hyperv.c 54.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * KVM Microsoft Hyper-V emulation
 *
 * derived from arch/x86/kvm/x86.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
 *   Andrey Smetanin <asmetanin@virtuozzo.com>
 */

#include "x86.h"
#include "lapic.h"
23
#include "ioapic.h"
24
#include "cpuid.h"
25 26
#include "hyperv.h"

27
#include <linux/cpu.h>
28
#include <linux/kvm_host.h>
29
#include <linux/highmem.h>
30
#include <linux/sched/cputime.h>
31
#include <linux/eventfd.h>
32

33
#include <asm/apicdef.h>
34 35 36
#include <trace/events/kvm.h>

#include "trace.h"
37
#include "irq.h"
38

39 40
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)

41 42 43
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
				bool vcpu_kick);

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
	return atomic64_read(&synic->sint[sint]);
}

static inline int synic_get_sint_vector(u64 sint_value)
{
	if (sint_value & HV_SYNIC_SINT_MASKED)
		return -1;
	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}

static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
				      int vector)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			return true;
	}
	return false;
}

static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
				     int vector)
{
	int i;
	u64 sint_value;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		sint_value = synic_read_sint(synic, i);
		if (synic_get_sint_vector(sint_value) == vector &&
		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
			return true;
	}
	return false;
}

83 84 85
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
				int vector)
{
86 87 88
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
		return;

89 90 91 92 93 94 95 96 97 98 99
	if (synic_has_vector_connected(synic, vector))
		__set_bit(vector, synic->vec_bitmap);
	else
		__clear_bit(vector, synic->vec_bitmap);

	if (synic_has_vector_auto_eoi(synic, vector))
		__set_bit(vector, synic->auto_eoi_bitmap);
	else
		__clear_bit(vector, synic->auto_eoi_bitmap);
}

100 101
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
			  u64 data, bool host)
102
{
103
	int vector, old_vector;
104
	bool masked;
105 106

	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 108 109 110 111 112 113 114
	masked = data & HV_SYNIC_SINT_MASKED;

	/*
	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
	 * default '0x10000' value on boot and this should not #GP. We need to
	 * allow zero-initing the register from host as well.
	 */
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 116 117 118 119 120 121
		return 1;
	/*
	 * Guest may configure multiple SINTs to use the same vector, so
	 * we maintain a bitmap of vectors handled by synic, and a
	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
	 * updated here, and atomically queried on fast paths.
	 */
122
	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123 124 125

	atomic64_set(&synic->sint[sint], data);

126
	synic_update_vector(synic, old_vector);
127

128
	synic_update_vector(synic, vector);
129 130 131 132 133 134

	/* Load SynIC vectors into EOI exit bitmap */
	kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
	return 0;
}

135 136 137 138 139
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
	struct kvm_vcpu *vcpu = NULL;
	int i;

140 141 142 143
	if (vpidx >= KVM_MAX_VCPUS)
		return NULL;

	vcpu = kvm_get_vcpu(kvm, vpidx);
144 145 146 147 148 149 150 151 152
	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
		return vcpu;
	kvm_for_each_vcpu(i, vcpu, kvm)
		if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
			return vcpu;
	return NULL;
}

static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 154 155 156
{
	struct kvm_vcpu *vcpu;
	struct kvm_vcpu_hv_synic *synic;

157
	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 159 160 161 162 163 164 165 166
	if (!vcpu)
		return NULL;
	synic = vcpu_to_synic(vcpu);
	return (synic->active) ? synic : NULL;
}

static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
	struct kvm *kvm = vcpu->kvm;
167
	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
A
Andrey Smetanin 已提交
168 169
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_stimer *stimer;
170
	int gsi, idx;
171

172
	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173

A
Andrey Smetanin 已提交
174 175 176
	/* Try to deliver pending Hyper-V SynIC timers messages */
	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
		stimer = &hv_vcpu->stimer[idx];
177
		if (stimer->msg_pending && stimer->config.enable &&
178
		    !stimer->config.direct_mode &&
179 180
		    stimer->config.sintx == sint)
			stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
181 182
	}

183
	idx = srcu_read_lock(&kvm->irq_srcu);
A
Andrey Smetanin 已提交
184
	gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 186 187 188 189
	if (gsi != -1)
		kvm_notify_acked_gsi(kvm, gsi);
	srcu_read_unlock(&kvm->irq_srcu, idx);
}

A
Andrey Smetanin 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
	hv_vcpu->exit.u.synic.msr = msr;
	hv_vcpu->exit.u.synic.control = synic->control;
	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

204 205 206 207 208 209
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
			 u32 msr, u64 data, bool host)
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
	int ret;

210
	if (!synic->active && !host)
211 212
		return 1;

213 214
	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);

215 216 217 218
	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		synic->control = data;
A
Andrey Smetanin 已提交
219 220
		if (!host)
			synic_exit(synic, msr);
221 222 223 224 225 226 227 228 229
		break;
	case HV_X64_MSR_SVERSION:
		if (!host) {
			ret = 1;
			break;
		}
		synic->version = data;
		break;
	case HV_X64_MSR_SIEFP:
230 231
		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
232 233 234 235 236 237
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->evt_page = data;
A
Andrey Smetanin 已提交
238 239
		if (!host)
			synic_exit(synic, msr);
240 241
		break;
	case HV_X64_MSR_SIMP:
242 243
		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
244 245 246 247 248 249
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->msg_page = data;
A
Andrey Smetanin 已提交
250 251
		if (!host)
			synic_exit(synic, msr);
252 253 254 255 256 257 258 259 260
		break;
	case HV_X64_MSR_EOM: {
		int i;

