dir.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * fs/kernfs/dir.c - kernfs directory implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 */
10

11
#include <linux/sched.h>
12 13 14 15 16 17 18 19 20
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>

#include "kernfs-internal.h"

21
DEFINE_MUTEX(kernfs_mutex);
22 23
static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24
static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
25

26
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27

T
Tejun Heo 已提交
28 29 30 31 32 33
static bool kernfs_active(struct kernfs_node *kn)
{
	lockdep_assert_held(&kernfs_mutex);
	return atomic_read(&kn->active) >= 0;
}

34 35 36 37 38 39 40 41 42
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	return kn->flags & KERNFS_LOCKDEP;
#else
	return false;
#endif
}

43 44
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
45 46 47
	if (!kn)
		return strlcpy(buf, "(null)", buflen);

48 49 50
	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}

51 52
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53
{
54
	size_t depth = 0;
55

56 57 58 59 60 61
	while (to->parent && to != from) {
		depth++;
		to = to->parent;
	}
	return depth;
}
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
						  struct kernfs_node *b)
{
	size_t da, db;
	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);

	if (ra != rb)
		return NULL;

	da = kernfs_depth(ra->kn, a);
	db = kernfs_depth(rb->kn, b);

	while (da > db) {
		a = a->parent;
		da--;
	}
	while (db > da) {
		b = b->parent;
		db--;
	}

	/* worst case b and a will be the same at root */
	while (b != a) {
		b = b->parent;
		a = a->parent;
	}

	return a;
}

/**
 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 * where kn_from is treated as root of the path.
 * @kn_from: kernfs node which should be treated as root for the path
 * @kn_to: kernfs node to which path is needed
 * @buf: buffer to copy the path into
 * @buflen: size of @buf
 *
 * We need to handle couple of scenarios here:
 * [1] when @kn_from is an ancestor of @kn_to at some level
 * kn_from: /n1/n2/n3
 * kn_to:   /n1/n2/n3/n4/n5
 * result:  /n4/n5
 *
 * [2] when @kn_from is on a different hierarchy and we need to find common
 * ancestor between @kn_from and @kn_to.
 * kn_from: /n1/n2/n3/n4
 * kn_to:   /n1/n2/n5
 * result:  /../../n5
 * OR
 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 * kn_to:   /n1/n2/n3         [depth=3]
 * result:  /../..
 *
117 118
 * [3] when @kn_to is NULL result will be "(null)"
 *
119 120 121
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
122 123 124 125 126 127 128
 */
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
					struct kernfs_node *kn_from,
					char *buf, size_t buflen)
{
	struct kernfs_node *kn, *common;
	const char parent_str[] = "/..";
129 130
	size_t depth_from, depth_to, len = 0;
	int i, j;
131

132 133 134
	if (!kn_to)
		return strlcpy(buf, "(null)", buflen);

135 136 137 138 139 140 141 142
	if (!kn_from)
		kn_from = kernfs_root(kn_to)->kn;

	if (kn_from == kn_to)
		return strlcpy(buf, "/", buflen);

	common = kernfs_common_ancestor(kn_from, kn_to);
	if (WARN_ON(!common))
143
		return -EINVAL;
144 145 146 147 148 149 150 151 152 153 154 155

	depth_to = kernfs_depth(common, kn_to);
	depth_from = kernfs_depth(common, kn_from);

	if (buf)
		buf[0] = '\0';

	for (i = 0; i < depth_from; i++)
		len += strlcpy(buf + len, parent_str,
			       len < buflen ? buflen - len : 0);

	/* Calculate how many bytes we need for the rest */
156 157 158 159 160 161 162
	for (i = depth_to - 1; i >= 0; i--) {
		for (kn = kn_to, j = 0; j < i; j++)
			kn = kn->parent;
		len += strlcpy(buf + len, "/",
			       len < buflen ? buflen - len : 0);
		len += strlcpy(buf + len, kn->name,
			       len < buflen ? buflen - len : 0);
163
	}
164

165
	return len;
166 167 168 169 170 171 172 173 174 175 176 177
}

/**
 * kernfs_name - obtain the name of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 *
178 179
 * Fills buffer with "(null)" if @kn is NULL.
 *
180 181 182 183 184 185 186 187 188 189 190 191 192
 * This function can be called from any context.
 */
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_name_locked(kn, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}

193 194 195 196 197 198 199 200 201 202 203 204
/**
 * kernfs_path_from_node - build path of node @to relative to @from.
 * @from: parent kernfs_node relative to which we need to build the path
 * @to: kernfs_node of interest
 * @buf: buffer to copy @to's path into
 * @buflen: size of @buf
 *
 * Builds @to's path relative to @from in @buf. @from and @to must
 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 * path (which includes '..'s) as needed to reach from @from to @to is
 * returned.
 *
205 206 207
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
208 209 210 211 212 213 214 215 216 217 218 219 220 221
 */
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
			  char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/**
 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
	pr_cont("%s", kernfs_pr_cont_buf);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
	unsigned long flags;
249
	int sz;
250 251 252

	spin_lock_irqsave(&kernfs_rename_lock, flags);

253 254 255 256 257 258 259 260 261 262 263 264 265
	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
					  sizeof(kernfs_pr_cont_buf));
	if (sz < 0) {
		pr_cont("(error)");
		goto out;
	}

	if (sz >= sizeof(kernfs_pr_cont_buf)) {
		pr_cont("(name too long)");
		goto out;
	}

	pr_cont("%s", kernfs_pr_cont_buf);
266

267
out:
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * kernfs_get_parent - determine the parent node and pin it
 * @kn: kernfs_node of interest
 *
 * Determines @kn's parent, pins and returns it.  This function can be
 * called from any context.
 */
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
	struct kernfs_node *parent;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	parent = kn->parent;
	kernfs_get(parent);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return parent;
}

