davinci_nand.c 25.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
 *
 * Copyright © 2006 Texas Instruments.
 *
 * Port to 2.6.23 Copyright © 2008 by:
 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
 *   Troy Kisky <troy.kisky@boundarydevices.com>
 *   Dirk Behme <Dirk.Behme@gmail.com>
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
17
#include <linux/iopoll.h>
18
#include <linux/mtd/rawnand.h>
19
#include <linux/mtd/partitions.h>
20
#include <linux/slab.h>
21
#include <linux/of_device.h>
22
#include <linux/of.h>
23

24 25
#include <linux/platform_data/mtd-davinci.h>
#include <linux/platform_data/mtd-davinci-aemif.h>
26 27 28 29 30 31 32

/*
 * This is a device driver for the NAND flash controller found on the
 * various DaVinci family chips.  It handles up to four SoC chipselects,
 * and some flavors of secondary chipselect (e.g. based on A12) as used
 * with multichip packages.
 *
33
 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34 35 36 37 38 39 40
 * available on chips like the DM355 and OMAP-L137 and needed with the
 * more error-prone MLC NAND chips.
 *
 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 * outputs in a "wire-AND" configuration, with no per-chip signals.
 */
struct davinci_nand_info {
41
	struct nand_controller	controller;
42 43
	struct nand_chip	chip;

44
	struct platform_device	*pdev;
45

46 47
	bool			is_readmode;

48 49 50
	void __iomem		*base;
	void __iomem		*vaddr;

51
	void __iomem		*current_cs;
52 53 54 55 56 57

	uint32_t		mask_chipsel;
	uint32_t		mask_ale;
	uint32_t		mask_cle;

	uint32_t		core_chipsel;
58 59

	struct davinci_aemif_timing	*timing;
60 61 62
};

static DEFINE_SPINLOCK(davinci_nand_lock);
63
static bool ecc4_busy;
64

65 66 67 68
static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
}
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
		int offset)
{
	return __raw_readl(info->base + offset);
}

static inline void davinci_nand_writel(struct davinci_nand_info *info,
		int offset, unsigned long value)
{
	__raw_writel(value, info->base + offset);
}

/*----------------------------------------------------------------------*/

/*
 * 1-bit hardware ECC ... context maintained for each core chipselect
 */

static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);

	return davinci_nand_readl(info, NANDF1ECC_OFFSET
			+ 4 * info->core_chipsel);
}

96
static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97 98 99 100 101
{
	struct davinci_nand_info *info;
	uint32_t nandcfr;
	unsigned long flags;

102
	info = to_davinci_nand(nand_to_mtd(chip));
103 104

	/* Reset ECC hardware */
105
	nand_davinci_readecc_1bit(nand_to_mtd(chip));
106 107 108 109 110 111 112 113 114 115 116 117 118 119

	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Restart ECC hardware */
	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
	nandcfr |= BIT(8 + info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/*
 * Read hardware ECC value and pack into three bytes
 */
120 121
static int nand_davinci_calculate_1bit(struct nand_chip *chip,
				       const u_char *dat, u_char *ecc_code)
122
{
123
	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124 125 126 127 128 129 130 131 132 133 134
	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);

	/* invert so that erased block ecc is correct */
	ecc24 = ~ecc24;
	ecc_code[0] = (u_char)(ecc24);
	ecc_code[1] = (u_char)(ecc24 >> 8);
	ecc_code[2] = (u_char)(ecc24 >> 16);

	return 0;
}

135
static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
				     u_char *read_ecc, u_char *calc_ecc)
{
	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	uint32_t diff = eccCalc ^ eccNand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < chip->ecc.size) {
				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
				return 1;
			} else {
151
				return -EBADMSG;
152 153 154 155 156 157 158
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			 * nothing to fix */
			return 1;
		} else {
			/* Uncorrectable error */
159
			return -EBADMSG;
160 161 162 163 164 165 166 167
		}

