omap2.c 55.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
12
#include <linux/dmaengine.h>
13 14
#include <linux/dma-mapping.h>
#include <linux/delay.h>
15
#include <linux/module.h>
16
#include <linux/interrupt.h>
17 18
#include <linux/jiffies.h>
#include <linux/sched.h>
19 20 21
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
22
#include <linux/omap-dma.h>
23
#include <linux/io.h>
24
#include <linux/slab.h>
25 26
#include <linux/of.h>
#include <linux/of_device.h>
27

28
#include <linux/mtd/nand_bch.h>
29
#include <linux/platform_data/elm.h>
30

31
#include <linux/platform_data/mtd-nand-omap2.h>
32 33

#define	DRIVER_NAME	"omap2-nand"
34
#define	OMAP_NAND_TIMEOUT_MS	5000
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

103 104 105 106 107
#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
108
#define	ECCSIZE0_SHIFT			12
109 110 111 112
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
113 114 115 116 117
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001
118

119 120
#define OMAP24XX_DMA_GPMC		4

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

137
#define BADBLOCK_MARKER_LENGTH		2
138

139 140 141 142 143 144
#ifdef CONFIG_MTD_NAND_OMAP_BCH
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif

145 146
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
147

148 149 150 151 152 153 154 155 156
struct omap_nand_info {
	struct nand_hw_control		controller;
	struct omap_nand_platform_data	*pdata;
	struct mtd_info			mtd;
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	unsigned long			phys_base;
157
	unsigned long			mem_size;
158
	enum omap_ecc			ecc_opt;
159
	struct completion		comp;
160
	struct dma_chan			*dma;
161 162
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
163 164 165 166 167 168
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
169
	struct gpmc_nand_regs		reg;
170
	/* fields specific for BCHx_HW ECC scheme */
171 172
	struct device			*elm_dev;
	struct device_node		*of_node;
173 174
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);

248 249
	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
250
			writeb(cmd, info->reg.gpmc_nand_command);
251 252

		else if (ctrl & NAND_ALE)
253
			writeb(cmd, info->reg.gpmc_nand_address);
254 255

		else /* NAND_NCE */
256
			writeb(cmd, info->reg.gpmc_nand_data);
257
	}
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u_char *p = (u_char *)buf;
284
	u32	status = 0;
285 286 287

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
288 289
		/* wait until buffer is available for write */
		do {
290
			status = readl(info->reg.gpmc_status) &
291
					STATUS_BUFF_EMPTY;
292
		} while (!status);
293 294 295
	}
}

296 297 298 299 300 301 302 303 304 305
/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;

306
	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
307 308 309 310 311 312 313 314 315 316 317 318 319
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	u16 *p = (u16 *) buf;
320
	u32	status = 0;
321 322 323 324
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
325
		iowrite16(*p++, info->nand.IO_ADDR_W);
326 327
		/* wait until buffer is available for write */
		do {
328
			status = readl(info->reg.gpmc_status) &
329
					STATUS_BUFF_EMPTY;
330
		} while (!status);
331 332
	}
}
333 334 335 336 337 338 339 340 341 342 343

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
344
	uint32_t r_count = 0;
345 346 347 348
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
349 350 351 352 353 354 355
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
356 357 358
	}

	/* configure and start prefetch transfer */
359 360
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
361 362 363
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
364
			omap_read_buf16(mtd, (u_char *)p, len);
365
		else
366
			omap_read_buf8(mtd, (u_char *)p, len);
367 368
	} else {
		do {
369
			r_count = readl(info->reg.gpmc_prefetch_status);
370
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
371 372
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
373 374 375 376
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
377
		omap_prefetch_reset(info->gpmc_cs, info);
378 379 380 381 382 383 384 385 386 387 388 389 390 391
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
392
	uint32_t w_count = 0;
393
	int i = 0, ret = 0;
394
	u16 *p = (u16 *)buf;
395
	unsigned long tim, limit;
396
	u32 val;
397 398 399