291
/**
292
 *	kernfs_name_hash
293 294 295 296 297
 *	@name: Null terminated string to hash
 *	@ns:   Namespace tag to hash
 *
 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 */
298
static unsigned int kernfs_name_hash(const char *name, const void *ns)
299
{
300
	unsigned long hash = init_name_hash(ns);
301 302 303
	unsigned int len = strlen(name);
	while (len--)
		hash = partial_name_hash(*name++, hash);
304
	hash = end_name_hash(hash);
305 306
	hash &= 0x7fffffffU;
	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
R
Richard Cochran 已提交
307
	if (hash < 2)
308 309 310 311 312 313
		hash += 2;
	if (hash >= INT_MAX)
		hash = INT_MAX - 1;
	return hash;
}

314 315
static int kernfs_name_compare(unsigned int hash, const char *name,
			       const void *ns, const struct kernfs_node *kn)
316
{
317 318 319 320 321 322 323 324
	if (hash < kn->hash)
		return -1;
	if (hash > kn->hash)
		return 1;
	if (ns < kn->ns)
		return -1;
	if (ns > kn->ns)
		return 1;
325
	return strcmp(name, kn->name);
326 327
}

328 329
static int kernfs_sd_compare(const struct kernfs_node *left,
			     const struct kernfs_node *right)
330
{
331
	return kernfs_name_compare(left->hash, left->name, left->ns, right);
332 333 334
}

/**
335
 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
336
 *	@kn: kernfs_node of interest
337
 *
338
 *	Link @kn into its sibling rbtree which starts from
339
 *	@kn->parent->dir.children.
340 341
 *
 *	Locking:
342
 *	mutex_lock(kernfs_mutex)
343 344 345 346
 *
 *	RETURNS:
 *	0 on susccess -EEXIST on failure.
 */
347
static int kernfs_link_sibling(struct kernfs_node *kn)
348
{
349
	struct rb_node **node = &kn->parent->dir.children.rb_node;
350 351 352
	struct rb_node *parent = NULL;

	while (*node) {
353
		struct kernfs_node *pos;
354 355
		int result;

356
		pos = rb_to_kn(*node);
357
		parent = *node;
358
		result = kernfs_sd_compare(kn, pos);
359
		if (result < 0)
360
			node = &pos->rb.rb_left;
361
		else if (result > 0)
362
			node = &pos->rb.rb_right;
363 364 365
		else
			return -EEXIST;
	}
J
Jianyu Zhan 已提交
366

367
	/* add new node and rebalance the tree */
368 369
	rb_link_node(&kn->rb, parent, node);
	rb_insert_color(&kn->rb, &kn->parent->dir.children);
J
Jianyu Zhan 已提交
370 371 372 373 374

	/* successfully added, account subdir number */
	if (kernfs_type(kn) == KERNFS_DIR)
		kn->parent->dir.subdirs++;

375 376 377 378
	return 0;
}

/**
379
 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380
 *	@kn: kernfs_node of interest
381
 *
382 383 384
 *	Try to unlink @kn from its sibling rbtree which starts from
 *	kn->parent->dir.children.  Returns %true if @kn was actually
 *	removed, %false if @kn wasn't on the rbtree.
385 386
 *
 *	Locking:
387
 *	mutex_lock(kernfs_mutex)
388
 */
389
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390
{
391 392 393
	if (RB_EMPTY_NODE(&kn->rb))
		return false;

T
Tejun Heo 已提交
394
	if (kernfs_type(kn) == KERNFS_DIR)
395
		kn->parent->dir.subdirs--;
396

397
	rb_erase(&kn->rb, &kn->parent->dir.children);
398 399
	RB_CLEAR_NODE(&kn->rb);
	return true;
400 401 402
}

/**
403
 *	kernfs_get_active - get an active reference to kernfs_node
404
 *	@kn: kernfs_node to get an active reference to
405
 *
406
 *	Get an active reference of @kn.  This function is noop if @kn
407 408 409
 *	is NULL.
 *
 *	RETURNS:
410
 *	Pointer to @kn on success, NULL on failure.
411
 */
412
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413
{
414
	if (unlikely(!kn))
415 416
		return NULL;

417 418
	if (!atomic_inc_unless_negative(&kn->active))
		return NULL;
419

420
	if (kernfs_lockdep(kn))
421 422
		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
	return kn;
423 424 425
}

/**
426
 *	kernfs_put_active - put an active reference to kernfs_node
427
 *	@kn: kernfs_node to put an active reference to
428
 *
429
 *	Put an active reference to @kn.  This function is noop if @kn
430 431
 *	is NULL.
 */
432
void kernfs_put_active(struct kernfs_node *kn)
433
{
434
	struct kernfs_root *root = kernfs_root(kn);
435 436
	int v;

437
	if (unlikely(!kn))
438 439
		return;

440
	if (kernfs_lockdep(kn))
441
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442
	v = atomic_dec_return(&kn->active);
T
Tejun Heo 已提交
443
	if (likely(v != KN_DEACTIVATED_BIAS))
444 445
		return;

446
	wake_up_all(&root->deactivate_waitq);
447 448 449
}

/**
T
Tejun Heo 已提交
450 451
 * kernfs_drain - drain kernfs_node
 * @kn: kernfs_node to drain
452
 *
T
Tejun Heo 已提交
453 454 455
 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 * removers may invoke this function concurrently on @kn and all will
 * return after draining is complete.
456
 */
T
Tejun Heo 已提交
457
static void kernfs_drain(struct kernfs_node *kn)
458
	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459
{
460
	struct kernfs_root *root = kernfs_root(kn);
461

462
	lockdep_assert_held(&kernfs_mutex);
T
Tejun Heo 已提交
463
	WARN_ON_ONCE(kernfs_active(kn));
464

465
	mutex_unlock(&kernfs_mutex);
466

467
	if (kernfs_lockdep(kn)) {
468 469 470 471
		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
			lock_contended(&kn->dep_map, _RET_IP_);
	}
472

473
	/* but everyone should wait for draining */
474 475
	wait_event(root->deactivate_waitq,
		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476

477
	if (kernfs_lockdep(kn)) {
478 479 480
		lock_acquired(&kn->dep_map, _RET_IP_);
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
	}
481

482
	kernfs_drain_open_files(kn);
483

484
	mutex_lock(&kernfs_mutex);
485 486 487
}

/**
488 489
 * kernfs_get - get a reference count on a kernfs_node
 * @kn: the target kernfs_node
490
 */
491
void kernfs_get(struct kernfs_node *kn)
492
{
493
	if (kn) {
494 495
		WARN_ON(!atomic_read(&kn->count));
		atomic_inc(&kn->count);
496 497 498 499 500
	}
}
EXPORT_SYMBOL_GPL(kernfs_get);

