omap2.c 55.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
12
#include <linux/dmaengine.h>
13 14
#include <linux/dma-mapping.h>
#include <linux/delay.h>
15
#include <linux/module.h>
16
#include <linux/interrupt.h>
17 18
#include <linux/jiffies.h>
#include <linux/sched.h>
19 20 21
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
22
#include <linux/omap-dma.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25 26
#include <linux/of.h>
#include <linux/of_device.h>
27

28
#include <linux/mtd/nand_bch.h>
29
#include <linux/platform_data/elm.h>
30

31
#include <linux/platform_data/mtd-nand-omap2.h>
32 33

#define	DRIVER_NAME	"omap2-nand"
34
#define	OMAP_NAND_TIMEOUT_MS	5000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

103 104 105 106 107
#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
108
#define	ECCSIZE0_SHIFT			12
109 110 111 112
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
113 114 115 116 117
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001
118

119 120
#define OMAP24XX_DMA_GPMC		4

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

137
#define BADBLOCK_MARKER_LENGTH		2
138

139 140 141 142 143 144
#ifdef CONFIG_MTD_NAND_OMAP_BCH
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif

145 146
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
147

148 149 150 151 152 153 154 155 156
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
157
	enum omap_ecc			ecc_opt;
158
	struct completion		comp;
159
	struct dma_chan			*dma;
160 161
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
162 163 164 165 166 167
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
168
	struct gpmc_nand_regs		reg;
169
	/* fields specific for BCHx_HW ECC scheme */
170 171
	struct device			*elm_dev;
	struct device_node		*of_node;
172 173
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

247 248
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
249
			writeb(cmd, info->reg.gpmc_nand_command);
250 251

		else if (ctrl & NAND_ALE)
252
			writeb(cmd, info->reg.gpmc_nand_address);
253 254

		else /* NAND_NCE */
255
			writeb(cmd, info->reg.gpmc_nand_data);
256
	}
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
283
	u32	status = 0;
284 285 286

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
287 288
		/* wait until buffer is available for write */
		do {
289
			status = readl(info->reg.gpmc_status) &
290
					STATUS_BUFF_EMPTY;
291
		} while (!status);
292 293 294
	}
}

295 296 297 298 299 300 301 302 303 304
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

305
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
306 307 308 309 310 311 312 313 314 315 316 317 318
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
319
	u32	status = 0;
320 321 322 323
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
324
		iowrite16(*p++, info->nand.IO_ADDR_W);
325 326
		/* wait until buffer is available for write */
		do {
327
			status = readl(info->reg.gpmc_status) &
328
					STATUS_BUFF_EMPTY;
329
		} while (!status);
330 331
	}
}
332 333 334 335 336 337 338 339 340 341 342

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
343
	uint32_t r_count = 0;
344 345 346 347
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
348 349 350 351 352 353 354
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
355 356 357
	}

	/* configure and start prefetch transfer */
358 359
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
360 361 362
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
363
			omap_read_buf16(mtd, (u_char *)p, len);
364
		else
365
			omap_read_buf8(mtd, (u_char *)p, len);
366 367
	} else {
		do {
368
			r_count = readl(info->reg.gpmc_prefetch_status);
369
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
370 371
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
372 373 374 375
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
376
		omap_prefetch_reset(info->gpmc_cs, info);
377 378 379 380 381 382 383 384 385 386 387 388 389 390
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
391
	uint32_t w_count = 0;
392
	int i = 0, ret = 0;
393
	u16 *p = (u16 *)buf;
394
	unsigned long tim, limit;
395
	u32 val;
396 397 398