	}
	return 0;
}

/*----------------------------------------------------------------------*/

168 169 170 171 172 173 174 175 176 177 178 179
/*
 * 4-bit hardware ECC ... context maintained over entire AEMIF
 *
 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 * since that forces use of a problematic "infix OOB" layout.
 * Among other things, it trashes manufacturer bad block markers.
 * Also, and specific to this hardware, it ECC-protects the "prepad"
 * in the OOB ... while having ECC protection for parts of OOB would
 * seem useful, the current MTD stack sometimes wants to update the
 * OOB without recomputing ECC.
 */

180
static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181
{
182
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183 184 185
	unsigned long flags;
	u32 val;

186 187 188
	/* Reset ECC hardware */
	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Start 4-bit ECC calculation for read/write */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val &= ~(0x03 << 4);
	val |= (info->core_chipsel << 4) | BIT(12);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	info->is_readmode = (mode == NAND_ECC_READ);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/* Read raw ECC code after writing to NAND. */
static void
nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
{
	const u32 mask = 0x03ff03ff;

	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
}

/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215 216
static int nand_davinci_calculate_4bit(struct nand_chip *chip,
				       const u_char *dat, u_char *ecc_code)
217
{
218
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	u32 raw_ecc[4], *p;
	unsigned i;

	/* After a read, terminate ECC calculation by a dummy read
	 * of some 4-bit ECC register.  ECC covers everything that
	 * was read; correct() just uses the hardware state, so
	 * ecc_code is not needed.
	 */
	if (info->is_readmode) {
		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
		return 0;
	}

	/* Pack eight raw 10-bit ecc values into ten bytes, making
	 * two passes which each convert four values (in upper and
	 * lower halves of two 32-bit words) into five bytes.  The
	 * ROM boot loader uses this same packing scheme.
	 */
	nand_davinci_readecc_4bit(info, raw_ecc);
	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
		*ecc_code++ =   p[0]        & 0xff;
		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
		*ecc_code++ =  (p[1] >> 18) & 0xff;
	}

	return 0;
}

/* Correct up to 4 bits in data we just read, using state left in the
 * hardware plus the ecc_code computed when it was first written.
 */
252 253
static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
				     u_char *ecc_code, u_char *null)
254 255
{
	int i;
256
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257 258 259
	unsigned short ecc10[8];
	unsigned short *ecc16;
	u32 syndrome[4];
260
	u32 ecc_state;
261
	unsigned num_errors, corrected;
262
	unsigned long timeo;
263 264 265 266

	/* Unpack ten bytes into eight 10 bit values.  We know we're
	 * little-endian, and use type punning for less shifting/masking.
	 */
267
	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		return -EINVAL;
	ecc16 = (unsigned short *)ecc_code;

	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;

	/* Tell ECC controller about the expected ECC codes. */
	for (i = 7; i >= 0; i--)
		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);

	/* Allow time for syndrome calculation ... then read it.
	 * A syndrome of all zeroes 0 means no detected errors.
	 */
	davinci_nand_readl(info, NANDFSR_OFFSET);
	nand_davinci_readecc_4bit(info, syndrome);
	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
		return 0;

292 293 294 295 296 297
	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);

298 299 300 301 302 303
	/* Start address calculation, and wait for it to complete.
	 * We _could_ start reading more data while this is working,
	 * to speed up the overall page read.
	 */
	davinci_nand_writel(info, NANDFCR_OFFSET,
			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304 305 306 307 308 309

	/*
	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
	 * begin trying to poll for the state, you may fall right out of your
	 * loop without any of the correction calculations having taken place.
310 311 312
	 * The recommendation from the hardware team is to initially delay as
	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
	 * correction state.
313
	 */
314
	timeo = jiffies + usecs_to_jiffies(100);
315 316 317 318 319 320
	do {
		ecc_state = (davinci_nand_readl(info,
				NANDFSR_OFFSET) >> 8) & 0x0f;
		cpu_relax();
	} while ((ecc_state < 4) && time_before(jiffies, timeo));

