hyperv.c 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * KVM Microsoft Hyper-V emulation
 *
 * derived from arch/x86/kvm/x86.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
 *   Andrey Smetanin <asmetanin@virtuozzo.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

#include "x86.h"
#include "lapic.h"
26
#include "ioapic.h"
27 28 29
#include "hyperv.h"

#include <linux/kvm_host.h>
30
#include <linux/highmem.h>
31
#include <linux/sched/cputime.h>
32
#include <linux/eventfd.h>
33

34
#include <asm/apicdef.h>
35 36 37 38
#include <trace/events/kvm.h>

#include "trace.h"

39 40
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)

41 42 43
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
				bool vcpu_kick);

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
	return atomic64_read(&synic->sint[sint]);
}

static inline int synic_get_sint_vector(u64 sint_value)
{
	if (sint_value & HV_SYNIC_SINT_MASKED)
		return -1;
	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}

static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
				      int vector)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			return true;
	}
	return false;
}

static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
				     int vector)
{
	int i;
	u64 sint_value;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		sint_value = synic_read_sint(synic, i);
		if (synic_get_sint_vector(sint_value) == vector &&
		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
			return true;
	}
	return false;
}

83 84 85
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
				int vector)
{
86 87 88
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
		return;

89 90 91 92 93 94 95 96 97 98 99
	if (synic_has_vector_connected(synic, vector))
		__set_bit(vector, synic->vec_bitmap);
	else
		__clear_bit(vector, synic->vec_bitmap);

	if (synic_has_vector_auto_eoi(synic, vector))
		__set_bit(vector, synic->auto_eoi_bitmap);
	else
		__clear_bit(vector, synic->auto_eoi_bitmap);
}

100 101
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
			  u64 data, bool host)
102
{
103
	int vector, old_vector;
104
	bool masked;
105 106

	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 108 109 110 111 112 113 114
	masked = data & HV_SYNIC_SINT_MASKED;

	/*
	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
	 * default '0x10000' value on boot and this should not #GP. We need to
	 * allow zero-initing the register from host as well.
	 */
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 116 117 118 119 120 121
		return 1;
	/*
	 * Guest may configure multiple SINTs to use the same vector, so
	 * we maintain a bitmap of vectors handled by synic, and a
	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
	 * updated here, and atomically queried on fast paths.
	 */
122
	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123 124 125

	atomic64_set(&synic->sint[sint], data);

126
	synic_update_vector(synic, old_vector);
127

128
	synic_update_vector(synic, vector);
129 130 131 132 133 134

	/* Load SynIC vectors into EOI exit bitmap */
	kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
	return 0;
}

135 136 137 138 139
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
	struct kvm_vcpu *vcpu = NULL;
	int i;

140 141 142 143
	if (vpidx >= KVM_MAX_VCPUS)
		return NULL;

	vcpu = kvm_get_vcpu(kvm, vpidx);
144 145 146 147 148 149 150 151 152
	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
		return vcpu;
	kvm_for_each_vcpu(i, vcpu, kvm)
		if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
			return vcpu;
	return NULL;
}

static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 154 155 156
{
	struct kvm_vcpu *vcpu;
	struct kvm_vcpu_hv_synic *synic;

157
	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 159 160 161 162 163 164 165 166
	if (!vcpu)
		return NULL;
	synic = vcpu_to_synic(vcpu);
	return (synic->active) ? synic : NULL;
}

static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
	struct kvm *kvm = vcpu->kvm;
167
	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
A
Andrey Smetanin 已提交
168 169
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_stimer *stimer;
170
	int gsi, idx;
171

172
	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173

A
Andrey Smetanin 已提交
174 175 176
	/* Try to deliver pending Hyper-V SynIC timers messages */
	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
		stimer = &hv_vcpu->stimer[idx];
177
		if (stimer->msg_pending && stimer->config.enable &&
178
		    !stimer->config.direct_mode &&
179 180
		    stimer->config.sintx == sint)
			stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
181 182
	}

183
	idx = srcu_read_lock(&kvm->irq_srcu);
A
Andrey Smetanin 已提交
184
	gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 186 187 188 189
	if (gsi != -1)
		kvm_notify_acked_gsi(kvm, gsi);
	srcu_read_unlock(&kvm->irq_srcu, idx);
}

A
Andrey Smetanin 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
	hv_vcpu->exit.u.synic.msr = msr;
	hv_vcpu->exit.u.synic.control = synic->control;
	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

204 205 206 207 208 209
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
			 u32 msr, u64 data, bool host)
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
	int ret;

210
	if (!synic->active && !host)
211 212
		return 1;

213 214
	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);

215 216 217 218
	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		synic->control = data;
A
Andrey Smetanin 已提交
219 220
		if (!host)
			synic_exit(synic, msr);
221 222 223 224 225 226 227 228 229
		break;
	case HV_X64_MSR_SVERSION:
		if (!host) {
			ret = 1;
			break;
		}
		synic->version = data;
		break;
	case HV_X64_MSR_SIEFP:
230 231
		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
232 233 234 235 236 237
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->evt_page = data;
A
Andrey Smetanin 已提交
238 239
		if (!host)
			synic_exit(synic, msr);
240 241
		break;
	case HV_X64_MSR_SIMP:
242 243
		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
244 245 246 247 248 249
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->msg_page = data;
A
Andrey Smetanin 已提交
250 251
		if (!host)
			synic_exit(synic, msr);
252 253 254 255 256 257 258 259 260
		break;
	case HV_X64_MSR_EOM: {
		int i;