	/* take care of subpage writes */
	if (len % 2 != 0) {
400
		writeb(*buf, info->nand.IO_ADDR_W);
401 402 403 404 405
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
406 407
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
408 409 410
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
411
			omap_write_buf16(mtd, (u_char *)p, len);
412
		else
413
			omap_write_buf8(mtd, (u_char *)p, len);
414
	} else {
415
		while (len) {
416
			w_count = readl(info->reg.gpmc_prefetch_status);
417
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
418
			w_count = w_count >> 1;
419
			for (i = 0; (i < w_count) && len; i++, len -= 2)
420
				iowrite16(*p++, info->nand.IO_ADDR_W);
421
		}
422
		/* wait for data to flushed-out before reset the prefetch */
423 424 425
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
426
		do {
427
			cpu_relax();
428
			val = readl(info->reg.gpmc_prefetch_status);
429
			val = PREFETCH_STATUS_COUNT(val);
430
		} while (val && (tim++ < limit));
431

432
		/* disable and stop the PFPW engine */
433
		omap_prefetch_reset(info->gpmc_cs, info);
434 435 436
	}
}

437
/*
438
 * omap_nand_dma_callback: callback on the completion of dma transfer
439 440
 * @data: pointer to completion data structure
 */
441 442 443 444
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}
445 446

/*
447
 * omap_nand_dma_transfer: configure and start dma transfer
448 449 450 451 452 453 454 455 456 457
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = container_of(mtd,
					struct omap_nand_info, mtd);
458
	struct dma_async_tx_descriptor *tx;
459 460
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
461
	struct scatterlist sg;
462
	unsigned long tim, limit;
463 464
	unsigned n;
	int ret;
465
	u32 val;
466 467 468 469 470 471 472 473 474 475 476 477 478

	if (addr >= high_memory) {
		struct page *p1;

		if (((size_t)addr & PAGE_MASK) !=
			((size_t)(addr + len - 1) & PAGE_MASK))
			goto out_copy;
		p1 = vmalloc_to_page(addr);
		if (!p1)
			goto out_copy;
		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
	}

479 480 481
	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
482 483 484 485 486
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

487 488 489 490 491 492 493 494 495 496
	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

497 498 499
	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
500
	if (ret)
501
		/* PFPW engine is busy, use cpu copy method */
502
		goto out_copy_unmap;
503 504

	init_completion(&info->comp);
505
	dma_async_issue_pending(info->dma);
506 507 508

	/* setup and start DMA using dma_addr */
	wait_for_completion(&info->comp);
509 510
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
511 512

	do {
513
		cpu_relax();
514
		val = readl(info->reg.gpmc_prefetch_status);
515
		val = PREFETCH_STATUS_COUNT(val);
516
	} while (val && (tim++ < limit));
517 518

	/* disable and stop the PFPW engine */
519
	omap_prefetch_reset(info->gpmc_cs, info);
520

521
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
522 523
	return 0;

524
out_copy_unmap:
525
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_read_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	if (len <= mtd->oobsize)
		omap_write_buf_pref(mtd, buf, len);
	else
		/* start transfer in DMA mode */
564
		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
565 566
}

567
/*
568
 * omap_nand_irq - GPMC irq handler
569 570 571 572 573 574 575 576
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

577
	bytes = readl(info->reg.gpmc_prefetch_status);
578
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
579 580
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
581
		if (this_irq == info->gpmc_irq_count)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

598
		if (this_irq == info->gpmc_irq_count)
599 600 601 602 603 604 605 606
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

607 608
	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
635 636
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
637 638 639 640 641
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
642 643 644

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
645 646 647 648 649

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
650
	omap_prefetch_reset(info->gpmc_cs, info);
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
					const u_char *buf, int len)
{
	struct omap_nand_info *info = container_of(mtd,
						struct omap_nand_info, mtd);
	int ret = 0;
	unsigned long tim, limit;
673
	u32 val;
674 675 676 677 678 679 680 681 682 683

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(mtd, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

684
	/* configure and start prefetch transfer : size=24 */
685 686
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
687 688 689 690 691
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;
692 693 694

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);
695 696 697

	/* waiting for write to complete */
	wait_for_completion(&info->comp);
698

699 700 701
	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
702 703
	do {
		val = readl(info->reg.gpmc_prefetch_status);
704
		val = PREFETCH_STATUS_COUNT(val);
705
		cpu_relax();
706
	} while (val && (tim++ < limit));
707 708

	/* disable and stop the PFPW engine */
709
	omap_prefetch_reset(info->gpmc_cs, info);
710 711 712 713 714 715 716 717 718
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
747 748
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
827
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
828 829 830 831
		return -1;

	case 11:
		/* UN-Correctable error */
832
		pr_debug("ECC UNCORRECTED_ERROR B\n");
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		return -1;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

