memory-failure.c 52.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52
#include <linux/migrate.h>
#include <linux/suspend.h>
53
#include <linux/slab.h>
54
#include <linux/swapops.h>
55
#include <linux/hugetlb.h>
56
#include <linux/memory_hotplug.h>
57
#include <linux/mm_inline.h>
58
#include <linux/memremap.h>
59
#include <linux/kfifo.h>
60
#include <linux/ratelimit.h>
61
#include <linux/page-isolation.h>
62
#include "internal.h"
63
#include "ras/ras_event.h"
64 65 66 67 68

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

69
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70

71 72
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

73
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
74 75
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
76 77
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
78
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
79 80
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
81 82
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
83 84 85 86 87 88 89 90 91 92 93

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
94
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
114 115 116 117 118 119 120 121 122 123 124 125
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
126 127 128 129 130 131 132 133 134 135
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
136
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
137 138 139 140 141 142 143
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

144
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
145 146 147 148 149 150 151 152
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
153 154
int hwpoison_filter(struct page *p)
{
155 156 157
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
161 162 163
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
164 165 166
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
167 168
	return 0;
}
169 170 171 172 173 174 175
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
176 177
EXPORT_SYMBOL_GPL(hwpoison_filter);

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
	char addr_valid;
};

208
/*
209 210 211
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
212
 */
213
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
214
{
215 216
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
217 218
	int ret;

219 220
	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
		pfn, t->comm, t->pid);
221

222
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
223
		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
224
				       addr_lsb, current);
225 226 227 228 229 230 231
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
232
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
233
				      addr_lsb, t);  /* synchronous? */
234
	}
235
	if (ret < 0)
236
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237
			t->comm, t->pid, ret);
238 239 240
	return ret;
}

241 242 243 244
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
245
void shake_page(struct page *p, int access)
246
{
247 248 249
	if (PageHuge(p))
		return;

250 251 252 253
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
254
		drain_all_pages(page_zone(p));
255 256 257
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
258

259
	/*
260 261
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
262
	 */
263 264
	if (access)
		drop_slab_node(page_to_nid(p));
265 266 267
}
EXPORT_SYMBOL_GPL(shake_page);

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
325
			pr_err("Memory failure: Out of memory while machine check handling\n");
326 327 328 329 330
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;
331 332 333 334
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
335 336 337 338 339 340 341

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
342
	if (tk->addr == -EFAULT || tk->size_shift == 0) {
343
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
360 361
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
362 363 364 365
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
366
		if (forcekill) {
367
			/*
368
			 * In case something went wrong with munmapping
369 370 371 372
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
373
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374
				       pfn, tk->tsk->comm, tk->tsk->pid);
375 376 377 378 379 380 381 382 383
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
384
			else if (kill_proc(tk, pfn, flags) < 0)
385
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386
				       pfn, tk->tsk->comm, tk->tsk->pid);
387 388 389 390 391 392
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

393 394 395 396 397 398 399 400 401
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402
{
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
421
	if (!tsk->mm)
422
		return NULL;
423
	if (force_early)
424 425 426 427 428 429 430
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
431 432 433 434 435 436
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437
			      struct to_kill **tkc, int force_early)
438 439 440 441
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
442
	pgoff_t pgoff;
443

444
	av = page_lock_anon_vma_read(page);
445
	if (av == NULL)	/* Not actually mapped anymore */
446 447
		return;

448
	pgoff = page_to_pgoff(page);
449
	read_lock(&tasklist_lock);
450
	for_each_process (tsk) {
451
		struct anon_vma_chain *vmac;
452
		struct task_struct *t = task_early_kill(tsk, force_early);
453

454
		if (!t)
455
			continue;
456 457
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
458
			vma = vmac->vma;
459 460
			if (!page_mapped_in_vma(page, vma))
				continue;
461 462
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
463 464 465
		}
	}
	read_unlock(&tasklist_lock);
466
	page_unlock_anon_vma_read(av);
467 468 469 470 471 472
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
473
			      struct to_kill **tkc, int force_early)
474 475 476 477 478
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

479
	i_mmap_lock_read(mapping);
480
	read_lock(&tasklist_lock);
481
	for_each_process(tsk) {
482
		pgoff_t pgoff = page_to_pgoff(page);
483
		struct task_struct *t = task_early_kill(tsk, force_early);
484

