dir.c 41.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
/*
 * fs/kernfs/dir.c - kernfs directory implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 */
9

10
#include <linux/sched.h>
11 12 13 14 15 16 17 18 19
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>

#include "kernfs-internal.h"

20
DEFINE_MUTEX(kernfs_mutex);
21 22
static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23
static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24

25
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26

T
Tejun Heo 已提交
27 28 29 30 31 32
static bool kernfs_active(struct kernfs_node *kn)
{
	lockdep_assert_held(&kernfs_mutex);
	return atomic_read(&kn->active) >= 0;
}

33 34 35 36 37 38 39 40 41
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	return kn->flags & KERNFS_LOCKDEP;
#else
	return false;
#endif
}

42 43
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
44 45 46
	if (!kn)
		return strlcpy(buf, "(null)", buflen);

47 48 49
	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}

50 51
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52
{
53
	size_t depth = 0;
54

55 56 57 58 59 60
	while (to->parent && to != from) {
		depth++;
		to = to->parent;
	}
	return depth;
}
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
						  struct kernfs_node *b)
{
	size_t da, db;
	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);

	if (ra != rb)
		return NULL;

	da = kernfs_depth(ra->kn, a);
	db = kernfs_depth(rb->kn, b);

	while (da > db) {
		a = a->parent;
		da--;
	}
	while (db > da) {
		b = b->parent;
		db--;
	}

	/* worst case b and a will be the same at root */
	while (b != a) {
		b = b->parent;
		a = a->parent;
	}

	return a;
}

/**
 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 * where kn_from is treated as root of the path.
 * @kn_from: kernfs node which should be treated as root for the path
 * @kn_to: kernfs node to which path is needed
 * @buf: buffer to copy the path into
 * @buflen: size of @buf
 *
 * We need to handle couple of scenarios here:
 * [1] when @kn_from is an ancestor of @kn_to at some level
 * kn_from: /n1/n2/n3
 * kn_to:   /n1/n2/n3/n4/n5
 * result:  /n4/n5
 *
 * [2] when @kn_from is on a different hierarchy and we need to find common
 * ancestor between @kn_from and @kn_to.
 * kn_from: /n1/n2/n3/n4
 * kn_to:   /n1/n2/n5
 * result:  /../../n5
 * OR
 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 * kn_to:   /n1/n2/n3         [depth=3]
 * result:  /../..
 *
116 117
 * [3] when @kn_to is NULL result will be "(null)"
 *
118 119 120
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
121 122 123 124 125 126 127
 */
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
					struct kernfs_node *kn_from,
					char *buf, size_t buflen)
{
	struct kernfs_node *kn, *common;
	const char parent_str[] = "/..";
128 129
	size_t depth_from, depth_to, len = 0;
	int i, j;
130

131 132 133
	if (!kn_to)
		return strlcpy(buf, "(null)", buflen);

134 135 136 137 138 139
	if (!kn_from)
		kn_from = kernfs_root(kn_to)->kn;

	if (kn_from == kn_to)
		return strlcpy(buf, "/", buflen);

140 141 142
	if (!buf)
		return -EINVAL;

143 144
	common = kernfs_common_ancestor(kn_from, kn_to);
	if (WARN_ON(!common))
145
		return -EINVAL;
146 147 148 149

	depth_to = kernfs_depth(common, kn_to);
	depth_from = kernfs_depth(common, kn_from);

150
	buf[0] = '\0';
151 152 153 154 155 156

	for (i = 0; i < depth_from; i++)
		len += strlcpy(buf + len, parent_str,
			       len < buflen ? buflen - len : 0);

	/* Calculate how many bytes we need for the rest */
157 158 159 160 161 162 163
	for (i = depth_to - 1; i >= 0; i--) {
		for (kn = kn_to, j = 0; j < i; j++)
			kn = kn->parent;
		len += strlcpy(buf + len, "/",
			       len < buflen ? buflen - len : 0);
		len += strlcpy(buf + len, kn->name,
			       len < buflen ? buflen - len : 0);
164
	}
165