/**
501 502
 * kernfs_put - put a reference count on a kernfs_node
 * @kn: the target kernfs_node
503
 *
504
 * Put a reference count of @kn and destroy it if it reached zero.
505
 */
506
void kernfs_put(struct kernfs_node *kn)
507
{
508
	struct kernfs_node *parent;
509
	struct kernfs_root *root;
510

511 512 513 514
	/*
	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
	 * depends on this to filter reused stale node
	 */
515
	if (!kn || !atomic_dec_and_test(&kn->count))
516
		return;
517
	root = kernfs_root(kn);
518
 repeat:
T
Tejun Heo 已提交
519 520
	/*
	 * Moving/renaming is always done while holding reference.
521
	 * kn->parent won't change beneath us.
522
	 */
523
	parent = kn->parent;
524

T
Tejun Heo 已提交
525 526 527
	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528

T
Tejun Heo 已提交
529
	if (kernfs_type(kn) == KERNFS_LINK)
530
		kernfs_put(kn->symlink.target_kn);
T
Tejun Heo 已提交
531 532 533

	kfree_const(kn->name);

534 535
	if (kn->iattr) {
		simple_xattrs_free(&kn->iattr->xattrs);
536
		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
537
	}
538
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
539
	idr_remove(&root->ino_idr, kn->id.ino);
540
	spin_unlock(&kernfs_idr_lock);
541
	kmem_cache_free(kernfs_node_cache, kn);
542

543 544
	kn = parent;
	if (kn) {
545
		if (atomic_dec_and_test(&kn->count))
546 547
			goto repeat;
	} else {
548
		/* just released the root kn, free @root too */
549
		idr_destroy(&root->ino_idr);
550 551
		kfree(root);
	}
552 553 554
}
EXPORT_SYMBOL_GPL(kernfs_put);

555
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
556
{
557
	struct kernfs_node *kn;
558 559 560 561

	if (flags & LOOKUP_RCU)
		return -ECHILD;

T
Tejun Heo 已提交
562
	/* Always perform fresh lookup for negatives */
563
	if (d_really_is_negative(dentry))
T
Tejun Heo 已提交
564 565
		goto out_bad_unlocked;

S
Shaohua Li 已提交
566
	kn = kernfs_dentry_node(dentry);
567
	mutex_lock(&kernfs_mutex);
568

T
Tejun Heo 已提交
569 570
	/* The kernfs node has been deactivated */
	if (!kernfs_active(kn))
571 572
		goto out_bad;

573
	/* The kernfs node has been moved? */
S
Shaohua Li 已提交
574
	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
575 576
		goto out_bad;

577
	/* The kernfs node has been renamed */
578
	if (strcmp(dentry->d_name.name, kn->name) != 0)
579 580
		goto out_bad;

581
	/* The kernfs node has been moved to a different namespace */
582
	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
583
	    kernfs_info(dentry->d_sb)->ns != kn->ns)
584 585
		goto out_bad;

586
	mutex_unlock(&kernfs_mutex);
587 588
	return 1;
out_bad:
589
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
590
out_bad_unlocked:
591 592 593
	return 0;
}

594
const struct dentry_operations kernfs_dops = {
595
	.d_revalidate	= kernfs_dop_revalidate,
596 597
};

598 599 600 601 602 603 604 605 606 607 608 609 610
/**
 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 * @dentry: the dentry in question
 *
 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 * kernfs one, %NULL is returned.
 *
 * While the returned kernfs_node will stay accessible as long as @dentry
 * is accessible, the returned node can be in any state and the caller is
 * fully responsible for determining what's accessible.
 */
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
S
Shaohua Li 已提交
611 612 613
	if (dentry->d_sb->s_op == &kernfs_sops &&
	    !d_really_is_negative(dentry))
		return kernfs_dentry_node(dentry);
614 615 616
	return NULL;
}

617 618
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
					     const char *name, umode_t mode,
619
					     kuid_t uid, kgid_t gid,
620
					     unsigned flags)
621
{
622
	struct kernfs_node *kn;
S
Shaohua Li 已提交
623 624
	u32 gen;
	int cursor;
625
	int ret;
626

T
Tejun Heo 已提交
627 628 629
	name = kstrdup_const(name, GFP_KERNEL);
	if (!name)
		return NULL;
630

631
	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
632
	if (!kn)
633 634
		goto err_out1;

635 636
	idr_preload(GFP_KERNEL);
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
637 638 639 640 641
	cursor = idr_get_cursor(&root->ino_idr);
	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
	if (ret >= 0 && ret < cursor)
		root->next_generation++;
	gen = root->next_generation;
642 643
	spin_unlock(&kernfs_idr_lock);
	idr_preload_end();
644
	if (ret < 0)
645
		goto err_out2;
S
Shaohua Li 已提交
646 647
	kn->id.ino = ret;
	kn->id.generation = gen;
648

649 650 651 652 653
	/*
	 * set ino first. This barrier is paired with atomic_inc_not_zero in
	 * kernfs_find_and_get_node_by_ino
	 */
	smp_mb__before_atomic();
654
	atomic_set(&kn->count, 1);
T
Tejun Heo 已提交
655
	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
656
	RB_CLEAR_NODE(&kn->rb);
657

658 659
	kn->name = name;
	kn->mode = mode;
T
Tejun Heo 已提交
660
	kn->flags = flags;
661

662 663 664 665 666 667 668 669 670 671 672 673
	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
		struct iattr iattr = {
			.ia_valid = ATTR_UID | ATTR_GID,
			.ia_uid = uid,
			.ia_gid = gid,
		};

		ret = __kernfs_setattr(kn, &iattr);
		if (ret < 0)
			goto err_out3;
	}

674
	return kn;
675

676 677
 err_out3:
	idr_remove(&root->ino_idr, kn->id.ino);
678
 err_out2:
679
	kmem_cache_free(kernfs_node_cache, kn);
680
 err_out1:
T
Tejun Heo 已提交
681
	kfree_const(name);
682 683 684
	return NULL;
}

