dir.c 42.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
/*
 * fs/kernfs/dir.c - kernfs directory implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 */
9

10
#include <linux/sched.h>
11 12 13 14 15 16 17 18 19
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>

#include "kernfs-internal.h"

20
DEFINE_MUTEX(kernfs_mutex);
21 22
static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23
static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24

25
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26

T
Tejun Heo 已提交
27 28 29 30 31 32
static bool kernfs_active(struct kernfs_node *kn)
{
	lockdep_assert_held(&kernfs_mutex);
	return atomic_read(&kn->active) >= 0;
}

33 34 35 36 37 38 39 40 41
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	return kn->flags & KERNFS_LOCKDEP;
#else
	return false;
#endif
}

42 43
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
44 45 46
	if (!kn)
		return strlcpy(buf, "(null)", buflen);

47 48 49
	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}

50 51
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52
{
53
	size_t depth = 0;
54

55 56 57 58 59 60
	while (to->parent && to != from) {
		depth++;
		to = to->parent;
	}
	return depth;
}
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
						  struct kernfs_node *b)
{
	size_t da, db;
	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);

	if (ra != rb)
		return NULL;

	da = kernfs_depth(ra->kn, a);
	db = kernfs_depth(rb->kn, b);

	while (da > db) {
		a = a->parent;
		da--;
	}
	while (db > da) {
		b = b->parent;
		db--;
	}

	/* worst case b and a will be the same at root */
	while (b != a) {
		b = b->parent;
		a = a->parent;
	}

	return a;
}

/**
 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 * where kn_from is treated as root of the path.
 * @kn_from: kernfs node which should be treated as root for the path
 * @kn_to: kernfs node to which path is needed
 * @buf: buffer to copy the path into
 * @buflen: size of @buf
 *
 * We need to handle couple of scenarios here:
 * [1] when @kn_from is an ancestor of @kn_to at some level
 * kn_from: /n1/n2/n3
 * kn_to:   /n1/n2/n3/n4/n5
 * result:  /n4/n5
 *
 * [2] when @kn_from is on a different hierarchy and we need to find common
 * ancestor between @kn_from and @kn_to.
 * kn_from: /n1/n2/n3/n4
 * kn_to:   /n1/n2/n5
 * result:  /../../n5
 * OR
 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 * kn_to:   /n1/n2/n3         [depth=3]
 * result:  /../..
 *
116 117
 * [3] when @kn_to is NULL result will be "(null)"
 *
118 119 120
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
121 122 123 124 125 126 127
 */
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
					struct kernfs_node *kn_from,
					char *buf, size_t buflen)
{
	struct kernfs_node *kn, *common;
	const char parent_str[] = "/..";
128 129
	size_t depth_from, depth_to, len = 0;
	int i, j;
130

131 132 133
	if (!kn_to)
		return strlcpy(buf, "(null)", buflen);

134 135 136 137 138 139
	if (!kn_from)
		kn_from = kernfs_root(kn_to)->kn;

	if (kn_from == kn_to)
		return strlcpy(buf, "/", buflen);

140 141 142
	if (!buf)
		return -EINVAL;

143 144
	common = kernfs_common_ancestor(kn_from, kn_to);
	if (WARN_ON(!common))
145
		return -EINVAL;
146 147 148 149

	depth_to = kernfs_depth(common, kn_to);
	depth_from = kernfs_depth(common, kn_from);

150
	buf[0] = '\0';
151 152 153 154 155 156

	for (i = 0; i < depth_from; i++)
		len += strlcpy(buf + len, parent_str,
			       len < buflen ? buflen - len : 0);

	/* Calculate how many bytes we need for the rest */
157 158 159 160 161 162 163
	for (i = depth_to - 1; i >= 0; i--) {
		for (kn = kn_to, j = 0; j < i; j++)
			kn = kn->parent;
		len += strlcpy(buf + len, "/",
			       len < buflen ? buflen - len : 0);
		len += strlcpy(buf + len, kn->name,
			       len < buflen ? buflen - len : 0);
164
	}
165

166
	return len;
167 168 169 170 171 172 173 174 175 176 177 178
}

/**
 * kernfs_name - obtain the name of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 *
179 180
 * Fills buffer with "(null)" if @kn is NULL.
 *
181 182 183 184 185 186 187 188 189 190 191 192 193
 * This function can be called from any context.
 */
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_name_locked(kn, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}

194 195 196 197 198 199 200 201 202 203 204 205
/**
 * kernfs_path_from_node - build path of node @to relative to @from.
 * @from: parent kernfs_node relative to which we need to build the path
 * @to: kernfs_node of interest
 * @buf: buffer to copy @to's path into
 * @buflen: size of @buf
 *
 * Builds @to's path relative to @from in @buf. @from and @to must
 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 * path (which includes '..'s) as needed to reach from @from to @to is
 * returned.
 *
206 207 208
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
209 210 211 212 213 214 215 216 217 218 219 220 221 222
 */
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
			  char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/**
 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
	pr_cont("%s", kernfs_pr_cont_buf);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
	unsigned long flags;
250
	int sz;
251 252 253

	spin_lock_irqsave(&kernfs_rename_lock, flags);

254 255 256 257 258 259 260 261 262 263 264 265 266
	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
					  sizeof(kernfs_pr_cont_buf));
	if (sz < 0) {
		pr_cont("(error)");
		goto out;
	}

	if (sz >= sizeof(kernfs_pr_cont_buf)) {
		pr_cont("(name too long)");
		goto out;
	}

	pr_cont("%s", kernfs_pr_cont_buf);
267

268
out:
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * kernfs_get_parent - determine the parent node and pin it
 * @kn: kernfs_node of interest
 *
 * Determines @kn's parent, pins and returns it.  This function can be
 * called from any context.
 */
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
	struct kernfs_node *parent;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	parent = kn->parent;
	kernfs_get(parent);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return parent;
}

