 938

	return 0;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook,
							     I915_FENCE_GFP);
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

985
/**
986
 * i915_request_await_object - set this request to (async) wait upon a bo
987 988
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
989
 * @write: whether the wait is on behalf of a writer
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1006 1007 1008
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1009
{
1010 1011
	struct dma_fence *excl;
	int ret = 0;
1012 1013

	if (write) {
1014 1015 1016
		struct dma_fence **shared;
		unsigned int count, i;

1017
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1018 1019 1020 1021 1022
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1023
			ret = i915_request_await_dma_fence(to, shared[i]);
1024 1025 1026 1027 1028 1029 1030 1031 1032
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1033
	} else {
1034
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1035 1036
	}

1037 1038
	if (excl) {
		if (ret == 0)
1039
			ret = i915_request_await_dma_fence(to, excl);
1040

1041
		dma_fence_put(excl);
1042 1043
	}

1044
	return ret;
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1055 1056 1057
	if (rq->infix == rq->postfix)
		return;

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1069
	rq->infix = rq->postfix;
1070 1071
}

1072 1073 1074
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1075
	struct intel_timeline *timeline = rq->timeline;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1098 1099
	prev = rcu_dereference_protected(timeline->last_request.request,
					 lockdep_is_held(&timeline->mutex));
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1118 1119 1120 1121 1122
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1123 1124 1125 1126 1127 1128
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
	__i915_active_request_set(&timeline->last_request, rq);

	return prev;
}

1129 1130 1131 1132 1133
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1134
struct i915_request *__i915_request_commit(struct i915_request *rq)
1135
{
1136 1137
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1138
	u32 *cs;
1139

1140
	GEM_TRACE("%s fence %llx:%lld\n",
1141
		  engine->name, rq->fence.context, rq->fence.seqno);
1142

1143 1144 1145 1146 1147
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1148 1149
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1150
	rq->emitted_jiffies = jiffies;
1151

1152 1153
	/*
	 * Record the position of the start of the breadcrumb so that
1154 1155
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1156
	 * position of the ring's HEAD.
1157
	 */
1158
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1159
	GEM_BUG_ON(IS_ERR(cs));
1160
	rq->postfix = intel_ring_offset(rq, cs);
1161

1162
	return __i915_request_add_to_timeline(rq);
1163 1164 1165 1166 1167
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1168 1169
	/*
	 * Let the backend know a new request has arrived that may need
1170 1171 1172 1173 1174 1175 1176 1177 1178
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1179
	i915_sw_fence_commit(&rq->semaphore);
1180 1181
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1182 1183 1184 1185 1186
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1187
	struct i915_sched_attr attr = rq->gem_context->sched;
1188
	struct intel_timeline * const tl = rq->timeline;
1189 1190
	struct i915_request *prev;

1191 1192
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1193 1194 1195 1196 1197

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1222
	local_bh_disable();
1223
	__i915_request_queue(rq, &attr);
1224
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1243
	if (prev && i915_request_completed(prev) && prev->timeline == tl)
1244
		i915_request_retire_upto(prev);
1245

1246
	mutex_unlock(&tl->mutex);
1247 1248 1249 1250 1251 1252
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1253 1254
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1282 1283
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1284
{
1285
	unsigned int cpu;
1286 1287 1288 1289 1290 1291 1292

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1293 1294 1295 1296
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1297
	 */
1298
	if (!i915_request_is_running(rq))
1299 1300
		return false;

1301 1302
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1314 1315
		if (i915_request_completed(rq))
			return true;
1316

1317 1318 1319 1320 1321 1322
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1323
		cpu_relax();
1324 1325 1326 1327 1328
	} while (!need_resched());

	return false;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1341
/**
1342
 * i915_request_wait - wait until execution of request has finished
1343
 * @rq: the request to wait upon
1344
 * @flags: how to wait
1345 1346
 * @timeout: how long to wait in jiffies
 *
1347
 * i915_request_wait() waits for the request to be completed, for a
1348 1349
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1350
 *
1351 1352 1353 1354
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1355
 */
1356
long i915_request_wait(struct i915_request *rq,
1357 1358
		       unsigned int flags,
		       long timeout)
1359
{
1360 1361
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1362
	struct request_wait wait;
1363 1364

	might_sleep();
1365
	GEM_BUG_ON(timeout < 0);
1366

1367
	if (dma_fence_is_signaled(&rq->fence))
1368
		return timeout;
1369

1370 1371
	if (!timeout)
		return -ETIME;
1372

1373
	trace_i915_request_wait_begin(rq, flags);
1374 1375 1376 1377 1378 1379 1380

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1381
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1407 1408
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1409
		goto out;
1410
	}
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq);
1427
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1428
	}
1429

1430 1431 1432
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1433

1434 1435
	for (;;) {
		set_current_state(state);
1436

1437 1438
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1439
			break;
1440
		}
1441 1442

		if (signal_pending_state(state, current)) {
1443
			timeout = -ERESTARTSYS;
1444 1445 1446
			break;
		}

1447 1448
		if (!timeout) {
			timeout = -ETIME;
1449 1450 1451
			break;
		}

1452
		timeout = io_schedule_timeout(timeout);
1453
	}
1454
	__set_current_state(TASK_RUNNING);
1455

1456 1457 1458
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1459
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1460
	trace_i915_request_wait_end(rq);
1461
	return timeout;
1462
}
1463

1464
bool i915_retire_requests(struct drm_i915_private *i915)
1465
{
1466 1467 1468 1469 1470 1471 1472 1473
	struct intel_gt_timelines *timelines = &i915->gt.timelines;
	struct intel_timeline *tl, *tn;
	LIST_HEAD(free);

	spin_lock(&timelines->lock);
	list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
		if (!mutex_trylock(&tl->mutex))
			continue;
1474

1475 1476 1477 1478
		intel_timeline_get(tl);
		GEM_BUG_ON(!tl->active_count);
		tl->active_count++; /* pin the list element */
		spin_unlock(&timelines->lock);
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		retire_requests(tl);

		spin_lock(&timelines->lock);

		/* Resume iteration after dropping lock */
		list_safe_reset_next(tl, tn, link);
		if (!--tl->active_count)
			list_del(&tl->link);

		mutex_unlock(&tl->mutex);

		/* Defer the final release to after the spinlock */
		if (refcount_dec_and_test(&tl->kref.refcount)) {
			GEM_BUG_ON(tl->active_count);
			list_add(&tl->link, &free);
		}
1496
	}
1497 1498 1499 1500
	spin_unlock(&timelines->lock);

	list_for_each_entry_safe(tl, tn, &free, link)
		__intel_timeline_free(&tl->kref);
1501

1502
	return !list_empty(&timelines->active_list);
1503
}
1504 1505 1506

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1507
#include "selftests/i915_request.c"
1508
#endif
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1529 1530 1531 1532 1533 1534 1535 1536 1537
int __init i915_global_request_init(void)
{
	global.slab_requests = KMEM_CACHE(i915_request,
					  SLAB_HWCACHE_ALIGN |
					  SLAB_RECLAIM_ACCOUNT |
					  SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_requests)
		return -ENOMEM;

1538 1539 1540 1541 1542 1543 1544
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1545 1546 1547 1548
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1549
		goto err_execute_cbs;
1550

1551
	i915_global_register(&global.base);
1552 1553
	return 0;

1554 1555
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1556 1557 1558 1559
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}