485
		if (!t)
486
			continue;
487
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 489 490 491 492 493 494 495
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
496 497
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
498 499 500
		}
	}
	read_unlock(&tasklist_lock);
501
	i_mmap_unlock_read(mapping);
502 503 504 505 506 507 508 509
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
510 511
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
512 513 514 515 516 517 518 519 520 521
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
522
		collect_procs_anon(page, tokill, &tk, force_early);
523
	else
524
		collect_procs_file(page, tokill, &tk, force_early);
525 526 527 528
	kfree(tk);
}

static const char *action_name[] = {
529 530 531 532
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
533 534 535
};

static const char * const action_page_types[] = {
536 537 538 539 540 541 542
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
543
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
544 545 546 547 548 549 550 551 552 553 554 555
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
556
	[MF_MSG_DAX]			= "dax page",
557
	[MF_MSG_UNKNOWN]		= "unknown page",
558 559
};

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
575 576 577 578 579 580 581

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

582 583 584
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
585
		put_page(p);
586 587 588 589 590
		return 0;
	}
	return -EIO;
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

624 625 626 627 628 629 630
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
631
	return MF_IGNORED;
632 633 634 635 636 637 638
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
639
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640
	return MF_FAILED;
641 642 643 644 645 646 647 648 649
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

650 651
	delete_from_lru_cache(p);

652 653 654 655 656
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
657
		return MF_RECOVERED;
658 659 660 661 662 663 664 665 666 667 668 669 670

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
671
		return MF_FAILED;
672 673 674 675 676 677 678
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
679
	return truncate_error_page(p, pfn, mapping);
680 681 682
}

/*
683
 * Dirty pagecache page
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
716
		 * and the page is dropped between then the error
717 718 719 720 721 722 723 724 725 726 727
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
728
		mapping_set_error(mapping, -EIO);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

759
	if (!delete_from_lru_cache(p))
760
		return MF_DELAYED;
761
	else
762
		return MF_FAILED;
763 764 765 766 767
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
768

769
	if (!delete_from_lru_cache(p))
770
		return MF_RECOVERED;
771
	else
772
		return MF_FAILED;
773 774 775 776 777
}

/*
 * Huge pages. Needs work.
 * Issues:
778 779
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
780 781 782
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
783
	int res = 0;
784
	struct page *hpage = compound_head(p);
785
	struct address_space *mapping;
786 787 788 789

	if (!PageHuge(hpage))
		return MF_DELAYED;

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
805
	}
806 807

	return res;
808 809 810 811 812 813 814 815 816
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
817
 * in its live cycle, so all accesses have to be extremely careful.
818 819 820 821 822 823
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
824
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 826 827 828 829 830 831 832 833 834 835
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
836
	enum mf_action_page_type type;
837 838
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
839
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
840 841 842 843
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
844 845 846 847 848 849

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
850
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
851

852
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
853

854 855
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
856

857 858
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
859

860 861
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
862

863 864
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
865 866 867 868

	/*
	 * Catchall entry: must be at end.
	 */
869
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
870 871
};

872 873 874 875 876 877 878 879 880 881
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

882 883 884 885
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
886 887
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
888
{
889 890
	trace_memory_failure_event(pfn, type, result);

891
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892
		pfn, action_page_types[type], action_name[result]);
893 894 895
}

static int page_action(struct page_state *ps, struct page *p,
896
			unsigned long pfn)
897 898
{
	int result;
899
	int count;
900 901

	result = ps->action(p, pfn);
902

903
	count = page_count(p) - 1;
904
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905
		count--;
906
	if (count > 0) {
907
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908
		       pfn, action_page_types[ps->type], count);
909
		result = MF_FAILED;
910
	}
911
	action_result(pfn, ps->type, result);
912 913 914 915 916 917

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

918
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 920
}

921 922 923 924 925 926 927 928 929 930 931
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

932
	if (!PageHuge(head) && PageTransHuge(head)) {
933 934 935 936 937 938 939
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
940
			pr_err("Memory failure: %#lx: non anonymous thp\n",
941 942 943
				page_to_pfn(page));
			return 0;
		}
944 945
	}

