hyperv.c 65.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * KVM Microsoft Hyper-V emulation
 *
 * derived from arch/x86/kvm/x86.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
 *   Andrey Smetanin <asmetanin@virtuozzo.com>
 */

#include "x86.h"
#include "lapic.h"
23
#include "ioapic.h"
24
#include "cpuid.h"
25
#include "hyperv.h"
26
#include "xen.h"
27

28
#include <linux/cpu.h>
29
#include <linux/kvm_host.h>
30
#include <linux/highmem.h>
31
#include <linux/sched/cputime.h>
32
#include <linux/eventfd.h>
33

34
#include <asm/apicdef.h>
35 36 37
#include <trace/events/kvm.h>

#include "trace.h"
38
#include "irq.h"
39
#include "fpu.h"
40

41 42 43
/* "Hv#1" signature */
#define HYPERV_CPUID_SIGNATURE_EAX 0x31237648

44 45
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)

46 47 48
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
				bool vcpu_kick);

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
	return atomic64_read(&synic->sint[sint]);
}

static inline int synic_get_sint_vector(u64 sint_value)
{
	if (sint_value & HV_SYNIC_SINT_MASKED)
		return -1;
	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}

static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
				      int vector)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			return true;
	}
	return false;
}

static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
				     int vector)
{
	int i;
	u64 sint_value;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		sint_value = synic_read_sint(synic, i);
		if (synic_get_sint_vector(sint_value) == vector &&
		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
			return true;
	}
	return false;
}

88 89 90
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
				int vector)
{
91 92 93
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
		return;

94 95 96 97 98 99 100 101 102 103 104
	if (synic_has_vector_connected(synic, vector))
		__set_bit(vector, synic->vec_bitmap);
	else
		__clear_bit(vector, synic->vec_bitmap);

	if (synic_has_vector_auto_eoi(synic, vector))
		__set_bit(vector, synic->auto_eoi_bitmap);
	else
		__clear_bit(vector, synic->auto_eoi_bitmap);
}

105 106
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
			  u64 data, bool host)
107
{
108
	int vector, old_vector;
109
	bool masked;
110 111

	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
112 113 114 115 116 117 118 119
	masked = data & HV_SYNIC_SINT_MASKED;

	/*
	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
	 * default '0x10000' value on boot and this should not #GP. We need to
	 * allow zero-initing the register from host as well.
	 */
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
120 121 122 123 124 125 126
		return 1;
	/*
	 * Guest may configure multiple SINTs to use the same vector, so
	 * we maintain a bitmap of vectors handled by synic, and a
	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
	 * updated here, and atomically queried on fast paths.
	 */
127
	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
128 129 130

	atomic64_set(&synic->sint[sint], data);

131
	synic_update_vector(synic, old_vector);
132

133
	synic_update_vector(synic, vector);
134 135

	/* Load SynIC vectors into EOI exit bitmap */
136
	kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
137 138 139
	return 0;
}

140 141 142 143 144
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
	struct kvm_vcpu *vcpu = NULL;
	int i;

145 146 147 148
	if (vpidx >= KVM_MAX_VCPUS)
		return NULL;

	vcpu = kvm_get_vcpu(kvm, vpidx);
149
	if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
150 151
		return vcpu;
	kvm_for_each_vcpu(i, vcpu, kvm)
152
		if (kvm_hv_get_vpindex(vcpu) == vpidx)
153 154 155 156 157
			return vcpu;
	return NULL;
}

static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
158 159 160 161
{
	struct kvm_vcpu *vcpu;
	struct kvm_vcpu_hv_synic *synic;

162
	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
163
	if (!vcpu || !to_hv_vcpu(vcpu))
164
		return NULL;
165
	synic = to_hv_synic(vcpu);
166 167 168 169 170 171
	return (synic->active) ? synic : NULL;
}

static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
	struct kvm *kvm = vcpu->kvm;
172
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
173
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
174
	struct kvm_vcpu_hv_stimer *stimer;
175
	int gsi, idx;
176

177
	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
178

A
Andrey Smetanin 已提交
179 180 181
	/* Try to deliver pending Hyper-V SynIC timers messages */
	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
		stimer = &hv_vcpu->stimer[idx];
182
		if (stimer->msg_pending && stimer->config.enable &&
183
		    !stimer->config.direct_mode &&
184 185
		    stimer->config.sintx == sint)
			stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
186 187
	}

188
	idx = srcu_read_lock(&kvm->irq_srcu);
A
Andrey Smetanin 已提交
189
	gsi = atomic_read(&synic->sint_to_gsi[sint]);
190 191 192 193 194
	if (gsi != -1)
		kvm_notify_acked_gsi(kvm, gsi);
	srcu_read_unlock(&kvm->irq_srcu, idx);
}

A
Andrey Smetanin 已提交
195 196
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
197
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
198
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
199 200 201 202 203 204 205 206 207 208

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
	hv_vcpu->exit.u.synic.msr = msr;
	hv_vcpu->exit.u.synic.control = synic->control;
	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

209 210 211
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
			 u32 msr, u64 data, bool host)
{
212
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
213 214
	int ret;

215
	if (!synic->active && !host)
216 217
		return 1;

218 219
	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);

220 221 222 223
	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		synic->control = data;
A
Andrey Smetanin 已提交
224 225
		if (!host)
			synic_exit(synic, msr);
226 227 228 229 230 231 232 233 234
		break;
	case HV_X64_MSR_SVERSION:
		if (!host) {
			ret = 1;
			break;
		}
		synic->version = data;
		break;
	case HV_X64_MSR_SIEFP:
235 236
		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
237 238 239 240 241 242
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->evt_page = data;
A
Andrey Smetanin 已提交
243 244
		if (!host)
			synic_exit(synic, msr);
245 246
		break;
	case HV_X64_MSR_SIMP:
247 248
		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
249 250 251 252 253 254
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->msg_page = data;
A
Andrey Smetanin 已提交
255 256
		if (!host)
			synic_exit(synic, msr);
257 258 259 260 261 262 263 264 265
		break;
	case HV_X64_MSR_EOM: {
		int i;

		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
			kvm_hv_notify_acked_sint(vcpu, i);
		break;
	}
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
266
		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
267 268 269 270 271 272 273 274
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

275 276
static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
{
277
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
278

279 280
	return hv_vcpu->cpuid_cache.syndbg_cap_eax &
		HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
281 282 283 284
}

static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
{
285
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
286 287 288 289 290 291 292 293 294

	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
		hv->hv_syndbg.control.status =
			vcpu->run->hyperv.u.syndbg.status;
	return 1;
}

static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
{
295
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
296
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
	hv_vcpu->exit.u.syndbg.msr = msr;
	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
	vcpu->arch.complete_userspace_io =
			kvm_hv_syndbg_complete_userspace;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
312
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
313 314 315 316 317

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
318
				    to_hv_vcpu(vcpu)->vp_index, msr, data);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		syndbg->control.control = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		syndbg->control.status = data;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		syndbg->control.send_page = data;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		syndbg->control.recv_page = data;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		syndbg->control.pending_page = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		syndbg->options = data;
		break;
	default:
		break;
	}

	return 0;
}

static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
351
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		*pdata = syndbg->control.control;
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		*pdata = syndbg->control.status;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		*pdata = syndbg->control.send_page;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		*pdata = syndbg->control.recv_page;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		*pdata = syndbg->control.pending_page;
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		*pdata = syndbg->options;
		break;
	default:
		break;
	}

379
	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
380 381 382 383

	return 0;
}

384 385
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
			 bool host)
386 387 388
{
	int ret;

389
	if (!synic->active && !host)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		return 1;