	/* take care of subpage writes */
	if (len % 2 != 0) {
399
		writeb(*buf, info->nand.IO_ADDR_W);
400 401 402 403 404
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
405 406
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
407 408 409
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
410
			omap_write_buf16(mtd, (u_char *)p, len);
411
		else
412
			omap_write_buf8(mtd, (u_char *)p, len);
413
	} else {
414
		while (len) {
415
			w_count = readl(info->reg.gpmc_prefetch_status);
416
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
417
			w_count = w_count >> 1;
418
			for (i = 0; (i < w_count) && len; i++, len -= 2)
419
				iowrite16(*p++, info->nand.IO_ADDR_W);
420
		}
421
		/* wait for data to flushed-out before reset the prefetch */
422 423 424
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
425
		do {
426
			cpu_relax();
427
			val = readl(info->reg.gpmc_prefetch_status);
428
			val = PREFETCH_STATUS_COUNT(val);
429
		} while (val && (tim++ < limit));
430

431
		/* disable and stop the PFPW engine */
432
		omap_prefetch_reset(info->gpmc_cs, info);
433 434 435
	}
}

436
/*
437
 * omap_nand_dma_callback: callback on the completion of dma transfer
438 439
 * @data: pointer to completion data structure
 */
440 441 442 443
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}
444 445

/*
446
 * omap_nand_dma_transfer: configure and start dma transfer
447 448 449 450 451 452 453 454 455 456
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
457
	struct dma_async_tx_descriptor *tx;
458 459
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
460
	struct scatterlist sg;
461
	unsigned long tim, limit;
462 463
	unsigned n;
	int ret;
464
	u32 val;
465 466 467 468 469 470 471 472 473 474 475 476 477

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

478 479 480
	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
481 482 483 484 485
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

486 487 488 489 490 491 492 493 494 495
	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

496 497 498
	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
499
	if (ret)
500
		/* PFPW engine is busy, use cpu copy method */
501
		goto out_copy_unmap;
502 503

	init_completion(&info->comp);
504
	dma_async_issue_pending(info->dma);
505 506 507

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
508 509
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
510 511

	do {
512
		cpu_relax();
513
		val = readl(info->reg.gpmc_prefetch_status);
514
		val = PREFETCH_STATUS_COUNT(val);
515
	} while (val && (tim++ < limit));
516 517

	/* disable and stop the PFPW engine */
518
	omap_prefetch_reset(info->gpmc_cs, info);
519

520
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
521 522
	return 0;

523
out_copy_unmap:
524
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
563
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
564 565
}

566
/*
567
 * omap_nand_irq - GPMC irq handler
568 569 570 571 572 573 574 575
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

576
	bytes = readl(info->reg.gpmc_prefetch_status);
577
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
578 579
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
580
		if (this_irq == info->gpmc_irq_count)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

597
		if (this_irq == info->gpmc_irq_count)
598 599 600 601 602 603 604 605
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

606 607
	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
634 635
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
636 637 638 639 640
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
641 642 643

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
644 645 646 647 648

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
649
	omap_prefetch_reset(info->gpmc_cs, info);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;
672
	u32 val;
673 674 675 676 677 678 679 680 681 682

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

683
	/* configure and start prefetch transfer : size=24 */
684 685
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
686 687 688 689 690
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
691 692 693

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
694 695 696

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
697

698 699 700
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
701 702
	do {
		val = readl(info->reg.gpmc_prefetch_status);
703
		val = PREFETCH_STATUS_COUNT(val);
704
		cpu_relax();
705
	} while (val && (tim++ < limit));
706 707

	/* disable and stop the PFPW engine */
708
	omap_prefetch_reset(info->gpmc_cs, info);
709 710 711 712 713 714 715 716 717
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
746 747
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
826
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
827 828 829 830
		return -1;

	case 11:
		/* UN-Correctable error */
831
		pr_debug("ECC UNCORRECTED_ERROR B\n");
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

848 849
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
850 851 852

		page_data[find_byte] ^= (1 << find_bit);

853
		return 1;
854 855 856 857 858 859 860
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
861
		pr_debug("UNCORRECTED_ERROR default\n");
862 863 864 865 866 867 868 869 870 871 872 873
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
874 875 876 877 878
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
879 880 881 882 883 884 885
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
886
	int stat = 0;
887 888 889 890 891 892 893 894 895 896 897 898 899