		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
			kvm_hv_notify_acked_sint(vcpu, i);
		break;
	}
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261
		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262 263 264 265 266 267 268 269
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *entry;

	entry = kvm_find_cpuid_entry(vcpu,
				     HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
				     0);
	if (!entry)
		return false;

	return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
}

static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = &kvm->arch.hyperv;

	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
		hv->hv_syndbg.control.status =
			vcpu->run->hyperv.u.syndbg.status;
	return 1;
}

static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
{
	struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
	hv_vcpu->exit.u.syndbg.msr = msr;
	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
	vcpu->arch.complete_userspace_io =
			kvm_hv_syndbg_complete_userspace;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
	struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
				    vcpu_to_hv_vcpu(vcpu)->vp_index, msr, data);
	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		syndbg->control.control = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		syndbg->control.status = data;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		syndbg->control.send_page = data;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		syndbg->control.recv_page = data;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		syndbg->control.pending_page = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		syndbg->options = data;
		break;
	default:
		break;
	}

	return 0;
}

static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
	struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		*pdata = syndbg->control.control;
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		*pdata = syndbg->control.status;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		*pdata = syndbg->control.send_page;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		*pdata = syndbg->control.recv_page;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		*pdata = syndbg->control.pending_page;
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		*pdata = syndbg->options;
		break;
	default:
		break;
	}

	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id,
				    vcpu_to_hv_vcpu(vcpu)->vp_index, msr,
				    *pdata);

	return 0;
}

387 388
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
			 bool host)
389 390 391
{
	int ret;

392
	if (!synic->active && !host)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		return 1;

	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		*pdata = synic->control;
		break;
	case HV_X64_MSR_SVERSION:
		*pdata = synic->version;
		break;
	case HV_X64_MSR_SIEFP:
		*pdata = synic->evt_page;
		break;
	case HV_X64_MSR_SIMP:
		*pdata = synic->msg_page;
		break;
	case HV_X64_MSR_EOM:
		*pdata = 0;
		break;
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

422
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
423 424 425 426 427 428 429 430 431 432 433 434 435
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
	struct kvm_lapic_irq irq;
	int ret, vector;

	if (sint >= ARRAY_SIZE(synic->sint))
		return -EINVAL;

	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
	if (vector < 0)
		return -ENOENT;

	memset(&irq, 0, sizeof(irq));
436
	irq.shorthand = APIC_DEST_SELF;
437 438 439 440 441
	irq.dest_mode = APIC_DEST_PHYSICAL;
	irq.delivery_mode = APIC_DM_FIXED;
	irq.vector = vector;
	irq.level = 1;

442
	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
443
	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
444 445 446
	return ret;
}

447
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
448 449 450
{
	struct kvm_vcpu_hv_synic *synic;

451
	synic = synic_get(kvm, vpidx);
452 453 454 455 456 457 458 459 460 461 462
	if (!synic)
		return -EINVAL;

	return synic_set_irq(synic, sint);
}

void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
	int i;

463
	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
464 465 466 467 468 469

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			kvm_hv_notify_acked_sint(vcpu, i);
}

470
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
471 472 473
{
	struct kvm_vcpu_hv_synic *synic;

474
	synic = synic_get(kvm, vpidx);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	if (!synic)
		return -EINVAL;

	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
		return -EINVAL;

	atomic_set(&synic->sint_to_gsi[sint], gsi);
	return 0;
}

void kvm_hv_irq_routing_update(struct kvm *kvm)
{
	struct kvm_irq_routing_table *irq_rt;
	struct kvm_kernel_irq_routing_entry *e;
	u32 gsi;

	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
					lockdep_is_held(&kvm->irq_lock));

	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
						    e->hv_sint.sint, gsi);
		}
	}
}

static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
	int i;

	memset(synic, 0, sizeof(*synic));
	synic->version = HV_SYNIC_VERSION_1;
	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
		atomic_set(&synic->sint_to_gsi[i], -1);
	}
}

515 516
static u64 get_time_ref_counter(struct kvm *kvm)
{
P
Paolo Bonzini 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct kvm_vcpu *vcpu;
	u64 tsc;

	/*
	 * The guest has not set up the TSC page or the clock isn't
	 * stable, fall back to get_kvmclock_ns.
	 */
	if (!hv->tsc_ref.tsc_sequence)
		return div_u64(get_kvmclock_ns(kvm), 100);

	vcpu = kvm_get_vcpu(kvm, 0);
	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
		+ hv->tsc_ref.tsc_offset;
532 533
}

534
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
A
Andrey Smetanin 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				bool vcpu_kick)
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);

	set_bit(stimer->index,
		vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
	if (vcpu_kick)
		kvm_vcpu_kick(vcpu);
}

static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);

550 551 552
	trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
				    stimer->index);

553
	hrtimer_cancel(&stimer->timer);
A
Andrey Smetanin 已提交
554 555 556
	clear_bit(stimer->index,
		  vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
	stimer->msg_pending = false;
557
	stimer->exp_time = 0;
A
Andrey Smetanin 已提交
558 559 560 561 562 563 564
}

static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
	struct kvm_vcpu_hv_stimer *stimer;

	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
565 566
	trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
				     stimer->index);
567
	stimer_mark_pending(stimer, true);
A
Andrey Smetanin 已提交
568 569 570 571

	return HRTIMER_NORESTART;
}

572 573 574 575 576
/*
 * stimer_start() assumptions:
 * a) stimer->count is not equal to 0
 * b) stimer->config has HV_STIMER_ENABLE flag
 */
A
Andrey Smetanin 已提交
577 578 579 580 581 582 583 584
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
	u64 time_now;
	ktime_t ktime_now;

	time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
	ktime_now = ktime_get();