	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		*pdata = synic->control;
		break;
	case HV_X64_MSR_SVERSION:
		*pdata = synic->version;
		break;
	case HV_X64_MSR_SIEFP:
		*pdata = synic->evt_page;
		break;
	case HV_X64_MSR_SIMP:
		*pdata = synic->msg_page;
		break;
	case HV_X64_MSR_EOM:
		*pdata = 0;
		break;
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

419
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
420
{
421
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
422 423 424 425 426 427 428 429 430 431 432
	struct kvm_lapic_irq irq;
	int ret, vector;

	if (sint >= ARRAY_SIZE(synic->sint))
		return -EINVAL;

	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
	if (vector < 0)
		return -ENOENT;

	memset(&irq, 0, sizeof(irq));
433
	irq.shorthand = APIC_DEST_SELF;
434 435 436 437 438
	irq.dest_mode = APIC_DEST_PHYSICAL;
	irq.delivery_mode = APIC_DM_FIXED;
	irq.vector = vector;
	irq.level = 1;

439
	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
440
	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
441 442 443
	return ret;
}

444
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
445 446 447
{
	struct kvm_vcpu_hv_synic *synic;

448
	synic = synic_get(kvm, vpidx);
449 450 451 452 453 454 455 456
	if (!synic)
		return -EINVAL;

	return synic_set_irq(synic, sint);
}

void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
457
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
458 459
	int i;

460
	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
461 462 463 464 465 466

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			kvm_hv_notify_acked_sint(vcpu, i);
}

467
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
468 469 470
{
	struct kvm_vcpu_hv_synic *synic;

471
	synic = synic_get(kvm, vpidx);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	if (!synic)
		return -EINVAL;

	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
		return -EINVAL;

	atomic_set(&synic->sint_to_gsi[sint], gsi);
	return 0;
}

void kvm_hv_irq_routing_update(struct kvm *kvm)
{
	struct kvm_irq_routing_table *irq_rt;
	struct kvm_kernel_irq_routing_entry *e;
	u32 gsi;

	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
					lockdep_is_held(&kvm->irq_lock));

	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
						    e->hv_sint.sint, gsi);
		}
	}
}

static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
	int i;

	memset(synic, 0, sizeof(*synic));
	synic->version = HV_SYNIC_VERSION_1;
	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
		atomic_set(&synic->sint_to_gsi[i], -1);
	}
}

512 513
static u64 get_time_ref_counter(struct kvm *kvm)
{
514
	struct kvm_hv *hv = to_kvm_hv(kvm);
P
Paolo Bonzini 已提交
515 516 517 518
	struct kvm_vcpu *vcpu;
	u64 tsc;

	/*
519 520
	 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
	 * is broken, disabled or being updated.
P
Paolo Bonzini 已提交
521
	 */
522
	if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
P
Paolo Bonzini 已提交
523 524 525 526 527 528
		return div_u64(get_kvmclock_ns(kvm), 100);

	vcpu = kvm_get_vcpu(kvm, 0);
	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
		+ hv->tsc_ref.tsc_offset;
529 530
}

531
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
A
Andrey Smetanin 已提交
532 533
				bool vcpu_kick)
{
534
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
A
Andrey Smetanin 已提交
535 536

	set_bit(stimer->index,
537
		to_hv_vcpu(vcpu)->stimer_pending_bitmap);
A
Andrey Smetanin 已提交
538 539 540 541 542 543 544
	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
	if (vcpu_kick)
		kvm_vcpu_kick(vcpu);
}

static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
545
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
A
Andrey Smetanin 已提交
546

547
	trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
548 549
				    stimer->index);

550
	hrtimer_cancel(&stimer->timer);
A
Andrey Smetanin 已提交
551
	clear_bit(stimer->index,
552
		  to_hv_vcpu(vcpu)->stimer_pending_bitmap);
A
Andrey Smetanin 已提交
553
	stimer->msg_pending = false;
554
	stimer->exp_time = 0;
A
Andrey Smetanin 已提交
555 556 557 558 559 560 561
}

static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
	struct kvm_vcpu_hv_stimer *stimer;

	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
562
	trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
563
				     stimer->index);
564
	stimer_mark_pending(stimer, true);
A
Andrey Smetanin 已提交
565 566 567 568

	return HRTIMER_NORESTART;
}

569 570 571 572 573
/*
 * stimer_start() assumptions:
 * a) stimer->count is not equal to 0
 * b) stimer->config has HV_STIMER_ENABLE flag
 */
A
Andrey Smetanin 已提交
574 575 576 577 578
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
	u64 time_now;
	ktime_t ktime_now;

579
	time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
A
Andrey Smetanin 已提交
580 581
	ktime_now = ktime_get();

582
	if (stimer->config.periodic) {
583 584 585 586 587 588 589 590 591 592 593
		if (stimer->exp_time) {
			if (time_now >= stimer->exp_time) {
				u64 remainder;

				div64_u64_rem(time_now - stimer->exp_time,
					      stimer->count, &remainder);
				stimer->exp_time =
					time_now + (stimer->count - remainder);
			}
		} else
			stimer->exp_time = time_now + stimer->count;
A
Andrey Smetanin 已提交
594

595
		trace_kvm_hv_stimer_start_periodic(
596
					hv_stimer_to_vcpu(stimer)->vcpu_id,
597 598 599
					stimer->index,
					time_now, stimer->exp_time);

A
Andrey Smetanin 已提交
600
		hrtimer_start(&stimer->timer,
601 602
			      ktime_add_ns(ktime_now,
					   100 * (stimer->exp_time - time_now)),
A
Andrey Smetanin 已提交
603 604 605 606 607 608 609 610 611 612 613
			      HRTIMER_MODE_ABS);
		return 0;
	}
	stimer->exp_time = stimer->count;
	if (time_now >= stimer->count) {
		/*
		 * Expire timer according to Hypervisor Top-Level Functional
		 * specification v4(15.3.1):
		 * "If a one shot is enabled and the specified count is in
		 * the past, it will expire immediately."
		 */
614
		stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
615 616 617
		return 0;
	}

618
	trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
619 620 621
					   stimer->index,
					   time_now, stimer->count);

A
Andrey Smetanin 已提交
622 623 624 625 626 627 628 629 630
	hrtimer_start(&stimer->timer,
		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
		      HRTIMER_MODE_ABS);
	return 0;
}

static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
			     bool host)
{
631 632
	union hv_stimer_config new_config = {.as_uint64 = config},
		old_config = {.as_uint64 = stimer->config.as_uint64};
633
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
634
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
635
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
636 637 638

	if (!synic->active && !host)
		return 1;
639

640 641 642 643 644
	if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
		     !(hv_vcpu->cpuid_cache.features_edx &
		       HV_STIMER_DIRECT_MODE_AVAILABLE)))
		return 1;

645
	trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
646 647
				       stimer->index, config, host);

648
	stimer_cleanup(stimer);
649 650
	if (old_config.enable &&
	    !new_config.direct_mode && new_config.sintx == 0)
651 652
		new_config.enable = 0;
	stimer->config.as_uint64 = new_config.as_uint64;
653

654 655 656
	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
657 658 659 660 661 662
	return 0;
}

static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
			    bool host)
{
663
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
664
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
665 666 667 668

	if (!synic->active && !host)
		return 1;

669
	trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
670 671
				      stimer->index, count, host);

A
Andrey Smetanin 已提交
672
	stimer_cleanup(stimer);
673
	stimer->count = count;
A
Andrey Smetanin 已提交
674
	if (stimer->count == 0)
675 676 677
		stimer->config.enable = 0;
	else if (stimer->config.auto_enable)
		stimer->config.enable = 1;
678 679 680 681