685 686
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
				    const char *name, umode_t mode,
687
				    kuid_t uid, kgid_t gid,
688 689 690 691
				    unsigned flags)
{
	struct kernfs_node *kn;

692 693
	kn = __kernfs_new_node(kernfs_root(parent),
			       name, mode, uid, gid, flags);
694 695 696 697 698 699 700
	if (kn) {
		kernfs_get(parent);
		kn->parent = parent;
	}
	return kn;
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
 * @root: the kernfs root
 * @ino: inode number
 *
 * RETURNS:
 * NULL on failure. Return a kernfs node with reference counter incremented
 */
struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
						    unsigned int ino)
{
	struct kernfs_node *kn;

	rcu_read_lock();
	kn = idr_find(&root->ino_idr, ino);
	if (!kn)
		goto out;

	/*
	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
	 * is freed, but reused before RCU grace period. But a freed node (see
	 * kernfs_put) or an incompletedly initialized node (see
	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
	 * filter out such node.
	 */
	if (!atomic_inc_not_zero(&kn->count)) {
		kn = NULL;
		goto out;
	}

	/*
	 * The node could be a new node or a reused node. If it's a new node,
	 * we are ok. If it's reused because of RCU (because of
	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
	 * hence we can use 'ino' to filter stale node.
	 */
S
Shaohua Li 已提交
738
	if (kn->id.ino != ino)
739 740 741 742 743 744 745 746 747 748
		goto out;
	rcu_read_unlock();

	return kn;
out:
	rcu_read_unlock();
	kernfs_put(kn);
	return NULL;
}

749
/**
750
 *	kernfs_add_one - add kernfs_node to parent without warning
751
 *	@kn: kernfs_node to be added
752
 *
753 754 755
 *	The caller must already have initialized @kn->parent.  This
 *	function increments nlink of the parent's inode if @kn is a
 *	directory and link into the children list of the parent.
756 757 758 759 760
 *
 *	RETURNS:
 *	0 on success, -EEXIST if entry with the given name already
 *	exists.
 */
T
Tejun Heo 已提交
761
int kernfs_add_one(struct kernfs_node *kn)
762
{
763
	struct kernfs_node *parent = kn->parent;
764
	struct kernfs_iattrs *ps_iattr;
T
Tejun Heo 已提交
765
	bool has_ns;
766 767
	int ret;

T
Tejun Heo 已提交
768 769 770 771 772 773 774
	mutex_lock(&kernfs_mutex);

	ret = -EINVAL;
	has_ns = kernfs_ns_enabled(parent);
	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
		 has_ns ? "required" : "invalid", parent->name, kn->name))
		goto out_unlock;
775

T
Tejun Heo 已提交
776
	if (kernfs_type(parent) != KERNFS_DIR)
T
Tejun Heo 已提交
777
		goto out_unlock;
778

T
Tejun Heo 已提交
779
	ret = -ENOENT;
780 781 782
	if (parent->flags & KERNFS_EMPTY_DIR)
		goto out_unlock;

783
	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
T
Tejun Heo 已提交
784
		goto out_unlock;
785

786
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
787

788
	ret = kernfs_link_sibling(kn);
789
	if (ret)
T
Tejun Heo 已提交
790
		goto out_unlock;
791 792

	/* Update timestamps on the parent */
793
	ps_iattr = parent->iattr;
794
	if (ps_iattr) {
795 796
		ktime_get_real_ts64(&ps_iattr->ia_ctime);
		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
797 798
	}

799 800 801 802 803 804 805 806 807 808 809 810 811
	mutex_unlock(&kernfs_mutex);

	/*
	 * Activate the new node unless CREATE_DEACTIVATED is requested.
	 * If not activated here, the kernfs user is responsible for
	 * activating the node with kernfs_activate().  A node which hasn't
	 * been activated is not visible to userland and its removal won't
	 * trigger deactivation.
	 */
	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);
	return 0;

T
Tejun Heo 已提交
812
out_unlock:
813
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
814
	return ret;
815 816 817
}

/**
818 819
 * kernfs_find_ns - find kernfs_node with the given name
 * @parent: kernfs_node to search under
820 821 822
 * @name: name to look for
 * @ns: the namespace tag to use
 *
823 824
 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 * the found kernfs_node on success, %NULL on failure.
825
 */
826 827 828
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
					  const unsigned char *name,
					  const void *ns)
829
{
830
	struct rb_node *node = parent->dir.children.rb_node;
831
	bool has_ns = kernfs_ns_enabled(parent);
832 833
	unsigned int hash;

834
	lockdep_assert_held(&kernfs_mutex);
835 836

	if (has_ns != (bool)ns) {
837
		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
838
		     has_ns ? "required" : "invalid", parent->name, name);
839 840 841
		return NULL;
	}

842
	hash = kernfs_name_hash(name, ns);
843
	while (node) {
844
		struct kernfs_node *kn;
845 846
		int result;

847
		kn = rb_to_kn(node);
848
		result = kernfs_name_compare(hash, name, ns, kn);
849 850 851 852 853
		if (result < 0)
			node = node->rb_left;
		else if (result > 0)
			node = node->rb_right;
		else
854
			return kn;
855 856 857 858
	}
	return NULL;
}

859 860 861 862
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
					  const unsigned char *path,
					  const void *ns)
{
863 864
	size_t len;
	char *p, *name;
865 866 867

	lockdep_assert_held(&kernfs_mutex);

868 869 870 871 872 873 874
	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
	spin_lock_irq(&kernfs_rename_lock);

	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));

	if (len >= sizeof(kernfs_pr_cont_buf)) {
		spin_unlock_irq(&kernfs_rename_lock);
875
		return NULL;
876 877 878
	}

	p = kernfs_pr_cont_buf;
879 880 881 882 883 884 885

	while ((name = strsep(&p, "/")) && parent) {
		if (*name == '\0')
			continue;
		parent = kernfs_find_ns(parent, name, ns);
	}

886 887
	spin_unlock_irq(&kernfs_rename_lock);