321 322 323 324 325
	for (;;) {
		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);

		switch ((fsr >> 8) & 0x0f) {
		case 0:		/* no error, should not happen */
326
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327 328
			return 0;
		case 1:		/* five or more errors detected */
329
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330
			return -EBADMSG;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		case 2:		/* error addresses computed */
		case 3:
			num_errors = 1 + ((fsr >> 16) & 0x03);
			goto correct;
		default:	/* still working on it */
			cpu_relax();
			continue;
		}
	}

correct:
	/* correct each error */
	for (i = 0, corrected = 0; i < num_errors; i++) {
		int error_address, error_value;

		if (i > 1) {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD2_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL2_OFFSET);
		} else {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD1_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL1_OFFSET);
		}

		if (i & 1) {
			error_address >>= 16;
			error_value >>= 16;
		}
		error_address &= 0x3ff;
		error_address = (512 + 7) - error_address;

		if (error_address < 512) {
			data[error_address] ^= error_value;
			corrected++;
		}
	}

	return corrected;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * nand_read_page_hwecc_oob_first - hw ecc, read oob first
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Hardware ECC for large page chips, require OOB to be read first. For this
 * ECC mode, the write_page method is re-used from ECC_HW. These methods
 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
 * the data area, by overwriting the NAND manufacturer bad block markings.
 */
static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
						  uint8_t *buf,
						  int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size, ret;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->ecc.code_buf;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	unsigned int max_bitflips = 0;

	/* Read the OOB area first */
	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
	if (ret)
		return ret;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(chip, NAND_ECC_READ);

		ret = nand_read_data_op(chip, p, eccsize, false, false);
		if (ret)
			return ret;

		chip->ecc.calculate(chip, p, &ecc_calc[i]);

		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
							   &ecc_code[i],
							   eccbytes, NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}
	return max_bitflips;
}

445 446 447 448 449 450
/*----------------------------------------------------------------------*/

/* An ECC layout for using 4-bit ECC with small-page flash, storing
 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 * and not overlapping the default BBT markers.
 */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
				      struct mtd_oob_region *oobregion)
{
	if (section > 2)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 5;
	} else if (section == 1) {
		oobregion->offset = 6;
		oobregion->length = 2;
	} else {
		oobregion->offset = 13;
		oobregion->length = 3;
	}
467

468 469
	return 0;
}
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 8;
		oobregion->length = 5;
	} else {
		oobregion->offset = 16;
		oobregion->length = mtd->oobsize - 16;
	}

	return 0;
}

static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
	.ecc = hwecc4_ooblayout_small_ecc,
	.free = hwecc4_ooblayout_small_free,
491 492
};

493 494 495
#if defined(CONFIG_OF)
static const struct of_device_id davinci_nand_of_match[] = {
	{.compatible = "ti,davinci-nand", },
496
	{.compatible = "ti,keystone-nand", },
497
	{},
498
};
499 500 501 502 503
MODULE_DEVICE_TABLE(of, davinci_nand_of_match);

static struct davinci_nand_pdata
	*nand_davinci_get_pdata(struct platform_device *pdev)
{
J
Jingoo Han 已提交
504
	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
505 506 507 508 509 510 511 512 513
		struct davinci_nand_pdata *pdata;
		const char *mode;
		u32 prop;

		pdata =  devm_kzalloc(&pdev->dev,
				sizeof(struct davinci_nand_pdata),
				GFP_KERNEL);
		pdev->dev.platform_data = pdata;
		if (!pdata)
514
			return ERR_PTR(-ENOMEM);
515 516
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-chipselect", &prop))
517
			pdata->core_chipsel = prop;
518 519 520
		else
			return ERR_PTR(-EINVAL);

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-ale", &prop))
			pdata->mask_ale = prop;
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-cle", &prop))
			pdata->mask_cle = prop;
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-mask-chipsel", &prop))
			pdata->mask_chipsel = prop;
		if (!of_property_read_string(pdev->dev.of_node,
			"ti,davinci-ecc-mode", &mode)) {
			if (!strncmp("none", mode, 4))
				pdata->ecc_mode = NAND_ECC_NONE;
			if (!strncmp("soft", mode, 4))
				pdata->ecc_mode = NAND_ECC_SOFT;
			if (!strncmp("hw", mode, 2))
				pdata->ecc_mode = NAND_ECC_HW;
		}
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-ecc-bits", &prop))
			pdata->ecc_bits = prop;
542