	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
682 683 684 685 686
	return 0;
}

static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
687
	*pconfig = stimer->config.as_uint64;
A
Andrey Smetanin 已提交
688 689 690 691 692 693 694 695 696 697
	return 0;
}

static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
	*pcount = stimer->count;
	return 0;
}

static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
698
			     struct hv_message *src_msg, bool no_retry)
A
Andrey Smetanin 已提交
699
{
700
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
701 702 703
	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
	gfn_t msg_page_gfn;
	struct hv_message_header hv_hdr;
A
Andrey Smetanin 已提交
704 705 706 707 708
	int r;

	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
		return -ENOENT;

709
	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
A
Andrey Smetanin 已提交
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724
	/*
	 * Strictly following the spec-mandated ordering would assume setting
	 * .msg_pending before checking .message_type.  However, this function
	 * is only called in vcpu context so the entire update is atomic from
	 * guest POV and thus the exact order here doesn't matter.
	 */
	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
				     msg_off + offsetof(struct hv_message,
							header.message_type),
				     sizeof(hv_hdr.message_type));
	if (r < 0)
		return r;

	if (hv_hdr.message_type != HVMSG_NONE) {
725 726 727
		if (no_retry)
			return 0;

728 729 730 731 732 733 734 735 736 737
		hv_hdr.message_flags.msg_pending = 1;
		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
					      &hv_hdr.message_flags,
					      msg_off +
					      offsetof(struct hv_message,
						       header.message_flags),
					      sizeof(hv_hdr.message_flags));
		if (r < 0)
			return r;
		return -EAGAIN;
A
Andrey Smetanin 已提交
738
	}
739 740 741 742 743 744 745 746 747 748 749 750 751

	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
				      sizeof(src_msg->header) +
				      src_msg->header.payload_size);
	if (r < 0)
		return r;

	r = synic_set_irq(synic, sint);
	if (r < 0)
		return r;
	if (r == 0)
		return -EFAULT;
	return 0;
A
Andrey Smetanin 已提交
752 753
}

754
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
A
Andrey Smetanin 已提交
755
{
756
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
A
Andrey Smetanin 已提交
757 758 759 760
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

761 762 763 764
	/*
	 * To avoid piling up periodic ticks, don't retry message
	 * delivery for them (within "lazy" lost ticks policy).
	 */
765
	bool no_retry = stimer->config.periodic;
766

A
Andrey Smetanin 已提交
767 768
	payload->expiration_time = stimer->exp_time;
	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
769
	return synic_deliver_msg(to_hv_synic(vcpu),
770
				 stimer->config.sintx, msg,
771
				 no_retry);
A
Andrey Smetanin 已提交
772 773
}

774 775
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
776
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
777 778 779 780 781
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = stimer->config.apic_vector
	};

782 783 784
	if (lapic_in_kernel(vcpu))
		return !kvm_apic_set_irq(vcpu, &irq, NULL);
	return 0;
785 786
}

A
Andrey Smetanin 已提交
787 788
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
789
	int r, direct = stimer->config.direct_mode;
790

791
	stimer->msg_pending = true;
792 793 794 795
	if (!direct)
		r = stimer_send_msg(stimer);
	else
		r = stimer_notify_direct(stimer);
796
	trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
797
				       stimer->index, direct, r);
798
	if (!r) {
799
		stimer->msg_pending = false;
800 801
		if (!(stimer->config.periodic))
			stimer->config.enable = 0;
802
	}
A
Andrey Smetanin 已提交
803 804 805 806
}

void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
807
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
808
	struct kvm_vcpu_hv_stimer *stimer;
809
	u64 time_now, exp_time;
A
Andrey Smetanin 已提交
810 811
	int i;

812 813 814
	if (!hv_vcpu)
		return;

A
Andrey Smetanin 已提交
815 816 817
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
			stimer = &hv_vcpu->stimer[i];
818
			if (stimer->config.enable) {
819 820 821 822 823 824 825 826
				exp_time = stimer->exp_time;

				if (exp_time) {
					time_now =
						get_time_ref_counter(vcpu->kvm);
					if (time_now >= exp_time)
						stimer_expiration(stimer);
				}
827

828
				if ((stimer->config.enable) &&
829 830 831 832
				    stimer->count) {
					if (!stimer->msg_pending)
						stimer_start(stimer);
				} else
833
					stimer_cleanup(stimer);
A
Andrey Smetanin 已提交
834 835 836 837 838 839
			}
		}
}

void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
840
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
841 842
	int i;

843 844 845
	if (!hv_vcpu)
		return;

A
Andrey Smetanin 已提交
846 847
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_cleanup(&hv_vcpu->stimer[i]);
848 849 850

	kfree(hv_vcpu);
	vcpu->arch.hyperv = NULL;
A
Andrey Smetanin 已提交
851 852
}

853 854
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
855 856
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

857 858 859
	if (!hv_vcpu)
		return false;

860
	if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
		return false;
	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);

bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
			    struct hv_vp_assist_page *assist_page)
{
	if (!kvm_hv_assist_page_enabled(vcpu))
		return false;
	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
				      assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);

A
Andrey Smetanin 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

	memset(&msg->header, 0, sizeof(msg->header));
	msg->header.message_type = HVMSG_TIMER_EXPIRED;
	msg->header.payload_size = sizeof(*payload);

	payload->timer_index = stimer->index;
	payload->expiration_time = 0;
	payload->delivery_time = 0;
}

static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
	memset(stimer, 0, sizeof(*stimer));
	stimer->index = timer_index;
	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	stimer->timer.function = stimer_timer_callback;
	stimer_prepare_msg(stimer);
}

900
static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
901
{
902
	struct kvm_vcpu_hv *hv_vcpu;
A
Andrey Smetanin 已提交
903 904
	int i;

905 906 907 908 909 910 911
	hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
	if (!hv_vcpu)
		return -ENOMEM;

	vcpu->arch.hyperv = hv_vcpu;
	hv_vcpu->vcpu = vcpu;

A
Andrey Smetanin 已提交
912 913 914 915 916
	synic_init(&hv_vcpu->synic);

	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_init(&hv_vcpu->stimer[i], i);
917

918 919
	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);

920
	return 0;
921 922
}

923
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
924
{
925 926
	struct kvm_vcpu_hv_synic *synic;
	int r;
927

928 929 930 931 932
	if (!to_hv_vcpu(vcpu)) {
		r = kvm_hv_vcpu_init(vcpu);
		if (r)
			return r;
	}
933

934
	synic = to_hv_synic(vcpu);
935

936 937
	/*
	 * Hyper-V SynIC auto EOI SINT's are
938 939
	 * not compatible with APICV, so request
	 * to deactivate APICV permanently.
940
	 */
941
	kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
942 943
	synic->active = true;
	synic->dont_zero_synic_pages = dont_zero_synic_pages;
944
	synic->control = HV_SYNIC_CONTROL_ENABLE;
945 946 947
	return 0;
}

948 949 950 951 952 953 954 955 956
static bool kvm_hv_msr_partition_wide(u32 msr)
{
	bool r = false;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
	case HV_X64_MSR_REFERENCE_TSC:
	case HV_X64_MSR_TIME_REF_COUNT:
957 958
	case HV_X64_MSR_CRASH_CTL:
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
959
	case HV_X64_MSR_RESET:
960 961 962
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
963 964
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
965 966 967 968 969 970 971
		r = true;
		break;
	}

	return r;
}

972
static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
973
{
974
	struct kvm_hv *hv = to_kvm_hv(kvm);
975
	size_t size = ARRAY_SIZE(hv->hv_crash_param);
976

977
	if (WARN_ON_ONCE(index >= size))
978 979
		return -EINVAL;

980
	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
981 982 983
	return 0;
}