888 889 890
	return parent;
}

891
/**
892 893
 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 * @parent: kernfs_node to search under
894 895 896
 * @name: name to look for
 * @ns: the namespace tag to use
 *
897
 * Look for kernfs_node with name @name under @parent and get a reference
898
 * if found.  This function may sleep and returns pointer to the found
899
 * kernfs_node on success, %NULL on failure.
900
 */
901 902
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
					   const char *name, const void *ns)
903
{
904
	struct kernfs_node *kn;
905

906
	mutex_lock(&kernfs_mutex);
907 908
	kn = kernfs_find_ns(parent, name, ns);
	kernfs_get(kn);
909
	mutex_unlock(&kernfs_mutex);
910

911
	return kn;
912 913 914
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 * @parent: kernfs_node to search under
 * @path: path to look for
 * @ns: the namespace tag to use
 *
 * Look for kernfs_node with path @path under @parent and get a reference
 * if found.  This function may sleep and returns pointer to the found
 * kernfs_node on success, %NULL on failure.
 */
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
					   const char *path, const void *ns)
{
	struct kernfs_node *kn;

	mutex_lock(&kernfs_mutex);
	kn = kernfs_walk_ns(parent, path, ns);
	kernfs_get(kn);
	mutex_unlock(&kernfs_mutex);

	return kn;
}

938 939
/**
 * kernfs_create_root - create a new kernfs hierarchy
940
 * @scops: optional syscall operations for the hierarchy
941
 * @flags: KERNFS_ROOT_* flags
942 943 944 945 946
 * @priv: opaque data associated with the new directory
 *
 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 * failure.
 */
947
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
948
				       unsigned int flags, void *priv)
949 950
{
	struct kernfs_root *root;
951
	struct kernfs_node *kn;
952 953 954 955 956

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

957
	idr_init(&root->ino_idr);
958
	INIT_LIST_HEAD(&root->supers);
S
Shaohua Li 已提交
959
	root->next_generation = 1;
960

961
	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
962
			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
963
			       KERNFS_DIR);
964
	if (!kn) {
965
		idr_destroy(&root->ino_idr);
966 967 968 969
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}

970
	kn->priv = priv;
971
	kn->dir.root = root;
972

973
	root->syscall_ops = scops;
974
	root->flags = flags;
975
	root->kn = kn;
976
	init_waitqueue_head(&root->deactivate_waitq);
977

978 979 980
	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);

981 982 983 984 985 986 987 988 989 990 991 992
	return root;
}

/**
 * kernfs_destroy_root - destroy a kernfs hierarchy
 * @root: root of the hierarchy to destroy
 *
 * Destroy the hierarchy anchored at @root by removing all existing
 * directories and destroying @root.
 */
void kernfs_destroy_root(struct kernfs_root *root)
{
993
	kernfs_remove(root->kn);	/* will also free @root */
994 995
}

996 997 998 999
/**
 * kernfs_create_dir_ns - create a directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
1000
 * @mode: mode of the new directory
1001 1002
 * @uid: uid of the new directory
 * @gid: gid of the new directory
1003 1004 1005 1006 1007
 * @priv: opaque data associated with the new directory
 * @ns: optional namespace tag of the directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
1008
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1009
					 const char *name, umode_t mode,
1010
					 kuid_t uid, kgid_t gid,
1011
					 void *priv, const void *ns)
1012
{
1013
	struct kernfs_node *kn;
1014 1015 1016
	int rc;

	/* allocate */
1017 1018
	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
			     uid, gid, KERNFS_DIR);
1019
	if (!kn)
1020 1021
		return ERR_PTR(-ENOMEM);

1022 1023
	kn->dir.root = parent->dir.root;
	kn->ns = ns;
1024
	kn->priv = priv;
1025 1026

	/* link in */
T
Tejun Heo 已提交
1027
	rc = kernfs_add_one(kn);
1028
	if (!rc)
1029
		return kn;
1030

1031
	kernfs_put(kn);
1032 1033 1034
	return ERR_PTR(rc);
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/**
 * kernfs_create_empty_dir - create an always empty directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
					    const char *name)
{
	struct kernfs_node *kn;
	int rc;

	/* allocate */
1049 1050
	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (!kn)
		return ERR_PTR(-ENOMEM);

	kn->flags |= KERNFS_EMPTY_DIR;
	kn->dir.root = parent->dir.root;
	kn->ns = NULL;
	kn->priv = NULL;

	/* link in */
	rc = kernfs_add_one(kn);
	if (!rc)
		return kn;

	kernfs_put(kn);
	return ERR_PTR(rc);
}

1068 1069 1070
static struct dentry *kernfs_iop_lookup(struct inode *dir,
					struct dentry *dentry,
					unsigned int flags)
1071
{
T
Tejun Heo 已提交
1072
	struct dentry *ret;
S
Shaohua Li 已提交
1073
	struct kernfs_node *parent = dir->i_private;
1074
	struct kernfs_node *kn;
1075 1076 1077
	struct inode *inode;
	const void *ns = NULL;

1078
	mutex_lock(&kernfs_mutex);
1079

1080
	if (kernfs_ns_enabled(parent))
1081
		ns = kernfs_info(dir->i_sb)->ns;
1082

1083
	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1084 1085

	/* no such entry */
1086
	if (!kn || !kernfs_active(kn)) {
T
Tejun Heo 已提交
1087
		ret = NULL;
1088 1089 1090 1091
		goto out_unlock;
	}

	/* attach dentry and inode */
1092
	inode = kernfs_get_inode(dir->i_sb, kn);
1093 1094 1095 1096 1097 1098
	if (!inode) {
		ret = ERR_PTR(-ENOMEM);
		goto out_unlock;
	}

	/* instantiate and hash dentry */
1099
	ret = d_splice_alias(inode, dentry);
1100
 out_unlock:
1101
	mutex_unlock(&kernfs_mutex);
1102 1103 1104
	return ret;
}

T
Tejun Heo 已提交
1105 1106 1107 1108
static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
			    umode_t mode)
{
	struct kernfs_node *parent = dir->i_private;
1109
	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1110
	int ret;
T
Tejun Heo 已提交
1111

1112
	if (!scops || !scops->mkdir)
T
Tejun Heo 已提交
1113 1114
		return -EPERM;