292
/**
293
 *	kernfs_name_hash
294 295 296 297 298
 *	@name: Null terminated string to hash
 *	@ns:   Namespace tag to hash
 *
 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 */
299
static unsigned int kernfs_name_hash(const char *name, const void *ns)
300
{
301
	unsigned long hash = init_name_hash(ns);
302 303 304
	unsigned int len = strlen(name);
	while (len--)
		hash = partial_name_hash(*name++, hash);
305
	hash = end_name_hash(hash);
306 307
	hash &= 0x7fffffffU;
	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
R
Richard Cochran 已提交
308
	if (hash < 2)
309 310 311 312 313 314
		hash += 2;
	if (hash >= INT_MAX)
		hash = INT_MAX - 1;
	return hash;
}

315 316
static int kernfs_name_compare(unsigned int hash, const char *name,
			       const void *ns, const struct kernfs_node *kn)
317
{
318 319 320 321 322 323 324 325
	if (hash < kn->hash)
		return -1;
	if (hash > kn->hash)
		return 1;
	if (ns < kn->ns)
		return -1;
	if (ns > kn->ns)
		return 1;
326
	return strcmp(name, kn->name);
327 328
}

329 330
static int kernfs_sd_compare(const struct kernfs_node *left,
			     const struct kernfs_node *right)
331
{
332
	return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 334 335
}

/**
336
 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
337
 *	@kn: kernfs_node of interest
338
 *
339
 *	Link @kn into its sibling rbtree which starts from
340
 *	@kn->parent->dir.children.
341 342
 *
 *	Locking:
343
 *	mutex_lock(kernfs_mutex)
344 345 346 347
 *
 *	RETURNS:
 *	0 on susccess -EEXIST on failure.
 */
348
static int kernfs_link_sibling(struct kernfs_node *kn)
349
{
350
	struct rb_node **node = &kn->parent->dir.children.rb_node;
351 352 353
	struct rb_node *parent = NULL;

	while (*node) {
354
		struct kernfs_node *pos;
355 356
		int result;

357
		pos = rb_to_kn(*node);
358
		parent = *node;
359
		result = kernfs_sd_compare(kn, pos);
360
		if (result < 0)
361
			node = &pos->rb.rb_left;
362
		else if (result > 0)
363
			node = &pos->rb.rb_right;
364 365 366
		else
			return -EEXIST;
	}
J
Jianyu Zhan 已提交
367

368
	/* add new node and rebalance the tree */
369 370
	rb_link_node(&kn->rb, parent, node);
	rb_insert_color(&kn->rb, &kn->parent->dir.children);
J
Jianyu Zhan 已提交
371 372 373 374 375

	/* successfully added, account subdir number */
	if (kernfs_type(kn) == KERNFS_DIR)
		kn->parent->dir.subdirs++;

376 377 378 379
	return 0;
}

/**
380
 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381
 *	@kn: kernfs_node of interest
382
 *
383 384 385
 *	Try to unlink @kn from its sibling rbtree which starts from
 *	kn->parent->dir.children.  Returns %true if @kn was actually
 *	removed, %false if @kn wasn't on the rbtree.
386 387
 *
 *	Locking:
388
 *	mutex_lock(kernfs_mutex)
389
 */
390
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391
{
392 393 394
	if (RB_EMPTY_NODE(&kn->rb))
		return false;

T
Tejun Heo 已提交
395
	if (kernfs_type(kn) == KERNFS_DIR)
396
		kn->parent->dir.subdirs--;
397

398
	rb_erase(&kn->rb, &kn->parent->dir.children);
399 400
	RB_CLEAR_NODE(&kn->rb);
	return true;
401 402 403
}

/**
404
 *	kernfs_get_active - get an active reference to kernfs_node
405
 *	@kn: kernfs_node to get an active reference to
406
 *
407
 *	Get an active reference of @kn.  This function is noop if @kn
408 409 410
 *	is NULL.
 *
 *	RETURNS:
411
 *	Pointer to @kn on success, NULL on failure.
412
 */
413
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
414
{
415
	if (unlikely(!kn))
416 417
		return NULL;

418 419
	if (!atomic_inc_unless_negative(&kn->active))
		return NULL;
420

421
	if (kernfs_lockdep(kn))
422 423
		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
	return kn;
424 425 426
}

/**
427
 *	kernfs_put_active - put an active reference to kernfs_node
428
 *	@kn: kernfs_node to put an active reference to
429
 *
430
 *	Put an active reference to @kn.  This function is noop if @kn
431 432
 *	is NULL.
 */
433
void kernfs_put_active(struct kernfs_node *kn)
434 435 436
{
	int v;

437
	if (unlikely(!kn))
438 439
		return;

440
	if (kernfs_lockdep(kn))
441
		rwsem_release(&kn->dep_map, _RET_IP_);
442
	v = atomic_dec_return(&kn->active);
T
Tejun Heo 已提交
443
	if (likely(v != KN_DEACTIVATED_BIAS))
444 445
		return;

446
	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
447 448 449
}

/**
T
Tejun Heo 已提交
450 451
 * kernfs_drain - drain kernfs_node
 * @kn: kernfs_node to drain
452
 *
T
Tejun Heo 已提交
453 454 455
 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 * removers may invoke this function concurrently on @kn and all will
 * return after draining is complete.
456
 */
T
Tejun Heo 已提交
457
static void kernfs_drain(struct kernfs_node *kn)
458
	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459
{
460
	struct kernfs_root *root = kernfs_root(kn);
461

462
	lockdep_assert_held(&kernfs_mutex);
T
Tejun Heo 已提交
463
	WARN_ON_ONCE(kernfs_active(kn));
464

465
	mutex_unlock(&kernfs_mutex);
466

467
	if (kernfs_lockdep(kn)) {
468 469 470 471
		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
			lock_contended(&kn->dep_map, _RET_IP_);
	}
472

473
	/* but everyone should wait for draining */
474 475
	wait_event(root->deactivate_waitq,
		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476

477
	if (kernfs_lockdep(kn)) {
478
		lock_acquired(&kn->dep_map, _RET_IP_);
479
		rwsem_release(&kn->dep_map, _RET_IP_);
480
	}
481

482
	kernfs_drain_open_files(kn);
483

484
	mutex_lock(&kernfs_mutex);
485 486 487
}

/**
488 489
 * kernfs_get - get a reference count on a kernfs_node
 * @kn: the target kernfs_node
490
 */
491
void kernfs_get(struct kernfs_node *kn)
492
{
493
	if (kn) {
494 495
		WARN_ON(!atomic_read(&kn->count));
		atomic_inc(&kn->count);
496 497 498 499 500
	}
}
EXPORT_SYMBOL_GPL(kernfs_get);