984
static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
985
{
986
	struct kvm_hv *hv = to_kvm_hv(kvm);
987 988 989 990 991

	*pdata = hv->hv_crash_ctl;
	return 0;
}

992
static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
993
{
994
	struct kvm_hv *hv = to_kvm_hv(kvm);
995

996
	hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
997 998 999 1000

	return 0;
}

1001
static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1002
{
1003
	struct kvm_hv *hv = to_kvm_hv(kvm);
1004
	size_t size = ARRAY_SIZE(hv->hv_crash_param);
1005

1006
	if (WARN_ON_ONCE(index >= size))
1007 1008
		return -EINVAL;

1009
	hv->hv_crash_param[array_index_nospec(index, size)] = data;
1010 1011 1012
	return 0;
}

P
Paolo Bonzini 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/*
 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
 * between them is possible:
 *
 * kvmclock formula:
 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *
 * Hyper-V formula:
 *    nsec/100 = ticks * scale / 2^64 + offset
 *
 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
 * By dividing the kvmclock formula by 100 and equating what's left we get:
 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
 *
 * Now expand the kvmclock formula and divide by 100:
 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               + system_time / 100
 *
 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
 *    nsec/100 = ticks * scale / 2^64
 *               - tsc_timestamp * scale / 2^64
 *               + system_time / 100
 *
 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
 *
 * These two equivalencies are implemented in this function.
 */
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1049
					struct ms_hyperv_tsc_page *tsc_ref)
P
Paolo Bonzini 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	u64 max_mul;

	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
		return false;

	/*
	 * check if scale would overflow, if so we use the time ref counter
	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
	 */
	max_mul = 100ull << (32 - hv_clock->tsc_shift);
	if (hv_clock->tsc_to_system_mul >= max_mul)
		return false;

	/*
	 * Otherwise compute the scale and offset according to the formulas
	 * derived above.
	 */
	tsc_ref->tsc_scale =
		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
				hv_clock->tsc_to_system_mul,
				100);

	tsc_ref->tsc_offset = hv_clock->system_time;
	do_div(tsc_ref->tsc_offset, 100);
	tsc_ref->tsc_offset -=
		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
	return true;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * Don't touch TSC page values if the guest has opted for TSC emulation after
 * migration. KVM doesn't fully support reenlightenment notifications and TSC
 * access emulation and Hyper-V is known to expect the values in TSC page to
 * stay constant before TSC access emulation is disabled from guest side
 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
 * frequency and guest visible TSC value across migration (and prevent it when
 * TSC scaling is unsupported).
 */
static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
{
	return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
		hv->hv_tsc_emulation_control;
}

P
Paolo Bonzini 已提交
1097 1098 1099
void kvm_hv_setup_tsc_page(struct kvm *kvm,
			   struct pvclock_vcpu_time_info *hv_clock)
{
1100
	struct kvm_hv *hv = to_kvm_hv(kvm);
P
Paolo Bonzini 已提交
1101 1102 1103 1104
	u32 tsc_seq;
	u64 gfn;

	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1105
	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
P
Paolo Bonzini 已提交
1106

1107 1108
	if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
	    hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
P
Paolo Bonzini 已提交
1109 1110
		return;

1111
	mutex_lock(&hv->hv_lock);
1112 1113 1114
	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		goto out_unlock;

P
Paolo Bonzini 已提交
1115 1116 1117 1118 1119 1120 1121
	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
	/*
	 * Because the TSC parameters only vary when there is a
	 * change in the master clock, do not bother with caching.
	 */
	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
				    &tsc_seq, sizeof(tsc_seq))))
1122
		goto out_err;
P
Paolo Bonzini 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131
	if (tsc_seq && tsc_page_update_unsafe(hv)) {
		if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
			goto out_err;

		hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
		goto out_unlock;
	}

P
Paolo Bonzini 已提交
1132 1133 1134 1135 1136 1137 1138
	/*
	 * While we're computing and writing the parameters, force the
	 * guest to use the time reference count MSR.
	 */
	hv->tsc_ref.tsc_sequence = 0;
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1139
		goto out_err;
P
Paolo Bonzini 已提交
1140 1141

	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1142
		goto out_err;
P
Paolo Bonzini 已提交
1143 1144 1145 1146

	/* Ensure sequence is zero before writing the rest of the struct.  */
	smp_wmb();
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1147
		goto out_err;
P
Paolo Bonzini 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * Now switch to the TSC page mechanism by writing the sequence.
	 */
	tsc_seq++;
	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
		tsc_seq = 1;

	/* Write the struct entirely before the non-zero sequence.  */
	smp_wmb();

	hv->tsc_ref.tsc_sequence = tsc_seq;
1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
		goto out_err;

	hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
	goto out_unlock;

out_err:
	hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1169
out_unlock:
1170
	mutex_unlock(&hv->hv_lock);
P
Paolo Bonzini 已提交
1171 1172
}

1173 1174 1175 1176
void kvm_hv_invalidate_tsc_page(struct kvm *kvm)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	u64 gfn;
1177
	int idx;
1178

1179
	if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1180 1181
	    hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET ||
	    tsc_page_update_unsafe(hv))
1182 1183 1184 1185 1186 1187 1188
		return;

	mutex_lock(&hv->hv_lock);

	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		goto out_unlock;

1189 1190 1191 1192
	/* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */
	if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET)
		hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING;

1193 1194 1195
	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;

	hv->tsc_ref.tsc_sequence = 0;
1196 1197 1198 1199 1200 1201

	/*
	 * Take the srcu lock as memslots will be accessed to check the gfn
	 * cache generation against the memslots generation.
	 */
	idx = srcu_read_lock(&kvm->srcu);
1202 1203 1204
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
		hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1205
	srcu_read_unlock(&kvm->srcu, idx);
1206 1207 1208 1209 1210

out_unlock:
	mutex_unlock(&hv->hv_lock);
}

1211 1212 1213

static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
{
1214 1215 1216 1217 1218 1219 1220 1221
	if (!hv_vcpu->enforce_cpuid)
		return true;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_HYPERCALL_AVAILABLE;
1222 1223 1224
	case HV_X64_MSR_VP_RUNTIME:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_VP_RUNTIME_AVAILABLE;
1225 1226 1227
	case HV_X64_MSR_TIME_REF_COUNT:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_TIME_REF_COUNT_AVAILABLE;
1228 1229 1230
	case HV_X64_MSR_VP_INDEX:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_VP_INDEX_AVAILABLE;
1231 1232 1233
	case HV_X64_MSR_RESET:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_RESET_AVAILABLE;
1234 1235 1236
	case HV_X64_MSR_REFERENCE_TSC:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_REFERENCE_TSC_AVAILABLE;
1237 1238 1239 1240 1241 1242 1243 1244
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_SYNIC_AVAILABLE;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG:
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_SYNTIMER_AVAILABLE;
1255 1256 1257 1258 1259 1260 1261
	case HV_X64_MSR_EOI:
	case HV_X64_MSR_ICR:
	case HV_X64_MSR_TPR:
	case HV_X64_MSR_VP_ASSIST_PAGE:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_APIC_ACCESS_AVAILABLE;
		break;
1262 1263 1264 1265
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_ACCESS_FREQUENCY_MSRS;
1266 1267 1268 1269 1270
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_ACCESS_REENLIGHTENMENT;
1271 1272 1273 1274
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
	case HV_X64_MSR_CRASH_CTL:
		return hv_vcpu->cpuid_cache.features_edx &
			HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1275 1276 1277 1278
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return hv_vcpu->cpuid_cache.features_edx &
			HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1279 1280 1281 1282
	default:
		break;
	}

1283
	return false;
1284 1285
}

1286 1287
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
			     bool host)
1288 1289
{
	struct kvm *kvm = vcpu->kvm;
1290
	struct kvm_hv *hv = to_kvm_hv(kvm);
1291

