hyperv.c 55.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * KVM Microsoft Hyper-V emulation
 *
 * derived from arch/x86/kvm/x86.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
 *   Andrey Smetanin <asmetanin@virtuozzo.com>
 */

#include "x86.h"
#include "lapic.h"
23
#include "ioapic.h"
24
#include "cpuid.h"
25
#include "hyperv.h"
26
#include "xen.h"
27

28
#include <linux/cpu.h>
29
#include <linux/kvm_host.h>
30
#include <linux/highmem.h>
31
#include <linux/sched/cputime.h>
32
#include <linux/eventfd.h>
33

34
#include <asm/apicdef.h>
35 36 37
#include <trace/events/kvm.h>

#include "trace.h"
38
#include "irq.h"
39

40 41
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)

42 43 44
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
				bool vcpu_kick);

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
	return atomic64_read(&synic->sint[sint]);
}

static inline int synic_get_sint_vector(u64 sint_value)
{
	if (sint_value & HV_SYNIC_SINT_MASKED)
		return -1;
	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}

static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
				      int vector)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			return true;
	}
	return false;
}

static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
				     int vector)
{
	int i;
	u64 sint_value;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		sint_value = synic_read_sint(synic, i);
		if (synic_get_sint_vector(sint_value) == vector &&
		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
			return true;
	}
	return false;
}

84 85 86
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
				int vector)
{
87 88 89
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
		return;

90 91 92 93 94 95 96 97 98 99 100
	if (synic_has_vector_connected(synic, vector))
		__set_bit(vector, synic->vec_bitmap);
	else
		__clear_bit(vector, synic->vec_bitmap);

	if (synic_has_vector_auto_eoi(synic, vector))
		__set_bit(vector, synic->auto_eoi_bitmap);
	else
		__clear_bit(vector, synic->auto_eoi_bitmap);
}

101 102
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
			  u64 data, bool host)
103
{
104
	int vector, old_vector;
105
	bool masked;
106 107

	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
108 109 110 111 112 113 114 115
	masked = data & HV_SYNIC_SINT_MASKED;

	/*
	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
	 * default '0x10000' value on boot and this should not #GP. We need to
	 * allow zero-initing the register from host as well.
	 */
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
116 117 118 119 120 121 122
		return 1;
	/*
	 * Guest may configure multiple SINTs to use the same vector, so
	 * we maintain a bitmap of vectors handled by synic, and a
	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
	 * updated here, and atomically queried on fast paths.
	 */
123
	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
124 125 126

	atomic64_set(&synic->sint[sint], data);

127
	synic_update_vector(synic, old_vector);
128

129
	synic_update_vector(synic, vector);
130 131

	/* Load SynIC vectors into EOI exit bitmap */
132
	kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
133 134 135
	return 0;
}

136 137 138 139 140
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
	struct kvm_vcpu *vcpu = NULL;
	int i;

141 142 143 144
	if (vpidx >= KVM_MAX_VCPUS)
		return NULL;

	vcpu = kvm_get_vcpu(kvm, vpidx);
145
	if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
146 147
		return vcpu;
	kvm_for_each_vcpu(i, vcpu, kvm)
148
		if (kvm_hv_get_vpindex(vcpu) == vpidx)
149 150 151 152 153
			return vcpu;
	return NULL;
}

static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
154 155 156 157
{
	struct kvm_vcpu *vcpu;
	struct kvm_vcpu_hv_synic *synic;

158
	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
159 160
	if (!vcpu)
		return NULL;
161
	synic = to_hv_synic(vcpu);
162 163 164 165 166 167
	return (synic->active) ? synic : NULL;
}

static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
	struct kvm *kvm = vcpu->kvm;
168
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
169
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
170
	struct kvm_vcpu_hv_stimer *stimer;
171
	int gsi, idx;
172

173
	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
174

A
Andrey Smetanin 已提交
175 176 177
	/* Try to deliver pending Hyper-V SynIC timers messages */
	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
		stimer = &hv_vcpu->stimer[idx];
178
		if (stimer->msg_pending && stimer->config.enable &&
179
		    !stimer->config.direct_mode &&
180 181
		    stimer->config.sintx == sint)
			stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
182 183
	}

184
	idx = srcu_read_lock(&kvm->irq_srcu);
A
Andrey Smetanin 已提交
185
	gsi = atomic_read(&synic->sint_to_gsi[sint]);
186 187 188 189 190
	if (gsi != -1)
		kvm_notify_acked_gsi(kvm, gsi);
	srcu_read_unlock(&kvm->irq_srcu, idx);
}

A
Andrey Smetanin 已提交
191 192
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
193
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
194
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
195 196 197 198 199 200 201 202 203 204

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
	hv_vcpu->exit.u.synic.msr = msr;
	hv_vcpu->exit.u.synic.control = synic->control;
	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

205 206 207
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
			 u32 msr, u64 data, bool host)
{
208
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
209 210
	int ret;

211
	if (!synic->active && !host)
212 213
		return 1;

214 215
	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);

216 217 218 219
	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		synic->control = data;
A
Andrey Smetanin 已提交
220 221
		if (!host)
			synic_exit(synic, msr);
222 223 224 225 226 227 228 229 230
		break;
	case HV_X64_MSR_SVERSION:
		if (!host) {
			ret = 1;
			break;
		}
		synic->version = data;
		break;
	case HV_X64_MSR_SIEFP:
231 232
		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
233 234 235 236 237 238
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->evt_page = data;
A
Andrey Smetanin 已提交
239 240
		if (!host)
			synic_exit(synic, msr);
241 242
		break;
	case HV_X64_MSR_SIMP:
243 244
		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
245 246 247 248 249 250
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->msg_page = data;
A
Andrey Smetanin 已提交
251 252
		if (!host)
			synic_exit(synic, msr);
253 254 255 256 257 258 259 260 261
		break;
	case HV_X64_MSR_EOM: {
		int i;

		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
			kvm_hv_notify_acked_sint(vcpu, i);
		break;
	}
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
262
		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
263 264 265 266 267 268 269 270
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *entry;

	entry = kvm_find_cpuid_entry(vcpu,
				     HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
				     0);
	if (!entry)
		return false;

	return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
}

static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
{
286
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
287 288 289 290 291 292 293 294 295