		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
			kvm_hv_notify_acked_sint(vcpu, i);
		break;
	}
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261
		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262 263 264 265 266 267 268 269
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

270 271
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
			 bool host)
272 273 274
{
	int ret;

275
	if (!synic->active && !host)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		return 1;

	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		*pdata = synic->control;
		break;
	case HV_X64_MSR_SVERSION:
		*pdata = synic->version;
		break;
	case HV_X64_MSR_SIEFP:
		*pdata = synic->evt_page;
		break;
	case HV_X64_MSR_SIMP:
		*pdata = synic->msg_page;
		break;
	case HV_X64_MSR_EOM:
		*pdata = 0;
		break;
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

305
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
306 307 308 309 310 311 312 313 314 315 316 317 318
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
	struct kvm_lapic_irq irq;
	int ret, vector;

	if (sint >= ARRAY_SIZE(synic->sint))
		return -EINVAL;

	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
	if (vector < 0)
		return -ENOENT;

	memset(&irq, 0, sizeof(irq));
319
	irq.shorthand = APIC_DEST_SELF;
320 321 322 323 324
	irq.dest_mode = APIC_DEST_PHYSICAL;
	irq.delivery_mode = APIC_DM_FIXED;
	irq.vector = vector;
	irq.level = 1;

325
	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
326
	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
327 328 329
	return ret;
}

330
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
331 332 333
{
	struct kvm_vcpu_hv_synic *synic;

334
	synic = synic_get(kvm, vpidx);
335 336 337 338 339 340 341 342 343 344 345
	if (!synic)
		return -EINVAL;

	return synic_set_irq(synic, sint);
}

void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
	int i;

346
	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
347 348 349 350 351 352

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			kvm_hv_notify_acked_sint(vcpu, i);
}

353
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
354 355 356
{
	struct kvm_vcpu_hv_synic *synic;

357
	synic = synic_get(kvm, vpidx);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	if (!synic)
		return -EINVAL;

	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
		return -EINVAL;

	atomic_set(&synic->sint_to_gsi[sint], gsi);
	return 0;
}

void kvm_hv_irq_routing_update(struct kvm *kvm)
{
	struct kvm_irq_routing_table *irq_rt;
	struct kvm_kernel_irq_routing_entry *e;
	u32 gsi;

	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
					lockdep_is_held(&kvm->irq_lock));

	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
						    e->hv_sint.sint, gsi);
		}
	}
}

static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
	int i;

	memset(synic, 0, sizeof(*synic));
	synic->version = HV_SYNIC_VERSION_1;
	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
		atomic_set(&synic->sint_to_gsi[i], -1);
	}
}

398 399
static u64 get_time_ref_counter(struct kvm *kvm)
{
P
Paolo Bonzini 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct kvm_vcpu *vcpu;
	u64 tsc;

	/*
	 * The guest has not set up the TSC page or the clock isn't
	 * stable, fall back to get_kvmclock_ns.
	 */
	if (!hv->tsc_ref.tsc_sequence)
		return div_u64(get_kvmclock_ns(kvm), 100);

	vcpu = kvm_get_vcpu(kvm, 0);
	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
		+ hv->tsc_ref.tsc_offset;
415 416
}

417
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
A
Andrey Smetanin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
				bool vcpu_kick)
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);

	set_bit(stimer->index,
		vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
	if (vcpu_kick)
		kvm_vcpu_kick(vcpu);
}

static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);

433 434 435
	trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
				    stimer->index);

436
	hrtimer_cancel(&stimer->timer);
A
Andrey Smetanin 已提交
437 438 439
	clear_bit(stimer->index,
		  vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
	stimer->msg_pending = false;
440
	stimer->exp_time = 0;
A
Andrey Smetanin 已提交
441 442 443 444 445 446 447
}

static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
	struct kvm_vcpu_hv_stimer *stimer;

	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
448 449
	trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
				     stimer->index);
450
	stimer_mark_pending(stimer, true);
A
Andrey Smetanin 已提交
451 452 453 454

	return HRTIMER_NORESTART;
}

455 456 457 458 459
/*
 * stimer_start() assumptions:
 * a) stimer->count is not equal to 0
 * b) stimer->config has HV_STIMER_ENABLE flag
 */
A
Andrey Smetanin 已提交
460 461 462 463 464 465 466 467
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
	u64 time_now;
	ktime_t ktime_now;

	time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
	ktime_now = ktime_get();

468
	if (stimer->config.periodic) {
469 470 471 472 473 474 475 476 477 478 479
		if (stimer->exp_time) {
			if (time_now >= stimer->exp_time) {
				u64 remainder;

				div64_u64_rem(time_now - stimer->exp_time,
					      stimer->count, &remainder);
				stimer->exp_time =
					time_now + (stimer->count - remainder);
			}
		} else
			stimer->exp_time = time_now + stimer->count;
A
Andrey Smetanin 已提交
480

481 482 483 484 485
		trace_kvm_hv_stimer_start_periodic(
					stimer_to_vcpu(stimer)->vcpu_id,
					stimer->index,
					time_now, stimer->exp_time);