/**
501 502
 * kernfs_put - put a reference count on a kernfs_node
 * @kn: the target kernfs_node
503
 *
504
 * Put a reference count of @kn and destroy it if it reached zero.
505
 */
506
void kernfs_put(struct kernfs_node *kn)
507
{
508
	struct kernfs_node *parent;
509
	struct kernfs_root *root;
510

511
	if (!kn || !atomic_dec_and_test(&kn->count))
512
		return;
513
	root = kernfs_root(kn);
514
 repeat:
T
Tejun Heo 已提交
515 516
	/*
	 * Moving/renaming is always done while holding reference.
517
	 * kn->parent won't change beneath us.
518
	 */
519
	parent = kn->parent;
520

T
Tejun Heo 已提交
521 522 523
	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
524

T
Tejun Heo 已提交
525
	if (kernfs_type(kn) == KERNFS_LINK)
526
		kernfs_put(kn->symlink.target_kn);
T
Tejun Heo 已提交
527 528 529

	kfree_const(kn->name);

530 531
	if (kn->iattr) {
		simple_xattrs_free(&kn->iattr->xattrs);
532
		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
533
	}
534
	spin_lock(&kernfs_idr_lock);
535
	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
536
	spin_unlock(&kernfs_idr_lock);
537
	kmem_cache_free(kernfs_node_cache, kn);
538

539 540
	kn = parent;
	if (kn) {
541
		if (atomic_dec_and_test(&kn->count))
542 543
			goto repeat;
	} else {
544
		/* just released the root kn, free @root too */
545
		idr_destroy(&root->ino_idr);
546 547
		kfree(root);
	}
548 549 550
}
EXPORT_SYMBOL_GPL(kernfs_put);

551
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
552
{
553
	struct kernfs_node *kn;
554 555 556 557

	if (flags & LOOKUP_RCU)
		return -ECHILD;

T
Tejun Heo 已提交
558
	/* Always perform fresh lookup for negatives */
559
	if (d_really_is_negative(dentry))
T
Tejun Heo 已提交
560 561
		goto out_bad_unlocked;

S
Shaohua Li 已提交
562
	kn = kernfs_dentry_node(dentry);
563
	mutex_lock(&kernfs_mutex);
564

T
Tejun Heo 已提交
565 566
	/* The kernfs node has been deactivated */
	if (!kernfs_active(kn))
567 568
		goto out_bad;

569
	/* The kernfs node has been moved? */
S
Shaohua Li 已提交
570
	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
571 572
		goto out_bad;

573
	/* The kernfs node has been renamed */
574
	if (strcmp(dentry->d_name.name, kn->name) != 0)
575 576
		goto out_bad;

577
	/* The kernfs node has been moved to a different namespace */
578
	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579
	    kernfs_info(dentry->d_sb)->ns != kn->ns)
580 581
		goto out_bad;

582
	mutex_unlock(&kernfs_mutex);
583 584
	return 1;
out_bad:
585
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
586
out_bad_unlocked:
587 588 589
	return 0;
}

590
const struct dentry_operations kernfs_dops = {
591
	.d_revalidate	= kernfs_dop_revalidate,
592 593
};

594 595 596 597 598 599 600 601 602 603 604 605 606
/**
 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 * @dentry: the dentry in question
 *
 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 * kernfs one, %NULL is returned.
 *
 * While the returned kernfs_node will stay accessible as long as @dentry
 * is accessible, the returned node can be in any state and the caller is
 * fully responsible for determining what's accessible.
 */
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
S
Shaohua Li 已提交
607 608 609
	if (dentry->d_sb->s_op == &kernfs_sops &&
	    !d_really_is_negative(dentry))
		return kernfs_dentry_node(dentry);
610 611 612
	return NULL;
}

613
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
614
					     struct kernfs_node *parent,
615
					     const char *name, umode_t mode,
616
					     kuid_t uid, kgid_t gid,
617
					     unsigned flags)
618
{
619
	struct kernfs_node *kn;
620
	u32 id_highbits;
621
	int ret;
622

T
Tejun Heo 已提交
623 624 625
	name = kstrdup_const(name, GFP_KERNEL);
	if (!name)
		return NULL;
626

627
	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
628
	if (!kn)
629 630
		goto err_out1;

631 632
	idr_preload(GFP_KERNEL);
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
633
	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
634 635 636 637
	if (ret >= 0 && ret < root->last_id_lowbits)
		root->id_highbits++;
	id_highbits = root->id_highbits;
	root->last_id_lowbits = ret;
638 639
	spin_unlock(&kernfs_idr_lock);
	idr_preload_end();
640
	if (ret < 0)
641
		goto err_out2;
642

643
	kn->id = (u64)id_highbits << 32 | ret;
644

645
	atomic_set(&kn->count, 1);
T
Tejun Heo 已提交
646
	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
647
	RB_CLEAR_NODE(&kn->rb);
648

649 650
	kn->name = name;
	kn->mode = mode;
T
Tejun Heo 已提交
651
	kn->flags = flags;
652

653 654 655 656 657 658 659 660 661 662 663 664
	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
		struct iattr iattr = {
			.ia_valid = ATTR_UID | ATTR_GID,
			.ia_uid = uid,
			.ia_gid = gid,
		};

		ret = __kernfs_setattr(kn, &iattr);
		if (ret < 0)
			goto err_out3;
	}

665 666 667 668 669 670
	if (parent) {
		ret = security_kernfs_init_security(parent, kn);
		if (ret)
			goto err_out3;
	}

671
	return kn;
672

673
 err_out3:
674
	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
675
 err_out2:
676
	kmem_cache_free(kernfs_node_cache, kn);
677
 err_out1:
T
Tejun Heo 已提交
678
	kfree_const(name);
679 680 681
	return NULL;
}

682 683
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
				    const char *name, umode_t mode,
684
				    kuid_t uid, kgid_t gid,
685 686 687 688
				    unsigned flags)
{
	struct kernfs_node *kn;

689
	kn = __kernfs_new_node(kernfs_root(parent), parent,
690
			       name, mode, uid, gid, flags);
691 692 693 694 695 696 697
	if (kn) {
		kernfs_get(parent);
		kn->parent = parent;
	}
	return kn;
}