	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
		hv->hv_syndbg.control.status =
			vcpu->run->hyperv.u.syndbg.status;
	return 1;
}

static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
{
296
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
297
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
	hv_vcpu->exit.u.syndbg.msr = msr;
	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
	vcpu->arch.complete_userspace_io =
			kvm_hv_syndbg_complete_userspace;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
313
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
314 315 316 317 318

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
319
				    to_hv_vcpu(vcpu)->vp_index, msr, data);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		syndbg->control.control = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		syndbg->control.status = data;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		syndbg->control.send_page = data;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		syndbg->control.recv_page = data;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		syndbg->control.pending_page = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		syndbg->options = data;
		break;
	default:
		break;
	}

	return 0;
}

static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
352
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		*pdata = syndbg->control.control;
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		*pdata = syndbg->control.status;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		*pdata = syndbg->control.send_page;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		*pdata = syndbg->control.recv_page;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		*pdata = syndbg->control.pending_page;
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		*pdata = syndbg->options;
		break;
	default:
		break;
	}

380
	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
381 382 383 384

	return 0;
}

385 386
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
			 bool host)
387 388 389
{
	int ret;

390
	if (!synic->active && !host)
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		return 1;

	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		*pdata = synic->control;
		break;
	case HV_X64_MSR_SVERSION:
		*pdata = synic->version;
		break;
	case HV_X64_MSR_SIEFP:
		*pdata = synic->evt_page;
		break;
	case HV_X64_MSR_SIMP:
		*pdata = synic->msg_page;
		break;
	case HV_X64_MSR_EOM:
		*pdata = 0;
		break;
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

420
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
421
{
422
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
423 424 425 426 427 428 429 430 431 432 433
	struct kvm_lapic_irq irq;
	int ret, vector;

	if (sint >= ARRAY_SIZE(synic->sint))
		return -EINVAL;

	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
	if (vector < 0)
		return -ENOENT;

	memset(&irq, 0, sizeof(irq));
434
	irq.shorthand = APIC_DEST_SELF;
435 436 437 438 439
	irq.dest_mode = APIC_DEST_PHYSICAL;
	irq.delivery_mode = APIC_DM_FIXED;
	irq.vector = vector;
	irq.level = 1;

440
	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
441
	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
442 443 444
	return ret;
}

445
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
446 447 448
{
	struct kvm_vcpu_hv_synic *synic;

449
	synic = synic_get(kvm, vpidx);
450 451 452 453 454 455 456 457
	if (!synic)
		return -EINVAL;

	return synic_set_irq(synic, sint);
}

void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
458
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
459 460
	int i;

461
	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
462 463 464 465 466 467

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			kvm_hv_notify_acked_sint(vcpu, i);
}

468
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
469 470 471
{
	struct kvm_vcpu_hv_synic *synic;

472
	synic = synic_get(kvm, vpidx);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	if (!synic)
		return -EINVAL;

	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
		return -EINVAL;

	atomic_set(&synic->sint_to_gsi[sint], gsi);
	return 0;
}

void kvm_hv_irq_routing_update(struct kvm *kvm)
{
	struct kvm_irq_routing_table *irq_rt;
	struct kvm_kernel_irq_routing_entry *e;
	u32 gsi;

	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
					lockdep_is_held(&kvm->irq_lock));

	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
						    e->hv_sint.sint, gsi);
		}
	}
}

static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
	int i;

	memset(synic, 0, sizeof(*synic));
	synic->version = HV_SYNIC_VERSION_1;
	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
		atomic_set(&synic->sint_to_gsi[i], -1);
	}
}

513 514
static u64 get_time_ref_counter(struct kvm *kvm)
{
515
	struct kvm_hv *hv = to_kvm_hv(kvm);
P
Paolo Bonzini 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529
	struct kvm_vcpu *vcpu;
	u64 tsc;

	/*
	 * The guest has not set up the TSC page or the clock isn't
	 * stable, fall back to get_kvmclock_ns.
	 */
	if (!hv->tsc_ref.tsc_sequence)
		return div_u64(get_kvmclock_ns(kvm), 100);

	vcpu = kvm_get_vcpu(kvm, 0);
	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
		+ hv->tsc_ref.tsc_offset;
530 531
}

532
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
A
Andrey Smetanin 已提交
533 534
				bool vcpu_kick)
{
535
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
A
Andrey Smetanin 已提交
536 537

	set_bit(stimer->index,
538
		to_hv_vcpu(vcpu)->stimer_pending_bitmap);
A
Andrey Smetanin 已提交
539 540 541 542 543 544 545
	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
	if (vcpu_kick)
		kvm_vcpu_kick(vcpu);
}

static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
546
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
A
Andrey Smetanin 已提交
547

548
	trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
549 550
				    stimer->index);

551
	hrtimer_cancel(&stimer->timer);
A
Andrey Smetanin 已提交
552
	clear_bit(stimer->index,
553
		  to_hv_vcpu(vcpu)->stimer_pending_bitmap);
A
Andrey Smetanin 已提交
554
	stimer->msg_pending = false;
555
	stimer->exp_time = 0;
A
Andrey Smetanin 已提交
556 557 558 559 560 561 562
}

static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
	struct kvm_vcpu_hv_stimer *stimer;

	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
563
	trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
564
				     stimer->index);
565
	stimer_mark_pending(stimer, true);
A
Andrey Smetanin 已提交
566 567 568 569

	return HRTIMER_NORESTART;
}

570 571 572 573 574
/*
 * stimer_start() assumptions:
 * a) stimer->count is not equal to 0
 * b) stimer->config has HV_STIMER_ENABLE flag
 */
A
Andrey Smetanin 已提交
575 576 577 578 579
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
	u64 time_now;
	ktime_t ktime_now;

580
	time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
A
Andrey Smetanin 已提交
581 582
	ktime_now = ktime_get();

583
	if (stimer->config.periodic) {
584 585 586 587 588 589 590 591 592 593 594
		if (stimer->exp_time) {
			if (time_now >= stimer->exp_time) {
				u64 remainder;

				div64_u64_rem(time_now - stimer->exp_time,
					      stimer->count, &remainder);
				stimer->exp_time =
					time_now + (stimer->count - remainder);
			}
		} else
			stimer->exp_time = time_now + stimer->count;
A
Andrey Smetanin 已提交
595