585
	if (stimer->config.periodic) {
586 587 588 589 590 591 592 593 594 595 596
		if (stimer->exp_time) {
			if (time_now >= stimer->exp_time) {
				u64 remainder;

				div64_u64_rem(time_now - stimer->exp_time,
					      stimer->count, &remainder);
				stimer->exp_time =
					time_now + (stimer->count - remainder);
			}
		} else
			stimer->exp_time = time_now + stimer->count;
A
Andrey Smetanin 已提交
597

598 599 600 601 602
		trace_kvm_hv_stimer_start_periodic(
					stimer_to_vcpu(stimer)->vcpu_id,
					stimer->index,
					time_now, stimer->exp_time);

A
Andrey Smetanin 已提交
603
		hrtimer_start(&stimer->timer,
604 605
			      ktime_add_ns(ktime_now,
					   100 * (stimer->exp_time - time_now)),
A
Andrey Smetanin 已提交
606 607 608 609 610 611 612 613 614 615 616
			      HRTIMER_MODE_ABS);
		return 0;
	}
	stimer->exp_time = stimer->count;
	if (time_now >= stimer->count) {
		/*
		 * Expire timer according to Hypervisor Top-Level Functional
		 * specification v4(15.3.1):
		 * "If a one shot is enabled and the specified count is in
		 * the past, it will expire immediately."
		 */
617
		stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
618 619 620
		return 0;
	}

621 622 623 624
	trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
					   stimer->index,
					   time_now, stimer->count);

A
Andrey Smetanin 已提交
625 626 627 628 629 630 631 632 633
	hrtimer_start(&stimer->timer,
		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
		      HRTIMER_MODE_ABS);
	return 0;
}

static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
			     bool host)
{
634 635
	union hv_stimer_config new_config = {.as_uint64 = config},
		old_config = {.as_uint64 = stimer->config.as_uint64};
636

637 638 639
	trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
				       stimer->index, config, host);

640
	stimer_cleanup(stimer);
641 642
	if (old_config.enable &&
	    !new_config.direct_mode && new_config.sintx == 0)
643 644
		new_config.enable = 0;
	stimer->config.as_uint64 = new_config.as_uint64;
645

646 647 648
	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
649 650 651 652 653 654
	return 0;
}

static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
			    bool host)
{
655 656 657
	trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
				      stimer->index, count, host);

A
Andrey Smetanin 已提交
658
	stimer_cleanup(stimer);
659
	stimer->count = count;
A
Andrey Smetanin 已提交
660
	if (stimer->count == 0)
661 662 663
		stimer->config.enable = 0;
	else if (stimer->config.auto_enable)
		stimer->config.enable = 1;
664 665 666 667

	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
668 669 670 671 672
	return 0;
}

static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
673
	*pconfig = stimer->config.as_uint64;
A
Andrey Smetanin 已提交
674 675 676 677 678 679 680 681 682 683
	return 0;
}

static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
	*pcount = stimer->count;
	return 0;
}

static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
684
			     struct hv_message *src_msg, bool no_retry)
A
Andrey Smetanin 已提交
685 686
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
687 688 689
	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
	gfn_t msg_page_gfn;
	struct hv_message_header hv_hdr;
A
Andrey Smetanin 已提交
690 691 692 693 694
	int r;

	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
		return -ENOENT;

695
	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
A
Andrey Smetanin 已提交
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710
	/*
	 * Strictly following the spec-mandated ordering would assume setting
	 * .msg_pending before checking .message_type.  However, this function
	 * is only called in vcpu context so the entire update is atomic from
	 * guest POV and thus the exact order here doesn't matter.
	 */
	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
				     msg_off + offsetof(struct hv_message,
							header.message_type),
				     sizeof(hv_hdr.message_type));
	if (r < 0)
		return r;

	if (hv_hdr.message_type != HVMSG_NONE) {
711 712 713
		if (no_retry)
			return 0;

714 715 716 717 718 719 720 721 722 723
		hv_hdr.message_flags.msg_pending = 1;
		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
					      &hv_hdr.message_flags,
					      msg_off +
					      offsetof(struct hv_message,
						       header.message_flags),
					      sizeof(hv_hdr.message_flags));
		if (r < 0)
			return r;
		return -EAGAIN;
A
Andrey Smetanin 已提交
724
	}
725 726 727 728 729 730 731 732 733 734 735 736 737

	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
				      sizeof(src_msg->header) +
				      src_msg->header.payload_size);
	if (r < 0)
		return r;

	r = synic_set_irq(synic, sint);
	if (r < 0)
		return r;
	if (r == 0)
		return -EFAULT;
	return 0;
A
Andrey Smetanin 已提交
738 739
}

740
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
A
Andrey Smetanin 已提交
741 742 743 744 745 746
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

747 748 749 750
	/*
	 * To avoid piling up periodic ticks, don't retry message
	 * delivery for them (within "lazy" lost ticks policy).
	 */
751
	bool no_retry = stimer->config.periodic;
752

A
Andrey Smetanin 已提交
753 754
	payload->expiration_time = stimer->exp_time;
	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
755
	return synic_deliver_msg(vcpu_to_synic(vcpu),
756
				 stimer->config.sintx, msg,
757
				 no_retry);
A
Andrey Smetanin 已提交
758 759
}

760 761 762 763 764 765 766 767
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = stimer->config.apic_vector
	};

768 769 770
	if (lapic_in_kernel(vcpu))
		return !kvm_apic_set_irq(vcpu, &irq, NULL);
	return 0;
771 772
}

A
Andrey Smetanin 已提交
773 774
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
775
	int r, direct = stimer->config.direct_mode;
776