1292 1293 1294
	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
		return 1;

1295 1296 1297 1298 1299 1300 1301 1302
	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		hv->hv_guest_os_id = data;
		/* setting guest os id to zero disables hypercall page */
		if (!hv->hv_guest_os_id)
			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
		break;
	case HV_X64_MSR_HYPERCALL: {
1303 1304 1305
		u8 instructions[9];
		int i = 0;
		u64 addr;
1306 1307 1308 1309 1310 1311 1312 1313

		/* if guest os id is not set hypercall should remain disabled */
		if (!hv->hv_guest_os_id)
			break;
		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
			hv->hv_hypercall = data;
			break;
		}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

		/*
		 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
		 * the same way Xen itself does, by setting the bit 31 of EAX
		 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
		 * going to be clobbered on 64-bit.
		 */
		if (kvm_xen_hypercall_enabled(kvm)) {
			/* orl $0x80000000, %eax */
			instructions[i++] = 0x0d;
			instructions[i++] = 0x00;
			instructions[i++] = 0x00;
			instructions[i++] = 0x00;
			instructions[i++] = 0x80;
		}

		/* vmcall/vmmcall */
		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
		i += 3;

		/* ret */
		((unsigned char *)instructions)[i++] = 0xc3;

		addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
		if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1339 1340 1341 1342
			return 1;
		hv->hv_hypercall = data;
		break;
	}
P
Paolo Bonzini 已提交
1343
	case HV_X64_MSR_REFERENCE_TSC:
1344
		hv->hv_tsc_page = data;
1345 1346 1347 1348 1349
		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
			if (!host)
				hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
			else
				hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
P
Paolo Bonzini 已提交
1350
			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1351 1352 1353
		} else {
			hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
		}
1354
		break;
1355
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1356
		return kvm_hv_msr_set_crash_data(kvm,
1357 1358 1359
						 msr - HV_X64_MSR_CRASH_P0,
						 data);
	case HV_X64_MSR_CRASH_CTL:
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		if (host)
			return kvm_hv_msr_set_crash_ctl(kvm, data);

		if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
			vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
				   hv->hv_crash_param[0],
				   hv->hv_crash_param[1],
				   hv->hv_crash_param[2],
				   hv->hv_crash_param[3],
				   hv->hv_crash_param[4]);

			/* Send notification about crash to user space */
			kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
		}
		break;
1375 1376 1377 1378 1379 1380
	case HV_X64_MSR_RESET:
		if (data == 1) {
			vcpu_debug(vcpu, "hyper-v reset requested\n");
			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
		}
		break;
1381 1382 1383 1384 1385 1386 1387
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		hv->hv_reenlightenment_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		hv->hv_tsc_emulation_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
1388 1389 1390
		if (data && !host)
			return 1;

1391 1392
		hv->hv_tsc_emulation_status = data;
		break;
1393 1394 1395 1396 1397
	case HV_X64_MSR_TIME_REF_COUNT:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1398 1399 1400
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_set_msr(vcpu, msr, data, host);
1401
	default:
1402
		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1403 1404 1405 1406 1407 1408
			    msr, data);
		return 1;
	}
	return 0;
}

1409 1410 1411
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
1412
	u64 utime, stime;
1413 1414

	task_cputime_adjusted(current, &utime, &stime);
1415 1416

	return div_u64(utime + stime, 100);
1417 1418 1419
}

static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1420
{
1421
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1422

1423 1424 1425
	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
		return 1;

1426
	switch (msr) {
1427
	case HV_X64_MSR_VP_INDEX: {
1428
		struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1429 1430 1431 1432
		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
		u32 new_vp_index = (u32)data;

		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1433
			return 1;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

		if (new_vp_index == hv_vcpu->vp_index)
			return 0;

		/*
		 * The VP index is initialized to vcpu_index by
		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
		 * VP index is changing, adjust num_mismatched_vp_indexes if
		 * it now matches or no longer matches vcpu_idx.
		 */
		if (hv_vcpu->vp_index == vcpu_idx)
			atomic_inc(&hv->num_mismatched_vp_indexes);
		else if (new_vp_index == vcpu_idx)
			atomic_dec(&hv->num_mismatched_vp_indexes);

		hv_vcpu->vp_index = new_vp_index;
1450
		break;
1451
	}
1452
	case HV_X64_MSR_VP_ASSIST_PAGE: {
1453 1454 1455
		u64 gfn;
		unsigned long addr;

1456
		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1457
			hv_vcpu->hv_vapic = data;
1458
			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1459 1460 1461
				return 1;
			break;
		}
1462
		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1463 1464 1465
		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
1466 1467

		/*
1468
		 * Clear apic_assist portion of struct hv_vp_assist_page
1469 1470 1471
		 * only, there can be valuable data in the rest which needs
		 * to be preserved e.g. on migration.
		 */
1472
		if (__put_user(0, (u32 __user *)addr))
1473
			return 1;
1474
		hv_vcpu->hv_vapic = data;
1475 1476
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
		if (kvm_lapic_enable_pv_eoi(vcpu,
1477 1478
					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
					    sizeof(struct hv_vp_assist_page)))
1479 1480 1481 1482 1483 1484 1485 1486 1487
			return 1;
		break;
	}
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1488 1489 1490
	case HV_X64_MSR_VP_RUNTIME:
		if (!host)
			return 1;
1491
		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1492
		break;
1493 1494 1495 1496 1497 1498
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1499
		return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
A
Andrey Smetanin 已提交
1500 1501 1502 1503 1504 1505
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

1506
		return stimer_set_config(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1507 1508 1509 1510 1511 1512 1513 1514
					 data, host);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

1515
		return stimer_set_count(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1516 1517
					data, host);
	}
1518 1519 1520 1521 1522 1523
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1524
	default:
1525
		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1526 1527 1528 1529 1530 1531 1532
			    msr, data);
		return 1;
	}

	return 0;
}

1533 1534
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			     bool host)
1535 1536 1537
{
	u64 data = 0;
	struct kvm *kvm = vcpu->kvm;
1538
	struct kvm_hv *hv = to_kvm_hv(kvm);
1539

1540 1541 1542
	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
		return 1;

1543 1544 1545 1546 1547 1548 1549
	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		data = hv->hv_guest_os_id;
		break;
	case HV_X64_MSR_HYPERCALL:
		data = hv->hv_hypercall;
		break;
1550 1551
	case HV_X64_MSR_TIME_REF_COUNT:
		data = get_time_ref_counter(kvm);
1552 1553 1554 1555
		break;
	case HV_X64_MSR_REFERENCE_TSC:
		data = hv->hv_tsc_page;
		break;
1556
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1557
		return kvm_hv_msr_get_crash_data(kvm,
1558 1559 1560
						 msr - HV_X64_MSR_CRASH_P0,
						 pdata);
	case HV_X64_MSR_CRASH_CTL:
1561
		return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1562 1563 1564
	case HV_X64_MSR_RESET:
		data = 0;
		break;
1565 1566 1567 1568 1569 1570 1571 1572 1573
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		data = hv->hv_reenlightenment_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		data = hv->hv_tsc_emulation_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		data = hv->hv_tsc_emulation_status;
		break;
1574 1575 1576
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_get_msr(vcpu, msr, pdata, host);
1577 1578 1579 1580 1581 1582 1583 1584 1585
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}

	*pdata = data;
	return 0;
}

1586 1587
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			  bool host)
1588 1589
{
	u64 data = 0;
1590
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1591

1592 1593 1594
	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
		return 1;