596
		trace_kvm_hv_stimer_start_periodic(
597
					hv_stimer_to_vcpu(stimer)->vcpu_id,
598 599 600
					stimer->index,
					time_now, stimer->exp_time);

A
Andrey Smetanin 已提交
601
		hrtimer_start(&stimer->timer,
602 603
			      ktime_add_ns(ktime_now,
					   100 * (stimer->exp_time - time_now)),
A
Andrey Smetanin 已提交
604 605 606 607 608 609 610 611 612 613 614
			      HRTIMER_MODE_ABS);
		return 0;
	}
	stimer->exp_time = stimer->count;
	if (time_now >= stimer->count) {
		/*
		 * Expire timer according to Hypervisor Top-Level Functional
		 * specification v4(15.3.1):
		 * "If a one shot is enabled and the specified count is in
		 * the past, it will expire immediately."
		 */
615
		stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
616 617 618
		return 0;
	}

619
	trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
620 621 622
					   stimer->index,
					   time_now, stimer->count);

A
Andrey Smetanin 已提交
623 624 625 626 627 628 629 630 631
	hrtimer_start(&stimer->timer,
		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
		      HRTIMER_MODE_ABS);
	return 0;
}

static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
			     bool host)
{
632 633
	union hv_stimer_config new_config = {.as_uint64 = config},
		old_config = {.as_uint64 = stimer->config.as_uint64};
634
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
635
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
636 637 638

	if (!synic->active && !host)
		return 1;
639

640
	trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
641 642
				       stimer->index, config, host);

643
	stimer_cleanup(stimer);
644 645
	if (old_config.enable &&
	    !new_config.direct_mode && new_config.sintx == 0)
646 647
		new_config.enable = 0;
	stimer->config.as_uint64 = new_config.as_uint64;
648

649 650 651
	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
652 653 654 655 656 657
	return 0;
}

static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
			    bool host)
{
658
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
659
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
660 661 662 663

	if (!synic->active && !host)
		return 1;

664
	trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
665 666
				      stimer->index, count, host);

A
Andrey Smetanin 已提交
667
	stimer_cleanup(stimer);
668
	stimer->count = count;
A
Andrey Smetanin 已提交
669
	if (stimer->count == 0)
670 671 672
		stimer->config.enable = 0;
	else if (stimer->config.auto_enable)
		stimer->config.enable = 1;
673 674 675 676

	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
677 678 679 680 681
	return 0;
}

static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
682
	*pconfig = stimer->config.as_uint64;
A
Andrey Smetanin 已提交
683 684 685 686 687 688 689 690 691 692
	return 0;
}

static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
	*pcount = stimer->count;
	return 0;
}

static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
693
			     struct hv_message *src_msg, bool no_retry)
A
Andrey Smetanin 已提交
694
{
695
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
696 697 698
	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
	gfn_t msg_page_gfn;
	struct hv_message_header hv_hdr;
A
Andrey Smetanin 已提交
699 700 701 702 703
	int r;

	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
		return -ENOENT;

704
	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
A
Andrey Smetanin 已提交
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * Strictly following the spec-mandated ordering would assume setting
	 * .msg_pending before checking .message_type.  However, this function
	 * is only called in vcpu context so the entire update is atomic from
	 * guest POV and thus the exact order here doesn't matter.
	 */
	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
				     msg_off + offsetof(struct hv_message,
							header.message_type),
				     sizeof(hv_hdr.message_type));
	if (r < 0)
		return r;

	if (hv_hdr.message_type != HVMSG_NONE) {
720 721 722
		if (no_retry)
			return 0;

723 724 725 726 727 728 729 730 731 732
		hv_hdr.message_flags.msg_pending = 1;
		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
					      &hv_hdr.message_flags,
					      msg_off +
					      offsetof(struct hv_message,
						       header.message_flags),
					      sizeof(hv_hdr.message_flags));
		if (r < 0)
			return r;
		return -EAGAIN;
A
Andrey Smetanin 已提交
733
	}
734 735 736 737 738 739 740 741 742 743 744 745 746

	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
				      sizeof(src_msg->header) +
				      src_msg->header.payload_size);
	if (r < 0)
		return r;

	r = synic_set_irq(synic, sint);
	if (r < 0)
		return r;
	if (r == 0)
		return -EFAULT;
	return 0;
A
Andrey Smetanin 已提交
747 748
}

749
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
A
Andrey Smetanin 已提交
750
{
751
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
A
Andrey Smetanin 已提交
752 753 754 755
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

756 757 758 759
	/*
	 * To avoid piling up periodic ticks, don't retry message
	 * delivery for them (within "lazy" lost ticks policy).
	 */
760
	bool no_retry = stimer->config.periodic;
761

A
Andrey Smetanin 已提交
762 763
	payload->expiration_time = stimer->exp_time;
	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
764
	return synic_deliver_msg(to_hv_synic(vcpu),
765
				 stimer->config.sintx, msg,
766
				 no_retry);
A
Andrey Smetanin 已提交
767 768
}

769 770
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
771
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
772 773 774 775 776
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = stimer->config.apic_vector
	};

777 778 779
	if (lapic_in_kernel(vcpu))
		return !kvm_apic_set_irq(vcpu, &irq, NULL);
	return 0;
780 781
}

A
Andrey Smetanin 已提交
782 783
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
784
	int r, direct = stimer->config.direct_mode;
785

786
	stimer->msg_pending = true;
787 788 789 790
	if (!direct)
		r = stimer_send_msg(stimer);
	else
		r = stimer_notify_direct(stimer);
791
	trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
792
				       stimer->index, direct, r);
793
	if (!r) {
794
		stimer->msg_pending = false;
795 796
		if (!(stimer->config.periodic))
			stimer->config.enable = 0;
797
	}
A
Andrey Smetanin 已提交
798 799 800 801
}

void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
802
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
803
	struct kvm_vcpu_hv_stimer *stimer;
804
	u64 time_now, exp_time;
A
Andrey Smetanin 已提交
805 806
	int i;

807 808 809
	if (!hv_vcpu)
		return;