849 850
		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);
851 852 853

		page_data[find_byte] ^= (1 << find_bit);

854
		return 1;
855 856 857 858 859 860 861
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
862
		pr_debug("UNCORRECTED_ERROR default\n");
863 864 865 866 867 868 869 870 871 872 873 874
		return -1;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @mtd: MTD device structure
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
875 876 877 878 879
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
880 881 882 883 884 885 886
 */
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	int blockCnt = 0, i = 0, ret = 0;
887
	int stat = 0;
888 889 890 891 892 893 894 895 896 897 898 899 900

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
901 902
			/* keep track of the number of corrected errors */
			stat += ret;
903 904 905 906 907
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
908
	return stat;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @mtd: MTD device structure
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				u_char *ecc_code)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
928 929 930 931 932 933 934 935 936 937 938 939 940 941
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
942 943 944 945 946 947 948 949 950 951 952 953 954
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	struct nand_chip *chip = mtd->priv;
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
955 956 957 958 959
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}
979

980 981 982
	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
983
}
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd->priv;
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
	unsigned long timeo = jiffies;
1003
	int status, state = this->state;
1004 1005

	if (state == FL_ERASING)
T
Toan Pham 已提交
1006
		timeo += msecs_to_jiffies(400);
1007
	else
T
Toan Pham 已提交
1008
		timeo += msecs_to_jiffies(20);
1009

1010
	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1011
	while (time_before(jiffies, timeo)) {
1012
		status = readb(info->reg.gpmc_nand_data);
1013
		if (status & NAND_STATUS_READY)
1014
			break;
1015
		cond_resched();
1016
	}
1017

1018
	status = readb(info->reg.gpmc_nand_data);
1019 1020 1021 1022 1023 1024 1025 1026 1027
	return status;
}

/**
 * omap_dev_ready - calls the platform specific dev_ready function
 * @mtd: MTD device structure
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
1028
	unsigned int val = 0;
1029 1030 1031
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);

1032 1033
	val = readl(info->reg.gpmc_status);

1034
	if ((val & 0x100) == 0x100) {
1035
		return 1;
1036
	} else {
1037
		return 0;
1038 1039 1040
	}
}

1041
/**
1042
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1043 1044
 * @mtd: MTD device structure
 * @mode: Read/Write mode
1045 1046 1047 1048 1049 1050 1051
 *
 * When using BCH, sector size is hardcoded to 512 bytes.
 * Using wrapping mode 6 both for reading and writing if ELM module not uses
 * for error correction.
 * On writing,
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1052
 */
1053
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1054
{
1055
	unsigned int bch_type;
1056
	unsigned int dev_width, nsectors;
1057 1058
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1059
	enum omap_ecc ecc_opt = info->ecc_opt;
1060
	struct nand_chip *chip = mtd->priv;
1061 1062 1063
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

1064 1065 1066
	/* GPMC configurations for calculating ECC */
	switch (ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1067 1068
		bch_type = 0;
		nsectors = 1;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH4_CODE_HW:
1080 1081
		bch_type = 0;
		nsectors = chip->ecc.steps;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH4R_ECC_SIZE0;
			ecc_size1 = BCH4R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1093 1094
		bch_type = 1;
		nsectors = 1;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW:
1106 1107
		bch_type = 1;
		nsectors = chip->ecc.steps;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	default:
		return;
	}
1121 1122 1123

	writel(ECC1, info->reg.gpmc_ecc_control);

1124 1125
	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1126 1127
	writel(val, info->reg.gpmc_ecc_size_config);

1128 1129
	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

1130 1131
	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
1132
	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1133
	       (wr_mode                  <<  8) | /* wrap mode */
1134 1135 1136 1137 1138 1139 1140
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

1141
	/* Clear ecc and enable bits */
1142
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1143
}
1144

1145
static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1146 1147
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};
1148

1149
/**
1150
 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1151 1152 1153 1154 1155 1156
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8 ecc vectors for the page
 */
1157
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1158
					const u_char *dat, u_char *ecc_calc)
1159 1160 1161
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
						   mtd);
1162 1163 1164
	int eccbytes	= info->nand.ecc.bytes;
	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
	u8 *ecc_code;
1165
	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1166
	int i;
1167 1168 1169