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
900 901
			/* keep track of the number of corrected errors */
			stat += ret;
902 903 904 905 906
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
907
	return stat;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
927 928 929 930 931 932 933 934 935 936 937 938 939 940
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
941 942 943 944 945 946 947 948 949 950 951 952 953
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
954 955 956 957 958
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}
978

979 980 981
	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
982
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
1002
	int status, state = this->state;
1003 1004

	if (state == FL_ERASING)
T
Toan Pham 已提交
1005
		timeo += msecs_to_jiffies(400);
1006
	else
T
Toan Pham 已提交
1007
		timeo += msecs_to_jiffies(20);
1008

1009
	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1010
	while (time_before(jiffies, timeo)) {
1011
		status = readb(info->reg.gpmc_nand_data);
1012
		if (status & NAND_STATUS_READY)
1013
			break;
1014
		cond_resched();
1015
	}
1016

1017
	status = readb(info->reg.gpmc_nand_data);
1018 1019 1020 1021 1022 1023 1024 1025 1026
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
1027
	unsigned int val = 0;
1028 1029 1030
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

1031 1032
	val = readl(info->reg.gpmc_status);

1033
	if ((val & 0x100) == 0x100) {
1034
		return 1;
1035
	} else {
1036
		return 0;
1037 1038 1039
	}
}

1040
/**
1041
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1042 1043
 * @mtd: MTD device structure
 * @mode: Read/Write mode
1044 1045 1046 1047 1048 1049 1050
 *
 * When using BCH, sector size is hardcoded to 512 bytes.
 * Using wrapping mode 6 both for reading and writing if ELM module not uses
 * for error correction.
 * On writing,
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1051
 */
1052
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1053
{
1054
	unsigned int bch_type;
1055
	unsigned int dev_width, nsectors;
1056 1057
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1058
	enum omap_ecc ecc_opt = info->ecc_opt;
1059
	struct nand_chip *chip = mtd->priv;
1060 1061 1062
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

1063 1064 1065
	/* GPMC configurations for calculating ECC */
	switch (ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1066 1067
		bch_type = 0;
		nsectors = 1;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH4_CODE_HW:
1079 1080
		bch_type = 0;
		nsectors = chip->ecc.steps;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH4R_ECC_SIZE0;
			ecc_size1 = BCH4R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1092 1093
		bch_type = 1;
		nsectors = 1;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW:
1105 1106
		bch_type = 1;
		nsectors = chip->ecc.steps;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	default:
		return;
	}
1120 1121 1122

	writel(ECC1, info->reg.gpmc_ecc_control);

1123 1124
	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1125 1126
	writel(val, info->reg.gpmc_ecc_size_config);

1127 1128
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

1129 1130
	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
1131
	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1132
	       (wr_mode                  <<  8) | /* wrap mode */
1133 1134 1135 1136 1137 1138 1139
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

1140
	/* Clear ecc and enable bits */
1141
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1142
}
1143

1144
static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1145 1146
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};
1147

1148
/**
1149
 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1150 1151 1152 1153 1154 1155
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
1156
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1157
					const u_char *dat, u_char *ecc_calc)
1158 1159 1160
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1161 1162 1163
	int eccbytes	= info->nand.ecc.bytes;
	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
	u8 *ecc_code;
1164
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1165
	int i;
1166 1167 1168

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
1169 1170
		ecc_code = ecc_calc;
		switch (info->ecc_opt) {
1171
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1172 1173 1174 1175 1176
		case OMAP_ECC_BCH8_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
1190
			break;
1191
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1192 1193 1194
		case OMAP_ECC_BCH4_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1195 1196 1197 1198 1199 1200 1201 1202
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1203 1204 1205
			break;
		default:
			return -EINVAL;
1206
		}
1207 1208 1209