1595
	switch (msr) {
1596
	case HV_X64_MSR_VP_INDEX:
1597
		data = hv_vcpu->vp_index;
1598 1599 1600 1601 1602 1603 1604
		break;
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1605
	case HV_X64_MSR_VP_ASSIST_PAGE:
1606
		data = hv_vcpu->hv_vapic;
1607
		break;
1608
	case HV_X64_MSR_VP_RUNTIME:
1609
		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1610
		break;
1611 1612 1613 1614 1615 1616
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1617
		return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
A
Andrey Smetanin 已提交
1618 1619 1620 1621 1622 1623
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

1624
		return stimer_get_config(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1625 1626 1627 1628 1629 1630 1631 1632
					 pdata);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

1633
		return stimer_get_count(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1634 1635
					pdata);
	}
1636 1637 1638 1639 1640 1641
	case HV_X64_MSR_TSC_FREQUENCY:
		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
		break;
	case HV_X64_MSR_APIC_FREQUENCY:
		data = APIC_BUS_FREQUENCY;
		break;
1642 1643 1644 1645 1646 1647 1648 1649
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}

1650
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1651
{
1652 1653
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

1654 1655 1656
	if (!host && !vcpu->arch.hyperv_enabled)
		return 1;

1657 1658 1659 1660 1661
	if (!to_hv_vcpu(vcpu)) {
		if (kvm_hv_vcpu_init(vcpu))
			return 1;
	}

1662 1663 1664
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1665
		mutex_lock(&hv->hv_lock);
1666
		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1667
		mutex_unlock(&hv->hv_lock);
1668 1669
		return r;
	} else
1670
		return kvm_hv_set_msr(vcpu, msr, data, host);
1671 1672
}

1673
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1674
{
1675 1676
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

1677 1678 1679
	if (!host && !vcpu->arch.hyperv_enabled)
		return 1;

1680 1681 1682 1683 1684
	if (!to_hv_vcpu(vcpu)) {
		if (kvm_hv_vcpu_init(vcpu))
			return 1;
	}

1685 1686 1687
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1688
		mutex_lock(&hv->hv_lock);
1689
		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1690
		mutex_unlock(&hv->hv_lock);
1691 1692
		return r;
	} else
1693
		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1694 1695
}

1696 1697 1698
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1699
{
1700
	struct kvm_hv *hv = to_kvm_hv(kvm);
1701 1702
	struct kvm_vcpu *vcpu;
	int i, bank, sbank = 0;
1703

1704 1705 1706 1707 1708
	memset(vp_bitmap, 0,
	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
		vp_bitmap[bank] = sparse_banks[sbank++];
1709

1710 1711 1712 1713
	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
		/* for all vcpus vp_index == vcpu_idx */
		return (unsigned long *)vp_bitmap;
	}
1714

1715 1716
	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
	kvm_for_each_vcpu(i, vcpu, kvm) {
1717
		if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1718 1719 1720
			__set_bit(i, vcpu_bitmap);
	}
	return vcpu_bitmap;
1721 1722
}

1723 1724 1725 1726 1727 1728 1729 1730 1731
struct kvm_hv_hcall {
	u64 param;
	u64 ingpa;
	u64 outgpa;
	u16 code;
	u16 rep_cnt;
	u16 rep_idx;
	bool fast;
	bool rep;
1732
	sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1733 1734 1735
};

static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1736
{
1737 1738
	int i;
	gpa_t gpa;
1739
	struct kvm *kvm = vcpu->kvm;
1740
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1741
	struct hv_tlb_flush_ex flush_ex;
1742
	struct hv_tlb_flush flush;
1743 1744 1745
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1746
	u64 valid_bank_mask;
1747
	u64 sparse_banks[64];
1748
	int sparse_banks_len;
1749
	bool all_cpus;
1750

1751
	if (!ex) {
1752 1753 1754 1755 1756 1757 1758 1759 1760
		if (hc->fast) {
			flush.address_space = hc->ingpa;
			flush.flags = hc->outgpa;
			flush.processor_mask = sse128_lo(hc->xmm[0]);
		} else {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa,
						    &flush, sizeof(flush))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
		}
1761

1762 1763 1764
		trace_kvm_hv_flush_tlb(flush.processor_mask,
				       flush.address_space, flush.flags);

1765
		valid_bank_mask = BIT_ULL(0);
1766
		sparse_banks[0] = flush.processor_mask;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

		/*
		 * Work around possible WS2012 bug: it sends hypercalls
		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
		 * while also expecting us to flush something and crashing if
		 * we don't. Let's treat processor_mask == 0 same as
		 * HV_FLUSH_ALL_PROCESSORS.
		 */
		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
			flush.processor_mask == 0;
1777
	} else {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		if (hc->fast) {
			flush_ex.address_space = hc->ingpa;
			flush_ex.flags = hc->outgpa;
			memcpy(&flush_ex.hv_vp_set,
			       &hc->xmm[0], sizeof(hc->xmm[0]));
		} else {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
						    sizeof(flush_ex))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
		}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
					  flush_ex.hv_vp_set.format,
					  flush_ex.address_space,
					  flush_ex.flags);

		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
		all_cpus = flush_ex.hv_vp_set.format !=
			HV_GENERIC_SET_SPARSE_4K;

1798
		sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64);
1799 1800 1801 1802

		if (!sparse_banks_len && !all_cpus)
			goto ret_success;

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		if (!all_cpus) {
			if (hc->fast) {
				if (sparse_banks_len > HV_HYPERCALL_MAX_XMM_REGISTERS - 1)
					return HV_STATUS_INVALID_HYPERCALL_INPUT;
				for (i = 0; i < sparse_banks_len; i += 2) {
					sparse_banks[i] = sse128_lo(hc->xmm[i / 2 + 1]);
					sparse_banks[i + 1] = sse128_hi(hc->xmm[i / 2 + 1]);
				}
			} else {
				gpa = hc->ingpa + offsetof(struct hv_tlb_flush_ex,
							   hv_vp_set.bank_contents);
				if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks,
							    sparse_banks_len *
							    sizeof(sparse_banks[0]))))
					return HV_STATUS_INVALID_HYPERCALL_INPUT;
			}
		}
1820
	}
1821

1822
	cpumask_clear(&hv_vcpu->tlb_flush);
1823

1824 1825 1826
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1827

1828
	/*
1829 1830
	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
	 * analyze it here, flush TLB regardless of the specified address space.
1831
	 */
1832
	kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST,
1833
				    NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1834

1835
ret_success:
1836
	/* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
1837
	return (u64)HV_STATUS_SUCCESS |
1838
		((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
				 unsigned long *vcpu_bitmap)
{
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = vector
	};
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
			continue;

		/* We fail only when APIC is disabled */
		kvm_apic_set_irq(vcpu, &irq, NULL);
	}
}

1860
static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1861
{
1862
	struct kvm *kvm = vcpu->kvm;
1863 1864
	struct hv_send_ipi_ex send_ipi_ex;
	struct hv_send_ipi send_ipi;
1865 1866 1867
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1868 1869
	unsigned long valid_bank_mask;
	u64 sparse_banks[64];
1870 1871
	int sparse_banks_len;
	u32 vector;
1872 1873 1874
	bool all_cpus;

	if (!ex) {
1875 1876
		if (!hc->fast) {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
1877 1878 1879
						    sizeof(send_ipi))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = send_ipi.cpu_mask;
1880
			vector = send_ipi.vector;
1881 1882
		} else {
			/* 'reserved' part of hv_send_ipi should be 0 */
1883
			if (unlikely(hc->ingpa >> 32 != 0))
1884
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
1885 1886
			sparse_banks[0] = hc->outgpa;
			vector = (u32)hc->ingpa;
1887 1888 1889 1890
		}
		all_cpus = false;
		valid_bank_mask = BIT_ULL(0);