166
	return len;
167 168 169 170 171 172 173 174 175 176 177 178
}

/**
 * kernfs_name - obtain the name of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 *
179 180
 * Fills buffer with "(null)" if @kn is NULL.
 *
181 182 183 184 185 186 187 188 189 190 191 192 193
 * This function can be called from any context.
 */
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_name_locked(kn, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}

194 195 196 197 198 199 200 201 202 203 204 205
/**
 * kernfs_path_from_node - build path of node @to relative to @from.
 * @from: parent kernfs_node relative to which we need to build the path
 * @to: kernfs_node of interest
 * @buf: buffer to copy @to's path into
 * @buflen: size of @buf
 *
 * Builds @to's path relative to @from in @buf. @from and @to must
 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 * path (which includes '..'s) as needed to reach from @from to @to is
 * returned.
 *
206 207 208
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
209 210 211 212 213 214 215 216 217 218 219 220 221 222
 */
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
			  char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/**
 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
	pr_cont("%s", kernfs_pr_cont_buf);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
	unsigned long flags;
250
	int sz;
251 252 253

	spin_lock_irqsave(&kernfs_rename_lock, flags);

254 255 256 257 258 259 260 261 262 263 264 265 266
	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
					  sizeof(kernfs_pr_cont_buf));
	if (sz < 0) {
		pr_cont("(error)");
		goto out;
	}

	if (sz >= sizeof(kernfs_pr_cont_buf)) {
		pr_cont("(name too long)");
		goto out;
	}

	pr_cont("%s", kernfs_pr_cont_buf);
267

268
out:
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * kernfs_get_parent - determine the parent node and pin it
 * @kn: kernfs_node of interest
 *
 * Determines @kn's parent, pins and returns it.  This function can be
 * called from any context.
 */
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
	struct kernfs_node *parent;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	parent = kn->parent;
	kernfs_get(parent);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return parent;
}

292
/**
293
 *	kernfs_name_hash
294 295 296 297 298
 *	@name: Null terminated string to hash
 *	@ns:   Namespace tag to hash
 *
 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 */
299
static unsigned int kernfs_name_hash(const char *name, const void *ns)
300
{
301
	unsigned long hash = init_name_hash(ns);
302 303 304
	unsigned int len = strlen(name);
	while (len--)
		hash = partial_name_hash(*name++, hash);
305
	hash = end_name_hash(hash);
306 307
	hash &= 0x7fffffffU;
	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
R
Richard Cochran 已提交
308
	if (hash < 2)
309 310 311 312 313 314
		hash += 2;
	if (hash >= INT_MAX)
		hash = INT_MAX - 1;
	return hash;
}

315 316
static int kernfs_name_compare(unsigned int hash, const char *name,
			       const void *ns, const struct kernfs_node *kn)
317
{
318 319 320 321 322 323 324 325
	if (hash < kn->hash)
		return -1;
	if (hash > kn->hash)
		return 1;
	if (ns < kn->ns)
		return -1;
	if (ns > kn->ns)
		return 1;
326
	return strcmp(name, kn->name);
327 328
}

329 330
static int kernfs_sd_compare(const struct kernfs_node *left,
			     const struct kernfs_node *right)
331
{
332
	return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 334 335
}

/**
336
 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
337
 *	@kn: kernfs_node of interest
338
 *
339
 *	Link @kn into its sibling rbtree which starts from
340
 *	@kn->parent->dir.children.
341 342
 *
 *	Locking:
343
 *	mutex_lock(kernfs_mutex)
344 345 346 347
 *
 *	RETURNS:
 *	0 on susccess -EEXIST on failure.
 */
348
static int kernfs_link_sibling(struct kernfs_node *kn)
349
{
350
	struct rb_node **node = &kn->parent->dir.children.rb_node;
351 352 353
	struct rb_node *parent = NULL;

	while (*node) {
354
		struct kernfs_node *pos;
355 356
		int result;