A
Andrey Smetanin 已提交
486
		hrtimer_start(&stimer->timer,
487 488
			      ktime_add_ns(ktime_now,
					   100 * (stimer->exp_time - time_now)),
A
Andrey Smetanin 已提交
489 490 491 492 493 494 495 496 497 498 499
			      HRTIMER_MODE_ABS);
		return 0;
	}
	stimer->exp_time = stimer->count;
	if (time_now >= stimer->count) {
		/*
		 * Expire timer according to Hypervisor Top-Level Functional
		 * specification v4(15.3.1):
		 * "If a one shot is enabled and the specified count is in
		 * the past, it will expire immediately."
		 */
500
		stimer_mark_pending(stimer, false);
A
Andrey Smetanin 已提交
501 502 503
		return 0;
	}

504 505 506 507
	trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
					   stimer->index,
					   time_now, stimer->count);

A
Andrey Smetanin 已提交
508 509 510 511 512 513 514 515 516
	hrtimer_start(&stimer->timer,
		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
		      HRTIMER_MODE_ABS);
	return 0;
}

static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
			     bool host)
{
517 518
	union hv_stimer_config new_config = {.as_uint64 = config},
		old_config = {.as_uint64 = stimer->config.as_uint64};
519

520 521 522
	trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
				       stimer->index, config, host);

523
	stimer_cleanup(stimer);
524 525
	if (old_config.enable &&
	    !new_config.direct_mode && new_config.sintx == 0)
526 527
		new_config.enable = 0;
	stimer->config.as_uint64 = new_config.as_uint64;
528

529 530 531
	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
532 533 534 535 536 537
	return 0;
}

static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
			    bool host)
{
538 539 540
	trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
				      stimer->index, count, host);

A
Andrey Smetanin 已提交
541
	stimer_cleanup(stimer);
542
	stimer->count = count;
A
Andrey Smetanin 已提交
543
	if (stimer->count == 0)
544 545 546
		stimer->config.enable = 0;
	else if (stimer->config.auto_enable)
		stimer->config.enable = 1;
547 548 549 550

	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

A
Andrey Smetanin 已提交
551 552 553 554 555
	return 0;
}

static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
556
	*pconfig = stimer->config.as_uint64;
A
Andrey Smetanin 已提交
557 558 559 560 561 562 563 564 565 566
	return 0;
}

static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
	*pcount = stimer->count;
	return 0;
}

static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
567
			     struct hv_message *src_msg, bool no_retry)
A
Andrey Smetanin 已提交
568 569
{
	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
570 571 572
	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
	gfn_t msg_page_gfn;
	struct hv_message_header hv_hdr;
A
Andrey Smetanin 已提交
573 574 575 576 577
	int r;

	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
		return -ENOENT;

578
	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
A
Andrey Smetanin 已提交
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593
	/*
	 * Strictly following the spec-mandated ordering would assume setting
	 * .msg_pending before checking .message_type.  However, this function
	 * is only called in vcpu context so the entire update is atomic from
	 * guest POV and thus the exact order here doesn't matter.
	 */
	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
				     msg_off + offsetof(struct hv_message,
							header.message_type),
				     sizeof(hv_hdr.message_type));
	if (r < 0)
		return r;

	if (hv_hdr.message_type != HVMSG_NONE) {
594 595 596
		if (no_retry)
			return 0;

597 598 599 600 601 602 603 604 605 606
		hv_hdr.message_flags.msg_pending = 1;
		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
					      &hv_hdr.message_flags,
					      msg_off +
					      offsetof(struct hv_message,
						       header.message_flags),
					      sizeof(hv_hdr.message_flags));
		if (r < 0)
			return r;
		return -EAGAIN;
A
Andrey Smetanin 已提交
607
	}
608 609 610 611 612 613 614 615 616 617 618 619 620

	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
				      sizeof(src_msg->header) +
				      src_msg->header.payload_size);
	if (r < 0)
		return r;

	r = synic_set_irq(synic, sint);
	if (r < 0)
		return r;
	if (r == 0)
		return -EFAULT;
	return 0;
A
Andrey Smetanin 已提交
621 622
}

623
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
A
Andrey Smetanin 已提交
624 625 626 627 628 629
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

630 631 632 633
	/*
	 * To avoid piling up periodic ticks, don't retry message
	 * delivery for them (within "lazy" lost ticks policy).
	 */
634
	bool no_retry = stimer->config.periodic;
635

A
Andrey Smetanin 已提交
636 637
	payload->expiration_time = stimer->exp_time;
	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
638
	return synic_deliver_msg(vcpu_to_synic(vcpu),
639
				 stimer->config.sintx, msg,
640
				 no_retry);
A
Andrey Smetanin 已提交
641 642
}

643 644 645 646 647 648 649 650 651 652 653
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = stimer->config.apic_vector
	};

	return !kvm_apic_set_irq(vcpu, &irq, NULL);
}

A
Andrey Smetanin 已提交
654 655
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
656
	int r, direct = stimer->config.direct_mode;
657

658
	stimer->msg_pending = true;
659 660 661 662
	if (!direct)
		r = stimer_send_msg(stimer);
	else
		r = stimer_notify_direct(stimer);
663
	trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
664
				       stimer->index, direct, r);
665
	if (!r) {
666
		stimer->msg_pending = false;
667 668
		if (!(stimer->config.periodic))
			stimer->config.enable = 0;
669
	}
A
Andrey Smetanin 已提交
670 671 672 673 674 675
}

void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_stimer *stimer;
676
	u64 time_now, exp_time;
A
Andrey Smetanin 已提交
677 678 679 680 681
	int i;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
			stimer = &hv_vcpu->stimer[i];
682
			if (stimer->config.enable) {
683 684 685 686 687 688 689 690
				exp_time = stimer->exp_time;

				if (exp_time) {
					time_now =
						get_time_ref_counter(vcpu->kvm);
					if (time_now >= exp_time)
						stimer_expiration(stimer);
				}
691