		/* ECC scheme specific syndrome customizations */
		switch (info->ecc_opt) {
1210 1211 1212 1213 1214 1215
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (i = 0; i < eccbytes; i++)
				ecc_calc[i] ^= bch4_polynomial[i];
			break;
1216 1217 1218 1219
		case OMAP_ECC_BCH4_CODE_HW:
			/* Set  8th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
1220 1221 1222 1223 1224 1225
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (i = 0; i < eccbytes; i++)
				ecc_calc[i] ^= bch8_polynomial[i];
			break;
1226 1227 1228 1229 1230 1231 1232 1233 1234
		case OMAP_ECC_BCH8_CODE_HW:
			/* Set 14th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
		default:
			return -EINVAL;
		}

	ecc_calc += eccbytes;
1235 1236 1237 1238 1239
	}

	return 0;
}

1240
#ifdef CONFIG_MTD_NAND_OMAP_BCH
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
1288 1289
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
1290 1291 1292 1293 1294 1295
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
			mtd);
1296
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1297 1298
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
1299
	int eccflag, actual_eccbytes;
1300 1301 1302 1303
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
1304 1305
	u_char *buf;
	int bitflip_count;
1306
	bool is_error_reported = false;
1307
	u32 bit_pos, byte_pos, error_max, pos;
1308
	int err;
1309

1310 1311 1312 1313
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1314
		erased_ecc_vec = bch4_vector;
1315 1316 1317 1318
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1319
		erased_ecc_vec = bch8_vector;
1320 1321 1322 1323 1324 1325
		break;
	default:
		pr_err("invalid driver configuration\n");
		return -EINVAL;
	}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
1336
		for (j = 0; j < actual_eccbytes; j++) {
1337 1338 1339 1340 1341 1342 1343
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
1344 1345
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
1346
				/*
1347 1348
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
1349 1350
				 */
			} else {
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
1374 1375 1376 1377 1378
				}
			}
		}

		/* Update the ecc vector */
1379 1380
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
1381 1382 1383 1384
	}

	/* Check if any error reported */
	if (!is_error_reported)
1385
		return stat;
1386 1387 1388 1389

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

1390
	err = 0;
1391
	for (i = 0; i < eccsteps; i++) {
1392 1393 1394 1395
		if (err_vec[i].error_uncorrectable) {
			pr_err("nand: uncorrectable bit-flips found\n");
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
1396
			for (j = 0; j < err_vec[i].error_count; j++) {
1397 1398 1399
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
1400 1401
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
1402 1403 1404 1405 1406 1407 1408 1409
					break;
				case OMAP_ECC_BCH8_CODE_HW:
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
1410 1411 1412 1413 1414 1415 1416
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
1417 1418 1419
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
1420
						data[byte_pos] ^= 1 << bit_pos;
1421 1422 1423 1424
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
1425 1426
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
1427 1428 1429 1430 1431
					}
				} else {
					pr_err("invalid bit-flip @ %d:%d\n",
							 byte_pos, bit_pos);
					err = -EBADMSG;
1432 1433 1434 1435 1436 1437 1438 1439
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
1440
		data += ecc->size;
1441
		spare_ecc += ecc->bytes;
1442 1443
	}

1444
	return (err) ? err : stat;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required)
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = &chip->oob_poi[eccpos[0]];
	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
	int stat;
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, chip->ecc.total);

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

1533
/**
1534 1535 1536
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1537
 */
1538 1539
static int is_elm_present(struct omap_nand_info *info,
			struct device_node *elm_node, enum bch_ecc bch_type)
1540
{
1541
	struct platform_device *pdev;
1542 1543
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
	int err;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		pr_err("nand: error: ELM DT node not found\n");
		return -ENODEV;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		pr_err("nand: error: ELM device not found\n");
		return -ENODEV;
1554
	}
1555 1556
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
1557 1558 1559 1560
	err = elm_config(info->elm_dev, bch_type,
		(info->mtd.writesize / ecc->size), ecc->size, ecc->bytes);

	return err;
1561
}
1562
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1563