357
		pos = rb_to_kn(*node);
358
		parent = *node;
359
		result = kernfs_sd_compare(kn, pos);
360
		if (result < 0)
361
			node = &pos->rb.rb_left;
362
		else if (result > 0)
363
			node = &pos->rb.rb_right;
364 365 366
		else
			return -EEXIST;
	}
J
Jianyu Zhan 已提交
367

368
	/* add new node and rebalance the tree */
369 370
	rb_link_node(&kn->rb, parent, node);
	rb_insert_color(&kn->rb, &kn->parent->dir.children);
J
Jianyu Zhan 已提交
371 372 373 374 375

	/* successfully added, account subdir number */
	if (kernfs_type(kn) == KERNFS_DIR)
		kn->parent->dir.subdirs++;

376 377 378 379
	return 0;
}

/**
380
 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381
 *	@kn: kernfs_node of interest
382
 *
383 384 385
 *	Try to unlink @kn from its sibling rbtree which starts from
 *	kn->parent->dir.children.  Returns %true if @kn was actually
 *	removed, %false if @kn wasn't on the rbtree.
386 387
 *
 *	Locking:
388
 *	mutex_lock(kernfs_mutex)
389
 */
390
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391
{
392 393 394
	if (RB_EMPTY_NODE(&kn->rb))
		return false;

T
Tejun Heo 已提交
395
	if (kernfs_type(kn) == KERNFS_DIR)
396
		kn->parent->dir.subdirs--;
397

398
	rb_erase(&kn->rb, &kn->parent->dir.children);
399 400
	RB_CLEAR_NODE(&kn->rb);
	return true;
401 402 403
}

/**
404
 *	kernfs_get_active - get an active reference to kernfs_node
405
 *	@kn: kernfs_node to get an active reference to
406
 *
407
 *	Get an active reference of @kn.  This function is noop if @kn
408 409 410
 *	is NULL.
 *
 *	RETURNS:
411
 *	Pointer to @kn on success, NULL on failure.
412
 */
413
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
414
{
415
	if (unlikely(!kn))
416 417
		return NULL;

418 419
	if (!atomic_inc_unless_negative(&kn->active))
		return NULL;
420

421
	if (kernfs_lockdep(kn))
422 423
		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
	return kn;
424 425 426
}

/**
427
 *	kernfs_put_active - put an active reference to kernfs_node
428
 *	@kn: kernfs_node to put an active reference to
429
 *
430
 *	Put an active reference to @kn.  This function is noop if @kn
431 432
 *	is NULL.
 */
433
void kernfs_put_active(struct kernfs_node *kn)
434 435 436
{
	int v;

437
	if (unlikely(!kn))
438 439
		return;

440
	if (kernfs_lockdep(kn))
441
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442
	v = atomic_dec_return(&kn->active);
T
Tejun Heo 已提交
443
	if (likely(v != KN_DEACTIVATED_BIAS))
444 445
		return;

446
	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
447 448 449
}

/**
T
Tejun Heo 已提交
450 451
 * kernfs_drain - drain kernfs_node
 * @kn: kernfs_node to drain
452
 *
T
Tejun Heo 已提交
453 454 455
 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 * removers may invoke this function concurrently on @kn and all will
 * return after draining is complete.
456
 */
T
Tejun Heo 已提交
457
static void kernfs_drain(struct kernfs_node *kn)
458
	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459
{
460
	struct kernfs_root *root = kernfs_root(kn);
461

462
	lockdep_assert_held(&kernfs_mutex);
T
Tejun Heo 已提交
463
	WARN_ON_ONCE(kernfs_active(kn));
464

465
	mutex_unlock(&kernfs_mutex);
466

467
	if (kernfs_lockdep(kn)) {
468 469 470 471
		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
			lock_contended(&kn->dep_map, _RET_IP_);
	}
472

473
	/* but everyone should wait for draining */
474 475
	wait_event(root->deactivate_waitq,
		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476