692
				if ((stimer->config.enable) &&
693 694 695 696
				    stimer->count) {
					if (!stimer->msg_pending)
						stimer_start(stimer);
				} else
697
					stimer_cleanup(stimer);
A
Andrey Smetanin 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710
			}
		}
}

void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	int i;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_cleanup(&hv_vcpu->stimer[i]);
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
		return false;
	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);

bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
			    struct hv_vp_assist_page *assist_page)
{
	if (!kvm_hv_assist_page_enabled(vcpu))
		return false;
	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
				      assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);

A
Andrey Smetanin 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

	memset(&msg->header, 0, sizeof(msg->header));
	msg->header.message_type = HVMSG_TIMER_EXPIRED;
	msg->header.payload_size = sizeof(*payload);

	payload->timer_index = stimer->index;
	payload->expiration_time = 0;
	payload->delivery_time = 0;
}

static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
	memset(stimer, 0, sizeof(*stimer));
	stimer->index = timer_index;
	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	stimer->timer.function = stimer_timer_callback;
	stimer_prepare_msg(stimer);
}

753 754
void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
{
A
Andrey Smetanin 已提交
755 756 757 758 759 760 761 762
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
	int i;

	synic_init(&hv_vcpu->synic);

	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_init(&hv_vcpu->stimer[i], i);
763 764
}

765 766 767 768 769 770 771
void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);

	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
}

772
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
773
{
774 775
	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);

776 777 778 779 780
	/*
	 * Hyper-V SynIC auto EOI SINT's are
	 * not compatible with APICV, so deactivate APICV
	 */
	kvm_vcpu_deactivate_apicv(vcpu);
781 782
	synic->active = true;
	synic->dont_zero_synic_pages = dont_zero_synic_pages;
783 784 785
	return 0;
}

786 787 788 789 790 791 792 793 794
static bool kvm_hv_msr_partition_wide(u32 msr)
{
	bool r = false;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
	case HV_X64_MSR_REFERENCE_TSC:
	case HV_X64_MSR_TIME_REF_COUNT:
795 796
	case HV_X64_MSR_CRASH_CTL:
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
797
	case HV_X64_MSR_RESET:
798 799 800
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
801 802 803 804 805 806 807
		r = true;
		break;
	}

	return r;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
				     u32 index, u64 *pdata)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;

	if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
		return -EINVAL;

	*pdata = hv->hv_crash_param[index];
	return 0;
}

static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;

	*pdata = hv->hv_crash_ctl;
	return 0;
}

static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;

	if (host)
833
		hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
834

835
	if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

		vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
			  hv->hv_crash_param[0],
			  hv->hv_crash_param[1],
			  hv->hv_crash_param[2],
			  hv->hv_crash_param[3],
			  hv->hv_crash_param[4]);

		/* Send notification about crash to user space */
		kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
	}

	return 0;
}

static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
				     u32 index, u64 data)
{
	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;

	if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
		return -EINVAL;

	hv->hv_crash_param[index] = data;
	return 0;
}

P
Paolo Bonzini 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
 * between them is possible:
 *
 * kvmclock formula:
 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *
 * Hyper-V formula:
 *    nsec/100 = ticks * scale / 2^64 + offset
 *
 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
 * By dividing the kvmclock formula by 100 and equating what's left we get:
 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
 *
 * Now expand the kvmclock formula and divide by 100:
 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               + system_time / 100
 *
 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
 *    nsec/100 = ticks * scale / 2^64
 *               - tsc_timestamp * scale / 2^64
 *               + system_time / 100
 *
 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
 *
 * These two equivalencies are implemented in this function.
 */
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
					HV_REFERENCE_TSC_PAGE *tsc_ref)
{
	u64 max_mul;

	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
		return false;

	/*
	 * check if scale would overflow, if so we use the time ref counter
	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
	 */
	max_mul = 100ull << (32 - hv_clock->tsc_shift);
	if (hv_clock->tsc_to_system_mul >= max_mul)
		return false;

	/*
	 * Otherwise compute the scale and offset according to the formulas
	 * derived above.
	 */
	tsc_ref->tsc_scale =
		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
				hv_clock->tsc_to_system_mul,
				100);

	tsc_ref->tsc_offset = hv_clock->system_time;
	do_div(tsc_ref->tsc_offset, 100);
	tsc_ref->tsc_offset -=
		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
	return true;
}

void kvm_hv_setup_tsc_page(struct kvm *kvm,
			   struct pvclock_vcpu_time_info *hv_clock)
{
	struct kvm_hv *hv = &kvm->arch.hyperv;
	u32 tsc_seq;
	u64 gfn;

	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
	BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);

	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		return;

945 946 947 948
	mutex_lock(&kvm->arch.hyperv.hv_lock);
	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		goto out_unlock;

P
Paolo Bonzini 已提交
949 950 951 952 953 954 955
	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
	/*
	 * Because the TSC parameters only vary when there is a
	 * change in the master clock, do not bother with caching.
	 */
	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
				    &tsc_seq, sizeof(tsc_seq))))
956
		goto out_unlock;
P
Paolo Bonzini 已提交
957 958 959 960 961 962 963 964