777
	stimer->msg_pending = true;
778 779 780 781
	if (!direct)
		r = stimer_send_msg(stimer);
	else
		r = stimer_notify_direct(stimer);
782
	trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
783
				       stimer->index, direct, r);
784
	if (!r) {
785
		stimer->msg_pending = false;
786 787
		if (!(stimer->config.periodic))
			stimer->config.enable = 0;
788
	}
A
Andrey Smetanin 已提交
789 790 791 792 793 794
}

void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_stimer *stimer;
795
	u64 time_now, exp_time;
A
Andrey Smetanin 已提交
796 797 798 799 800
	int i;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
			stimer = &hv_vcpu->stimer[i];
801
			if (stimer->config.enable) {
802 803 804 805 806 807 808 809
				exp_time = stimer->exp_time;

				if (exp_time) {
					time_now =
						get_time_ref_counter(vcpu->kvm);
					if (time_now >= exp_time)
						stimer_expiration(stimer);
				}
810

811
				if ((stimer->config.enable) &&
812 813 814 815
				    stimer->count) {
					if (!stimer->msg_pending)
						stimer_start(stimer);
				} else
816
					stimer_cleanup(stimer);
A
Andrey Smetanin 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829
			}
		}
}

void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	int i;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_cleanup(&hv_vcpu->stimer[i]);
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
		return false;
	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);

bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
			    struct hv_vp_assist_page *assist_page)
{
	if (!kvm_hv_assist_page_enabled(vcpu))
		return false;
	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
				      assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);

A
Andrey Smetanin 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

	memset(&msg->header, 0, sizeof(msg->header));
	msg->header.message_type = HVMSG_TIMER_EXPIRED;
	msg->header.payload_size = sizeof(*payload);

	payload->timer_index = stimer->index;
	payload->expiration_time = 0;
	payload->delivery_time = 0;
}

static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
	memset(stimer, 0, sizeof(*stimer));
	stimer->index = timer_index;
	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	stimer->timer.function = stimer_timer_callback;
	stimer_prepare_msg(stimer);
}

872 873
void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
{
A
Andrey Smetanin 已提交
874 875 876 877 878 879 880 881
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	int i;

	synic_init(&hv_vcpu->synic);

	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_init(&hv_vcpu->stimer[i], i);
882 883
}

884 885 886 887 888 889 890
void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);

	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
}

891
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
892
{
893 894
	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);

895 896
	/*
	 * Hyper-V SynIC auto EOI SINT's are
897 898
	 * not compatible with APICV, so request
	 * to deactivate APICV permanently.
899
	 */
900
	kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
901 902
	synic->active = true;
	synic->dont_zero_synic_pages = dont_zero_synic_pages;
903
	synic->control = HV_SYNIC_CONTROL_ENABLE;
904 905 906
	return 0;
}

907 908 909 910 911 912 913 914 915
static bool kvm_hv_msr_partition_wide(u32 msr)
{
	bool r = false;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
	case HV_X64_MSR_REFERENCE_TSC:
	case HV_X64_MSR_TIME_REF_COUNT:
916 917
	case HV_X64_MSR_CRASH_CTL:
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
918
	case HV_X64_MSR_RESET:
919 920 921
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
922 923
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
924 925 926 927 928 929 930
		r = true;
		break;
	}

	return r;
}

931 932 933 934
static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
				     u32 index, u64 *pdata)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
935
	size_t size = ARRAY_SIZE(hv->hv_crash_param);
936

937
	if (WARN_ON_ONCE(index >= size))
938 939
		return -EINVAL;

940
	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	return 0;
}

static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;

	*pdata = hv->hv_crash_ctl;
	return 0;
}

static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;

	if (host)
957
		hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
958

959
	if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

		vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
			  hv->hv_crash_param[0],
			  hv->hv_crash_param[1],
			  hv->hv_crash_param[2],
			  hv->hv_crash_param[3],
			  hv->hv_crash_param[4]);

		/* Send notification about crash to user space */
		kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
	}

	return 0;
}

static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
				     u32 index, u64 data)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
979
	size_t size = ARRAY_SIZE(hv->hv_crash_param);
980

981
	if (WARN_ON_ONCE(index >= size))
982 983
		return -EINVAL;

984
	hv->hv_crash_param[array_index_nospec(index, size)] = data;
985 986 987
	return 0;
}

P
Paolo Bonzini 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
 * between them is possible:
 *
 * kvmclock formula:
 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *
 * Hyper-V formula:
 *    nsec/100 = ticks * scale / 2^64 + offset
 *
 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
 * By dividing the kvmclock formula by 100 and equating what's left we get:
 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
 *
 * Now expand the kvmclock formula and divide by 100:
 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               + system_time / 100
 *
 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
 *    nsec/100 = ticks * scale / 2^64
 *               - tsc_timestamp * scale / 2^64
 *               + system_time / 100
 *
 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
 *
 * These two equivalencies are implemented in this function.
 */
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1024
					struct ms_hyperv_tsc_page *tsc_ref)
P
Paolo Bonzini 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
{
	u64 max_mul;

	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
		return false;

	/*
	 * check if scale would overflow, if so we use the time ref counter
	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
	 */
	max_mul = 100ull << (32 - hv_clock->tsc_shift);
	if (hv_clock->tsc_to_system_mul >= max_mul)
		return false;

	/*
	 * Otherwise compute the scale and offset according to the formulas
	 * derived above.
	 */
	tsc_ref->tsc_scale =
		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
				hv_clock->tsc_to_system_mul,
				100);

	tsc_ref->tsc_offset = hv_clock->system_time;
	do_div(tsc_ref->tsc_offset, 100);
	tsc_ref->tsc_offset -=
		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
	return true;
}

void kvm_hv_setup_tsc_page(struct kvm *kvm,
			   struct pvclock_vcpu_time_info *hv_clock)
{
	struct kvm_hv *hv = &kvm->arch.hyperv;
	u32 tsc_seq;
	u64 gfn;

	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1065
	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
P
Paolo Bonzini 已提交
1066 1067 1068 1069

	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		return;