543 544 545 546
		if (!of_property_read_u32(pdev->dev.of_node,
			"ti,davinci-nand-buswidth", &prop) && prop == 16)
			pdata->options |= NAND_BUSWIDTH_16;

547 548
		if (of_property_read_bool(pdev->dev.of_node,
			"ti,davinci-nand-use-bbt"))
549
			pdata->bbt_options = NAND_BBT_USE_FLASH;
550

551 552 553 554 555 556 557 558 559 560 561
		/*
		 * Since kernel v4.8, this driver has been fixed to enable
		 * use of 4-bit hardware ECC with subpages and verified on
		 * TI's keystone EVMs (K2L, K2HK and K2E).
		 * However, in the interest of not breaking systems using
		 * existing UBI partitions, sub-page writes are not being
		 * (re)enabled. If you want to use subpage writes on Keystone
		 * platforms (i.e. do not have any existing UBI partitions),
		 * then use "ti,davinci-nand" as the compatible in your
		 * device-tree file.
		 */
562 563 564 565
		if (of_device_is_compatible(pdev->dev.of_node,
					    "ti,keystone-nand")) {
			pdata->options |= NAND_NO_SUBPAGE_WRITE;
		}
566 567
	}

J
Jingoo Han 已提交
568
	return dev_get_platdata(&pdev->dev);
569 570 571 572 573
}
#else
static struct davinci_nand_pdata
	*nand_davinci_get_pdata(struct platform_device *pdev)
{
J
Jingoo Han 已提交
574
	return dev_get_platdata(&pdev->dev);
575 576 577
}
#endif

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int davinci_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
	int ret = 0;

	if (IS_ERR(pdata))
		return PTR_ERR(pdata);

	switch (info->chip.ecc.mode) {
	case NAND_ECC_NONE:
		pdata->ecc_bits = 0;
		break;
	case NAND_ECC_SOFT:
		pdata->ecc_bits = 0;
		/*
		 * This driver expects Hamming based ECC when ecc_mode is set
		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
		 * avoid adding an extra ->ecc_algo field to
		 * davinci_nand_pdata.
		 */
		info->chip.ecc.algo = NAND_ECC_HAMMING;
		break;
	case NAND_ECC_HW:
		if (pdata->ecc_bits == 4) {
604 605 606 607 608 609 610
			int chunks = mtd->writesize / 512;

			if (!chunks || mtd->oobsize < 16) {
				dev_dbg(&info->pdev->dev, "too small\n");
				return -EINVAL;
			}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
			/*
			 * No sanity checks:  CPUs must support this,
			 * and the chips may not use NAND_BUSWIDTH_16.
			 */

			/* No sharing 4-bit hardware between chipselects yet */
			spin_lock_irq(&davinci_nand_lock);
			if (ecc4_busy)
				ret = -EBUSY;
			else
				ecc4_busy = true;
			spin_unlock_irq(&davinci_nand_lock);

			if (ret == -EBUSY)
				return ret;

			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
			info->chip.ecc.correct = nand_davinci_correct_4bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
			info->chip.ecc.bytes = 10;
			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
			info->chip.ecc.algo = NAND_ECC_BCH;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

			/*
			 * Update ECC layout if needed ... for 1-bit HW ECC, the
			 * default is OK, but it allocates 6 bytes when only 3
			 * are needed (for each 512 bytes). For 4-bit HW ECC,
			 * the default is not usable: 10 bytes needed, not 6.
			 *
			 * For small page chips, preserve the manufacturer's
			 * badblock marking data ... and make sure a flash BBT
			 * table marker fits in the free bytes.
			 */
			if (chunks == 1) {
				mtd_set_ooblayout(mtd,
						  &hwecc4_small_ooblayout_ops);
			} else if (chunks == 4 || chunks == 8) {
				mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
				info->chip.ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
			} else {
				return -EIO;
			}
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
		} else {
			/* 1bit ecc hamming */
			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
			info->chip.ecc.correct = nand_davinci_correct_1bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
			info->chip.ecc.bytes = 3;
			info->chip.ecc.algo = NAND_ECC_HAMMING;
		}
		info->chip.ecc.size = 512;
		info->chip.ecc.strength = pdata->ecc_bits;
		break;
	default:
		return -EINVAL;
	}