1115 1116 1117
	if (!kernfs_get_active(parent))
		return -ENODEV;

1118
	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1119 1120 1121

	kernfs_put_active(parent);
	return ret;
T
Tejun Heo 已提交
1122 1123 1124 1125
}

static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
S
Shaohua Li 已提交
1126
	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1127
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1128
	int ret;
T
Tejun Heo 已提交
1129

1130
	if (!scops || !scops->rmdir)
T
Tejun Heo 已提交
1131 1132
		return -EPERM;

1133 1134 1135
	if (!kernfs_get_active(kn))
		return -ENODEV;

1136
	ret = scops->rmdir(kn);
1137 1138 1139

	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1140 1141 1142
}

static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1143 1144
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags)
T
Tejun Heo 已提交
1145
{
S
Shaohua Li 已提交
1146
	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
T
Tejun Heo 已提交
1147
	struct kernfs_node *new_parent = new_dir->i_private;
1148
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1149
	int ret;
T
Tejun Heo 已提交
1150

1151 1152 1153
	if (flags)
		return -EINVAL;

1154
	if (!scops || !scops->rename)
T
Tejun Heo 已提交
1155 1156
		return -EPERM;

1157 1158 1159 1160 1161 1162 1163 1164
	if (!kernfs_get_active(kn))
		return -ENODEV;

	if (!kernfs_get_active(new_parent)) {
		kernfs_put_active(kn);
		return -ENODEV;
	}

1165
	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1166 1167 1168 1169

	kernfs_put_active(new_parent);
	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1170 1171
}

1172
const struct inode_operations kernfs_dir_iops = {
1173 1174 1175 1176 1177
	.lookup		= kernfs_iop_lookup,
	.permission	= kernfs_iop_permission,
	.setattr	= kernfs_iop_setattr,
	.getattr	= kernfs_iop_getattr,
	.listxattr	= kernfs_iop_listxattr,
T
Tejun Heo 已提交
1178 1179 1180 1181

	.mkdir		= kernfs_iop_mkdir,
	.rmdir		= kernfs_iop_rmdir,
	.rename		= kernfs_iop_rename,
1182 1183
};

1184
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1185
{
1186
	struct kernfs_node *last;
1187 1188 1189 1190 1191 1192

	while (true) {
		struct rb_node *rbn;

		last = pos;

T
Tejun Heo 已提交
1193
		if (kernfs_type(pos) != KERNFS_DIR)
1194 1195
			break;

1196
		rbn = rb_first(&pos->dir.children);
1197 1198 1199
		if (!rbn)
			break;

1200
		pos = rb_to_kn(rbn);
1201 1202 1203 1204 1205 1206
	}

	return last;
}

/**
1207
 * kernfs_next_descendant_post - find the next descendant for post-order walk
1208
 * @pos: the current position (%NULL to initiate traversal)
1209
 * @root: kernfs_node whose descendants to walk
1210 1211 1212 1213 1214
 *
 * Find the next descendant to visit for post-order traversal of @root's
 * descendants.  @root is included in the iteration and the last node to be
 * visited.
 */
1215 1216
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
						       struct kernfs_node *root)
1217 1218 1219
{
	struct rb_node *rbn;

1220
	lockdep_assert_held(&kernfs_mutex);
1221 1222 1223

	/* if first iteration, visit leftmost descendant which may be root */
	if (!pos)
1224
		return kernfs_leftmost_descendant(root);
1225 1226 1227 1228 1229 1230

	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

	/* if there's an unvisited sibling, visit its leftmost descendant */
1231
	rbn = rb_next(&pos->rb);
1232
	if (rbn)
1233
		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1234 1235

	/* no sibling left, visit parent */
1236
	return pos->parent;
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * kernfs_activate - activate a node which started deactivated
 * @kn: kernfs_node whose subtree is to be activated
 *
 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
 * needs to be explicitly activated.  A node which hasn't been activated
 * isn't visible to userland and deactivation is skipped during its
 * removal.  This is useful to construct atomic init sequences where
 * creation of multiple nodes should either succeed or fail atomically.
 *
 * The caller is responsible for ensuring that this function is not called
 * after kernfs_remove*() is invoked on @kn.
 */
void kernfs_activate(struct kernfs_node *kn)
{
	struct kernfs_node *pos;

	mutex_lock(&kernfs_mutex);

	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn))) {
		if (!pos || (pos->flags & KERNFS_ACTIVATED))
			continue;

		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);

		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
		pos->flags |= KERNFS_ACTIVATED;
	}

	mutex_unlock(&kernfs_mutex);
}

T
Tejun Heo 已提交
1273
static void __kernfs_remove(struct kernfs_node *kn)
1274
{
1275 1276 1277
	struct kernfs_node *pos;

	lockdep_assert_held(&kernfs_mutex);
1278

1279 1280 1281 1282 1283 1284
	/*
	 * Short-circuit if non-root @kn has already finished removal.
	 * This is for kernfs_remove_self() which plays with active ref
	 * after removal.
	 */
	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1285 1286
		return;

1287
	pr_debug("kernfs %s: removing\n", kn->name);
1288

T
Tejun Heo 已提交
1289
	/* prevent any new usage under @kn by deactivating all nodes */
1290 1291
	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn)))
T
Tejun Heo 已提交
1292 1293
		if (kernfs_active(pos))
			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1294 1295

	/* deactivate and unlink the subtree node-by-node */
1296
	do {
1297 1298 1299
		pos = kernfs_leftmost_descendant(kn);

		/*
T
Tejun Heo 已提交
1300 1301 1302 1303
		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
		 * base ref could have been put by someone else by the time
		 * the function returns.  Make sure it doesn't go away
		 * underneath us.
1304 1305 1306
		 */
		kernfs_get(pos);

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		/*
		 * Drain iff @kn was activated.  This avoids draining and
		 * its lockdep annotations for nodes which have never been
		 * activated and allows embedding kernfs_remove() in create
		 * error paths without worrying about draining.
		 */
		if (kn->flags & KERNFS_ACTIVATED)
			kernfs_drain(pos);
		else
			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