A
Andrey Smetanin 已提交
810 811 812
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
			stimer = &hv_vcpu->stimer[i];
813
			if (stimer->config.enable) {
814 815 816 817 818 819 820 821
				exp_time = stimer->exp_time;

				if (exp_time) {
					time_now =
						get_time_ref_counter(vcpu->kvm);
					if (time_now >= exp_time)
						stimer_expiration(stimer);
				}
822

823
				if ((stimer->config.enable) &&
824 825 826 827
				    stimer->count) {
					if (!stimer->msg_pending)
						stimer_start(stimer);
				} else
828
					stimer_cleanup(stimer);
A
Andrey Smetanin 已提交
829 830 831 832 833 834
			}
		}
}

void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
835
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
836 837 838 839 840 841
	int i;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_cleanup(&hv_vcpu->stimer[i]);
}

842 843
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
844 845
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

846 847 848
	if (!hv_vcpu)
		return false;

849
	if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		return false;
	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);

bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
			    struct hv_vp_assist_page *assist_page)
{
	if (!kvm_hv_assist_page_enabled(vcpu))
		return false;
	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
				      assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);

A
Andrey Smetanin 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

	memset(&msg->header, 0, sizeof(msg->header));
	msg->header.message_type = HVMSG_TIMER_EXPIRED;
	msg->header.payload_size = sizeof(*payload);

	payload->timer_index = stimer->index;
	payload->expiration_time = 0;
	payload->delivery_time = 0;
}

static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
	memset(stimer, 0, sizeof(*stimer));
	stimer->index = timer_index;
	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	stimer->timer.function = stimer_timer_callback;
	stimer_prepare_msg(stimer);
}

889 890
void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
{
891
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
A
Andrey Smetanin 已提交
892 893 894 895 896 897 898
	int i;

	synic_init(&hv_vcpu->synic);

	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_init(&hv_vcpu->stimer[i], i);
899 900
}

901 902
void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
903
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
904 905 906 907

	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
}

908
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
909
{
910
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
911

912 913
	/*
	 * Hyper-V SynIC auto EOI SINT's are
914 915
	 * not compatible with APICV, so request
	 * to deactivate APICV permanently.
916
	 */
917
	kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
918 919
	synic->active = true;
	synic->dont_zero_synic_pages = dont_zero_synic_pages;
920
	synic->control = HV_SYNIC_CONTROL_ENABLE;
921 922 923
	return 0;
}

924 925 926 927 928 929 930 931 932
static bool kvm_hv_msr_partition_wide(u32 msr)
{
	bool r = false;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
	case HV_X64_MSR_REFERENCE_TSC:
	case HV_X64_MSR_TIME_REF_COUNT:
933 934
	case HV_X64_MSR_CRASH_CTL:
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
935
	case HV_X64_MSR_RESET:
936 937 938
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
939 940
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
941 942 943 944 945 946 947
		r = true;
		break;
	}

	return r;
}

948
static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
949
{
950
	struct kvm_hv *hv = to_kvm_hv(kvm);
951
	size_t size = ARRAY_SIZE(hv->hv_crash_param);
952

953
	if (WARN_ON_ONCE(index >= size))
954 955
		return -EINVAL;

956
	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
957 958 959
	return 0;
}

960
static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
961
{
962
	struct kvm_hv *hv = to_kvm_hv(kvm);
963 964 965 966 967

	*pdata = hv->hv_crash_ctl;
	return 0;
}

968
static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
969
{
970
	struct kvm_hv *hv = to_kvm_hv(kvm);
971

972
	hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
973 974 975 976

	return 0;
}

977
static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
978
{
979
	struct kvm_hv *hv = to_kvm_hv(kvm);
980
	size_t size = ARRAY_SIZE(hv->hv_crash_param);
981

982
	if (WARN_ON_ONCE(index >= size))
983 984
		return -EINVAL;

985
	hv->hv_crash_param[array_index_nospec(index, size)] = data;
986 987 988
	return 0;
}

P
Paolo Bonzini 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/*
 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
 * between them is possible:
 *
 * kvmclock formula:
 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *
 * Hyper-V formula:
 *    nsec/100 = ticks * scale / 2^64 + offset
 *
 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
 * By dividing the kvmclock formula by 100 and equating what's left we get:
 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
 *
 * Now expand the kvmclock formula and divide by 100:
 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               + system_time / 100
 *
 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
 *    nsec/100 = ticks * scale / 2^64
 *               - tsc_timestamp * scale / 2^64
 *               + system_time / 100
 *
 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
 *
 * These two equivalencies are implemented in this function.
 */
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1025
					struct ms_hyperv_tsc_page *tsc_ref)
P
Paolo Bonzini 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
{
	u64 max_mul;

	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
		return false;

	/*
	 * check if scale would overflow, if so we use the time ref counter
	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
	 */
	max_mul = 100ull << (32 - hv_clock->tsc_shift);
	if (hv_clock->tsc_to_system_mul >= max_mul)
		return false;

	/*
	 * Otherwise compute the scale and offset according to the formulas
	 * derived above.
	 */
	tsc_ref->tsc_scale =
		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
				hv_clock->tsc_to_system_mul,
				100);

	tsc_ref->tsc_offset = hv_clock->system_time;
	do_div(tsc_ref->tsc_offset, 100);
	tsc_ref->tsc_offset -=
		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
	return true;
}

void kvm_hv_setup_tsc_page(struct kvm *kvm,
			   struct pvclock_vcpu_time_info *hv_clock)
{
1061
	struct kvm_hv *hv = to_kvm_hv(kvm);
P
Paolo Bonzini 已提交
1062 1063 1064 1065
	u32 tsc_seq;
	u64 gfn;

	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1066
	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
P
Paolo Bonzini 已提交
1067 1068 1069 1070

	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		return;

1071
	mutex_lock(&hv->hv_lock);
1072 1073 1074
	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		goto out_unlock;

P
Paolo Bonzini 已提交
1075 1076 1077 1078 1079 1080 1081
	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
	/*
	 * Because the TSC parameters only vary when there is a
	 * change in the master clock, do not bother with caching.
	 */
	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
				    &tsc_seq, sizeof(tsc_seq))))
1082
		goto out_unlock;
P
Paolo Bonzini 已提交
1083 1084 1085 1086 1087 1088 1089 1090