1070 1071 1072 1073
	mutex_lock(&kvm->arch.hyperv.hv_lock);
	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		goto out_unlock;

P
Paolo Bonzini 已提交
1074 1075 1076 1077 1078 1079 1080
	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
	/*
	 * Because the TSC parameters only vary when there is a
	 * change in the master clock, do not bother with caching.
	 */
	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
				    &tsc_seq, sizeof(tsc_seq))))
1081
		goto out_unlock;
P
Paolo Bonzini 已提交
1082 1083 1084 1085 1086 1087 1088 1089

	/*
	 * While we're computing and writing the parameters, force the
	 * guest to use the time reference count MSR.
	 */
	hv->tsc_ref.tsc_sequence = 0;
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1090
		goto out_unlock;
P
Paolo Bonzini 已提交
1091 1092

	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1093
		goto out_unlock;
P
Paolo Bonzini 已提交
1094 1095 1096 1097

	/* Ensure sequence is zero before writing the rest of the struct.  */
	smp_wmb();
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1098
		goto out_unlock;
P
Paolo Bonzini 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	/*
	 * Now switch to the TSC page mechanism by writing the sequence.
	 */
	tsc_seq++;
	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
		tsc_seq = 1;

	/* Write the struct entirely before the non-zero sequence.  */
	smp_wmb();

	hv->tsc_ref.tsc_sequence = tsc_seq;
	kvm_write_guest(kvm, gfn_to_gpa(gfn),
			&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
1113 1114
out_unlock:
	mutex_unlock(&kvm->arch.hyperv.hv_lock);
P
Paolo Bonzini 已提交
1115 1116
}

1117 1118
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
			     bool host)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = &kvm->arch.hyperv;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		hv->hv_guest_os_id = data;
		/* setting guest os id to zero disables hypercall page */
		if (!hv->hv_guest_os_id)
			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
		break;
	case HV_X64_MSR_HYPERCALL: {
		u64 gfn;
		unsigned long addr;
		u8 instructions[4];

		/* if guest os id is not set hypercall should remain disabled */
		if (!hv->hv_guest_os_id)
			break;
		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
			hv->hv_hypercall = data;
			break;
		}
		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
		addr = gfn_to_hva(kvm, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
1146
		kvm_x86_ops.patch_hypercall(vcpu, instructions);
1147 1148 1149 1150 1151 1152 1153
		((unsigned char *)instructions)[3] = 0xc3; /* ret */
		if (__copy_to_user((void __user *)addr, instructions, 4))
			return 1;
		hv->hv_hypercall = data;
		mark_page_dirty(kvm, gfn);
		break;
	}
P
Paolo Bonzini 已提交
1154
	case HV_X64_MSR_REFERENCE_TSC:
1155
		hv->hv_tsc_page = data;
P
Paolo Bonzini 已提交
1156 1157
		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1158
		break;
1159 1160 1161 1162 1163 1164
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
		return kvm_hv_msr_set_crash_data(vcpu,
						 msr - HV_X64_MSR_CRASH_P0,
						 data);
	case HV_X64_MSR_CRASH_CTL:
		return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1165 1166 1167 1168 1169 1170
	case HV_X64_MSR_RESET:
		if (data == 1) {
			vcpu_debug(vcpu, "hyper-v reset requested\n");
			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
		}
		break;
1171 1172 1173 1174 1175 1176 1177 1178 1179
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		hv->hv_reenlightenment_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		hv->hv_tsc_emulation_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		hv->hv_tsc_emulation_status = data;
		break;
1180 1181 1182 1183 1184
	case HV_X64_MSR_TIME_REF_COUNT:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1185 1186 1187
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_set_msr(vcpu, msr, data, host);
1188
	default:
1189
		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1190 1191 1192 1193 1194 1195
			    msr, data);
		return 1;
	}
	return 0;
}

1196 1197 1198
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
1199
	u64 utime, stime;
1200 1201

	task_cputime_adjusted(current, &utime, &stime);
1202 1203

	return div_u64(utime + stime, 100);
1204 1205 1206
}

static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1207
{
1208
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1209 1210

	switch (msr) {
1211 1212 1213 1214 1215 1216
	case HV_X64_MSR_VP_INDEX: {
		struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
		u32 new_vp_index = (u32)data;

		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1217
			return 1;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

		if (new_vp_index == hv_vcpu->vp_index)
			return 0;

		/*
		 * The VP index is initialized to vcpu_index by
		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
		 * VP index is changing, adjust num_mismatched_vp_indexes if
		 * it now matches or no longer matches vcpu_idx.
		 */
		if (hv_vcpu->vp_index == vcpu_idx)
			atomic_inc(&hv->num_mismatched_vp_indexes);
		else if (new_vp_index == vcpu_idx)
			atomic_dec(&hv->num_mismatched_vp_indexes);

		hv_vcpu->vp_index = new_vp_index;
1234
		break;
1235
	}
1236
	case HV_X64_MSR_VP_ASSIST_PAGE: {
1237 1238 1239
		u64 gfn;
		unsigned long addr;

1240
		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1241
			hv_vcpu->hv_vapic = data;
1242
			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1243 1244 1245
				return 1;
			break;
		}
1246
		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1247 1248 1249
		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
1250 1251