1891
		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1892
	} else {
1893
		if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
1894 1895 1896 1897 1898 1899 1900
					    sizeof(send_ipi_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
					 send_ipi_ex.vp_set.format,
					 send_ipi_ex.vp_set.valid_bank_mask);

1901
		vector = send_ipi_ex.vector;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
			sizeof(sparse_banks[0]);

		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;

		if (!sparse_banks_len)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
1913 1914
				   hc->ingpa + offsetof(struct hv_send_ipi_ex,
							vp_set.bank_contents),
1915 1916 1917 1918 1919
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}

1920
	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1921 1922
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1923 1924 1925
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1926

1927
	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1928 1929 1930 1931 1932

ret_success:
	return HV_STATUS_SUCCESS;
}

1933 1934 1935
void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *entry;
1936
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1937 1938

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
1939
	if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) {
1940
		vcpu->arch.hyperv_enabled = true;
1941
	} else {
1942
		vcpu->arch.hyperv_enabled = false;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		return;
	}

	if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu))
		return;

	hv_vcpu = to_hv_vcpu(vcpu);

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0);
	if (entry) {
		hv_vcpu->cpuid_cache.features_eax = entry->eax;
		hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
		hv_vcpu->cpuid_cache.features_edx = entry->edx;
	} else {
		hv_vcpu->cpuid_cache.features_eax = 0;
		hv_vcpu->cpuid_cache.features_ebx = 0;
		hv_vcpu->cpuid_cache.features_edx = 0;
	}

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0);
	if (entry) {
		hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
		hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
	} else {
		hv_vcpu->cpuid_cache.enlightenments_eax = 0;
		hv_vcpu->cpuid_cache.enlightenments_ebx = 0;
	}

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0);
	if (entry)
		hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
	else
		hv_vcpu->cpuid_cache.syndbg_cap_eax = 0;
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
{
	struct kvm_vcpu_hv *hv_vcpu;
	int ret = 0;

	if (!to_hv_vcpu(vcpu)) {
		if (enforce) {
			ret = kvm_hv_vcpu_init(vcpu);
			if (ret)
				return ret;
		} else {
			return 0;
		}
	}

	hv_vcpu = to_hv_vcpu(vcpu);
	hv_vcpu->enforce_cpuid = enforce;

	return ret;
}

1999
bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
2000
{
2001
	return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
2002 2003
}

2004 2005 2006 2007 2008 2009
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
	bool longmode;

	longmode = is_64_bit_mode(vcpu);
	if (longmode)
2010
		kvm_rax_write(vcpu, result);
2011
	else {
2012 2013
		kvm_rdx_write(vcpu, result >> 32);
		kvm_rax_write(vcpu, result & 0xffffffff);
2014 2015 2016
	}
}

2017
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2018
{
2019 2020
	kvm_hv_hypercall_set_result(vcpu, result);
	++vcpu->stat.hypercalls;
2021
	return kvm_skip_emulated_instruction(vcpu);
2022 2023
}

2024 2025 2026 2027 2028
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}

2029
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2030
{
2031
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2032 2033
	struct eventfd_ctx *eventfd;

2034
	if (unlikely(!hc->fast)) {
2035
		int ret;
2036
		gpa_t gpa = hc->ingpa;
2037

2038 2039
		if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
		    offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2040 2041
			return HV_STATUS_INVALID_ALIGNMENT;

2042 2043
		ret = kvm_vcpu_read_guest(vcpu, gpa,
					  &hc->ingpa, sizeof(hc->ingpa));
2044 2045 2046 2047 2048 2049 2050 2051 2052
		if (ret < 0)
			return HV_STATUS_INVALID_ALIGNMENT;
	}

	/*
	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
	 * have no use for it, and in all known usecases it is zero, so just
	 * report lookup failure if it isn't.
	 */
2053
	if (hc->ingpa & 0xffff00000000ULL)
2054 2055
		return HV_STATUS_INVALID_PORT_ID;
	/* remaining bits are reserved-zero */
2056
	if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2057 2058
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

2059 2060
	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
	rcu_read_lock();
2061
	eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2062
	rcu_read_unlock();
2063 2064 2065 2066 2067 2068 2069
	if (!eventfd)
		return HV_STATUS_INVALID_PORT_ID;

	eventfd_signal(eventfd, 1);
	return HV_STATUS_SUCCESS;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
{
	switch (hc->code) {
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
		return true;
	}

	return false;
}

static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
{
	int reg;

	kvm_fpu_get();
	for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
		_kvm_read_sse_reg(reg, &hc->xmm[reg]);
	kvm_fpu_put();
}

2093 2094
static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
{
2095 2096 2097 2098 2099 2100 2101
	if (!hv_vcpu->enforce_cpuid)
		return true;

	switch (code) {
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
		return hv_vcpu->cpuid_cache.enlightenments_ebx &&
			hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2102 2103
	case HVCALL_POST_MESSAGE:
		return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2104 2105
	case HVCALL_SIGNAL_EVENT:
		return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2106 2107 2108 2109 2110 2111 2112 2113 2114
	case HVCALL_POST_DEBUG_DATA:
	case HVCALL_RETRIEVE_DEBUG_DATA:
	case HVCALL_RESET_DEBUG_SESSION:
		/*
		 * Return 'true' when SynDBG is disabled so the resulting code
		 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
		 */
		return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
			hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2115 2116
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2117 2118 2119 2120
		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
			return false;
		fallthrough;
2121 2122 2123 2124
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
		return hv_vcpu->cpuid_cache.enlightenments_eax &
			HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2125
	case HVCALL_SEND_IPI_EX:
2126 2127 2128 2129
		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
			return false;
		fallthrough;
2130 2131 2132
	case HVCALL_SEND_IPI:
		return hv_vcpu->cpuid_cache.enlightenments_eax &
			HV_X64_CLUSTER_IPI_RECOMMENDED;
2133 2134 2135 2136
	default:
		break;
	}

2137 2138 2139
	return true;
}

2140 2141
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
2142 2143
	struct kvm_hv_hcall hc;
	u64 ret = HV_STATUS_SUCCESS;
2144 2145 2146 2147 2148

	/*
	 * hypercall generates UD from non zero cpl and real mode
	 * per HYPER-V spec
	 */
2149
	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2150
		kvm_queue_exception(vcpu, UD_VECTOR);
2151
		return 1;
2152 2153
	}

2154 2155
#ifdef CONFIG_X86_64
	if (is_64_bit_mode(vcpu)) {
2156 2157 2158
		hc.param = kvm_rcx_read(vcpu);
		hc.ingpa = kvm_rdx_read(vcpu);
		hc.outgpa = kvm_r8_read(vcpu);
2159 2160 2161
	} else
#endif
	{
2162 2163 2164 2165 2166 2167
		hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
			    (kvm_rax_read(vcpu) & 0xffffffff);
		hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
			    (kvm_rcx_read(vcpu) & 0xffffffff);
		hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
			     (kvm_rsi_read(vcpu) & 0xffffffff);
2168 2169
	}

2170 2171 2172 2173 2174
	hc.code = hc.param & 0xffff;
	hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
	hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
	hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
	hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2175

2176 2177
	trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx,
			       hc.ingpa, hc.outgpa);
2178

2179 2180 2181 2182 2183
	if (unlikely(!hv_check_hypercall_access(to_hv_vcpu(vcpu), hc.code))) {
		ret = HV_STATUS_ACCESS_DENIED;
		goto hypercall_complete;
	}

2184 2185 2186
	if (hc.fast && is_xmm_fast_hypercall(&hc))
		kvm_hv_hypercall_read_xmm(&hc);