	return ret;
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
				 unsigned int len, bool force_8bit)
{
	u32 alignment = ((uintptr_t)buf | len) & 3;

	if (force_8bit || (alignment & 1))
		ioread8_rep(info->current_cs, buf, len);
	else if (alignment & 3)
		ioread16_rep(info->current_cs, buf, len >> 1);
	else
		ioread32_rep(info->current_cs, buf, len >> 2);
}

static void nand_davinci_data_out(struct davinci_nand_info *info,
				  const void *buf, unsigned int len,
				  bool force_8bit)
{
	u32 alignment = ((uintptr_t)buf | len) & 3;

	if (force_8bit || (alignment & 1))
		iowrite8_rep(info->current_cs, buf, len);
	else if (alignment & 3)
		iowrite16_rep(info->current_cs, buf, len >> 1);
	else
		iowrite32_rep(info->current_cs, buf, len >> 2);
}

static int davinci_nand_exec_instr(struct davinci_nand_info *info,
				   const struct nand_op_instr *instr)
{
	unsigned int i, timeout_us;
	u32 status;
	int ret;

	switch (instr->type) {
	case NAND_OP_CMD_INSTR:
		iowrite8(instr->ctx.cmd.opcode,
			 info->current_cs + info->mask_cle);
		break;

	case NAND_OP_ADDR_INSTR:
		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
			iowrite8(instr->ctx.addr.addrs[i],
				 info->current_cs + info->mask_ale);
		}
		break;

	case NAND_OP_DATA_IN_INSTR:
		nand_davinci_data_in(info, instr->ctx.data.buf.in,
				     instr->ctx.data.len,
				     instr->ctx.data.force_8bit);
		break;

	case NAND_OP_DATA_OUT_INSTR:
		nand_davinci_data_out(info, instr->ctx.data.buf.out,
				      instr->ctx.data.len,
				      instr->ctx.data.force_8bit);
		break;

	case NAND_OP_WAITRDY_INSTR:
		timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
		ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
						 status, status & BIT(0), 100,
						 timeout_us);
		if (ret)
			return ret;

		break;
	}

	if (instr->delay_ns)
		ndelay(instr->delay_ns);

	return 0;
}

static int davinci_nand_exec_op(struct nand_chip *chip,
				const struct nand_operation *op,
				bool check_only)
{
	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
	unsigned int i;

	if (check_only)
		return 0;

	info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);

	for (i = 0; i < op->ninstrs; i++) {
		int ret;

		ret = davinci_nand_exec_instr(info, &op->instrs[i]);
		if (ret)
			return ret;
	}

	return 0;
}

770 771
static const struct nand_controller_ops davinci_nand_controller_ops = {
	.attach_chip = davinci_nand_attach_chip,
772
	.exec_op = davinci_nand_exec_op,
773 774
};

775
static int nand_davinci_probe(struct platform_device *pdev)
776
{
777
	struct davinci_nand_pdata	*pdata;
778 779 780 781 782 783 784
	struct davinci_nand_info	*info;
	struct resource			*res1;
	struct resource			*res2;
	void __iomem			*vaddr;
	void __iomem			*base;
	int				ret;
	uint32_t			val;
785
	struct mtd_info			*mtd;
786

787
	pdata = nand_davinci_get_pdata(pdev);
788 789 790
	if (IS_ERR(pdata))
		return PTR_ERR(pdata);

791 792 793 794
	/* insist on board-specific configuration */
	if (!pdata)
		return -ENODEV;

795
	/* which external chipselect will we be managing? */
796
	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
797 798
		return -ENODEV;

799
	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
800
	if (!info)
801
		return -ENOMEM;
802 803 804 805 806 807 808

	platform_set_drvdata(pdev, info);