		/*
1252
		 * Clear apic_assist portion of struct hv_vp_assist_page
1253 1254 1255
		 * only, there can be valuable data in the rest which needs
		 * to be preserved e.g. on migration.
		 */
1256
		if (__put_user(0, (u32 __user *)addr))
1257
			return 1;
1258
		hv_vcpu->hv_vapic = data;
1259 1260
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
		if (kvm_lapic_enable_pv_eoi(vcpu,
1261 1262
					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
					    sizeof(struct hv_vp_assist_page)))
1263 1264 1265 1266 1267 1268 1269 1270 1271
			return 1;
		break;
	}
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1272 1273 1274
	case HV_X64_MSR_VP_RUNTIME:
		if (!host)
			return 1;
1275
		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1276
		break;
1277 1278 1279 1280 1281 1282 1283
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
A
Andrey Smetanin 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

		return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
					 data, host);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

		return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
					data, host);
	}
1302 1303 1304 1305 1306 1307
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1308
	default:
1309
		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1310 1311 1312 1313 1314 1315 1316
			    msr, data);
		return 1;
	}

	return 0;
}

1317 1318
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			     bool host)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
{
	u64 data = 0;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = &kvm->arch.hyperv;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		data = hv->hv_guest_os_id;
		break;
	case HV_X64_MSR_HYPERCALL:
		data = hv->hv_hypercall;
		break;
1331 1332
	case HV_X64_MSR_TIME_REF_COUNT:
		data = get_time_ref_counter(kvm);
1333 1334 1335 1336
		break;
	case HV_X64_MSR_REFERENCE_TSC:
		data = hv->hv_tsc_page;
		break;
1337 1338 1339 1340 1341 1342
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
		return kvm_hv_msr_get_crash_data(vcpu,
						 msr - HV_X64_MSR_CRASH_P0,
						 pdata);
	case HV_X64_MSR_CRASH_CTL:
		return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1343 1344 1345
	case HV_X64_MSR_RESET:
		data = 0;
		break;
1346 1347 1348 1349 1350 1351 1352 1353 1354
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		data = hv->hv_reenlightenment_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		data = hv->hv_tsc_emulation_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		data = hv->hv_tsc_emulation_status;
		break;
1355 1356 1357
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_get_msr(vcpu, msr, pdata, host);
1358 1359 1360 1361 1362 1363 1364 1365 1366
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}

	*pdata = data;
	return 0;
}

1367 1368
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			  bool host)
1369 1370
{
	u64 data = 0;
1371
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1372 1373

	switch (msr) {
1374
	case HV_X64_MSR_VP_INDEX:
1375
		data = hv_vcpu->vp_index;
1376 1377 1378 1379 1380 1381 1382
		break;
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1383
	case HV_X64_MSR_VP_ASSIST_PAGE:
1384
		data = hv_vcpu->hv_vapic;
1385
		break;
1386
	case HV_X64_MSR_VP_RUNTIME:
1387
		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1388
		break;
1389 1390 1391 1392 1393 1394
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1395
		return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
A
Andrey Smetanin 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

		return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
					 pdata);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

		return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
					pdata);
	}
1414 1415 1416 1417 1418 1419
	case HV_X64_MSR_TSC_FREQUENCY:
		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
		break;
	case HV_X64_MSR_APIC_FREQUENCY:
		data = APIC_BUS_FREQUENCY;
		break;
1420 1421 1422 1423 1424 1425 1426 1427
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}

1428
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1429 1430 1431 1432
{
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1433
		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1434
		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1435
		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1436 1437
		return r;
	} else
1438
		return kvm_hv_set_msr(vcpu, msr, data, host);
1439 1440
}

1441
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1442 1443 1444 1445
{
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1446
		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1447
		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1448
		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1449 1450
		return r;
	} else
1451
		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1452 1453
}

1454 1455 1456
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1457
{
1458 1459 1460
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct kvm_vcpu *vcpu;
	int i, bank, sbank = 0;
1461

1462 1463 1464 1465 1466
	memset(vp_bitmap, 0,
	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
		vp_bitmap[bank] = sparse_banks[sbank++];
1467

1468 1469 1470 1471
	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
		/* for all vcpus vp_index == vcpu_idx */
		return (unsigned long *)vp_bitmap;
	}
1472

1473 1474 1475 1476 1477 1478 1479
	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
			     (unsigned long *)vp_bitmap))
			__set_bit(i, vcpu_bitmap);
	}
	return vcpu_bitmap;
1480 1481
}

1482
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1483
			    u16 rep_cnt, bool ex)
1484 1485
{
	struct kvm *kvm = current_vcpu->kvm;
1486
	struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1487
	struct hv_tlb_flush_ex flush_ex;
1488
	struct hv_tlb_flush flush;
1489 1490 1491
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1492
	u64 valid_bank_mask;
1493
	u64 sparse_banks[64];
1494
	int sparse_banks_len;
1495
	bool all_cpus;
1496

1497 1498 1499
	if (!ex) {
		if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1500

1501 1502 1503
		trace_kvm_hv_flush_tlb(flush.processor_mask,
				       flush.address_space, flush.flags);

1504
		valid_bank_mask = BIT_ULL(0);
1505
		sparse_banks[0] = flush.processor_mask;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

		/*
		 * Work around possible WS2012 bug: it sends hypercalls
		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
		 * while also expecting us to flush something and crashing if
		 * we don't. Let's treat processor_mask == 0 same as
		 * HV_FLUSH_ALL_PROCESSORS.
		 */
		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
			flush.processor_mask == 0;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	} else {
		if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
					    sizeof(flush_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
					  flush_ex.hv_vp_set.format,
					  flush_ex.address_space,
					  flush_ex.flags);

		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
		all_cpus = flush_ex.hv_vp_set.format !=
			HV_GENERIC_SET_SPARSE_4K;

1530 1531
		sparse_banks_len =
			bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
			sizeof(sparse_banks[0]);

		if (!sparse_banks_len && !all_cpus)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
				   ingpa + offsetof(struct hv_tlb_flush_ex,
						    hv_vp_set.bank_contents),
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}
1545

1546
	cpumask_clear(&hv_vcpu->tlb_flush);
1547

1548 1549 1550
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1551

1552
	/*
1553 1554
	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
	 * analyze it here, flush TLB regardless of the specified address space.
1555
	 */
1556
	kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
1557
				    NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1558