477
	if (kernfs_lockdep(kn)) {
478 479 480
		lock_acquired(&kn->dep_map, _RET_IP_);
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
	}
481

482
	kernfs_drain_open_files(kn);
483

484
	mutex_lock(&kernfs_mutex);
485 486 487
}

/**
488 489
 * kernfs_get - get a reference count on a kernfs_node
 * @kn: the target kernfs_node
490
 */
491
void kernfs_get(struct kernfs_node *kn)
492
{
493
	if (kn) {
494 495
		WARN_ON(!atomic_read(&kn->count));
		atomic_inc(&kn->count);
496 497 498 499 500
	}
}
EXPORT_SYMBOL_GPL(kernfs_get);

/**
501 502
 * kernfs_put - put a reference count on a kernfs_node
 * @kn: the target kernfs_node
503
 *
504
 * Put a reference count of @kn and destroy it if it reached zero.
505
 */
506
void kernfs_put(struct kernfs_node *kn)
507
{
508
	struct kernfs_node *parent;
509
	struct kernfs_root *root;
510

511
	if (!kn || !atomic_dec_and_test(&kn->count))
512
		return;
513
	root = kernfs_root(kn);
514
 repeat:
T
Tejun Heo 已提交
515 516
	/*
	 * Moving/renaming is always done while holding reference.
517
	 * kn->parent won't change beneath us.
518
	 */
519
	parent = kn->parent;
520

T
Tejun Heo 已提交
521 522 523
	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
524

T
Tejun Heo 已提交
525
	if (kernfs_type(kn) == KERNFS_LINK)
526
		kernfs_put(kn->symlink.target_kn);
T
Tejun Heo 已提交
527 528 529

	kfree_const(kn->name);

530 531
	if (kn->iattr) {
		simple_xattrs_free(&kn->iattr->xattrs);
532
		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
533
	}
534
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
535
	idr_remove(&root->ino_idr, kn->id.ino);
536
	spin_unlock(&kernfs_idr_lock);
537
	kmem_cache_free(kernfs_node_cache, kn);
538

539 540
	kn = parent;
	if (kn) {
541
		if (atomic_dec_and_test(&kn->count))
542 543
			goto repeat;
	} else {
544
		/* just released the root kn, free @root too */
545
		idr_destroy(&root->ino_idr);
546 547
		kfree(root);
	}
548 549 550
}
EXPORT_SYMBOL_GPL(kernfs_put);

551
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
552
{
553
	struct kernfs_node *kn;
554 555 556 557

	if (flags & LOOKUP_RCU)
		return -ECHILD;

T
Tejun Heo 已提交
558
	/* Always perform fresh lookup for negatives */
559
	if (d_really_is_negative(dentry))
T
Tejun Heo 已提交
560 561
		goto out_bad_unlocked;

S
Shaohua Li 已提交
562
	kn = kernfs_dentry_node(dentry);
563
	mutex_lock(&kernfs_mutex);
564

T
Tejun Heo 已提交
565 566
	/* The kernfs node has been deactivated */
	if (!kernfs_active(kn))
567 568
		goto out_bad;

569
	/* The kernfs node has been moved? */
S
Shaohua Li 已提交
570
	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
571 572
		goto out_bad;

573
	/* The kernfs node has been renamed */
574
	if (strcmp(dentry->d_name.name, kn->name) != 0)
575 576
		goto out_bad;

577
	/* The kernfs node has been moved to a different namespace */
578
	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579
	    kernfs_info(dentry->d_sb)->ns != kn->ns)
580 581
		goto out_bad;

582
	mutex_unlock(&kernfs_mutex);
583 584
	return 1;
out_bad:
585
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
586
out_bad_unlocked:
587 588 589
	return 0;
}

590
const struct dentry_operations kernfs_dops = {
591
	.d_revalidate	= kernfs_dop_revalidate,
592 593
};