946 947 948 949
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

950 951
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
952 953 954 955
		put_page(head);
	}

	return 0;
956 957 958
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

959 960 961 962
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
963
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964
				  int flags, struct page **hpagep)
965
{
S
Shaohua Li 已提交
966
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 968
	struct address_space *mapping;
	LIST_HEAD(tokill);
969
	bool unmap_success = true;
970
	int kill = 1, forcekill;
971
	struct page *hpage = *hpagep;
972
	bool mlocked = PageMlocked(hpage);
973

974 975 976 977 978
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
979
		return true;
980
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
981
		return true;
982 983 984 985 986

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
987
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
988
		return true;
W
Wu Fengguang 已提交
989

990
	if (PageKsm(p)) {
991
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
992
		return false;
993
	}
994 995

	if (PageSwapCache(p)) {
996 997
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
998 999 1000 1001 1002 1003
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1004 1005
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1006
	 */
1007
	mapping = page_mapping(hpage);
1008
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 1010 1011
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1012 1013 1014
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1015
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1029
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else if (mapping) {
		/*
		 * For hugetlb pages, try_to_unmap could potentially call
		 * huge_pmd_unshare.  Because of this, take semaphore in
		 * write mode here and set TTU_RMAP_LOCKED to indicate we
		 * have taken the lock at this higer level.
		 */
		i_mmap_lock_write(mapping);
		unmap_success = try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
		i_mmap_unlock_write(mapping);
	}
M
Minchan Kim 已提交
1044
	if (!unmap_success)
1045
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1046
		       pfn, page_mapcount(hpage));
1047

1048 1049 1050 1051 1052 1053 1054
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1055 1056 1057 1058
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1059 1060
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1061 1062 1063 1064
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1065
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1066
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1067

M
Minchan Kim 已提交
1068
	return unmap_success;
1069 1070
}

1071 1072
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1073 1074
{
	struct page_state *ps;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1094
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1095
{
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1154
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1155 1156 1157 1158 1159
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1160
	res = identify_page_state(pfn, p, page_flags);
1161 1162 1163 1164 1165
out:
	unlock_page(head);
	return res;
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1176
	dax_entry_t cookie;
1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1185 1186
	cookie = dax_lock_page(page);
	if (!cookie)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

	switch (pgmap->type) {
	case MEMORY_DEVICE_PRIVATE:
	case MEMORY_DEVICE_PUBLIC:
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	default:
		break;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1237
	dax_unlock_page(page, cookie);
1238 1239 1240 1241 1242 1243 1244
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1262
int memory_failure(unsigned long pfn, int flags)
1263 1264
{
	struct page *p;
1265
	struct page *hpage;
1266
	struct page *orig_head;
1267
	struct dev_pagemap *pgmap;
1268
	int res;
1269
	unsigned long page_flags;
1270 1271

	if (!sysctl_memory_failure_recovery)
1272
		panic("Memory failure on page %lx", pfn);
1273 1274

	if (!pfn_valid(pfn)) {
1275 1276
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1277
		return -ENXIO;
1278 1279
	}

1280 1281 1282 1283
	pgmap = get_dev_pagemap(pfn, NULL);
	if (pgmap)
		return memory_failure_dev_pagemap(pfn, flags, pgmap);

1284
	p = pfn_to_page(pfn);
1285
	if (PageHuge(p))
1286
		return memory_failure_hugetlb(pfn, flags);
1287
	if (TestSetPageHWPoison(p)) {
1288 1289
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1290 1291 1292
		return 0;
	}

1293
	orig_head = hpage = compound_head(p);
1294
	num_poisoned_pages_inc();
1295 1296 1297 1298 1299

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1300
	 * 2) it's part of a non-compound high order page.
1301 1302 1303 1304
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1305
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1306
	 */
1307
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1308
		if (is_free_buddy_page(p)) {
1309
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1310 1311
			return 0;
		} else {
1312
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1313 1314
			return -EBUSY;
		}
1315 1316
	}