	/*
	 * While we're computing and writing the parameters, force the
	 * guest to use the time reference count MSR.
	 */
	hv->tsc_ref.tsc_sequence = 0;
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1091
		goto out_unlock;
P
Paolo Bonzini 已提交
1092 1093

	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1094
		goto out_unlock;
P
Paolo Bonzini 已提交
1095 1096 1097 1098

	/* Ensure sequence is zero before writing the rest of the struct.  */
	smp_wmb();
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1099
		goto out_unlock;
P
Paolo Bonzini 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	/*
	 * Now switch to the TSC page mechanism by writing the sequence.
	 */
	tsc_seq++;
	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
		tsc_seq = 1;

	/* Write the struct entirely before the non-zero sequence.  */
	smp_wmb();

	hv->tsc_ref.tsc_sequence = tsc_seq;
	kvm_write_guest(kvm, gfn_to_gpa(gfn),
			&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
1114
out_unlock:
1115
	mutex_unlock(&hv->hv_lock);
P
Paolo Bonzini 已提交
1116 1117
}

1118 1119
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
			     bool host)
1120 1121
{
	struct kvm *kvm = vcpu->kvm;
1122
	struct kvm_hv *hv = to_kvm_hv(kvm);
1123 1124 1125 1126 1127 1128 1129 1130 1131

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		hv->hv_guest_os_id = data;
		/* setting guest os id to zero disables hypercall page */
		if (!hv->hv_guest_os_id)
			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
		break;
	case HV_X64_MSR_HYPERCALL: {
1132 1133 1134
		u8 instructions[9];
		int i = 0;
		u64 addr;
1135 1136 1137 1138 1139 1140 1141 1142

		/* if guest os id is not set hypercall should remain disabled */
		if (!hv->hv_guest_os_id)
			break;
		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
			hv->hv_hypercall = data;
			break;
		}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		/*
		 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
		 * the same way Xen itself does, by setting the bit 31 of EAX
		 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
		 * going to be clobbered on 64-bit.
		 */
		if (kvm_xen_hypercall_enabled(kvm)) {
			/* orl $0x80000000, %eax */
			instructions[i++] = 0x0d;
			instructions[i++] = 0x00;
			instructions[i++] = 0x00;
			instructions[i++] = 0x00;
			instructions[i++] = 0x80;
		}

		/* vmcall/vmmcall */
		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
		i += 3;

		/* ret */
		((unsigned char *)instructions)[i++] = 0xc3;

		addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
		if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1168 1169 1170 1171
			return 1;
		hv->hv_hypercall = data;
		break;
	}
P
Paolo Bonzini 已提交
1172
	case HV_X64_MSR_REFERENCE_TSC:
1173
		hv->hv_tsc_page = data;
P
Paolo Bonzini 已提交
1174 1175
		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1176
		break;
1177
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1178
		return kvm_hv_msr_set_crash_data(kvm,
1179 1180 1181
						 msr - HV_X64_MSR_CRASH_P0,
						 data);
	case HV_X64_MSR_CRASH_CTL:
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		if (host)
			return kvm_hv_msr_set_crash_ctl(kvm, data);

		if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
			vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
				   hv->hv_crash_param[0],
				   hv->hv_crash_param[1],
				   hv->hv_crash_param[2],
				   hv->hv_crash_param[3],
				   hv->hv_crash_param[4]);

			/* Send notification about crash to user space */
			kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
		}
		break;
1197 1198 1199 1200 1201 1202
	case HV_X64_MSR_RESET:
		if (data == 1) {
			vcpu_debug(vcpu, "hyper-v reset requested\n");
			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
		}
		break;
1203 1204 1205 1206 1207 1208 1209 1210 1211
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		hv->hv_reenlightenment_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		hv->hv_tsc_emulation_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		hv->hv_tsc_emulation_status = data;
		break;
1212 1213 1214 1215 1216
	case HV_X64_MSR_TIME_REF_COUNT:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1217 1218 1219
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_set_msr(vcpu, msr, data, host);
1220
	default:
1221
		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1222 1223 1224 1225 1226 1227
			    msr, data);
		return 1;
	}
	return 0;
}

1228 1229 1230
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
1231
	u64 utime, stime;
1232 1233

	task_cputime_adjusted(current, &utime, &stime);
1234 1235

	return div_u64(utime + stime, 100);
1236 1237 1238
}

static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1239
{
1240
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1241 1242

	switch (msr) {
1243
	case HV_X64_MSR_VP_INDEX: {
1244
		struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1245 1246 1247 1248
		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
		u32 new_vp_index = (u32)data;

		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1249
			return 1;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

		if (new_vp_index == hv_vcpu->vp_index)
			return 0;

		/*
		 * The VP index is initialized to vcpu_index by
		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
		 * VP index is changing, adjust num_mismatched_vp_indexes if
		 * it now matches or no longer matches vcpu_idx.
		 */
		if (hv_vcpu->vp_index == vcpu_idx)
			atomic_inc(&hv->num_mismatched_vp_indexes);
		else if (new_vp_index == vcpu_idx)
			atomic_dec(&hv->num_mismatched_vp_indexes);

		hv_vcpu->vp_index = new_vp_index;
1266
		break;
1267
	}
1268
	case HV_X64_MSR_VP_ASSIST_PAGE: {
1269 1270 1271
		u64 gfn;
		unsigned long addr;

1272
		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1273
			hv_vcpu->hv_vapic = data;
1274
			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1275 1276 1277
				return 1;
			break;
		}
1278
		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1279 1280 1281
		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
1282 1283

		/*
1284
		 * Clear apic_assist portion of struct hv_vp_assist_page
1285 1286 1287
		 * only, there can be valuable data in the rest which needs
		 * to be preserved e.g. on migration.
		 */
1288
		if (__put_user(0, (u32 __user *)addr))
1289
			return 1;
1290
		hv_vcpu->hv_vapic = data;
1291 1292
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
		if (kvm_lapic_enable_pv_eoi(vcpu,
1293 1294
					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
					    sizeof(struct hv_vp_assist_page)))
1295 1296 1297 1298 1299 1300 1301 1302 1303
			return 1;
		break;
	}
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1304 1305 1306
	case HV_X64_MSR_VP_RUNTIME:
		if (!host)
			return 1;
1307
		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1308
		break;
1309 1310 1311 1312 1313 1314
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1315
		return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
A
Andrey Smetanin 已提交
1316 1317 1318 1319 1320 1321
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