594 595 596 597 598 599 600 601 602 603 604 605 606
/**
 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 * @dentry: the dentry in question
 *
 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 * kernfs one, %NULL is returned.
 *
 * While the returned kernfs_node will stay accessible as long as @dentry
 * is accessible, the returned node can be in any state and the caller is
 * fully responsible for determining what's accessible.
 */
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
S
Shaohua Li 已提交
607 608 609
	if (dentry->d_sb->s_op == &kernfs_sops &&
	    !d_really_is_negative(dentry))
		return kernfs_dentry_node(dentry);
610 611 612
	return NULL;
}

613
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
614
					     struct kernfs_node *parent,
615
					     const char *name, umode_t mode,
616
					     kuid_t uid, kgid_t gid,
617
					     unsigned flags)
618
{
619
	struct kernfs_node *kn;
S
Shaohua Li 已提交
620
	u32 gen;
621
	int ret;
622

T
Tejun Heo 已提交
623 624 625
	name = kstrdup_const(name, GFP_KERNEL);
	if (!name)
		return NULL;
626

627
	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
628
	if (!kn)
629 630
		goto err_out1;

631 632
	idr_preload(GFP_KERNEL);
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
633
	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
T
Tejun Heo 已提交
634
	if (ret >= 0 && ret < root->last_ino)
S
Shaohua Li 已提交
635 636
		root->next_generation++;
	gen = root->next_generation;
T
Tejun Heo 已提交
637
	root->last_ino = ret;
638 639
	spin_unlock(&kernfs_idr_lock);
	idr_preload_end();
640
	if (ret < 0)
641
		goto err_out2;
S
Shaohua Li 已提交
642 643
	kn->id.ino = ret;
	kn->id.generation = gen;
644

645
	atomic_set(&kn->count, 1);
T
Tejun Heo 已提交
646
	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
647
	RB_CLEAR_NODE(&kn->rb);
648

649 650
	kn->name = name;
	kn->mode = mode;
T
Tejun Heo 已提交
651
	kn->flags = flags;
652

653 654 655 656 657 658 659 660 661 662 663 664
	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
		struct iattr iattr = {
			.ia_valid = ATTR_UID | ATTR_GID,
			.ia_uid = uid,
			.ia_gid = gid,
		};

		ret = __kernfs_setattr(kn, &iattr);
		if (ret < 0)
			goto err_out3;
	}

665 666 667 668 669 670
	if (parent) {
		ret = security_kernfs_init_security(parent, kn);
		if (ret)
			goto err_out3;
	}

671
	return kn;
672

673 674
 err_out3:
	idr_remove(&root->ino_idr, kn->id.ino);
675
 err_out2:
676
	kmem_cache_free(kernfs_node_cache, kn);
677
 err_out1:
T
Tejun Heo 已提交
678
	kfree_const(name);
679 680 681
	return NULL;
}

682 683
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
				    const char *name, umode_t mode,
684
				    kuid_t uid, kgid_t gid,
685 686 687 688
				    unsigned flags)
{
	struct kernfs_node *kn;

689
	kn = __kernfs_new_node(kernfs_root(parent), parent,
690
			       name, mode, uid, gid, flags);
691 692 693 694 695 696 697
	if (kn) {
		kernfs_get(parent);
		kn->parent = parent;
	}
	return kn;
}

698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
 * @root: the kernfs root
 * @ino: inode number
 *
 * RETURNS:
 * NULL on failure. Return a kernfs node with reference counter incremented
 */
struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
						    unsigned int ino)
{
	struct kernfs_node *kn;

711 712
	spin_lock(&kernfs_idr_lock);

713 714
	kn = idr_find(&root->ino_idr, ino);
	if (!kn)
715
		goto err_unlock;
716

717 718
	if (unlikely(!atomic_inc_not_zero(&kn->count)))
		goto err_unlock;
719

720
	spin_unlock(&kernfs_idr_lock);
721
	return kn;
722 723
err_unlock:
	spin_unlock(&kernfs_idr_lock);
724 725 726
	return NULL;
}