698
/*
699
 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
700
 * @root: the kernfs root
701 702 703 704
 * @id: the target node id
 *
 * @id's lower 32bits encode ino and upper gen.  If the gen portion is
 * zero, all generations are matched.
705 706 707 708
 *
 * RETURNS:
 * NULL on failure. Return a kernfs node with reference counter incremented
 */
709 710
struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
						   u64 id)
711 712
{
	struct kernfs_node *kn;
713 714
	ino_t ino = kernfs_id_ino(id);
	u32 gen = kernfs_id_gen(id);
715

716 717
	spin_lock(&kernfs_idr_lock);

718
	kn = idr_find(&root->ino_idr, (u32)ino);
719
	if (!kn)
720
		goto err_unlock;
721

722 723 724 725 726 727 728 729 730
	if (sizeof(ino_t) >= sizeof(u64)) {
		/* we looked up with the low 32bits, compare the whole */
		if (kernfs_ino(kn) != ino)
			goto err_unlock;
	} else {
		/* 0 matches all generations */
		if (unlikely(gen && kernfs_gen(kn) != gen))
			goto err_unlock;
	}
731

732 733 734 735 736 737 738
	/*
	 * ACTIVATED is protected with kernfs_mutex but it was clear when
	 * @kn was added to idr and we just wanna see it set.  No need to
	 * grab kernfs_mutex.
	 */
	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
		     !atomic_inc_not_zero(&kn->count)))
739
		goto err_unlock;
740

741
	spin_unlock(&kernfs_idr_lock);
742
	return kn;
743 744
err_unlock:
	spin_unlock(&kernfs_idr_lock);
745 746 747
	return NULL;
}

748
/**
749
 *	kernfs_add_one - add kernfs_node to parent without warning
750
 *	@kn: kernfs_node to be added
751
 *
752 753 754
 *	The caller must already have initialized @kn->parent.  This
 *	function increments nlink of the parent's inode if @kn is a
 *	directory and link into the children list of the parent.
755 756 757 758 759
 *
 *	RETURNS:
 *	0 on success, -EEXIST if entry with the given name already
 *	exists.
 */
T
Tejun Heo 已提交
760
int kernfs_add_one(struct kernfs_node *kn)
761
{
762
	struct kernfs_node *parent = kn->parent;
763
	struct kernfs_iattrs *ps_iattr;
T
Tejun Heo 已提交
764
	bool has_ns;
765 766
	int ret;

T
Tejun Heo 已提交
767 768 769 770 771 772 773
	mutex_lock(&kernfs_mutex);

	ret = -EINVAL;
	has_ns = kernfs_ns_enabled(parent);
	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
		 has_ns ? "required" : "invalid", parent->name, kn->name))
		goto out_unlock;
774

T
Tejun Heo 已提交
775
	if (kernfs_type(parent) != KERNFS_DIR)
T
Tejun Heo 已提交
776
		goto out_unlock;
777

T
Tejun Heo 已提交
778
	ret = -ENOENT;
779 780 781
	if (parent->flags & KERNFS_EMPTY_DIR)
		goto out_unlock;

782
	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
T
Tejun Heo 已提交
783
		goto out_unlock;
784

785
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
786

787
	ret = kernfs_link_sibling(kn);
788
	if (ret)
T
Tejun Heo 已提交
789
		goto out_unlock;
790 791

	/* Update timestamps on the parent */
792
	ps_iattr = parent->iattr;
793
	if (ps_iattr) {
794 795
		ktime_get_real_ts64(&ps_iattr->ia_ctime);
		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
796 797
	}

798 799 800 801 802 803 804 805 806 807 808 809 810
	mutex_unlock(&kernfs_mutex);

	/*
	 * Activate the new node unless CREATE_DEACTIVATED is requested.
	 * If not activated here, the kernfs user is responsible for
	 * activating the node with kernfs_activate().  A node which hasn't
	 * been activated is not visible to userland and its removal won't
	 * trigger deactivation.
	 */
	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);
	return 0;

T
Tejun Heo 已提交
811
out_unlock:
812
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
813
	return ret;
814 815 816
}

/**
817 818
 * kernfs_find_ns - find kernfs_node with the given name
 * @parent: kernfs_node to search under
819 820 821
 * @name: name to look for
 * @ns: the namespace tag to use
 *
822 823
 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 * the found kernfs_node on success, %NULL on failure.
824
 */
825 826 827
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
					  const unsigned char *name,
					  const void *ns)
828
{
829
	struct rb_node *node = parent->dir.children.rb_node;
830
	bool has_ns = kernfs_ns_enabled(parent);
831 832
	unsigned int hash;

833
	lockdep_assert_held(&kernfs_mutex);
834 835

	if (has_ns != (bool)ns) {
836
		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
837
		     has_ns ? "required" : "invalid", parent->name, name);
838 839 840
		return NULL;
	}

841
	hash = kernfs_name_hash(name, ns);
842
	while (node) {
843
		struct kernfs_node *kn;
844 845
		int result;

846
		kn = rb_to_kn(node);
847
		result = kernfs_name_compare(hash, name, ns, kn);
848 849 850 851 852
		if (result < 0)
			node = node->rb_left;
		else if (result > 0)
			node = node->rb_right;
		else
853
			return kn;
854 855 856 857
	}
	return NULL;
}

858 859 860 861
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
					  const unsigned char *path,
					  const void *ns)
{
862 863
	size_t len;
	char *p, *name;
864 865 866

	lockdep_assert_held(&kernfs_mutex);

867 868 869 870 871 872 873
	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
	spin_lock_irq(&kernfs_rename_lock);

	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));

	if (len >= sizeof(kernfs_pr_cont_buf)) {
		spin_unlock_irq(&kernfs_rename_lock);
874
		return NULL;
875 876 877
	}

	p = kernfs_pr_cont_buf;
878 879 880 881 882 883 884

	while ((name = strsep(&p, "/")) && parent) {
		if (*name == '\0')
			continue;
		parent = kernfs_find_ns(parent, name, ns);
	}

885 886
	spin_unlock_irq(&kernfs_rename_lock);