	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res1 || !res2) {
		dev_err(&pdev->dev, "resource missing\n");
809
		return -EINVAL;
810 811
	}

812
	vaddr = devm_ioremap_resource(&pdev->dev, res1);
813 814 815
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

816 817 818 819 820 821 822 823 824 825 826
	/*
	 * This registers range is used to setup NAND settings. In case with
	 * TI AEMIF driver, the same memory address range is requested already
	 * by AEMIF, so we cannot request it twice, just ioremap.
	 * The AEMIF and NAND drivers not use the same registers in this range.
	 */
	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
	if (!base) {
		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
		return -EADDRNOTAVAIL;
	}
827

828
	info->pdev		= pdev;
829 830 831
	info->base		= base;
	info->vaddr		= vaddr;

832 833
	mtd			= nand_to_mtd(&info->chip);
	mtd->dev.parent		= &pdev->dev;
834
	nand_set_flash_node(&info->chip, pdev->dev.of_node);
835

836
	/* options such as NAND_BBT_USE_FLASH */
837 838
	info->chip.bbt_options	= pdata->bbt_options;
	/* options such as 16-bit widths */
839
	info->chip.options	= pdata->options;
840 841
	info->chip.bbt_td	= pdata->bbt_td;
	info->chip.bbt_md	= pdata->bbt_md;
842
	info->timing		= pdata->timing;
843

844
	info->current_cs	= info->vaddr;
845
	info->core_chipsel	= pdata->core_chipsel;
846 847 848
	info->mask_chipsel	= pdata->mask_chipsel;

	/* use nandboot-capable ALE/CLE masks by default */
849
	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
850
	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
851

852
	/* Use board-specific ECC config */
853
	info->chip.ecc.mode	= pdata->ecc_mode;
854

855 856 857 858 859 860 861 862 863 864
	spin_lock_irq(&davinci_nand_lock);

	/* put CSxNAND into NAND mode */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val |= BIT(info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	spin_unlock_irq(&davinci_nand_lock);

	/* Scan to find existence of the device(s) */
865 866 867
	nand_controller_init(&info->controller);
	info->controller.ops = &davinci_nand_controller_ops;
	info->chip.controller = &info->controller;
868
	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
869 870
	if (ret < 0) {
		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
871
		return ret;
872 873
	}

874
	if (pdata->parts)
875
		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
876
	else
877
		ret = mtd_device_register(mtd, NULL, 0);
878
	if (ret < 0)
879
		goto err_cleanup_nand;
880 881 882 883 884 885 886

	val = davinci_nand_readl(info, NRCSR_OFFSET);
	dev_info(&pdev->dev, "controller rev. %d.%d\n",
	       (val >> 8) & 0xff, val & 0xff);

	return 0;

887 888 889
err_cleanup_nand:
	nand_cleanup(&info->chip);

890 891 892
	return ret;
}

893
static int nand_davinci_remove(struct platform_device *pdev)
894 895
{
	struct davinci_nand_info *info = platform_get_drvdata(pdev);
896 897
	struct nand_chip *chip = &info->chip;
	int ret;
898

899 900 901 902 903
	spin_lock_irq(&davinci_nand_lock);
	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
		ecc4_busy = false;
	spin_unlock_irq(&davinci_nand_lock);

904 905 906
	ret = mtd_device_unregister(nand_to_mtd(chip));
	WARN_ON(ret);
	nand_cleanup(chip);
907 908 909 910 911

	return 0;
}

static struct platform_driver nand_davinci_driver = {
912 913
	.probe		= nand_davinci_probe,
	.remove		= nand_davinci_remove,
914 915
	.driver		= {
		.name	= "davinci_nand",
916
		.of_match_table = of_match_ptr(davinci_nand_of_match),
917 918 919 920
	},
};
MODULE_ALIAS("platform:davinci_nand");

921
module_platform_driver(nand_davinci_driver);
922 923 924 925 926

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Texas Instruments");
MODULE_DESCRIPTION("Davinci NAND flash driver");