	/*
	 * While we're computing and writing the parameters, force the
	 * guest to use the time reference count MSR.
	 */
	hv->tsc_ref.tsc_sequence = 0;
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
965
		goto out_unlock;
P
Paolo Bonzini 已提交
966 967

	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
968
		goto out_unlock;
P
Paolo Bonzini 已提交
969 970 971 972

	/* Ensure sequence is zero before writing the rest of the struct.  */
	smp_wmb();
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
973
		goto out_unlock;
P
Paolo Bonzini 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987

	/*
	 * Now switch to the TSC page mechanism by writing the sequence.
	 */
	tsc_seq++;
	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
		tsc_seq = 1;

	/* Write the struct entirely before the non-zero sequence.  */
	smp_wmb();

	hv->tsc_ref.tsc_sequence = tsc_seq;
	kvm_write_guest(kvm, gfn_to_gpa(gfn),
			&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
988 989
out_unlock:
	mutex_unlock(&kvm->arch.hyperv.hv_lock);
P
Paolo Bonzini 已提交
990 991
}

992 993
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
			     bool host)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = &kvm->arch.hyperv;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		hv->hv_guest_os_id = data;
		/* setting guest os id to zero disables hypercall page */
		if (!hv->hv_guest_os_id)
			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
		break;
	case HV_X64_MSR_HYPERCALL: {
		u64 gfn;
		unsigned long addr;
		u8 instructions[4];

		/* if guest os id is not set hypercall should remain disabled */
		if (!hv->hv_guest_os_id)
			break;
		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
			hv->hv_hypercall = data;
			break;
		}
		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
		addr = gfn_to_hva(kvm, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
		kvm_x86_ops->patch_hypercall(vcpu, instructions);
		((unsigned char *)instructions)[3] = 0xc3; /* ret */
		if (__copy_to_user((void __user *)addr, instructions, 4))
			return 1;
		hv->hv_hypercall = data;
		mark_page_dirty(kvm, gfn);
		break;
	}
P
Paolo Bonzini 已提交
1029
	case HV_X64_MSR_REFERENCE_TSC:
1030
		hv->hv_tsc_page = data;
P
Paolo Bonzini 已提交
1031 1032
		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1033
		break;
1034 1035 1036 1037 1038 1039
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
		return kvm_hv_msr_set_crash_data(vcpu,
						 msr - HV_X64_MSR_CRASH_P0,
						 data);
	case HV_X64_MSR_CRASH_CTL:
		return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1040 1041 1042 1043 1044 1045
	case HV_X64_MSR_RESET:
		if (data == 1) {
			vcpu_debug(vcpu, "hyper-v reset requested\n");
			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
		}
		break;
1046 1047 1048 1049 1050 1051 1052 1053 1054
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		hv->hv_reenlightenment_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		hv->hv_tsc_emulation_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		hv->hv_tsc_emulation_status = data;
		break;
1055 1056 1057 1058 1059
	case HV_X64_MSR_TIME_REF_COUNT:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1060 1061 1062 1063 1064 1065 1066 1067
	default:
		vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
			    msr, data);
		return 1;
	}
	return 0;
}

1068 1069 1070
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
1071
	u64 utime, stime;
1072 1073

	task_cputime_adjusted(current, &utime, &stime);
1074 1075

	return div_u64(utime + stime, 100);
1076 1077 1078
}

static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1079
{
1080
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1081 1082

	switch (msr) {
1083 1084 1085 1086 1087 1088
	case HV_X64_MSR_VP_INDEX: {
		struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
		u32 new_vp_index = (u32)data;

		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1089
			return 1;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

		if (new_vp_index == hv_vcpu->vp_index)
			return 0;

		/*
		 * The VP index is initialized to vcpu_index by
		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
		 * VP index is changing, adjust num_mismatched_vp_indexes if
		 * it now matches or no longer matches vcpu_idx.
		 */
		if (hv_vcpu->vp_index == vcpu_idx)
			atomic_inc(&hv->num_mismatched_vp_indexes);
		else if (new_vp_index == vcpu_idx)
			atomic_dec(&hv->num_mismatched_vp_indexes);

		hv_vcpu->vp_index = new_vp_index;
1106
		break;
1107
	}
1108
	case HV_X64_MSR_VP_ASSIST_PAGE: {
1109 1110 1111
		u64 gfn;
		unsigned long addr;

1112
		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1113
			hv_vcpu->hv_vapic = data;
1114
			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1115 1116 1117
				return 1;
			break;
		}
1118
		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1119 1120 1121
		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
		if (kvm_is_error_hva(addr))
			return 1;
1122 1123 1124 1125 1126 1127 1128