887 888 889
	return parent;
}

890
/**
891 892
 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 * @parent: kernfs_node to search under
893 894 895
 * @name: name to look for
 * @ns: the namespace tag to use
 *
896
 * Look for kernfs_node with name @name under @parent and get a reference
897
 * if found.  This function may sleep and returns pointer to the found
898
 * kernfs_node on success, %NULL on failure.
899
 */
900 901
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
					   const char *name, const void *ns)
902
{
903
	struct kernfs_node *kn;
904

905
	mutex_lock(&kernfs_mutex);
906 907
	kn = kernfs_find_ns(parent, name, ns);
	kernfs_get(kn);
908
	mutex_unlock(&kernfs_mutex);
909

910
	return kn;
911 912 913
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/**
 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 * @parent: kernfs_node to search under
 * @path: path to look for
 * @ns: the namespace tag to use
 *
 * Look for kernfs_node with path @path under @parent and get a reference
 * if found.  This function may sleep and returns pointer to the found
 * kernfs_node on success, %NULL on failure.
 */
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
					   const char *path, const void *ns)
{
	struct kernfs_node *kn;

	mutex_lock(&kernfs_mutex);
	kn = kernfs_walk_ns(parent, path, ns);
	kernfs_get(kn);
	mutex_unlock(&kernfs_mutex);

	return kn;
}

937 938
/**
 * kernfs_create_root - create a new kernfs hierarchy
939
 * @scops: optional syscall operations for the hierarchy
940
 * @flags: KERNFS_ROOT_* flags
941 942 943 944 945
 * @priv: opaque data associated with the new directory
 *
 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 * failure.
 */
946
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
947
				       unsigned int flags, void *priv)
948 949
{
	struct kernfs_root *root;
950
	struct kernfs_node *kn;
951 952 953 954 955

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

956
	idr_init(&root->ino_idr);
957
	INIT_LIST_HEAD(&root->supers);
958 959 960 961 962 963 964 965 966 967 968

	/*
	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
	 * High bits generation.  The starting value for both ino and
	 * genenration is 1.  Initialize upper 32bit allocation
	 * accordingly.
	 */
	if (sizeof(ino_t) >= sizeof(u64))
		root->id_highbits = 0;
	else
		root->id_highbits = 1;
969

970
	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
971
			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
972
			       KERNFS_DIR);
973
	if (!kn) {
974
		idr_destroy(&root->ino_idr);
975 976 977 978
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}

979
	kn->priv = priv;
980
	kn->dir.root = root;
981

982
	root->syscall_ops = scops;
983
	root->flags = flags;
984
	root->kn = kn;
985
	init_waitqueue_head(&root->deactivate_waitq);
986

987 988 989
	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);

990 991 992 993 994 995 996 997 998 999 1000 1001
	return root;
}

/**
 * kernfs_destroy_root - destroy a kernfs hierarchy
 * @root: root of the hierarchy to destroy
 *
 * Destroy the hierarchy anchored at @root by removing all existing
 * directories and destroying @root.
 */
void kernfs_destroy_root(struct kernfs_root *root)
{
1002
	kernfs_remove(root->kn);	/* will also free @root */
1003 1004
}

1005 1006 1007 1008
/**
 * kernfs_create_dir_ns - create a directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
1009
 * @mode: mode of the new directory
1010 1011
 * @uid: uid of the new directory
 * @gid: gid of the new directory
1012 1013 1014 1015 1016
 * @priv: opaque data associated with the new directory
 * @ns: optional namespace tag of the directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
1017
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1018
					 const char *name, umode_t mode,
1019
					 kuid_t uid, kgid_t gid,
1020
					 void *priv, const void *ns)
1021
{
1022
	struct kernfs_node *kn;
1023 1024 1025
	int rc;

	/* allocate */
1026 1027
	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
			     uid, gid, KERNFS_DIR);
1028
	if (!kn)
1029 1030
		return ERR_PTR(-ENOMEM);

1031 1032
	kn->dir.root = parent->dir.root;
	kn->ns = ns;
1033
	kn->priv = priv;
1034 1035

	/* link in */
T
Tejun Heo 已提交
1036
	rc = kernfs_add_one(kn);
1037
	if (!rc)
1038
		return kn;
1039

1040
	kernfs_put(kn);
1041 1042 1043
	return ERR_PTR(rc);
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/**
 * kernfs_create_empty_dir - create an always empty directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
					    const char *name)
{
	struct kernfs_node *kn;
	int rc;

	/* allocate */
1058 1059
	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	if (!kn)
		return ERR_PTR(-ENOMEM);

	kn->flags |= KERNFS_EMPTY_DIR;
	kn->dir.root = parent->dir.root;
	kn->ns = NULL;
	kn->priv = NULL;

	/* link in */
	rc = kernfs_add_one(kn);
	if (!rc)
		return kn;

	kernfs_put(kn);
	return ERR_PTR(rc);
}

1077 1078 1079
static struct dentry *kernfs_iop_lookup(struct inode *dir,
					struct dentry *dentry,
					unsigned int flags)
1080
{
T
Tejun Heo 已提交
1081
	struct dentry *ret;
S
Shaohua Li 已提交
1082
	struct kernfs_node *parent = dir->i_private;
1083
	struct kernfs_node *kn;
1084 1085 1086
	struct inode *inode;
	const void *ns = NULL;

1087
	mutex_lock(&kernfs_mutex);
1088

1089
	if (kernfs_ns_enabled(parent))
1090
		ns = kernfs_info(dir->i_sb)->ns;
1091

1092
	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1093 1094

	/* no such entry */
1095
	if (!kn || !kernfs_active(kn)) {
T
Tejun Heo 已提交
1096
		ret = NULL;
1097 1098 1099 1100
		goto out_unlock;
	}

	/* attach dentry and inode */
1101
	inode = kernfs_get_inode(dir->i_sb, kn);
1102 1103 1104 1105 1106 1107
	if (!inode) {
		ret = ERR_PTR(-ENOMEM);
		goto out_unlock;
	}

	/* instantiate and hash dentry */
1108
	ret = d_splice_alias(inode, dentry);
1109
 out_unlock:
1110
	mutex_unlock(&kernfs_mutex);
1111 1112 1113
	return ret;
}