1559
ret_success:
1560 1561 1562 1563 1564
	/* We always do full TLB flush, set rep_done = rep_cnt. */
	return (u64)HV_STATUS_SUCCESS |
		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
				 unsigned long *vcpu_bitmap)
{
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = vector
	};
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
			continue;

		/* We fail only when APIC is disabled */
		kvm_apic_set_irq(vcpu, &irq, NULL);
	}
}

1584 1585 1586 1587 1588 1589
static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
			   bool ex, bool fast)
{
	struct kvm *kvm = current_vcpu->kvm;
	struct hv_send_ipi_ex send_ipi_ex;
	struct hv_send_ipi send_ipi;
1590 1591 1592
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1593 1594
	unsigned long valid_bank_mask;
	u64 sparse_banks[64];
1595 1596
	int sparse_banks_len;
	u32 vector;
1597 1598 1599 1600 1601 1602 1603 1604
	bool all_cpus;

	if (!ex) {
		if (!fast) {
			if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
						    sizeof(send_ipi))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = send_ipi.cpu_mask;
1605
			vector = send_ipi.vector;
1606 1607 1608 1609 1610
		} else {
			/* 'reserved' part of hv_send_ipi should be 0 */
			if (unlikely(ingpa >> 32 != 0))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = outgpa;
1611
			vector = (u32)ingpa;
1612 1613 1614 1615
		}
		all_cpus = false;
		valid_bank_mask = BIT_ULL(0);

1616
		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1617 1618 1619 1620 1621 1622 1623 1624 1625
	} else {
		if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
					    sizeof(send_ipi_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
					 send_ipi_ex.vp_set.format,
					 send_ipi_ex.vp_set.valid_bank_mask);

1626
		vector = send_ipi_ex.vector;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
			sizeof(sparse_banks[0]);

		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;

		if (!sparse_banks_len)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
				   ingpa + offsetof(struct hv_send_ipi_ex,
						    vp_set.bank_contents),
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}

1645
	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1646 1647
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1648 1649 1650
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1651

1652
	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1653 1654 1655 1656 1657

ret_success:
	return HV_STATUS_SUCCESS;
}

1658 1659
bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
1660
	return READ_ONCE(kvm->arch.hyperv.hv_guest_os_id) != 0;
1661 1662
}

1663 1664 1665 1666 1667 1668
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
	bool longmode;

	longmode = is_64_bit_mode(vcpu);
	if (longmode)
1669
		kvm_rax_write(vcpu, result);
1670
	else {
1671 1672
		kvm_rdx_write(vcpu, result >> 32);
		kvm_rax_write(vcpu, result & 0xffffffff);
1673 1674 1675
	}
}

1676
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1677
{
1678 1679
	kvm_hv_hypercall_set_result(vcpu, result);
	++vcpu->stat.hypercalls;
1680
	return kvm_skip_emulated_instruction(vcpu);
1681 1682
}

1683 1684 1685 1686 1687
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
{
	struct eventfd_ctx *eventfd;

	if (unlikely(!fast)) {
		int ret;
		gpa_t gpa = param;

		if ((gpa & (__alignof__(param) - 1)) ||
		    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
			return HV_STATUS_INVALID_ALIGNMENT;

		ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
		if (ret < 0)
			return HV_STATUS_INVALID_ALIGNMENT;
	}

	/*
	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
	 * have no use for it, and in all known usecases it is zero, so just
	 * report lookup failure if it isn't.
	 */
	if (param & 0xffff00000000ULL)
		return HV_STATUS_INVALID_PORT_ID;
	/* remaining bits are reserved-zero */
	if (param & ~KVM_HYPERV_CONN_ID_MASK)
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1716 1717
	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
	rcu_read_lock();
1718
	eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1719
	rcu_read_unlock();
1720 1721 1722 1723 1724 1725 1726
	if (!eventfd)
		return HV_STATUS_INVALID_PORT_ID;

	eventfd_signal(eventfd, 1);
	return HV_STATUS_SUCCESS;
}

1727 1728
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
1729 1730
	u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
	uint16_t code, rep_idx, rep_cnt;
1731
	bool fast, rep;
1732 1733 1734 1735 1736

	/*
	 * hypercall generates UD from non zero cpl and real mode
	 * per HYPER-V spec
	 */
1737
	if (kvm_x86_ops.get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1738
		kvm_queue_exception(vcpu, UD_VECTOR);
1739
		return 1;
1740 1741
	}

1742 1743 1744 1745 1746 1747 1748 1749
#ifdef CONFIG_X86_64
	if (is_64_bit_mode(vcpu)) {
		param = kvm_rcx_read(vcpu);
		ingpa = kvm_rdx_read(vcpu);
		outgpa = kvm_r8_read(vcpu);
	} else
#endif
	{
1750 1751 1752 1753 1754 1755
		param = ((u64)kvm_rdx_read(vcpu) << 32) |
			(kvm_rax_read(vcpu) & 0xffffffff);
		ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
			(kvm_rcx_read(vcpu) & 0xffffffff);
		outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
			(kvm_rsi_read(vcpu) & 0xffffffff);
1756 1757 1758
	}

	code = param & 0xffff;
1759 1760 1761
	fast = !!(param & HV_HYPERCALL_FAST_BIT);
	rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
	rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1762
	rep = !!(rep_cnt || rep_idx);
1763 1764 1765 1766