		/*
		 * Clear apic_assist portion of f(struct hv_vp_assist_page
		 * only, there can be valuable data in the rest which needs
		 * to be preserved e.g. on migration.
		 */
		if (__clear_user((void __user *)addr, sizeof(u32)))
1129
			return 1;
1130
		hv_vcpu->hv_vapic = data;
1131 1132
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
		if (kvm_lapic_enable_pv_eoi(vcpu,
1133 1134
					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
					    sizeof(struct hv_vp_assist_page)))
1135 1136 1137 1138 1139 1140 1141 1142 1143
			return 1;
		break;
	}
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1144 1145 1146
	case HV_X64_MSR_VP_RUNTIME:
		if (!host)
			return 1;
1147
		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1148
		break;
1149 1150 1151 1152 1153 1154 1155
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
A
Andrey Smetanin 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

		return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
					 data, host);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

		return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
					data, host);
	}
1174 1175 1176 1177 1178 1179
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	default:
		vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
			    msr, data);
		return 1;
	}

	return 0;
}

static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data = 0;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = &kvm->arch.hyperv;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		data = hv->hv_guest_os_id;
		break;
	case HV_X64_MSR_HYPERCALL:
		data = hv->hv_hypercall;
		break;
1202 1203
	case HV_X64_MSR_TIME_REF_COUNT:
		data = get_time_ref_counter(kvm);
1204 1205 1206 1207
		break;
	case HV_X64_MSR_REFERENCE_TSC:
		data = hv->hv_tsc_page;
		break;
1208 1209 1210 1211 1212 1213
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
		return kvm_hv_msr_get_crash_data(vcpu,
						 msr - HV_X64_MSR_CRASH_P0,
						 pdata);
	case HV_X64_MSR_CRASH_CTL:
		return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1214 1215 1216
	case HV_X64_MSR_RESET:
		data = 0;
		break;
1217 1218 1219 1220 1221 1222 1223 1224 1225
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		data = hv->hv_reenlightenment_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		data = hv->hv_tsc_emulation_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		data = hv->hv_tsc_emulation_status;
		break;
1226 1227 1228 1229 1230 1231 1232 1233 1234
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}

	*pdata = data;
	return 0;
}

1235 1236
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			  bool host)
1237 1238
{
	u64 data = 0;
1239
	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1240 1241

	switch (msr) {
1242
	case HV_X64_MSR_VP_INDEX:
1243
		data = hv_vcpu->vp_index;
1244 1245 1246 1247 1248 1249 1250
		break;
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1251
	case HV_X64_MSR_VP_ASSIST_PAGE:
1252
		data = hv_vcpu->hv_vapic;
1253
		break;
1254
	case HV_X64_MSR_VP_RUNTIME:
1255
		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1256
		break;
1257 1258 1259 1260 1261 1262
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1263
		return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
A
Andrey Smetanin 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

		return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
					 pdata);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

		return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
					pdata);
	}
1282 1283 1284 1285 1286 1287
	case HV_X64_MSR_TSC_FREQUENCY:
		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
		break;
	case HV_X64_MSR_APIC_FREQUENCY:
		data = APIC_BUS_FREQUENCY;
		break;
1288 1289 1290 1291 1292 1293 1294 1295
	default:
		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}

1296
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1297 1298 1299 1300
{
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1301
		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1302
		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1303
		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1304 1305
		return r;
	} else
1306
		return kvm_hv_set_msr(vcpu, msr, data, host);
1307 1308
}

1309
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1310 1311 1312 1313
{
	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

1314
		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1315
		r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1316
		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1317 1318
		return r;
	} else
1319
		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1320 1321
}

1322 1323 1324
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1325
{
1326 1327 1328
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct kvm_vcpu *vcpu;
	int i, bank, sbank = 0;
1329

1330 1331 1332 1333 1334
	memset(vp_bitmap, 0,
	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
		vp_bitmap[bank] = sparse_banks[sbank++];
1335

1336 1337 1338 1339
	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
		/* for all vcpus vp_index == vcpu_idx */
		return (unsigned long *)vp_bitmap;
	}
1340

1341 1342 1343 1344 1345 1346 1347
	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
			     (unsigned long *)vp_bitmap))
			__set_bit(i, vcpu_bitmap);
	}
	return vcpu_bitmap;
1348 1349
}

1350
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1351
			    u16 rep_cnt, bool ex)
1352 1353
{
	struct kvm *kvm = current_vcpu->kvm;
1354
	struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1355
	struct hv_tlb_flush_ex flush_ex;
1356
	struct hv_tlb_flush flush;
1357 1358 1359
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1360
	u64 valid_bank_mask;
1361
	u64 sparse_banks[64];
1362
	int sparse_banks_len;
1363
	bool all_cpus;
1364

1365 1366 1367
	if (!ex) {
		if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1368

1369 1370 1371
		trace_kvm_hv_flush_tlb(flush.processor_mask,
				       flush.address_space, flush.flags);

1372
		valid_bank_mask = BIT_ULL(0);
1373
		sparse_banks[0] = flush.processor_mask;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

		/*
		 * Work around possible WS2012 bug: it sends hypercalls
		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
		 * while also expecting us to flush something and crashing if
		 * we don't. Let's treat processor_mask == 0 same as
		 * HV_FLUSH_ALL_PROCESSORS.
		 */
		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
			flush.processor_mask == 0;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	} else {
		if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
					    sizeof(flush_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
					  flush_ex.hv_vp_set.format,
					  flush_ex.address_space,
					  flush_ex.flags);

		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
		all_cpus = flush_ex.hv_vp_set.format !=
			HV_GENERIC_SET_SPARSE_4K;

1398 1399
		sparse_banks_len =
			bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
			sizeof(sparse_banks[0]);

		if (!sparse_banks_len && !all_cpus)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
				   ingpa + offsetof(struct hv_tlb_flush_ex,
						    hv_vp_set.bank_contents),
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}
1413

1414
	cpumask_clear(&hv_vcpu->tlb_flush);
1415

1416 1417 1418
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1419

1420
	/*
1421 1422
	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
	 * analyze it here, flush TLB regardless of the specified address space.
1423
	 */
1424 1425
	kvm_make_vcpus_request_mask(kvm,
				    KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1426
				    vcpu_mask, &hv_vcpu->tlb_flush);
1427