T
Tejun Heo 已提交
1114 1115 1116 1117
static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
			    umode_t mode)
{
	struct kernfs_node *parent = dir->i_private;
1118
	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1119
	int ret;
T
Tejun Heo 已提交
1120

1121
	if (!scops || !scops->mkdir)
T
Tejun Heo 已提交
1122 1123
		return -EPERM;

1124 1125 1126
	if (!kernfs_get_active(parent))
		return -ENODEV;

1127
	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1128 1129 1130

	kernfs_put_active(parent);
	return ret;
T
Tejun Heo 已提交
1131 1132 1133 1134
}

static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
S
Shaohua Li 已提交
1135
	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1136
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1137
	int ret;
T
Tejun Heo 已提交
1138

1139
	if (!scops || !scops->rmdir)
T
Tejun Heo 已提交
1140 1141
		return -EPERM;

1142 1143 1144
	if (!kernfs_get_active(kn))
		return -ENODEV;

1145
	ret = scops->rmdir(kn);
1146 1147 1148

	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1149 1150 1151
}

static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1152 1153
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags)
T
Tejun Heo 已提交
1154
{
S
Shaohua Li 已提交
1155
	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
T
Tejun Heo 已提交
1156
	struct kernfs_node *new_parent = new_dir->i_private;
1157
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1158
	int ret;
T
Tejun Heo 已提交
1159

1160 1161 1162
	if (flags)
		return -EINVAL;

1163
	if (!scops || !scops->rename)
T
Tejun Heo 已提交
1164 1165
		return -EPERM;

1166 1167 1168 1169 1170 1171 1172 1173
	if (!kernfs_get_active(kn))
		return -ENODEV;

	if (!kernfs_get_active(new_parent)) {
		kernfs_put_active(kn);
		return -ENODEV;
	}

1174
	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1175 1176 1177 1178

	kernfs_put_active(new_parent);
	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1179 1180
}

1181
const struct inode_operations kernfs_dir_iops = {
1182 1183 1184 1185 1186
	.lookup		= kernfs_iop_lookup,
	.permission	= kernfs_iop_permission,
	.setattr	= kernfs_iop_setattr,
	.getattr	= kernfs_iop_getattr,
	.listxattr	= kernfs_iop_listxattr,
T
Tejun Heo 已提交
1187 1188 1189 1190

	.mkdir		= kernfs_iop_mkdir,
	.rmdir		= kernfs_iop_rmdir,
	.rename		= kernfs_iop_rename,
1191 1192
};

1193
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1194
{
1195
	struct kernfs_node *last;
1196 1197 1198 1199 1200 1201

	while (true) {
		struct rb_node *rbn;

		last = pos;

T
Tejun Heo 已提交
1202
		if (kernfs_type(pos) != KERNFS_DIR)
1203 1204
			break;

1205
		rbn = rb_first(&pos->dir.children);
1206 1207 1208
		if (!rbn)
			break;

1209
		pos = rb_to_kn(rbn);
1210 1211 1212 1213 1214 1215
	}

	return last;
}

/**
1216
 * kernfs_next_descendant_post - find the next descendant for post-order walk
1217
 * @pos: the current position (%NULL to initiate traversal)
1218
 * @root: kernfs_node whose descendants to walk
1219 1220 1221 1222 1223
 *
 * Find the next descendant to visit for post-order traversal of @root's
 * descendants.  @root is included in the iteration and the last node to be
 * visited.
 */
1224 1225
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
						       struct kernfs_node *root)
1226 1227 1228
{
	struct rb_node *rbn;

1229
	lockdep_assert_held(&kernfs_mutex);
1230 1231 1232

	/* if first iteration, visit leftmost descendant which may be root */
	if (!pos)
1233
		return kernfs_leftmost_descendant(root);
1234 1235 1236 1237 1238 1239

	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

	/* if there's an unvisited sibling, visit its leftmost descendant */
1240
	rbn = rb_next(&pos->rb);
1241
	if (rbn)
1242
		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1243 1244

	/* no sibling left, visit parent */
1245
	return pos->parent;
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/**
 * kernfs_activate - activate a node which started deactivated
 * @kn: kernfs_node whose subtree is to be activated
 *
 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
 * needs to be explicitly activated.  A node which hasn't been activated
 * isn't visible to userland and deactivation is skipped during its
 * removal.  This is useful to construct atomic init sequences where
 * creation of multiple nodes should either succeed or fail atomically.
 *
 * The caller is responsible for ensuring that this function is not called
 * after kernfs_remove*() is invoked on @kn.
 */
void kernfs_activate(struct kernfs_node *kn)
{
	struct kernfs_node *pos;

	mutex_lock(&kernfs_mutex);

	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1269
		if (pos->flags & KERNFS_ACTIVATED)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			continue;

		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);

		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
		pos->flags |= KERNFS_ACTIVATED;
	}

	mutex_unlock(&kernfs_mutex);
}

T
Tejun Heo 已提交
1282
static void __kernfs_remove(struct kernfs_node *kn)
1283
{
1284 1285 1286
	struct kernfs_node *pos;

	lockdep_assert_held(&kernfs_mutex);
1287

1288 1289 1290 1291 1292 1293
	/*
	 * Short-circuit if non-root @kn has already finished removal.
	 * This is for kernfs_remove_self() which plays with active ref
	 * after removal.
	 */
	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1294 1295
		return;

1296
	pr_debug("kernfs %s: removing\n", kn->name);
1297

T
Tejun Heo 已提交
1298
	/* prevent any new usage under @kn by deactivating all nodes */
1299 1300
	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn)))
T
Tejun Heo 已提交
1301 1302
		if (kernfs_active(pos))
			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1303 1304

	/* deactivate and unlink the subtree node-by-node */
1305
	do {
1306 1307 1308
		pos = kernfs_leftmost_descendant(kn);

		/*
T
Tejun Heo 已提交
1309 1310 1311 1312
		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
		 * base ref could have been put by someone else by the time
		 * the function returns.  Make sure it doesn't go away
		 * underneath us.
1313 1314 1315
		 */
		kernfs_get(pos);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		/*
		 * Drain iff @kn was activated.  This avoids draining and
		 * its lockdep annotations for nodes which have never been
		 * activated and allows embedding kernfs_remove() in create
		 * error paths without worrying about draining.
		 */
		if (kn->flags & KERNFS_ACTIVATED)
			kernfs_drain(pos);
		else
			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