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
1170 1171
		ecc_code = ecc_calc;
		switch (info->ecc_opt) {
1172
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1173 1174 1175 1176 1177
		case OMAP_ECC_BCH8_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			*ecc_code++ = (bch_val4 & 0xFF);
			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
			*ecc_code++ = (bch_val3 & 0xFF);
			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
			*ecc_code++ = (bch_val2 & 0xFF);
			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
			*ecc_code++ = (bch_val1 & 0xFF);
1191
			break;
1192
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1193 1194 1195
		case OMAP_ECC_BCH4_CODE_HW:
			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1196 1197 1198 1199 1200 1201 1202 1203
			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
				((bch_val1 >> 28) & 0xF);
			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1204 1205 1206
			break;
		default:
			return -EINVAL;
1207
		}
1208 1209 1210

		/* ECC scheme specific syndrome customizations */
		switch (info->ecc_opt) {
1211 1212 1213 1214 1215 1216
		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (i = 0; i < eccbytes; i++)
				ecc_calc[i] ^= bch4_polynomial[i];
			break;
1217 1218 1219 1220
		case OMAP_ECC_BCH4_CODE_HW:
			/* Set  8th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
1221 1222 1223 1224 1225 1226
		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
			/* Add constant polynomial to remainder, so that
			 * ECC of blank pages results in 0x0 on reading back */
			for (i = 0; i < eccbytes; i++)
				ecc_calc[i] ^= bch8_polynomial[i];
			break;
1227 1228 1229 1230 1231 1232 1233 1234 1235
		case OMAP_ECC_BCH8_CODE_HW:
			/* Set 14th ECC byte as 0x0 for ROM compatibility */
			ecc_calc[eccbytes - 1] = 0x0;
			break;
		default:
			return -EINVAL;
		}

	ecc_calc += eccbytes;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	}

	return 0;
}

/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

1280
#ifdef CONFIG_MTD_NAND_OMAP_BCH
1281 1282 1283 1284 1285 1286 1287 1288
/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @mtd:	MTD device structure
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
1289 1290
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
1291 1292 1293 1294 1295 1296
 */
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
				u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
			mtd);
1297
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1298 1299
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
1300
	int eccflag, actual_eccbytes;
1301 1302 1303 1304
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
1305 1306
	u_char *buf;
	int bitflip_count;
1307
	bool is_error_reported = false;
1308
	u32 bit_pos, byte_pos, error_max, pos;
1309
	int err;
1310

1311 1312 1313 1314
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1315
		erased_ecc_vec = bch4_vector;
1316 1317 1318 1319
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
1320
		erased_ecc_vec = bch8_vector;
1321 1322 1323 1324 1325 1326
		break;
	default:
		pr_err("invalid driver configuration\n");
		return -EINVAL;
	}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
1337
		for (j = 0; j < actual_eccbytes; j++) {
1338 1339 1340 1341 1342 1343 1344
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
1345 1346
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
1347
				/*
1348 1349
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
1350 1351
				 */
			} else {
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
1375 1376 1377 1378 1379
				}
			}
		}

		/* Update the ecc vector */
1380 1381
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
1382 1383 1384 1385 1386 1387 1388 1389 1390
	}

	/* Check if any error reported */
	if (!is_error_reported)
		return 0;

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

1391
	err = 0;
1392
	for (i = 0; i < eccsteps; i++) {
1393 1394 1395 1396
		if (err_vec[i].error_uncorrectable) {
			pr_err("nand: uncorrectable bit-flips found\n");
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
1397
			for (j = 0; j < err_vec[i].error_count; j++) {
1398 1399 1400
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
1401 1402
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
1403 1404 1405 1406 1407 1408 1409 1410
					break;
				case OMAP_ECC_BCH8_CODE_HW:
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
1411 1412 1413 1414 1415 1416 1417
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
1418 1419 1420
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
1421
						data[byte_pos] ^= 1 << bit_pos;
1422 1423 1424 1425
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
1426 1427
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
1428 1429 1430 1431 1432
					}
				} else {
					pr_err("invalid bit-flip @ %d:%d\n",
							 byte_pos, bit_pos);
					err = -EBADMSG;
1433 1434 1435 1436 1437 1438 1439 1440
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
1441
		data += ecc->size;
1442
		spare_ecc += ecc->bytes;
1443 1444
	}

1445
	return (err) ? err : stat;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required)
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(mtd, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	/* Write ecc vector to OOB area */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @mtd:		mtd info structure
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *oob = &chip->oob_poi[eccpos[0]];
	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
	int stat;
	unsigned int max_bitflips = 0;