1322
		return stimer_set_config(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1323 1324 1325 1326 1327 1328 1329 1330
					 data, host);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

1331
		return stimer_set_count(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1332 1333
					data, host);
	}
1334 1335 1336 1337 1338 1339
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1340
	default:
1341
		vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1342 1343 1344 1345 1346 1347 1348
			    msr, data);
		return 1;
	}

	return 0;
}

1349 1350
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			     bool host)
1351 1352 1353
{
	u64 data = 0;
	struct kvm *kvm = vcpu->kvm;
1354
	struct kvm_hv *hv = to_kvm_hv(kvm);
1355 1356 1357 1358 1359 1360 1361 1362

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		data = hv->hv_guest_os_id;
		break;
	case HV_X64_MSR_HYPERCALL:
		data = hv->hv_hypercall;
		break;
1363 1364
	case HV_X64_MSR_TIME_REF_COUNT:
		data = get_time_ref_counter(kvm);
1365 1366 1367 1368
		break;
	case HV_X64_MSR_REFERENCE_TSC:
		data = hv->hv_tsc_page;
		break;
1369
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1370
		return kvm_hv_msr_get_crash_data(kvm,
1371 1372 1373
						 msr - HV_X64_MSR_CRASH_P0,
						 pdata);
	case HV_X64_MSR_CRASH_CTL:
1374
		return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1375 1376 1377
	case HV_X64_MSR_RESET:
		data = 0;
		break;
1378 1379 1380 1381 1382 1383 1384 1385 1386
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		data = hv->hv_reenlightenment_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		data = hv->hv_tsc_emulation_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		data = hv->hv_tsc_emulation_status;
		break;
1387 1388 1389
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_get_msr(vcpu, msr, pdata, host);
1390 1391 1392 1393 1394 1395 1396 1397 1398
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}

	*pdata = data;
	return 0;
}

1399 1400
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			  bool host)
1401 1402
{
	u64 data = 0;
1403
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1404 1405

	switch (msr) {
1406
	case HV_X64_MSR_VP_INDEX:
1407
		data = hv_vcpu->vp_index;
1408 1409 1410 1411 1412 1413 1414
		break;
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1415
	case HV_X64_MSR_VP_ASSIST_PAGE:
1416
		data = hv_vcpu->hv_vapic;
1417
		break;
1418
	case HV_X64_MSR_VP_RUNTIME:
1419
		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1420
		break;
1421 1422 1423 1424 1425 1426
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1427
		return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
A
Andrey Smetanin 已提交
1428 1429 1430 1431 1432 1433
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

1434
		return stimer_get_config(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1435 1436 1437 1438 1439 1440 1441 1442
					 pdata);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

1443
		return stimer_get_count(to_hv_stimer(vcpu, timer_index),
A
Andrey Smetanin 已提交
1444 1445
					pdata);
	}
1446 1447 1448 1449 1450 1451
	case HV_X64_MSR_TSC_FREQUENCY:
		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
		break;
	case HV_X64_MSR_APIC_FREQUENCY:
		data = APIC_BUS_FREQUENCY;
		break;
1452 1453 1454 1455 1456 1457 1458 1459
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}

1460
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1461
{
1462 1463
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

1464 1465 1466
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1467
		mutex_lock(&hv->hv_lock);
1468
		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1469
		mutex_unlock(&hv->hv_lock);
1470 1471
		return r;
	} else
1472
		return kvm_hv_set_msr(vcpu, msr, data, host);
1473 1474
}

1475
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1476
{
1477 1478
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

1479 1480 1481
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1482
		mutex_lock(&hv->hv_lock);
1483
		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1484
		mutex_unlock(&hv->hv_lock);
1485 1486
		return r;
	} else
1487
		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1488 1489
}

1490 1491 1492
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1493
{
1494
	struct kvm_hv *hv = to_kvm_hv(kvm);
1495 1496
	struct kvm_vcpu *vcpu;
	int i, bank, sbank = 0;
1497

1498 1499 1500 1501 1502
	memset(vp_bitmap, 0,
	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
		vp_bitmap[bank] = sparse_banks[sbank++];
1503

1504 1505 1506 1507
	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
		/* for all vcpus vp_index == vcpu_idx */
		return (unsigned long *)vp_bitmap;
	}
1508

1509 1510
	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
	kvm_for_each_vcpu(i, vcpu, kvm) {
1511
		if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1512 1513 1514
			__set_bit(i, vcpu_bitmap);
	}
	return vcpu_bitmap;
1515 1516
}

1517
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, u64 ingpa, u16 rep_cnt, bool ex)
1518
{
1519
	struct kvm *kvm = vcpu->kvm;
1520
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1521
	struct hv_tlb_flush_ex flush_ex;
1522
	struct hv_tlb_flush flush;
1523 1524 1525
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1526
	u64 valid_bank_mask;
1527
	u64 sparse_banks[64];
1528
	int sparse_banks_len;
1529
	bool all_cpus;
1530

1531 1532 1533
	if (!ex) {
		if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1534

1535 1536 1537
		trace_kvm_hv_flush_tlb(flush.processor_mask,
				       flush.address_space, flush.flags);

1538
		valid_bank_mask = BIT_ULL(0);
1539
		sparse_banks[0] = flush.processor_mask;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

		/*
		 * Work around possible WS2012 bug: it sends hypercalls
		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
		 * while also expecting us to flush something and crashing if
		 * we don't. Let's treat processor_mask == 0 same as
		 * HV_FLUSH_ALL_PROCESSORS.
		 */
		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
			flush.processor_mask == 0;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	} else {
		if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
					    sizeof(flush_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
					  flush_ex.hv_vp_set.format,
					  flush_ex.address_space,
					  flush_ex.flags);

		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
		all_cpus = flush_ex.hv_vp_set.format !=
			HV_GENERIC_SET_SPARSE_4K;

1564 1565
		sparse_banks_len =
			bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
			sizeof(sparse_banks[0]);

		if (!sparse_banks_len && !all_cpus)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
				   ingpa + offsetof(struct hv_tlb_flush_ex,
						    hv_vp_set.bank_contents),
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}
1579