		/*
		 * kernfs_unlink_sibling() succeeds once per node.  Use it
		 * to decide who's responsible for cleanups.
		 */
		if (!pos->parent || kernfs_unlink_sibling(pos)) {
			struct kernfs_iattrs *ps_iattr =
				pos->parent ? pos->parent->iattr : NULL;

			/* update timestamps on the parent */
			if (ps_iattr) {
1328 1329
				ktime_get_real_ts64(&ps_iattr->ia_ctime);
				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1330 1331
			}

T
Tejun Heo 已提交
1332
			kernfs_put(pos);
1333 1334 1335 1336
		}

		kernfs_put(pos);
	} while (pos != kn);
1337 1338 1339
}

/**
1340 1341
 * kernfs_remove - remove a kernfs_node recursively
 * @kn: the kernfs_node to remove
1342
 *
1343
 * Remove @kn along with all its subdirectories and files.
1344
 */
1345
void kernfs_remove(struct kernfs_node *kn)
1346
{
T
Tejun Heo 已提交
1347 1348 1349
	mutex_lock(&kernfs_mutex);
	__kernfs_remove(kn);
	mutex_unlock(&kernfs_mutex);
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/**
 * kernfs_break_active_protection - break out of active protection
 * @kn: the self kernfs_node
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
 * this function must also be matched with an invocation of
 * kernfs_unbreak_active_protection().
 *
 * This function releases the active reference of @kn the caller is
 * holding.  Once this function is called, @kn may be removed at any point
 * and the caller is solely responsible for ensuring that the objects it
 * dereferences are accessible.
 */
void kernfs_break_active_protection(struct kernfs_node *kn)
{
	/*
	 * Take out ourself out of the active ref dependency chain.  If
	 * we're called without an active ref, lockdep will complain.
	 */
	kernfs_put_active(kn);
}

/**
 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
 * @kn: the self kernfs_node
 *
 * If kernfs_break_active_protection() was called, this function must be
 * invoked before finishing the kernfs operation.  Note that while this
 * function restores the active reference, it doesn't and can't actually
 * restore the active protection - @kn may already or be in the process of
 * being removed.  Once kernfs_break_active_protection() is invoked, that
 * protection is irreversibly gone for the kernfs operation instance.
 *
 * While this function may be called at any point after
 * kernfs_break_active_protection() is invoked, its most useful location
 * would be right before the enclosing kernfs operation returns.
 */
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
	/*
	 * @kn->active could be in any state; however, the increment we do
	 * here will be undone as soon as the enclosing kernfs operation
	 * finishes and this temporary bump can't break anything.  If @kn
	 * is alive, nothing changes.  If @kn is being deactivated, the
	 * soon-to-follow put will either finish deactivation or restore
	 * deactivated state.  If @kn is already removed, the temporary
	 * bump is guaranteed to be gone before @kn is released.
	 */
	atomic_inc(&kn->active);
	if (kernfs_lockdep(kn))
		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}

/**
 * kernfs_remove_self - remove a kernfs_node from its own method
 * @kn: the self kernfs_node to remove
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  This can be used to
 * implement a file operation which deletes itself.
 *
 * For example, the "delete" file for a sysfs device directory can be
 * implemented by invoking kernfs_remove_self() on the "delete" file
 * itself.  This function breaks the circular dependency of trying to
 * deactivate self while holding an active ref itself.  It isn't necessary
 * to modify the usual removal path to use kernfs_remove_self().  The
 * "delete" implementation can simply invoke kernfs_remove_self() on self
 * before proceeding with the usual removal path.  kernfs will ignore later
 * kernfs_remove() on self.
 *
 * kernfs_remove_self() can be called multiple times concurrently on the
 * same kernfs_node.  Only the first one actually performs removal and
 * returns %true.  All others will wait until the kernfs operation which
 * won self-removal finishes and return %false.  Note that the losers wait
 * for the completion of not only the winning kernfs_remove_self() but also
 * the whole kernfs_ops which won the arbitration.  This can be used to
 * guarantee, for example, all concurrent writes to a "delete" file to
 * finish only after the whole operation is complete.
 */
bool kernfs_remove_self(struct kernfs_node *kn)
{
	bool ret;

	mutex_lock(&kernfs_mutex);
	kernfs_break_active_protection(kn);

	/*
	 * SUICIDAL is used to arbitrate among competing invocations.  Only
	 * the first one will actually perform removal.  When the removal
	 * is complete, SUICIDED is set and the active ref is restored
	 * while holding kernfs_mutex.  The ones which lost arbitration
	 * waits for SUICDED && drained which can happen only after the
	 * enclosing kernfs operation which executed the winning instance
	 * of kernfs_remove_self() finished.
	 */
	if (!(kn->flags & KERNFS_SUICIDAL)) {
		kn->flags |= KERNFS_SUICIDAL;
		__kernfs_remove(kn);
		kn->flags |= KERNFS_SUICIDED;
		ret = true;
	} else {
		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
		DEFINE_WAIT(wait);

		while (true) {
			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);

			if ((kn->flags & KERNFS_SUICIDED) &&
			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
				break;

			mutex_unlock(&kernfs_mutex);
			schedule();
			mutex_lock(&kernfs_mutex);
		}
		finish_wait(waitq, &wait);
		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
		ret = false;
	}

	/*
	 * This must be done while holding kernfs_mutex; otherwise, waiting
	 * for SUICIDED && deactivated could finish prematurely.
	 */
	kernfs_unbreak_active_protection(kn);

	mutex_unlock(&kernfs_mutex);
	return ret;
}

1483
/**
1484 1485 1486 1487
 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
 * @parent: parent of the target
 * @name: name of the kernfs_node to remove
 * @ns: namespace tag of the kernfs_node to remove
1488
 *
1489 1490
 * Look for the kernfs_node with @name and @ns under @parent and remove it.
 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1491
 */
1492
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1493 1494
			     const void *ns)
{
1495
	struct kernfs_node *kn;
1496

1497
	if (!parent) {
1498
		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1499 1500 1501 1502
			name);
		return -ENOENT;
	}

T
Tejun Heo 已提交
1503
	mutex_lock(&kernfs_mutex);
1504

1505 1506
	kn = kernfs_find_ns(parent, name, ns);
	if (kn)
T
Tejun Heo 已提交
1507
		__kernfs_remove(kn);
1508