727
/**
728
 *	kernfs_add_one - add kernfs_node to parent without warning
729
 *	@kn: kernfs_node to be added
730
 *
731 732 733
 *	The caller must already have initialized @kn->parent.  This
 *	function increments nlink of the parent's inode if @kn is a
 *	directory and link into the children list of the parent.
734 735 736 737 738
 *
 *	RETURNS:
 *	0 on success, -EEXIST if entry with the given name already
 *	exists.
 */
T
Tejun Heo 已提交
739
int kernfs_add_one(struct kernfs_node *kn)
740
{
741
	struct kernfs_node *parent = kn->parent;
742
	struct kernfs_iattrs *ps_iattr;
T
Tejun Heo 已提交
743
	bool has_ns;
744 745
	int ret;

T
Tejun Heo 已提交
746 747 748 749 750 751 752
	mutex_lock(&kernfs_mutex);

	ret = -EINVAL;
	has_ns = kernfs_ns_enabled(parent);
	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
		 has_ns ? "required" : "invalid", parent->name, kn->name))
		goto out_unlock;
753

T
Tejun Heo 已提交
754
	if (kernfs_type(parent) != KERNFS_DIR)
T
Tejun Heo 已提交
755
		goto out_unlock;
756

T
Tejun Heo 已提交
757
	ret = -ENOENT;
758 759 760
	if (parent->flags & KERNFS_EMPTY_DIR)
		goto out_unlock;

761
	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
T
Tejun Heo 已提交
762
		goto out_unlock;
763

764
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
765

766
	ret = kernfs_link_sibling(kn);
767
	if (ret)
T
Tejun Heo 已提交
768
		goto out_unlock;
769 770

	/* Update timestamps on the parent */
771
	ps_iattr = parent->iattr;
772
	if (ps_iattr) {
773 774
		ktime_get_real_ts64(&ps_iattr->ia_ctime);
		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
775 776
	}

777 778 779 780 781 782 783 784 785 786 787 788 789
	mutex_unlock(&kernfs_mutex);

	/*
	 * Activate the new node unless CREATE_DEACTIVATED is requested.
	 * If not activated here, the kernfs user is responsible for
	 * activating the node with kernfs_activate().  A node which hasn't
	 * been activated is not visible to userland and its removal won't
	 * trigger deactivation.
	 */
	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);
	return 0;

T
Tejun Heo 已提交
790
out_unlock:
791
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
792
	return ret;
793 794 795
}

/**
796 797
 * kernfs_find_ns - find kernfs_node with the given name
 * @parent: kernfs_node to search under
798 799 800
 * @name: name to look for
 * @ns: the namespace tag to use
 *
801 802
 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 * the found kernfs_node on success, %NULL on failure.
803
 */
804 805 806
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
					  const unsigned char *name,
					  const void *ns)
807
{
808
	struct rb_node *node = parent->dir.children.rb_node;
809
	bool has_ns = kernfs_ns_enabled(parent);
810 811
	unsigned int hash;

812
	lockdep_assert_held(&kernfs_mutex);
813 814

	if (has_ns != (bool)ns) {
815
		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
816
		     has_ns ? "required" : "invalid", parent->name, name);
817 818 819
		return NULL;
	}

820
	hash = kernfs_name_hash(name, ns);
821
	while (node) {
822
		struct kernfs_node *kn;
823 824
		int result;

825
		kn = rb_to_kn(node);
826
		result = kernfs_name_compare(hash, name, ns, kn);
827 828 829 830 831
		if (result < 0)
			node = node->rb_left;
		else if (result > 0)
			node = node->rb_right;
		else
832
			return kn;
833 834 835 836
	}
	return NULL;
}

837 838 839 840
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
					  const unsigned char *path,
					  const void *ns)
{
841 842
	size_t len;
	char *p, *name;
843 844 845

	lockdep_assert_held(&kernfs_mutex);

846 847 848 849 850 851 852
	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
	spin_lock_irq(&kernfs_rename_lock);