B
Bill Pemberton 已提交
1564
static int omap_nand_probe(struct platform_device *pdev)
1565 1566 1567
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
1568 1569
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
1570
	struct nand_ecclayout		*ecclayout;
1571
	int				err;
1572
	int				i;
1573 1574
	dma_cap_mask_t			mask;
	unsigned			sig;
1575
	unsigned			oob_index;
1576
	struct resource			*res;
1577
	struct mtd_part_parser_data	ppdata = {};
1578

J
Jingoo Han 已提交
1579
	pdata = dev_get_platdata(&pdev->dev);
1580 1581 1582 1583 1584
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

1585 1586
	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
1587 1588 1589 1590 1591 1592 1593 1594
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

1595
	info->pdev		= pdev;
1596
	info->gpmc_cs		= pdata->cs;
1597
	info->reg		= pdata->reg;
1598
	info->of_node		= pdata->of_node;
1599
	info->ecc_opt		= pdata->ecc_opt;
1600 1601 1602 1603 1604
	mtd			= &info->mtd;
	mtd->priv		= &info->nand;
	mtd->name		= dev_name(&pdev->dev);
	mtd->owner		= THIS_MODULE;
	nand_chip		= &info->nand;
1605
	nand_chip->ecc.priv	= NULL;
1606
	nand_chip->options	|= NAND_SKIP_BBTSCAN;
1607

1608
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1609 1610 1611
	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(nand_chip->IO_ADDR_R))
		return PTR_ERR(nand_chip->IO_ADDR_R);
1612

1613
	info->phys_base = res->start;
1614

1615
	nand_chip->controller = &info->controller;
1616

1617 1618
	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;
1619 1620 1621

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
1622 1623
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1624 1625 1626 1627
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
1628 1629
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
1630
	} else {
1631 1632
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
1633 1634
	}

1635 1636 1637 1638 1639
	/* scan NAND device connected to chip controller */
	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
	if (nand_scan_ident(mtd, 1, NULL)) {
		pr_err("nand device scan failed, may be bus-width mismatch\n");
		err = -ENXIO;
1640
		goto return_error;
1641 1642
	}

1643 1644 1645 1646
	/* check for small page devices */
	if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
		pr_err("small page devices are not supported\n");
		err = -EINVAL;
1647
		goto return_error;
1648 1649
	}

1650
	/* re-populate low-level callbacks based on xfer modes */
1651 1652
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
1653 1654
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
1655 1656 1657
		break;

	case NAND_OMAP_POLLED:
1658
		/* Use nand_base defaults for {read,write}_buf */
1659 1660 1661
		break;

	case NAND_OMAP_PREFETCH_DMA:
1662 1663 1664 1665 1666
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		sig = OMAP24XX_DMA_GPMC;
		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
		if (!info->dma) {
1667 1668
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
1669
			goto return_error;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
1680 1681
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
1682
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1683
					err);
1684
				goto return_error;
1685
			}
1686 1687
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
1688 1689 1690
		}
		break;

1691
	case NAND_OMAP_PREFETCH_IRQ:
1692 1693 1694 1695
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
1696
			goto return_error;
1697
		}
1698 1699 1700
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-fifo", info);
1701 1702
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1703 1704
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
1705
			goto return_error;
1706 1707 1708 1709 1710 1711
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
1712
			goto return_error;
1713
		}
1714 1715 1716
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-count", info);
1717 1718 1719 1720
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
1721
			goto return_error;
1722
		}
1723

1724 1725
		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;
1726

1727 1728
		break;

1729 1730 1731 1732
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
1733
		goto return_error;
1734 1735
	}