T
Tejun Heo 已提交
1509
	mutex_unlock(&kernfs_mutex);
1510

1511
	if (kn)
1512 1513 1514 1515 1516 1517 1518
		return 0;
	else
		return -ENOENT;
}

/**
 * kernfs_rename_ns - move and rename a kernfs_node
1519
 * @kn: target node
1520 1521 1522 1523
 * @new_parent: new parent to put @sd under
 * @new_name: new name
 * @new_ns: new namespace tag
 */
1524
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1525 1526
		     const char *new_name, const void *new_ns)
{
1527 1528
	struct kernfs_node *old_parent;
	const char *old_name = NULL;
1529 1530
	int error;

1531 1532 1533 1534
	/* can't move or rename root */
	if (!kn->parent)
		return -EINVAL;

1535 1536
	mutex_lock(&kernfs_mutex);

1537
	error = -ENOENT;
1538 1539
	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
	    (new_parent->flags & KERNFS_EMPTY_DIR))
1540 1541
		goto out;

1542
	error = 0;
1543 1544
	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
	    (strcmp(kn->name, new_name) == 0))
1545
		goto out;	/* nothing to rename */
1546 1547 1548

	error = -EEXIST;
	if (kernfs_find_ns(new_parent, new_name, new_ns))
1549
		goto out;
1550

1551
	/* rename kernfs_node */
1552
	if (strcmp(kn->name, new_name) != 0) {
1553
		error = -ENOMEM;
1554
		new_name = kstrdup_const(new_name, GFP_KERNEL);
1555
		if (!new_name)
1556
			goto out;
1557 1558
	} else {
		new_name = NULL;
1559 1560 1561 1562 1563
	}

	/*
	 * Move to the appropriate place in the appropriate directories rbtree.
	 */
1564
	kernfs_unlink_sibling(kn);
1565
	kernfs_get(new_parent);
1566 1567 1568 1569 1570

	/* rename_lock protects ->parent and ->name accessors */
	spin_lock_irq(&kernfs_rename_lock);

	old_parent = kn->parent;
1571
	kn->parent = new_parent;
1572 1573 1574

	kn->ns = new_ns;
	if (new_name) {
T
Tejun Heo 已提交
1575
		old_name = kn->name;
1576 1577 1578 1579 1580
		kn->name = new_name;
	}

	spin_unlock_irq(&kernfs_rename_lock);

1581
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1582
	kernfs_link_sibling(kn);
1583

1584
	kernfs_put(old_parent);
1585
	kfree_const(old_name);
1586

1587
	error = 0;
1588
 out:
1589
	mutex_unlock(&kernfs_mutex);
1590 1591 1592 1593
	return error;
}

/* Relationship between s_mode and the DT_xxx types */
1594
static inline unsigned char dt_type(struct kernfs_node *kn)
1595
{
1596
	return (kn->mode >> 12) & 15;
1597 1598
}

1599
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1600 1601 1602 1603 1604
{
	kernfs_put(filp->private_data);
	return 0;
}

1605
static struct kernfs_node *kernfs_dir_pos(const void *ns,
1606
	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1607 1608
{
	if (pos) {
T
Tejun Heo 已提交
1609
		int valid = kernfs_active(pos) &&
1610
			pos->parent == parent && hash == pos->hash;
1611 1612 1613 1614 1615
		kernfs_put(pos);
		if (!valid)
			pos = NULL;
	}
	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1616
		struct rb_node *node = parent->dir.children.rb_node;
1617
		while (node) {
1618
			pos = rb_to_kn(node);
1619

1620
			if (hash < pos->hash)
1621
				node = node->rb_left;
1622
			else if (hash > pos->hash)
1623 1624 1625 1626 1627
				node = node->rb_right;
			else
				break;
		}
	}
1628 1629
	/* Skip over entries which are dying/dead or in the wrong namespace */
	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1630
		struct rb_node *node = rb_next(&pos->rb);
1631 1632 1633
		if (!node)
			pos = NULL;
		else
1634
			pos = rb_to_kn(node);
1635 1636 1637 1638
	}
	return pos;
}

1639
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1640
	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1641
{
1642
	pos = kernfs_dir_pos(ns, parent, ino, pos);
1643
	if (pos) {
1644
		do {
1645
			struct rb_node *node = rb_next(&pos->rb);
1646 1647 1648
			if (!node)
				pos = NULL;
			else
1649
				pos = rb_to_kn(node);
1650 1651
		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
	}
1652 1653 1654
	return pos;
}

1655
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1656 1657
{
	struct dentry *dentry = file->f_path.dentry;
S
Shaohua Li 已提交
1658
	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1659
	struct kernfs_node *pos = file->private_data;
1660 1661 1662 1663
	const void *ns = NULL;

	if (!dir_emit_dots(file, ctx))
		return 0;
1664
	mutex_lock(&kernfs_mutex);
1665

1666
	if (kernfs_ns_enabled(parent))
1667
		ns = kernfs_info(dentry->d_sb)->ns;
1668

1669
	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1670
	     pos;
1671
	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1672
		const char *name = pos->name;
1673 1674
		unsigned int type = dt_type(pos);
		int len = strlen(name);
S
Shaohua Li 已提交
1675
		ino_t ino = pos->id.ino;
1676

1677
		ctx->pos = pos->hash;
1678 1679 1680
		file->private_data = pos;
		kernfs_get(pos);

1681
		mutex_unlock(&kernfs_mutex);
1682 1683
		if (!dir_emit(ctx, name, len, ino, type))
			return 0;
1684
		mutex_lock(&kernfs_mutex);
1685
	}
1686
	mutex_unlock(&kernfs_mutex);
1687 1688 1689 1690 1691
	file->private_data = NULL;
	ctx->pos = INT_MAX;
	return 0;
}

1692
const struct file_operations kernfs_dir_fops = {
1693
	.read		= generic_read_dir,
1694
	.iterate_shared	= kernfs_fop_readdir,
1695
	.release	= kernfs_dir_fop_release,
1696
	.llseek		= generic_file_llseek,
1697
};