1317
	if (PageTransHuge(hpage)) {
1318 1319 1320 1321
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1322 1323
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1324
			else
1325 1326
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1327
			if (TestClearPageHWPoison(p))
1328
				num_poisoned_pages_dec();
1329
			put_hwpoison_page(p);
1330 1331
			return -EBUSY;
		}
1332
		unlock_page(p);
1333 1334 1335 1336
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1337 1338 1339
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1340
	 * - to avoid races with __SetPageLocked()
1341 1342 1343 1344
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1345 1346 1347 1348 1349 1350 1351 1352
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1353 1354
	}

1355
	lock_page(p);
W
Wu Fengguang 已提交
1356

1357 1358 1359 1360
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1361
	if (PageCompound(p) && compound_head(p) != orig_head) {
1362
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1363 1364 1365 1366
		res = -EBUSY;
		goto out;
	}

1367 1368 1369 1370 1371 1372 1373
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1374 1375 1376 1377
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1378

W
Wu Fengguang 已提交
1379 1380 1381 1382
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1383
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1384
		num_poisoned_pages_dec();
1385 1386
		unlock_page(p);
		put_hwpoison_page(p);
1387
		return 0;
W
Wu Fengguang 已提交
1388
	}
W
Wu Fengguang 已提交
1389 1390
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1391
			num_poisoned_pages_dec();
1392 1393
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1394 1395
		return 0;
	}
W
Wu Fengguang 已提交
1396

1397
	if (!PageTransTail(p) && !PageLRU(p))
1398 1399
		goto identify_page_state;

1400 1401 1402 1403
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1404 1405 1406 1407
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1408
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1409 1410 1411
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1412
	 */
1413
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1414
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1415 1416 1417
		res = -EBUSY;
		goto out;
	}
1418 1419 1420 1421

	/*
	 * Torn down by someone else?
	 */
1422
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1423
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1424
		res = -EBUSY;
1425 1426 1427
		goto out;
	}

1428
identify_page_state:
1429
	res = identify_page_state(pfn, p, page_flags);
1430
out:
1431
	unlock_page(p);
1432 1433
	return res;
}
1434
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1469
void memory_failure_queue(unsigned long pfn, int flags)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1480
	if (kfifo_put(&mf_cpu->fifo, entry))
1481 1482
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1483
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1497
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1498 1499 1500 1501 1502 1503
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1504 1505 1506
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
1507
			memory_failure(entry.pfn, entry.flags);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1527 1528 1529 1530 1531 1532
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1550 1551
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1552 1553 1554 1555 1556 1557 1558 1559

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1560
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1561
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1562 1563 1564
		return 0;
	}

1565
	if (page_count(page) > 1) {
1566
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1567
				 pfn, &unpoison_rs);
1568 1569 1570 1571
		return 0;
	}

	if (page_mapped(page)) {
1572
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1573
				 pfn, &unpoison_rs);
1574 1575 1576 1577
		return 0;
	}

	if (page_mapping(page)) {
1578
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1579
				 pfn, &unpoison_rs);
1580 1581 1582
		return 0;
	}

1583 1584 1585 1586 1587
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1588
	if (!PageHuge(page) && PageTransHuge(page)) {
1589
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1590
				 pfn, &unpoison_rs);
1591
		return 0;
1592 1593
	}

1594
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1595
		if (TestClearPageHWPoison(p))
1596
			num_poisoned_pages_dec();
1597
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1598
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1599 1600 1601
		return 0;
	}

J
Jens Axboe 已提交
1602
	lock_page(page);
W
Wu Fengguang 已提交
1603 1604 1605 1606 1607 1608
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1609
	if (TestClearPageHWPoison(page)) {
1610
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1611
				 pfn, &unpoison_rs);
1612
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1613 1614 1615 1616
		freeit = 1;
	}
	unlock_page(page);

1617
	put_hwpoison_page(page);
1618
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1619
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1620 1621 1622 1623

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1624

1625
static struct page *new_page(struct page *p, unsigned long private)
1626
{
1627
	int nid = page_to_nid(p);
1628