1428
ret_success:
1429 1430 1431 1432 1433
	/* We always do full TLB flush, set rep_done = rep_cnt. */
	return (u64)HV_STATUS_SUCCESS |
		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
				 unsigned long *vcpu_bitmap)
{
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = vector
	};
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
			continue;

		/* We fail only when APIC is disabled */
		kvm_apic_set_irq(vcpu, &irq, NULL);
	}
}

1453 1454 1455 1456 1457 1458
static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
			   bool ex, bool fast)
{
	struct kvm *kvm = current_vcpu->kvm;
	struct hv_send_ipi_ex send_ipi_ex;
	struct hv_send_ipi send_ipi;
1459 1460 1461
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
	unsigned long *vcpu_mask;
1462 1463
	unsigned long valid_bank_mask;
	u64 sparse_banks[64];
1464 1465
	int sparse_banks_len;
	u32 vector;
1466 1467 1468 1469 1470 1471 1472 1473
	bool all_cpus;

	if (!ex) {
		if (!fast) {
			if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
						    sizeof(send_ipi))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = send_ipi.cpu_mask;
1474
			vector = send_ipi.vector;
1475 1476 1477 1478 1479
		} else {
			/* 'reserved' part of hv_send_ipi should be 0 */
			if (unlikely(ingpa >> 32 != 0))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = outgpa;
1480
			vector = (u32)ingpa;
1481 1482 1483 1484
		}
		all_cpus = false;
		valid_bank_mask = BIT_ULL(0);

1485
		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1486 1487 1488 1489 1490 1491 1492 1493 1494
	} else {
		if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
					    sizeof(send_ipi_ex))))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
					 send_ipi_ex.vp_set.format,
					 send_ipi_ex.vp_set.valid_bank_mask);

1495
		vector = send_ipi_ex.vector;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
			sizeof(sparse_banks[0]);

		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;

		if (!sparse_banks_len)
			goto ret_success;

		if (!all_cpus &&
		    kvm_read_guest(kvm,
				   ingpa + offsetof(struct hv_send_ipi_ex,
						    vp_set.bank_contents),
				   sparse_banks,
				   sparse_banks_len))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}

1514
	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1515 1516
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1517 1518 1519
	vcpu_mask = all_cpus ? NULL :
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
					vp_bitmap, vcpu_bitmap);
1520

1521
	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1522 1523 1524 1525 1526

ret_success:
	return HV_STATUS_SUCCESS;
}

1527 1528
bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
1529
	return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1530 1531
}

1532 1533 1534 1535 1536 1537
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
	bool longmode;

	longmode = is_64_bit_mode(vcpu);
	if (longmode)
1538
		kvm_rax_write(vcpu, result);
1539
	else {
1540 1541
		kvm_rdx_write(vcpu, result >> 32);
		kvm_rax_write(vcpu, result & 0xffffffff);
1542 1543 1544
	}
}

1545
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1546
{
1547 1548
	kvm_hv_hypercall_set_result(vcpu, result);
	++vcpu->stat.hypercalls;
1549
	return kvm_skip_emulated_instruction(vcpu);
1550 1551
}

1552 1553 1554 1555 1556
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
{
	struct eventfd_ctx *eventfd;

	if (unlikely(!fast)) {
		int ret;
		gpa_t gpa = param;

		if ((gpa & (__alignof__(param) - 1)) ||
		    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
			return HV_STATUS_INVALID_ALIGNMENT;

		ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
		if (ret < 0)
			return HV_STATUS_INVALID_ALIGNMENT;
	}

	/*
	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
	 * have no use for it, and in all known usecases it is zero, so just
	 * report lookup failure if it isn't.
	 */
	if (param & 0xffff00000000ULL)
		return HV_STATUS_INVALID_PORT_ID;
	/* remaining bits are reserved-zero */
	if (param & ~KVM_HYPERV_CONN_ID_MASK)
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

1585 1586
	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
	rcu_read_lock();
1587
	eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1588
	rcu_read_unlock();
1589 1590 1591 1592 1593 1594 1595
	if (!eventfd)
		return HV_STATUS_INVALID_PORT_ID;

	eventfd_signal(eventfd, 1);
	return HV_STATUS_SUCCESS;
}

1596 1597
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
1598 1599
	u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
	uint16_t code, rep_idx, rep_cnt;
1600
	bool fast, longmode, rep;
1601 1602 1603 1604 1605 1606 1607

	/*
	 * hypercall generates UD from non zero cpl and real mode
	 * per HYPER-V spec
	 */
	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
1608
		return 1;
1609 1610 1611 1612 1613
	}

	longmode = is_64_bit_mode(vcpu);

	if (!longmode) {
1614 1615 1616 1617 1618 1619
		param = ((u64)kvm_rdx_read(vcpu) << 32) |
			(kvm_rax_read(vcpu) & 0xffffffff);
		ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
			(kvm_rcx_read(vcpu) & 0xffffffff);
		outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
			(kvm_rsi_read(vcpu) & 0xffffffff);
1620 1621 1622
	}
#ifdef CONFIG_X86_64
	else {
1623 1624 1625
		param = kvm_rcx_read(vcpu);
		ingpa = kvm_rdx_read(vcpu);
		outgpa = kvm_r8_read(vcpu);
1626 1627 1628 1629
	}
#endif

	code = param & 0xffff;
1630 1631 1632
	fast = !!(param & HV_HYPERCALL_FAST_BIT);
	rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
	rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1633
	rep = !!(rep_cnt || rep_idx);
1634 1635 1636 1637