1580
	cpumask_clear(&hv_vcpu->tlb_flush);
1581

1582 1583 1584
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1585

1586
	/*
1587 1588
	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
	 * analyze it here, flush TLB regardless of the specified address space.
1589
	 */
1590
	kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
1591
				    NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1592

1593
ret_success:
1594 1595 1596 1597 1598
	/* We always do full TLB flush, set rep_done = rep_cnt. */
	return (u64)HV_STATUS_SUCCESS |
		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
				 unsigned long *vcpu_bitmap)
{
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = vector
	};
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
			continue;

		/* We fail only when APIC is disabled */
		kvm_apic_set_irq(vcpu, &irq, NULL);
	}
}

1618
static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, u64 ingpa, u64 outgpa,
1619 1620
			   bool ex, bool fast)
{
1621
	struct kvm *kvm = vcpu->kvm;
1622 1623
	struct hv_send_ipi_ex send_ipi_ex;
	struct hv_send_ipi send_ipi;
1624 1625 1626
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1627 1628
	unsigned long valid_bank_mask;
	u64 sparse_banks[64];
1629 1630
	int sparse_banks_len;
	u32 vector;
1631 1632 1633 1634 1635 1636 1637 1638
	bool all_cpus;

	if (!ex) {
		if (!fast) {
			if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
						    sizeof(send_ipi))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = send_ipi.cpu_mask;
1639
			vector = send_ipi.vector;
1640 1641 1642 1643 1644
		} else {
			/* 'reserved' part of hv_send_ipi should be 0 */
			if (unlikely(ingpa >> 32 != 0))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = outgpa;
1645
			vector = (u32)ingpa;
1646 1647 1648 1649
		}
		all_cpus = false;
		valid_bank_mask = BIT_ULL(0);

1650
		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1651 1652 1653 1654 1655 1656 1657 1658 1659
	} else {
		if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
					    sizeof(send_ipi_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
					 send_ipi_ex.vp_set.format,
					 send_ipi_ex.vp_set.valid_bank_mask);

1660
		vector = send_ipi_ex.vector;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
			sizeof(sparse_banks[0]);

		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;

		if (!sparse_banks_len)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
				   ingpa + offsetof(struct hv_send_ipi_ex,
						    vp_set.bank_contents),
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}

1679
	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1680 1681
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1682 1683 1684
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1685

1686
	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1687 1688 1689 1690 1691

ret_success:
	return HV_STATUS_SUCCESS;
}

1692 1693
bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
1694
	return to_kvm_hv(kvm)->hv_guest_os_id != 0;
1695 1696
}

1697 1698 1699 1700 1701 1702
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
	bool longmode;

	longmode = is_64_bit_mode(vcpu);
	if (longmode)
1703
		kvm_rax_write(vcpu, result);
1704
	else {
1705 1706
		kvm_rdx_write(vcpu, result >> 32);
		kvm_rax_write(vcpu, result & 0xffffffff);
1707 1708 1709
	}
}

1710
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1711
{
1712 1713
	kvm_hv_hypercall_set_result(vcpu, result);
	++vcpu->stat.hypercalls;
1714
	return kvm_skip_emulated_instruction(vcpu);
1715 1716
}

1717 1718 1719 1720 1721
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}

1722 1723
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
{
1724
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	struct eventfd_ctx *eventfd;

	if (unlikely(!fast)) {
		int ret;
		gpa_t gpa = param;

		if ((gpa & (__alignof__(param) - 1)) ||
		    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
			return HV_STATUS_INVALID_ALIGNMENT;

		ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
		if (ret < 0)
			return HV_STATUS_INVALID_ALIGNMENT;
	}

	/*
	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
	 * have no use for it, and in all known usecases it is zero, so just
	 * report lookup failure if it isn't.
	 */
	if (param & 0xffff00000000ULL)
		return HV_STATUS_INVALID_PORT_ID;
	/* remaining bits are reserved-zero */
	if (param & ~KVM_HYPERV_CONN_ID_MASK)
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1751 1752
	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
	rcu_read_lock();
1753
	eventfd = idr_find(&hv->conn_to_evt, param);
1754
	rcu_read_unlock();
1755 1756 1757 1758 1759 1760 1761
	if (!eventfd)
		return HV_STATUS_INVALID_PORT_ID;

	eventfd_signal(eventfd, 1);
	return HV_STATUS_SUCCESS;
}

1762 1763
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
1764 1765
	u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
	uint16_t code, rep_idx, rep_cnt;
1766
	bool fast, rep;
1767 1768 1769 1770 1771

	/*
	 * hypercall generates UD from non zero cpl and real mode
	 * per HYPER-V spec
	 */
1772
	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
1773
		kvm_queue_exception(vcpu, UD_VECTOR);
1774
		return 1;
1775 1776
	}

1777 1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_X86_64
	if (is_64_bit_mode(vcpu)) {
		param = kvm_rcx_read(vcpu);
		ingpa = kvm_rdx_read(vcpu);
		outgpa = kvm_r8_read(vcpu);
	} else
#endif
	{
1785 1786 1787 1788 1789 1790
		param = ((u64)kvm_rdx_read(vcpu) << 32) |
			(kvm_rax_read(vcpu) & 0xffffffff);
		ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
			(kvm_rcx_read(vcpu) & 0xffffffff);
		outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
			(kvm_rsi_read(vcpu) & 0xffffffff);
1791 1792 1793
	}

	code = param & 0xffff;
1794 1795 1796
	fast = !!(param & HV_HYPERCALL_FAST_BIT);
	rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
	rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1797
	rep = !!(rep_cnt || rep_idx);
1798 1799 1800 1801