		/*
		 * kernfs_unlink_sibling() succeeds once per node.  Use it
		 * to decide who's responsible for cleanups.
		 */
		if (!pos->parent || kernfs_unlink_sibling(pos)) {
			struct kernfs_iattrs *ps_iattr =
				pos->parent ? pos->parent->iattr : NULL;

			/* update timestamps on the parent */
			if (ps_iattr) {
1337 1338
				ktime_get_real_ts64(&ps_iattr->ia_ctime);
				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1339 1340
			}

T
Tejun Heo 已提交
1341
			kernfs_put(pos);
1342 1343 1344 1345
		}

		kernfs_put(pos);
	} while (pos != kn);
1346 1347 1348
}

/**
1349 1350
 * kernfs_remove - remove a kernfs_node recursively
 * @kn: the kernfs_node to remove
1351
 *
1352
 * Remove @kn along with all its subdirectories and files.
1353
 */
1354
void kernfs_remove(struct kernfs_node *kn)
1355
{
T
Tejun Heo 已提交
1356 1357 1358
	mutex_lock(&kernfs_mutex);
	__kernfs_remove(kn);
	mutex_unlock(&kernfs_mutex);
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/**
 * kernfs_break_active_protection - break out of active protection
 * @kn: the self kernfs_node
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
 * this function must also be matched with an invocation of
 * kernfs_unbreak_active_protection().
 *
 * This function releases the active reference of @kn the caller is
 * holding.  Once this function is called, @kn may be removed at any point
 * and the caller is solely responsible for ensuring that the objects it
 * dereferences are accessible.
 */
void kernfs_break_active_protection(struct kernfs_node *kn)
{
	/*
	 * Take out ourself out of the active ref dependency chain.  If
	 * we're called without an active ref, lockdep will complain.
	 */
	kernfs_put_active(kn);
}

/**
 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
 * @kn: the self kernfs_node
 *
 * If kernfs_break_active_protection() was called, this function must be
 * invoked before finishing the kernfs operation.  Note that while this
 * function restores the active reference, it doesn't and can't actually
 * restore the active protection - @kn may already or be in the process of
 * being removed.  Once kernfs_break_active_protection() is invoked, that
 * protection is irreversibly gone for the kernfs operation instance.
 *
 * While this function may be called at any point after
 * kernfs_break_active_protection() is invoked, its most useful location
 * would be right before the enclosing kernfs operation returns.
 */
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
	/*
	 * @kn->active could be in any state; however, the increment we do
	 * here will be undone as soon as the enclosing kernfs operation
	 * finishes and this temporary bump can't break anything.  If @kn
	 * is alive, nothing changes.  If @kn is being deactivated, the
	 * soon-to-follow put will either finish deactivation or restore
	 * deactivated state.  If @kn is already removed, the temporary
	 * bump is guaranteed to be gone before @kn is released.
	 */
	atomic_inc(&kn->active);
	if (kernfs_lockdep(kn))
		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}

/**
 * kernfs_remove_self - remove a kernfs_node from its own method
 * @kn: the self kernfs_node to remove
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  This can be used to
 * implement a file operation which deletes itself.
 *
 * For example, the "delete" file for a sysfs device directory can be
 * implemented by invoking kernfs_remove_self() on the "delete" file
 * itself.  This function breaks the circular dependency of trying to
 * deactivate self while holding an active ref itself.  It isn't necessary
 * to modify the usual removal path to use kernfs_remove_self().  The
 * "delete" implementation can simply invoke kernfs_remove_self() on self
 * before proceeding with the usual removal path.  kernfs will ignore later
 * kernfs_remove() on self.
 *
 * kernfs_remove_self() can be called multiple times concurrently on the
 * same kernfs_node.  Only the first one actually performs removal and
 * returns %true.  All others will wait until the kernfs operation which
 * won self-removal finishes and return %false.  Note that the losers wait
 * for the completion of not only the winning kernfs_remove_self() but also
 * the whole kernfs_ops which won the arbitration.  This can be used to
 * guarantee, for example, all concurrent writes to a "delete" file to
 * finish only after the whole operation is complete.
 */
bool kernfs_remove_self(struct kernfs_node *kn)
{
	bool ret;

	mutex_lock(&kernfs_mutex);
	kernfs_break_active_protection(kn);

	/*
	 * SUICIDAL is used to arbitrate among competing invocations.  Only
	 * the first one will actually perform removal.  When the removal
	 * is complete, SUICIDED is set and the active ref is restored
	 * while holding kernfs_mutex.  The ones which lost arbitration
	 * waits for SUICDED && drained which can happen only after the
	 * enclosing kernfs operation which executed the winning instance
	 * of kernfs_remove_self() finished.
	 */
	if (!(kn->flags & KERNFS_SUICIDAL)) {
		kn->flags |= KERNFS_SUICIDAL;
		__kernfs_remove(kn);
		kn->flags |= KERNFS_SUICIDED;
		ret = true;
	} else {
		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
		DEFINE_WAIT(wait);

		while (true) {
			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);

			if ((kn->flags & KERNFS_SUICIDED) &&
			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
				break;

			mutex_unlock(&kernfs_mutex);
			schedule();
			mutex_lock(&kernfs_mutex);
		}
		finish_wait(waitq, &wait);
		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
		ret = false;
	}

	/*
	 * This must be done while holding kernfs_mutex; otherwise, waiting
	 * for SUICIDED && deactivated could finish prematurely.
	 */
	kernfs_unbreak_active_protection(kn);

	mutex_unlock(&kernfs_mutex);
	return ret;
}

1492
/**
1493 1494 1495 1496
 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
 * @parent: parent of the target
 * @name: name of the kernfs_node to remove
 * @ns: namespace tag of the kernfs_node to remove
1497
 *
1498 1499
 * Look for the kernfs_node with @name and @ns under @parent and remove it.
 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1500
 */
1501
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1502 1503
			     const void *ns)
{
1504
	struct kernfs_node *kn;
1505

1506
	if (!parent) {
1507
		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1508 1509 1510 1511
			name);
		return -ENOENT;
	}