	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);

	switch (code) {
1638
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1639 1640 1641 1642
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1643
		kvm_vcpu_on_spin(vcpu, true);
1644
		break;
1645
	case HVCALL_SIGNAL_EVENT:
1646 1647 1648 1649
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1650 1651
		ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
		if (ret != HV_STATUS_INVALID_PORT_ID)
1652
			break;
1653
		/* fall through - maybe userspace knows this conn_id. */
1654
	case HVCALL_POST_MESSAGE:
1655
		/* don't bother userspace if it has no way to handle it */
1656 1657
		if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1658 1659
			break;
		}
1660 1661 1662 1663 1664 1665 1666 1667
		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
		vcpu->run->hyperv.u.hcall.input = param;
		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
		vcpu->arch.complete_userspace_io =
				kvm_hv_hypercall_complete_userspace;
		return 0;
1668 1669 1670 1671 1672
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
		if (unlikely(fast || !rep_cnt || rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1673
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1674 1675 1676 1677 1678 1679
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
		if (unlikely(fast || !rep_cnt || rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1695
		break;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	case HVCALL_SEND_IPI:
		if (unlikely(rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
		break;
	case HVCALL_SEND_IPI_EX:
		if (unlikely(fast || rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
		break;
1710
	default:
1711
		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1712 1713 1714
		break;
	}

1715
	return kvm_hv_hypercall_complete(vcpu, ret);
1716
}
1717 1718 1719 1720

void kvm_hv_init_vm(struct kvm *kvm)
{
	mutex_init(&kvm->arch.hyperv.hv_lock);
1721
	idr_init(&kvm->arch.hyperv.conn_to_evt);
1722 1723 1724 1725
}

void kvm_hv_destroy_vm(struct kvm *kvm)
{
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	struct eventfd_ctx *eventfd;
	int i;

	idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
		eventfd_ctx_put(eventfd);
	idr_destroy(&kvm->arch.hyperv.conn_to_evt);
}

static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct eventfd_ctx *eventfd;
	int ret;

	eventfd = eventfd_ctx_fdget(fd);
	if (IS_ERR(eventfd))
		return PTR_ERR(eventfd);

	mutex_lock(&hv->hv_lock);
	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1746
			GFP_KERNEL_ACCOUNT);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	mutex_unlock(&hv->hv_lock);

	if (ret >= 0)
		return 0;

	if (ret == -ENOSPC)
		ret = -EEXIST;
	eventfd_ctx_put(eventfd);
	return ret;
}

static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
	struct kvm_hv *hv = &kvm->arch.hyperv;
	struct eventfd_ctx *eventfd;

	mutex_lock(&hv->hv_lock);
	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
	mutex_unlock(&hv->hv_lock);

	if (!eventfd)
		return -ENOENT;

	synchronize_srcu(&kvm->srcu);
	eventfd_ctx_put(eventfd);
	return 0;
}

int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
		return -EINVAL;

	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1784
}
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
				struct kvm_cpuid_entry2 __user *entries)
{
	uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
	struct kvm_cpuid_entry2 cpuid_entries[] = {
		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_INTERFACE },
		{ .function = HYPERV_CPUID_VERSION },
		{ .function = HYPERV_CPUID_FEATURES },
		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
		{ .function = HYPERV_CPUID_NESTED_FEATURES },
	};
	int i, nent = ARRAY_SIZE(cpuid_entries);

	/* Skip NESTED_FEATURES if eVMCS is not supported */
	if (!evmcs_ver)
		--nent;

	if (cpuid->nent < nent)
		return -E2BIG;

	if (cpuid->nent > nent)
		cpuid->nent = nent;

	for (i = 0; i < nent; i++) {
		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
		u32 signature[3];

		switch (ent->function) {
		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

			ent->eax = HYPERV_CPUID_NESTED_FEATURES;
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_INTERFACE:
			memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_VERSION:
			/*
			 * We implement some Hyper-V 2016 functions so let's use
			 * this version.
			 */
			ent->eax = 0x00003839;
			ent->ebx = 0x000A0000;
			break;

		case HYPERV_CPUID_FEATURES:
			ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
			ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
			ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
			ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
			ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
			ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
			ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
			ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;

			ent->ebx |= HV_X64_POST_MESSAGES;
			ent->ebx |= HV_X64_SIGNAL_EVENTS;

			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
			ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;

			break;

		case HYPERV_CPUID_ENLIGHTMENT_INFO:
			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1867 1868
			if (evmcs_ver)
				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

			/*
			 * Default number of spinlock retry attempts, matches
			 * HyperV 2016.
			 */
			ent->ebx = 0x00000FFF;

			break;

		case HYPERV_CPUID_IMPLEMENT_LIMITS:
			/* Maximum number of virtual processors */
			ent->eax = KVM_MAX_VCPUS;
			/*
			 * Maximum number of logical processors, matches
			 * HyperV 2016.
			 */
			ent->ebx = 64;

			break;

		case HYPERV_CPUID_NESTED_FEATURES:
			ent->eax = evmcs_ver;

			break;

		default:
			break;
		}
	}

	if (copy_to_user(entries, cpuid_entries,
			 nent * sizeof(struct kvm_cpuid_entry2)))
		return -EFAULT;

	return 0;
}