1736
	/* populate MTD interface based on ECC scheme */
1737 1738
	nand_chip->ecc.layout	= &omap_oobinfo;
	ecclayout		= &omap_oobinfo;
1739
	switch (info->ecc_opt) {
1740 1741 1742
	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
1743 1744 1745 1746 1747 1748
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
1749 1750 1751 1752 1753
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		if (nand_chip->options & NAND_BUSWIDTH_16)
1754
			oob_index		= BADBLOCK_MARKER_LENGTH;
1755
		else
1756 1757 1758
			oob_index		= 1;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1759 1760 1761
		/* no reserved-marker in ecclayout for this ecc-scheme */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1762 1763 1764 1765 1766 1767 1768 1769 1770
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
1771
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1772
		nand_chip->ecc.correct		= nand_bch_correct_data;
1773
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1774 1775 1776 1777
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1778 1779 1780 1781 1782 1783
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1784 1785 1786
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1787
		/* software bch library is used for locating errors */
1788 1789 1790 1791 1792
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1793
			pr_err("nand: error: unable to use s/w BCH library\n");
1794
			err = -EINVAL;
1795 1796 1797 1798 1799
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1800
		goto return_error;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#endif

	case OMAP_ECC_BCH4_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
1811
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1812
		nand_chip->ecc.correct		= omap_elm_correct_data;
1813
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1814 1815
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
1816 1817 1818 1819
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1820 1821 1822
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1823 1824 1825
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1826 1827 1828 1829
		/* This ECC scheme requires ELM H/W block */
		if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
			pr_err("nand: error: could not initialize ELM\n");
			err = -ENODEV;
1830
			goto return_error;
1831
		}
1832 1833 1834 1835
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1836
		goto return_error;
1837 1838 1839 1840 1841 1842 1843 1844 1845
#endif

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
1846
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1847
		nand_chip->ecc.correct		= nand_bch_correct_data;
1848
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1849 1850 1851 1852
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1853 1854 1855 1856 1857 1858
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1859 1860 1861
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1862
		/* software bch library is used for locating errors */
1863 1864 1865 1866 1867
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1868 1869
			pr_err("nand: error: unable to use s/w BCH library\n");
			err = -EINVAL;
1870
			goto return_error;
1871 1872 1873 1874 1875
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1876
		goto return_error;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
#endif

	case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
1887
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1888
		nand_chip->ecc.correct		= omap_elm_correct_data;
1889
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1890 1891 1892
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
1893 1894
		err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
		if (err < 0) {
1895
			pr_err("nand: error: could not initialize ELM\n");
1896
			goto return_error;
1897
		}
1898 1899 1900 1901
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1902 1903 1904
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1905 1906 1907
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1908 1909 1910 1911
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1912
		goto return_error;
1913 1914 1915 1916 1917
#endif

	default:
		pr_err("nand: error: invalid or unsupported ECC scheme\n");
		err = -EINVAL;
1918
		goto return_error;
1919
	}
1920

1921 1922
	/* all OOB bytes from oobfree->offset till end off OOB are free */
	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1923 1924 1925 1926 1927
	/* check if NAND device's OOB is enough to store ECC signatures */
	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
		pr_err("not enough OOB bytes required = %d, available=%d\n",
					   ecclayout->eccbytes, mtd->oobsize);
		err = -EINVAL;
1928
		goto return_error;
1929
	}
1930

1931
	/* second phase scan */
1932
	if (nand_scan_tail(mtd)) {
1933
		err = -ENXIO;
1934
		goto return_error;
1935 1936
	}

1937
	ppdata.of_node = pdata->of_node;
1938
	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
1939
				  pdata->nr_parts);
1940

1941
	platform_set_drvdata(pdev, mtd);
1942 1943 1944

	return 0;

1945
return_error:
1946 1947
	if (info->dma)
		dma_release_channel(info->dma);
1948 1949 1950 1951
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
1952 1953 1954 1955 1956 1957
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
1958
	struct nand_chip *nand_chip = mtd->priv;
1959 1960
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
1961 1962 1963 1964
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
1965 1966
	if (info->dma)
		dma_release_channel(info->dma);
1967
	nand_release(mtd);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

1980
module_platform_driver(omap_nand_driver);
1981

1982
MODULE_ALIAS("platform:" DRIVER_NAME);
1983 1984
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");