1629
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1630 1631 1632 1633 1634 1635 1636 1637
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1638
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1639 1640 1641 1642 1643 1644
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1645 1646 1647 1648
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1649
	if (!get_hwpoison_page(p)) {
1650
		if (PageHuge(p)) {
1651
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1652
			ret = 0;
1653
		} else if (is_free_buddy_page(p)) {
1654
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1655 1656
			ret = 0;
		} else {
1657 1658
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1659 1660 1661 1662 1663 1664 1665 1666 1667
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1668 1669 1670 1671
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1672 1673
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1674 1675 1676
		/*
		 * Try to free it.
		 */
1677
		put_hwpoison_page(page);
1678 1679 1680 1681 1682 1683
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1684
		if (ret == 1 && !PageLRU(page)) {
1685
			/* Drop page reference which is from __get_any_page() */
1686
			put_hwpoison_page(page);
1687 1688
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1689 1690 1691 1692 1693 1694
			return -EIO;
		}
	}
	return ret;
}

1695 1696 1697 1698 1699
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1700
	LIST_HEAD(pagelist);
1701

1702 1703 1704 1705 1706
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1707
	if (PageHWPoison(hpage)) {
1708
		unlock_page(hpage);
1709
		put_hwpoison_page(hpage);
1710
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1711
		return -EBUSY;
1712
	}
1713
	unlock_page(hpage);
1714

1715
	ret = isolate_huge_page(hpage, &pagelist);
1716 1717 1718 1719
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1720
	put_hwpoison_page(hpage);
1721
	if (!ret) {
1722 1723 1724 1725
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1726
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1727
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1728
	if (ret) {
1729
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1730
			pfn, ret, page->flags, &page->flags);
1731 1732
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1733 1734
		if (ret > 0)
			ret = -EIO;
1735
	} else {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
		}
1748 1749 1750 1751
	}
	return ret;
}

1752 1753 1754 1755
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1756 1757

	/*
1758 1759 1760 1761
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1762
	 */
1763 1764
	lock_page(page);
	wait_on_page_writeback(page);
1765 1766
	if (PageHWPoison(page)) {
		unlock_page(page);
1767
		put_hwpoison_page(page);
1768 1769 1770
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1782
		put_hwpoison_page(page);
1783
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1784
		SetPageHWPoison(page);
1785
		num_poisoned_pages_inc();
1786
		return 0;
1787 1788 1789 1790 1791 1792 1793
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1794 1795 1796 1797
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1798 1799 1800 1801
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1802
	put_hwpoison_page(page);
1803 1804
	if (!ret) {
		LIST_HEAD(pagelist);
1805 1806 1807 1808 1809 1810 1811 1812
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1813
		list_add(&page->lru, &pagelist);
1814
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1815
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1816
		if (ret) {
1817 1818
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1819

1820 1821
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1822 1823 1824 1825
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1826 1827
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1828 1829 1830
	}
	return ret;
}
1831

1832 1833 1834
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1835
	int mt;
1836 1837 1838 1839
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
		lock_page(hpage);
1840 1841 1842 1843 1844 1845 1846
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			unlock_page(hpage);
			if (!PageAnon(hpage))
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
			put_hwpoison_page(hpage);
1847 1848
			return -EBUSY;
		}
1849
		unlock_page(hpage);
1850 1851 1852 1853
		get_hwpoison_page(page);
		put_hwpoison_page(hpage);
	}

1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1863 1864 1865 1866
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1867
	set_pageblock_migratetype(page, mt);
1868 1869 1870
	return ret;
}

1871
static int soft_offline_free_page(struct page *page)
1872
{
1873
	int rc = 0;
1874
	struct page *head = compound_head(page);
1875

1876 1877
	if (PageHuge(head))
		rc = dissolve_free_huge_page(page);
1878 1879 1880 1881 1882 1883 1884
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1885 1886
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

1914 1915 1916 1917 1918 1919 1920 1921
	if (is_zone_device_page(page)) {
		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
				pfn);
		if (flags & MF_COUNT_INCREASED)
			put_page(page);
		return -EIO;
	}

1922 1923
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1924
		if (flags & MF_COUNT_INCREASED)
1925
			put_hwpoison_page(page);
1926 1927 1928
		return -EBUSY;
	}

1929
	get_online_mems();
1930
	ret = get_any_page(page, pfn, flags);
1931
	put_online_mems();
1932

1933 1934 1935
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1936
		ret = soft_offline_free_page(page);
1937

1938 1939
	return ret;
}