T
Tejun Heo 已提交
1512
	mutex_lock(&kernfs_mutex);
1513

1514 1515
	kn = kernfs_find_ns(parent, name, ns);
	if (kn)
T
Tejun Heo 已提交
1516
		__kernfs_remove(kn);
1517

T
Tejun Heo 已提交
1518
	mutex_unlock(&kernfs_mutex);
1519

1520
	if (kn)
1521 1522 1523 1524 1525 1526 1527
		return 0;
	else
		return -ENOENT;
}

/**
 * kernfs_rename_ns - move and rename a kernfs_node
1528
 * @kn: target node
1529 1530 1531 1532
 * @new_parent: new parent to put @sd under
 * @new_name: new name
 * @new_ns: new namespace tag
 */
1533
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1534 1535
		     const char *new_name, const void *new_ns)
{
1536 1537
	struct kernfs_node *old_parent;
	const char *old_name = NULL;
1538 1539
	int error;

1540 1541 1542 1543
	/* can't move or rename root */
	if (!kn->parent)
		return -EINVAL;

1544 1545
	mutex_lock(&kernfs_mutex);

1546
	error = -ENOENT;
1547 1548
	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
	    (new_parent->flags & KERNFS_EMPTY_DIR))
1549 1550
		goto out;

1551
	error = 0;
1552 1553
	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
	    (strcmp(kn->name, new_name) == 0))
1554
		goto out;	/* nothing to rename */
1555 1556 1557

	error = -EEXIST;
	if (kernfs_find_ns(new_parent, new_name, new_ns))
1558
		goto out;
1559

1560
	/* rename kernfs_node */
1561
	if (strcmp(kn->name, new_name) != 0) {
1562
		error = -ENOMEM;
1563
		new_name = kstrdup_const(new_name, GFP_KERNEL);
1564
		if (!new_name)
1565
			goto out;
1566 1567
	} else {
		new_name = NULL;
1568 1569 1570 1571 1572
	}

	/*
	 * Move to the appropriate place in the appropriate directories rbtree.
	 */
1573
	kernfs_unlink_sibling(kn);
1574
	kernfs_get(new_parent);
1575 1576 1577 1578 1579

	/* rename_lock protects ->parent and ->name accessors */
	spin_lock_irq(&kernfs_rename_lock);

	old_parent = kn->parent;
1580
	kn->parent = new_parent;
1581 1582 1583

	kn->ns = new_ns;
	if (new_name) {
T
Tejun Heo 已提交
1584
		old_name = kn->name;
1585 1586 1587 1588 1589
		kn->name = new_name;
	}

	spin_unlock_irq(&kernfs_rename_lock);

1590
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1591
	kernfs_link_sibling(kn);
1592

1593
	kernfs_put(old_parent);
1594
	kfree_const(old_name);
1595

1596
	error = 0;
1597
 out:
1598
	mutex_unlock(&kernfs_mutex);
1599 1600 1601 1602
	return error;
}

/* Relationship between s_mode and the DT_xxx types */
1603
static inline unsigned char dt_type(struct kernfs_node *kn)
1604
{
1605
	return (kn->mode >> 12) & 15;
1606 1607
}

1608
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1609 1610 1611 1612 1613
{
	kernfs_put(filp->private_data);
	return 0;
}

1614
static struct kernfs_node *kernfs_dir_pos(const void *ns,
1615
	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1616 1617
{
	if (pos) {
T
Tejun Heo 已提交
1618
		int valid = kernfs_active(pos) &&
1619
			pos->parent == parent && hash == pos->hash;
1620 1621 1622 1623 1624
		kernfs_put(pos);
		if (!valid)
			pos = NULL;
	}
	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1625
		struct rb_node *node = parent->dir.children.rb_node;
1626
		while (node) {
1627
			pos = rb_to_kn(node);
1628

1629
			if (hash < pos->hash)
1630
				node = node->rb_left;
1631
			else if (hash > pos->hash)
1632 1633 1634 1635 1636
				node = node->rb_right;
			else
				break;
		}
	}
1637 1638
	/* Skip over entries which are dying/dead or in the wrong namespace */
	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1639
		struct rb_node *node = rb_next(&pos->rb);
1640 1641 1642
		if (!node)
			pos = NULL;
		else
1643
			pos = rb_to_kn(node);
1644 1645 1646 1647
	}
	return pos;
}

1648
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1649
	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1650
{
1651
	pos = kernfs_dir_pos(ns, parent, ino, pos);
1652
	if (pos) {
1653
		do {
1654
			struct rb_node *node = rb_next(&pos->rb);
1655 1656 1657
			if (!node)
				pos = NULL;
			else
1658
				pos = rb_to_kn(node);
1659 1660
		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
	}
1661 1662 1663
	return pos;
}

1664
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1665 1666
{
	struct dentry *dentry = file->f_path.dentry;
S
Shaohua Li 已提交
1667
	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1668
	struct kernfs_node *pos = file->private_data;
1669 1670 1671 1672
	const void *ns = NULL;

	if (!dir_emit_dots(file, ctx))
		return 0;
1673
	mutex_lock(&kernfs_mutex);
1674

1675
	if (kernfs_ns_enabled(parent))
1676
		ns = kernfs_info(dentry->d_sb)->ns;
1677

1678
	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1679
	     pos;
1680
	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1681
		const char *name = pos->name;
1682 1683
		unsigned int type = dt_type(pos);
		int len = strlen(name);
1684
		ino_t ino = kernfs_ino(pos);
1685

1686
		ctx->pos = pos->hash;
1687 1688 1689
		file->private_data = pos;
		kernfs_get(pos);

1690
		mutex_unlock(&kernfs_mutex);
1691 1692
		if (!dir_emit(ctx, name, len, ino, type))
			return 0;
1693
		mutex_lock(&kernfs_mutex);
1694
	}
1695
	mutex_unlock(&kernfs_mutex);
1696 1697 1698 1699 1700
	file->private_data = NULL;
	ctx->pos = INT_MAX;
	return 0;
}

1701
const struct file_operations kernfs_dir_fops = {
1702
	.read		= generic_read_dir,
1703
	.iterate_shared	= kernfs_fop_readdir,
1704
	.release	= kernfs_dir_fop_release,
1705
	.llseek		= generic_file_llseek,
1706
};