	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));

	if (len >= sizeof(kernfs_pr_cont_buf)) {
		spin_unlock_irq(&kernfs_rename_lock);
853
		return NULL;
854 855 856
	}

	p = kernfs_pr_cont_buf;
857 858 859 860 861 862 863

	while ((name = strsep(&p, "/")) && parent) {
		if (*name == '\0')
			continue;
		parent = kernfs_find_ns(parent, name, ns);
	}

864 865
	spin_unlock_irq(&kernfs_rename_lock);

866 867 868
	return parent;
}

869
/**
870 871
 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 * @parent: kernfs_node to search under
872 873 874
 * @name: name to look for
 * @ns: the namespace tag to use
 *
875
 * Look for kernfs_node with name @name under @parent and get a reference
876
 * if found.  This function may sleep and returns pointer to the found
877
 * kernfs_node on success, %NULL on failure.
878
 */
879 880
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
					   const char *name, const void *ns)
881
{
882
	struct kernfs_node *kn;
883

884
	mutex_lock(&kernfs_mutex);
885 886
	kn = kernfs_find_ns(parent, name, ns);
	kernfs_get(kn);
887
	mutex_unlock(&kernfs_mutex);
888

889
	return kn;
890 891 892
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 * @parent: kernfs_node to search under
 * @path: path to look for
 * @ns: the namespace tag to use
 *
 * Look for kernfs_node with path @path under @parent and get a reference
 * if found.  This function may sleep and returns pointer to the found
 * kernfs_node on success, %NULL on failure.
 */
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
					   const char *path, const void *ns)
{
	struct kernfs_node *kn;

	mutex_lock(&kernfs_mutex);
	kn = kernfs_walk_ns(parent, path, ns);
	kernfs_get(kn);
	mutex_unlock(&kernfs_mutex);

	return kn;
}

916 917
/**
 * kernfs_create_root - create a new kernfs hierarchy
918
 * @scops: optional syscall operations for the hierarchy
919
 * @flags: KERNFS_ROOT_* flags
920 921 922 923 924
 * @priv: opaque data associated with the new directory
 *
 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 * failure.
 */
925
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
926
				       unsigned int flags, void *priv)
927 928
{
	struct kernfs_root *root;
929
	struct kernfs_node *kn;
930 931 932 933 934

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

935
	idr_init(&root->ino_idr);
936
	INIT_LIST_HEAD(&root->supers);
S
Shaohua Li 已提交
937
	root->next_generation = 1;
938

939
	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
940
			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
941
			       KERNFS_DIR);
942
	if (!kn) {
943
		idr_destroy(&root->ino_idr);
944 945 946 947
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}

948
	kn->priv = priv;
949
	kn->dir.root = root;
950

951
	root->syscall_ops = scops;
952
	root->flags = flags;
953
	root->kn = kn;
954
	init_waitqueue_head(&root->deactivate_waitq);
955

956 957 958
	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);

959 960 961 962 963 964 965 966 967 968 969 970
	return root;
}

/**
 * kernfs_destroy_root - destroy a kernfs hierarchy
 * @root: root of the hierarchy to destroy
 *
 * Destroy the hierarchy anchored at @root by removing all existing
 * directories and destroying @root.
 */
void kernfs_destroy_root(struct kernfs_root *root)
{
971
	kernfs_remove(root->kn);	/* will also free @root */
972 973
}

974 975 976 977
/**
 * kernfs_create_dir_ns - create a directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
978
 * @mode: mode of the new directory
979 980
 * @uid: uid of the new directory
 * @gid: gid of the new directory
981 982 983 984 985
 * @priv: opaque data associated with the new directory
 * @ns: optional namespace tag of the directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
986
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
987
					 const char *name, umode_t mode,
988
					 kuid_t uid, kgid_t gid,
989
					 void *priv, const void *ns)
990
{
991
	struct kernfs_node *kn;
992 993 994
	int rc;

	/* allocate */
995 996
	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
			     uid, gid, KERNFS_DIR);
997
	if (!kn)
998 999
		return ERR_PTR(-ENOMEM);