	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);

	switch (code) {
1767
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1768 1769 1770 1771
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1772
		kvm_vcpu_on_spin(vcpu, true);
1773
		break;
1774
	case HVCALL_SIGNAL_EVENT:
1775 1776 1777 1778
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1779 1780
		ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
		if (ret != HV_STATUS_INVALID_PORT_ID)
1781
			break;
1782
		fallthrough;	/* maybe userspace knows this conn_id */
1783
	case HVCALL_POST_MESSAGE:
1784
		/* don't bother userspace if it has no way to handle it */
1785 1786
		if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1787 1788
			break;
		}
1789 1790 1791 1792 1793 1794 1795 1796
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
		vcpu->run->hyperv.u.hcall.input = param;
		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
1797 1798 1799 1800 1801
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
		if (unlikely(fast || !rep_cnt || rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1802
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1803 1804 1805 1806 1807 1808
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
		if (unlikely(fast || !rep_cnt || rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1824
		break;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	case HVCALL_SEND_IPI:
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
		break;
	case HVCALL_SEND_IPI_EX:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
		break;
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	case HVCALL_POST_DEBUG_DATA:
	case HVCALL_RETRIEVE_DEBUG_DATA:
		if (unlikely(fast)) {
			ret = HV_STATUS_INVALID_PARAMETER;
			break;
		}
		fallthrough;
	case HVCALL_RESET_DEBUG_SESSION: {
		struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);

		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
			break;
		}

		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
			ret = HV_STATUS_OPERATION_DENIED;
			break;
		}
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
		vcpu->run->hyperv.u.hcall.input = param;
		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
	}
1867
	default:
1868
		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1869 1870 1871
		break;
	}

1872
	return kvm_hv_hypercall_complete(vcpu, ret);
1873
}
1874 1875 1876 1877

void kvm_hv_init_vm(struct kvm *kvm)
{
	mutex_init(&kvm->arch.hyperv.hv_lock);
1878
	idr_init(&kvm->arch.hyperv.conn_to_evt);
1879 1880 1881 1882
}

void kvm_hv_destroy_vm(struct kvm *kvm)
{
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	struct eventfd_ctx *eventfd;
	int i;

	idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
		eventfd_ctx_put(eventfd);
	idr_destroy(&kvm->arch.hyperv.conn_to_evt);
}

static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct eventfd_ctx *eventfd;
	int ret;

	eventfd = eventfd_ctx_fdget(fd);
	if (IS_ERR(eventfd))
		return PTR_ERR(eventfd);

	mutex_lock(&hv->hv_lock);
	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1903
			GFP_KERNEL_ACCOUNT);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	mutex_unlock(&hv->hv_lock);

	if (ret >= 0)
		return 0;

	if (ret == -ENOSPC)
		ret = -EEXIST;
	eventfd_ctx_put(eventfd);
	return ret;
}

static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct eventfd_ctx *eventfd;

	mutex_lock(&hv->hv_lock);
	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
	mutex_unlock(&hv->hv_lock);

	if (!eventfd)
		return -ENOENT;

	synchronize_srcu(&kvm->srcu);
	eventfd_ctx_put(eventfd);
	return 0;
}

int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
		return -EINVAL;

	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1941
}
1942 1943 1944 1945

int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
				struct kvm_cpuid_entry2 __user *entries)
{
1946
	uint16_t evmcs_ver = 0;
1947 1948 1949 1950 1951 1952 1953
	struct kvm_cpuid_entry2 cpuid_entries[] = {
		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_INTERFACE },
		{ .function = HYPERV_CPUID_VERSION },
		{ .function = HYPERV_CPUID_FEATURES },
		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1954 1955 1956
		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
1957 1958 1959 1960
		{ .function = HYPERV_CPUID_NESTED_FEATURES },
	};
	int i, nent = ARRAY_SIZE(cpuid_entries);

1961 1962
	if (kvm_x86_ops.nested_ops->get_evmcs_version)
		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/* Skip NESTED_FEATURES if eVMCS is not supported */
	if (!evmcs_ver)
		--nent;

	if (cpuid->nent < nent)
		return -E2BIG;

	if (cpuid->nent > nent)
		cpuid->nent = nent;

	for (i = 0; i < nent; i++) {
		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
		u32 signature[3];

		switch (ent->function) {
		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

1982
			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_INTERFACE:
			memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_VERSION:
			/*
			 * We implement some Hyper-V 2016 functions so let's use
			 * this version.
			 */
			ent->eax = 0x00003839;
			ent->ebx = 0x000A0000;
			break;

		case HYPERV_CPUID_FEATURES:
			ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
			ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
			ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
			ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
			ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
			ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
			ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
			ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;

			ent->ebx |= HV_X64_POST_MESSAGES;
			ent->ebx |= HV_X64_SIGNAL_EVENTS;

			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2020

2021
			ent->ebx |= HV_DEBUGGING;
2022 2023 2024
			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;

2025 2026 2027 2028 2029 2030
			/*
			 * Direct Synthetic timers only make sense with in-kernel
			 * LAPIC
			 */
			if (lapic_in_kernel(vcpu))
				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2031 2032 2033 2034 2035 2036 2037 2038 2039

			break;

		case HYPERV_CPUID_ENLIGHTMENT_INFO:
			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2040 2041
			if (evmcs_ver)
				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2042 2043
			if (!cpu_smt_possible())
				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
			/*
			 * Default number of spinlock retry attempts, matches
			 * HyperV 2016.
			 */
			ent->ebx = 0x00000FFF;

			break;

		case HYPERV_CPUID_IMPLEMENT_LIMITS:
			/* Maximum number of virtual processors */
			ent->eax = KVM_MAX_VCPUS;
			/*
			 * Maximum number of logical processors, matches
			 * HyperV 2016.
			 */
			ent->ebx = 64;

			break;

		case HYPERV_CPUID_NESTED_FEATURES:
			ent->eax = evmcs_ver;

			break;

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

			ent->eax = 0;
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_SYNDBG_INTERFACE:
			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
			break;

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		default:
			break;
		}
	}

	if (copy_to_user(entries, cpuid_entries,
			 nent * sizeof(struct kvm_cpuid_entry2)))
		return -EFAULT;

	return 0;
}