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(mtd, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(mtd, buf, mtd->writesize);

	/* Read oob bytes */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
	chip->read_buf(mtd, oob, chip->ecc.total);

	/* Calculate ecc bytes */
	chip->ecc.calculate(mtd, buf, ecc_calc);

	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);

	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

1534
/**
1535 1536 1537
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1538
 */
1539 1540
static int is_elm_present(struct omap_nand_info *info,
			struct device_node *elm_node, enum bch_ecc bch_type)
1541
{
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	struct platform_device *pdev;
	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		pr_err("nand: error: ELM DT node not found\n");
		return -ENODEV;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		pr_err("nand: error: ELM device not found\n");
		return -ENODEV;
1553
	}
1554 1555 1556 1557 1558
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
	if (elm_config(info->elm_dev, bch_type))
		return -ENODEV;
	return 0;
1559
}
1560
#endif /* CONFIG_MTD_NAND_ECC_BCH */
1561

B
Bill Pemberton 已提交
1562
static int omap_nand_probe(struct platform_device *pdev)
1563 1564 1565
{
	struct omap_nand_info		*info;
	struct omap_nand_platform_data	*pdata;
1566 1567
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
1568
	struct nand_ecclayout		*ecclayout;
1569
	int				err;
1570
	int				i;
1571 1572
	dma_cap_mask_t			mask;
	unsigned			sig;
1573
	unsigned			oob_index;
1574
	struct resource			*res;
1575
	struct mtd_part_parser_data	ppdata = {};
1576

J
Jingoo Han 已提交
1577
	pdata = dev_get_platdata(&pdev->dev);
1578 1579 1580 1581 1582
	if (pdata == NULL) {
		dev_err(&pdev->dev, "platform data missing\n");
		return -ENODEV;
	}

1583 1584
	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
1585 1586 1587 1588 1589 1590 1591 1592
	if (!info)
		return -ENOMEM;

	platform_set_drvdata(pdev, info);

	spin_lock_init(&info->controller.lock);
	init_waitqueue_head(&info->controller.wq);

1593
	info->pdev		= pdev;
1594
	info->gpmc_cs		= pdata->cs;
1595
	info->reg		= pdata->reg;
1596
	info->of_node		= pdata->of_node;
1597
	info->ecc_opt		= pdata->ecc_opt;
1598 1599 1600 1601 1602
	mtd			= &info->mtd;
	mtd->priv		= &info->nand;
	mtd->name		= dev_name(&pdev->dev);
	mtd->owner		= THIS_MODULE;
	nand_chip		= &info->nand;
1603
	nand_chip->ecc.priv	= NULL;
1604
	nand_chip->options	|= NAND_SKIP_BBTSCAN;
1605

1606 1607 1608 1609
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res == NULL) {
		err = -EINVAL;
		dev_err(&pdev->dev, "error getting memory resource\n");
1610
		goto return_error;
1611
	}
1612

1613 1614 1615
	info->phys_base = res->start;
	info->mem_size = resource_size(res);

1616 1617
	if (!devm_request_mem_region(&pdev->dev, info->phys_base,
				info->mem_size,	pdev->dev.driver->name)) {
1618
		err = -EBUSY;
1619
		goto return_error;
1620 1621
	}

1622 1623
	nand_chip->IO_ADDR_R = devm_ioremap(&pdev->dev, info->phys_base,
						info->mem_size);
1624
	if (!nand_chip->IO_ADDR_R) {
1625
		err = -ENOMEM;
1626
		goto return_error;
1627
	}
1628

1629
	nand_chip->controller = &info->controller;
1630

1631 1632
	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;
1633 1634 1635

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
1636 1637
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1638 1639 1640 1641
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (pdata->dev_ready) {
1642 1643
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
1644
	} else {
1645 1646
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
1647 1648
	}

1649 1650 1651 1652 1653
	/* scan NAND device connected to chip controller */
	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
	if (nand_scan_ident(mtd, 1, NULL)) {
		pr_err("nand device scan failed, may be bus-width mismatch\n");
		err = -ENXIO;
1654
		goto return_error;
1655 1656
	}

1657 1658 1659 1660
	/* check for small page devices */
	if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
		pr_err("small page devices are not supported\n");
		err = -EINVAL;
1661
		goto return_error;
1662 1663
	}