2187
	switch (hc.code) {
2188
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2189
		if (unlikely(hc.rep)) {
2190 2191 2192
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2193
		kvm_vcpu_on_spin(vcpu, true);
2194
		break;
2195
	case HVCALL_SIGNAL_EVENT:
2196
		if (unlikely(hc.rep)) {
2197 2198 2199
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2200
		ret = kvm_hvcall_signal_event(vcpu, &hc);
2201
		if (ret != HV_STATUS_INVALID_PORT_ID)
2202
			break;
2203
		fallthrough;	/* maybe userspace knows this conn_id */
2204
	case HVCALL_POST_MESSAGE:
2205
		/* don't bother userspace if it has no way to handle it */
2206
		if (unlikely(hc.rep || !to_hv_synic(vcpu)->active)) {
2207
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2208 2209
			break;
		}
2210 2211
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2212 2213 2214
		vcpu->run->hyperv.u.hcall.input = hc.param;
		vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2215 2216 2217
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
2218
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2219
		if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2220 2221 2222
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2223
		ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2224 2225
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2226
		if (unlikely(hc.rep)) {
2227 2228 2229
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2230
		ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2231 2232
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2233
		if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2234 2235 2236
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2237
		ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2238 2239
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2240
		if (unlikely(hc.rep)) {
2241 2242 2243
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2244
		ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2245
		break;
2246
	case HVCALL_SEND_IPI:
2247
		if (unlikely(hc.rep)) {
2248 2249 2250
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2251
		ret = kvm_hv_send_ipi(vcpu, &hc, false);
2252 2253
		break;
	case HVCALL_SEND_IPI_EX:
2254
		if (unlikely(hc.fast || hc.rep)) {
2255 2256 2257
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
2258
		ret = kvm_hv_send_ipi(vcpu, &hc, true);
2259
		break;
2260 2261
	case HVCALL_POST_DEBUG_DATA:
	case HVCALL_RETRIEVE_DEBUG_DATA:
2262
		if (unlikely(hc.fast)) {
2263 2264 2265 2266 2267
			ret = HV_STATUS_INVALID_PARAMETER;
			break;
		}
		fallthrough;
	case HVCALL_RESET_DEBUG_SESSION: {
2268
		struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
			break;
		}

		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
			ret = HV_STATUS_OPERATION_DENIED;
			break;
		}
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2281 2282 2283
		vcpu->run->hyperv.u.hcall.input = hc.param;
		vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2284 2285 2286 2287
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
	}
2288
	default:
2289
		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2290 2291 2292
		break;
	}

2293
hypercall_complete:
2294
	return kvm_hv_hypercall_complete(vcpu, ret);
2295
}
2296 2297 2298

void kvm_hv_init_vm(struct kvm *kvm)
{
2299 2300 2301 2302
	struct kvm_hv *hv = to_kvm_hv(kvm);

	mutex_init(&hv->hv_lock);
	idr_init(&hv->conn_to_evt);
2303 2304 2305 2306
}

void kvm_hv_destroy_vm(struct kvm *kvm)
{
2307
	struct kvm_hv *hv = to_kvm_hv(kvm);
2308 2309 2310
	struct eventfd_ctx *eventfd;
	int i;

2311
	idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2312
		eventfd_ctx_put(eventfd);
2313
	idr_destroy(&hv->conn_to_evt);
2314 2315 2316 2317
}

static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
2318
	struct kvm_hv *hv = to_kvm_hv(kvm);
2319 2320 2321 2322 2323 2324 2325 2326 2327
	struct eventfd_ctx *eventfd;
	int ret;

	eventfd = eventfd_ctx_fdget(fd);
	if (IS_ERR(eventfd))
		return PTR_ERR(eventfd);

	mutex_lock(&hv->hv_lock);
	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2328
			GFP_KERNEL_ACCOUNT);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	mutex_unlock(&hv->hv_lock);

	if (ret >= 0)
		return 0;

	if (ret == -ENOSPC)
		ret = -EEXIST;
	eventfd_ctx_put(eventfd);
	return ret;
}

static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
2342
	struct kvm_hv *hv = to_kvm_hv(kvm);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	struct eventfd_ctx *eventfd;

	mutex_lock(&hv->hv_lock);
	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
	mutex_unlock(&hv->hv_lock);

	if (!eventfd)
		return -ENOENT;

	synchronize_srcu(&kvm->srcu);
	eventfd_ctx_put(eventfd);
	return 0;
}

int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
		return -EINVAL;

	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2366
}
2367

2368 2369
int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
		     struct kvm_cpuid_entry2 __user *entries)
2370
{
2371
	uint16_t evmcs_ver = 0;
2372 2373 2374 2375 2376 2377 2378
	struct kvm_cpuid_entry2 cpuid_entries[] = {
		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_INTERFACE },
		{ .function = HYPERV_CPUID_VERSION },
		{ .function = HYPERV_CPUID_FEATURES },
		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2379 2380 2381
		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
2382 2383 2384 2385
		{ .function = HYPERV_CPUID_NESTED_FEATURES },
	};
	int i, nent = ARRAY_SIZE(cpuid_entries);

2386 2387
	if (kvm_x86_ops.nested_ops->get_evmcs_version)
		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2388

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	/* Skip NESTED_FEATURES if eVMCS is not supported */
	if (!evmcs_ver)
		--nent;

	if (cpuid->nent < nent)
		return -E2BIG;

	if (cpuid->nent > nent)
		cpuid->nent = nent;

	for (i = 0; i < nent; i++) {
		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
		u32 signature[3];

		switch (ent->function) {
		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

2407
			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2408 2409 2410 2411 2412 2413
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_INTERFACE:
2414
			ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
			break;

		case HYPERV_CPUID_VERSION:
			/*
			 * We implement some Hyper-V 2016 functions so let's use
			 * this version.
			 */
			ent->eax = 0x00003839;
			ent->ebx = 0x000A0000;
			break;

		case HYPERV_CPUID_FEATURES:
2427
			ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2428
			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2429
			ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2430
			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2431 2432 2433 2434
			ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
			ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
			ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
			ent->eax |= HV_MSR_RESET_AVAILABLE;
2435
			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2436 2437
			ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
			ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2438

2439 2440
			ent->ebx |= HV_POST_MESSAGES;
			ent->ebx |= HV_SIGNAL_EVENTS;
2441

2442
			ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2443 2444
			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2445

2446
			ent->ebx |= HV_DEBUGGING;
2447 2448 2449
			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;

2450 2451 2452 2453
			/*
			 * Direct Synthetic timers only make sense with in-kernel
			 * LAPIC
			 */
2454
			if (!vcpu || lapic_in_kernel(vcpu))
2455
				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2456 2457 2458 2459 2460 2461 2462 2463 2464

			break;

		case HYPERV_CPUID_ENLIGHTMENT_INFO:
			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2465 2466
			if (evmcs_ver)
				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2467 2468
			if (!cpu_smt_possible())
				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
			/*
			 * Default number of spinlock retry attempts, matches
			 * HyperV 2016.
			 */
			ent->ebx = 0x00000FFF;

			break;

		case HYPERV_CPUID_IMPLEMENT_LIMITS:
			/* Maximum number of virtual processors */
			ent->eax = KVM_MAX_VCPUS;
			/*
			 * Maximum number of logical processors, matches
			 * HyperV 2016.
			 */
			ent->ebx = 64;

			break;

		case HYPERV_CPUID_NESTED_FEATURES:
			ent->eax = evmcs_ver;

			break;

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

			ent->eax = 0;
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_SYNDBG_INTERFACE:
			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
			break;

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		default:
			break;
		}
	}

	if (copy_to_user(entries, cpuid_entries,
			 nent * sizeof(struct kvm_cpuid_entry2)))
		return -EFAULT;

	return 0;
}