	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);

	switch (code) {
1802
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1803 1804 1805 1806
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1807
		kvm_vcpu_on_spin(vcpu, true);
1808
		break;
1809
	case HVCALL_SIGNAL_EVENT:
1810 1811 1812 1813
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1814 1815
		ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
		if (ret != HV_STATUS_INVALID_PORT_ID)
1816
			break;
1817
		fallthrough;	/* maybe userspace knows this conn_id */
1818
	case HVCALL_POST_MESSAGE:
1819
		/* don't bother userspace if it has no way to handle it */
1820
		if (unlikely(rep || !to_hv_synic(vcpu)->active)) {
1821
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1822 1823
			break;
		}
1824 1825 1826 1827 1828 1829 1830 1831
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
		vcpu->run->hyperv.u.hcall.input = param;
		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
1832 1833 1834 1835 1836
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
		if (unlikely(fast || !rep_cnt || rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1837
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1838 1839 1840 1841 1842 1843
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
		if (unlikely(fast || !rep_cnt || rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1859
		break;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	case HVCALL_SEND_IPI:
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
		break;
	case HVCALL_SEND_IPI_EX:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
		break;
1874 1875 1876 1877 1878 1879 1880 1881
	case HVCALL_POST_DEBUG_DATA:
	case HVCALL_RETRIEVE_DEBUG_DATA:
		if (unlikely(fast)) {
			ret = HV_STATUS_INVALID_PARAMETER;
			break;
		}
		fallthrough;
	case HVCALL_RESET_DEBUG_SESSION: {
1882
		struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
			break;
		}

		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
			ret = HV_STATUS_OPERATION_DENIED;
			break;
		}
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
		vcpu->run->hyperv.u.hcall.input = param;
		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
	}
1902
	default:
1903
		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1904 1905 1906
		break;
	}

1907
	return kvm_hv_hypercall_complete(vcpu, ret);
1908
}
1909 1910 1911

void kvm_hv_init_vm(struct kvm *kvm)
{
1912 1913 1914 1915
	struct kvm_hv *hv = to_kvm_hv(kvm);

	mutex_init(&hv->hv_lock);
	idr_init(&hv->conn_to_evt);
1916 1917 1918 1919
}

void kvm_hv_destroy_vm(struct kvm *kvm)
{
1920
	struct kvm_hv *hv = to_kvm_hv(kvm);
1921 1922 1923
	struct eventfd_ctx *eventfd;
	int i;

1924
	idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
1925
		eventfd_ctx_put(eventfd);
1926
	idr_destroy(&hv->conn_to_evt);
1927 1928 1929 1930
}

static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
1931
	struct kvm_hv *hv = to_kvm_hv(kvm);
1932 1933 1934 1935 1936 1937 1938 1939 1940
	struct eventfd_ctx *eventfd;
	int ret;

	eventfd = eventfd_ctx_fdget(fd);
	if (IS_ERR(eventfd))
		return PTR_ERR(eventfd);

	mutex_lock(&hv->hv_lock);
	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1941
			GFP_KERNEL_ACCOUNT);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	mutex_unlock(&hv->hv_lock);

	if (ret >= 0)
		return 0;

	if (ret == -ENOSPC)
		ret = -EEXIST;
	eventfd_ctx_put(eventfd);
	return ret;
}

static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
1955
	struct kvm_hv *hv = to_kvm_hv(kvm);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	struct eventfd_ctx *eventfd;

	mutex_lock(&hv->hv_lock);
	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
	mutex_unlock(&hv->hv_lock);

	if (!eventfd)
		return -ENOENT;

	synchronize_srcu(&kvm->srcu);
	eventfd_ctx_put(eventfd);
	return 0;
}

int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
		return -EINVAL;

	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1979
}
1980

1981 1982
int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
		     struct kvm_cpuid_entry2 __user *entries)
1983
{
1984
	uint16_t evmcs_ver = 0;
1985 1986 1987 1988 1989 1990 1991
	struct kvm_cpuid_entry2 cpuid_entries[] = {
		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_INTERFACE },
		{ .function = HYPERV_CPUID_VERSION },
		{ .function = HYPERV_CPUID_FEATURES },
		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1992 1993 1994
		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
1995 1996 1997 1998
		{ .function = HYPERV_CPUID_NESTED_FEATURES },
	};
	int i, nent = ARRAY_SIZE(cpuid_entries);

1999 2000
	if (kvm_x86_ops.nested_ops->get_evmcs_version)
		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/* Skip NESTED_FEATURES if eVMCS is not supported */
	if (!evmcs_ver)
		--nent;

	if (cpuid->nent < nent)
		return -E2BIG;

	if (cpuid->nent > nent)
		cpuid->nent = nent;

	for (i = 0; i < nent; i++) {
		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
		u32 signature[3];

		switch (ent->function) {
		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

2020
			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_INTERFACE:
			memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_VERSION:
			/*
			 * We implement some Hyper-V 2016 functions so let's use
			 * this version.
			 */
			ent->eax = 0x00003839;
			ent->ebx = 0x000A0000;
			break;

		case HYPERV_CPUID_FEATURES:
2041
			ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2042
			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2043
			ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2044
			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2045 2046 2047 2048
			ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
			ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
			ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
			ent->eax |= HV_MSR_RESET_AVAILABLE;
2049
			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2050 2051
			ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
			ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2052

2053 2054
			ent->ebx |= HV_POST_MESSAGES;
			ent->ebx |= HV_SIGNAL_EVENTS;
2055 2056 2057

			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2058

2059
			ent->ebx |= HV_DEBUGGING;
2060 2061 2062
			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;

2063 2064 2065 2066
			/*
			 * Direct Synthetic timers only make sense with in-kernel
			 * LAPIC
			 */
2067
			if (!vcpu || lapic_in_kernel(vcpu))
2068
				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2069 2070 2071 2072 2073 2074 2075 2076 2077

			break;

		case HYPERV_CPUID_ENLIGHTMENT_INFO:
			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2078 2079
			if (evmcs_ver)
				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2080 2081
			if (!cpu_smt_possible())
				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
			/*
			 * Default number of spinlock retry attempts, matches
			 * HyperV 2016.
			 */
			ent->ebx = 0x00000FFF;

			break;

		case HYPERV_CPUID_IMPLEMENT_LIMITS:
			/* Maximum number of virtual processors */
			ent->eax = KVM_MAX_VCPUS;
			/*
			 * Maximum number of logical processors, matches
			 * HyperV 2016.
			 */
			ent->ebx = 64;

			break;

		case HYPERV_CPUID_NESTED_FEATURES:
			ent->eax = evmcs_ver;

			break;

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

			ent->eax = 0;
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_SYNDBG_INTERFACE:
			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
			break;

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
		default:
			break;
		}
	}

	if (copy_to_user(entries, cpuid_entries,
			 nent * sizeof(struct kvm_cpuid_entry2)))
		return -EFAULT;

	return 0;
}