1664
	/* re-populate low-level callbacks based on xfer modes */
1665 1666
	switch (pdata->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
1667 1668
		nand_chip->read_buf   = omap_read_buf_pref;
		nand_chip->write_buf  = omap_write_buf_pref;
1669 1670 1671
		break;

	case NAND_OMAP_POLLED:
1672
		/* Use nand_base defaults for {read,write}_buf */
1673 1674 1675
		break;

	case NAND_OMAP_PREFETCH_DMA:
1676 1677 1678 1679 1680
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		sig = OMAP24XX_DMA_GPMC;
		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
		if (!info->dma) {
1681 1682
			dev_err(&pdev->dev, "DMA engine request failed\n");
			err = -ENXIO;
1683
			goto return_error;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
1694 1695
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
1696
				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1697
					err);
1698
				goto return_error;
1699
			}
1700 1701
			nand_chip->read_buf   = omap_read_buf_dma_pref;
			nand_chip->write_buf  = omap_write_buf_dma_pref;
1702 1703 1704
		}
		break;

1705
	case NAND_OMAP_PREFETCH_IRQ:
1706 1707 1708 1709
		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(&pdev->dev, "error getting fifo irq\n");
			err = -ENODEV;
1710
			goto return_error;
1711
		}
1712 1713 1714
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-fifo", info);
1715 1716
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1717 1718
						info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
1719
			goto return_error;
1720 1721 1722 1723 1724 1725
		}

		info->gpmc_irq_count = platform_get_irq(pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(&pdev->dev, "error getting count irq\n");
			err = -ENODEV;
1726
			goto return_error;
1727
		}
1728 1729 1730
		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
					omap_nand_irq, IRQF_SHARED,
					"gpmc-nand-count", info);
1731 1732 1733 1734
		if (err) {
			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
						info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
1735
			goto return_error;
1736
		}
1737

1738 1739
		nand_chip->read_buf  = omap_read_buf_irq_pref;
		nand_chip->write_buf = omap_write_buf_irq_pref;
1740

1741 1742
		break;

1743 1744 1745 1746
	default:
		dev_err(&pdev->dev,
			"xfer_type(%d) not supported!\n", pdata->xfer_type);
		err = -EINVAL;
1747
		goto return_error;
1748 1749
	}

1750
	/* populate MTD interface based on ECC scheme */
1751 1752
	nand_chip->ecc.layout	= &omap_oobinfo;
	ecclayout		= &omap_oobinfo;
1753
	switch (info->ecc_opt) {
1754 1755 1756
	case OMAP_ECC_HAM1_CODE_HW:
		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
		nand_chip->ecc.mode             = NAND_ECC_HW;
1757 1758 1759 1760 1761 1762
		nand_chip->ecc.bytes            = 3;
		nand_chip->ecc.size             = 512;
		nand_chip->ecc.strength         = 1;
		nand_chip->ecc.calculate        = omap_calculate_ecc;
		nand_chip->ecc.hwctl            = omap_enable_hwecc;
		nand_chip->ecc.correct          = omap_correct_data;
1763 1764 1765 1766 1767
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
		if (nand_chip->options & NAND_BUSWIDTH_16)
1768
			oob_index		= BADBLOCK_MARKER_LENGTH;
1769
		else
1770 1771 1772
			oob_index		= 1;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1773 1774 1775
		/* no reserved-marker in ecclayout for this ecc-scheme */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1776 1777 1778 1779 1780 1781 1782 1783 1784
		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 7;
		nand_chip->ecc.strength		= 4;
1785
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1786
		nand_chip->ecc.correct		= nand_bch_correct_data;
1787
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1788 1789 1790 1791
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1792 1793 1794 1795 1796 1797
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1798 1799 1800
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1801
		/* software bch library is used for locating errors */
1802 1803 1804 1805 1806
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1807
			pr_err("nand: error: unable to use s/w BCH library\n");
1808
			err = -EINVAL;
1809 1810 1811 1812 1813
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1814
		goto return_error;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
#endif

	case OMAP_ECC_BCH4_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 7 + 1;
		nand_chip->ecc.strength		= 4;
1825
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1826
		nand_chip->ecc.correct		= omap_elm_correct_data;
1827
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1828 1829
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
1830 1831 1832 1833
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1834 1835 1836
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1837 1838 1839
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1840 1841 1842 1843
		/* This ECC scheme requires ELM H/W block */
		if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
			pr_err("nand: error: could not initialize ELM\n");
			err = -ENODEV;
1844
			goto return_error;
1845
		}
1846 1847 1848 1849
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1850
		goto return_error;
1851 1852 1853 1854 1855 1856 1857 1858 1859
#endif

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		nand_chip->ecc.bytes		= 13;
		nand_chip->ecc.strength		= 8;
1860
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1861
		nand_chip->ecc.correct		= nand_bch_correct_data;
1862
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1863 1864 1865 1866
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1867 1868 1869 1870 1871 1872
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
			ecclayout->eccpos[i] = oob_index;
			if (((i + 1) % nand_chip->ecc.bytes) == 0)
				oob_index++;
		}
1873 1874 1875
		/* include reserved-marker in ecclayout->oobfree calculation */
		ecclayout->oobfree->offset	= 1 +
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1876
		/* software bch library is used for locating errors */
1877 1878 1879 1880 1881
		nand_chip->ecc.priv		= nand_bch_init(mtd,
							nand_chip->ecc.size,
							nand_chip->ecc.bytes,
							&nand_chip->ecc.layout);
		if (!nand_chip->ecc.priv) {
1882 1883
			pr_err("nand: error: unable to use s/w BCH library\n");
			err = -EINVAL;
1884
			goto return_error;
1885 1886 1887 1888 1889
		}
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		err = -EINVAL;
1890
		goto return_error;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
#endif

	case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		nand_chip->ecc.mode		= NAND_ECC_HW;
		nand_chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		nand_chip->ecc.bytes		= 13 + 1;
		nand_chip->ecc.strength		= 8;
1901
		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1902
		nand_chip->ecc.correct		= omap_elm_correct_data;
1903
		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1904 1905 1906
		nand_chip->ecc.read_page	= omap_read_page_bch;
		nand_chip->ecc.write_page	= omap_write_page_bch;
		/* This ECC scheme requires ELM H/W block */
1907 1908
		err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
		if (err < 0) {
1909
			pr_err("nand: error: could not initialize ELM\n");
1910
			goto return_error;
1911
		}
1912 1913 1914 1915
		/* define ECC layout */
		ecclayout->eccbytes		= nand_chip->ecc.bytes *
							(mtd->writesize /
							nand_chip->ecc.size);
1916 1917 1918
		oob_index			= BADBLOCK_MARKER_LENGTH;
		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
			ecclayout->eccpos[i]	= oob_index;
1919 1920 1921
		/* reserved marker already included in ecclayout->eccbytes */
		ecclayout->oobfree->offset	=
				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1922 1923 1924 1925
		break;
#else
		pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		err = -EINVAL;
1926
		goto return_error;
1927 1928 1929 1930 1931
#endif

	default:
		pr_err("nand: error: invalid or unsupported ECC scheme\n");
		err = -EINVAL;
1932
		goto return_error;
1933
	}
1934

1935 1936
	/* all OOB bytes from oobfree->offset till end off OOB are free */
	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1937 1938 1939 1940 1941
	/* check if NAND device's OOB is enough to store ECC signatures */
	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
		pr_err("not enough OOB bytes required = %d, available=%d\n",
					   ecclayout->eccbytes, mtd->oobsize);
		err = -EINVAL;
1942
		goto return_error;
1943
	}
1944

1945
	/* second phase scan */
1946
	if (nand_scan_tail(mtd)) {
1947
		err = -ENXIO;
1948
		goto return_error;
1949 1950
	}

1951
	ppdata.of_node = pdata->of_node;
1952
	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
1953
				  pdata->nr_parts);
1954

1955
	platform_set_drvdata(pdev, mtd);
1956 1957 1958

	return 0;

1959
return_error:
1960 1961
	if (info->dma)
		dma_release_channel(info->dma);
1962 1963 1964 1965
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
1966 1967 1968 1969 1970 1971
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
1972
	struct nand_chip *nand_chip = mtd->priv;
1973 1974
	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
							mtd);
1975 1976 1977 1978
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
1979 1980
	if (info->dma)
		dma_release_channel(info->dma);
1981
	nand_release(mtd);
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	return 0;
}

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
	},
};

1994
module_platform_driver(omap_nand_driver);
1995

1996
MODULE_ALIAS("platform:" DRIVER_NAME);
1997 1998
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");