1000 1001
	kn->dir.root = parent->dir.root;
	kn->ns = ns;
1002
	kn->priv = priv;
1003 1004

	/* link in */
T
Tejun Heo 已提交
1005
	rc = kernfs_add_one(kn);
1006
	if (!rc)
1007
		return kn;
1008

1009
	kernfs_put(kn);
1010 1011 1012
	return ERR_PTR(rc);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/**
 * kernfs_create_empty_dir - create an always empty directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
					    const char *name)
{
	struct kernfs_node *kn;
	int rc;

	/* allocate */
1027 1028
	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (!kn)
		return ERR_PTR(-ENOMEM);

	kn->flags |= KERNFS_EMPTY_DIR;
	kn->dir.root = parent->dir.root;
	kn->ns = NULL;
	kn->priv = NULL;

	/* link in */
	rc = kernfs_add_one(kn);
	if (!rc)
		return kn;

	kernfs_put(kn);
	return ERR_PTR(rc);
}

1046 1047 1048
static struct dentry *kernfs_iop_lookup(struct inode *dir,
					struct dentry *dentry,
					unsigned int flags)
1049
{
T
Tejun Heo 已提交
1050
	struct dentry *ret;
S
Shaohua Li 已提交
1051
	struct kernfs_node *parent = dir->i_private;
1052
	struct kernfs_node *kn;
1053 1054 1055
	struct inode *inode;
	const void *ns = NULL;

1056
	mutex_lock(&kernfs_mutex);
1057

1058
	if (kernfs_ns_enabled(parent))
1059
		ns = kernfs_info(dir->i_sb)->ns;
1060

1061
	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1062 1063

	/* no such entry */
1064
	if (!kn || !kernfs_active(kn)) {
T
Tejun Heo 已提交
1065
		ret = NULL;
1066 1067 1068 1069
		goto out_unlock;
	}

	/* attach dentry and inode */
1070
	inode = kernfs_get_inode(dir->i_sb, kn);
1071 1072 1073 1074 1075 1076
	if (!inode) {
		ret = ERR_PTR(-ENOMEM);
		goto out_unlock;
	}

	/* instantiate and hash dentry */
1077
	ret = d_splice_alias(inode, dentry);
1078
 out_unlock:
1079
	mutex_unlock(&kernfs_mutex);
1080 1081 1082
	return ret;
}

T
Tejun Heo 已提交
1083 1084 1085 1086
static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
			    umode_t mode)
{
	struct kernfs_node *parent = dir->i_private;
1087
	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1088
	int ret;
T
Tejun Heo 已提交
1089

1090
	if (!scops || !scops->mkdir)
T
Tejun Heo 已提交
1091 1092
		return -EPERM;

1093 1094 1095
	if (!kernfs_get_active(parent))
		return -ENODEV;

1096
	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1097 1098 1099

	kernfs_put_active(parent);
	return ret;
T
Tejun Heo 已提交
1100 1101 1102 1103
}

static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
S
Shaohua Li 已提交
1104
	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1105
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1106
	int ret;
T
Tejun Heo 已提交
1107

1108
	if (!scops || !scops->rmdir)
T
Tejun Heo 已提交
1109 1110
		return -EPERM;

1111 1112 1113
	if (!kernfs_get_active(kn))
		return -ENODEV;

1114
	ret = scops->rmdir(kn);
1115 1116 1117

	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1118 1119 1120
}

static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1121 1122
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags)
T
Tejun Heo 已提交
1123
{
S
Shaohua Li 已提交
1124
	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
T
Tejun Heo 已提交
1125
	struct kernfs_node *new_parent = new_dir->i_private;
1126
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1127
	int ret;
T
Tejun Heo 已提交
1128

1129 1130 1131
	if (flags)
		return -EINVAL;

1132
	if (!scops || !scops->rename)
T
Tejun Heo 已提交
1133 1134
		return -EPERM;

1135 1136 1137 1138 1139 1140 1141 1142
	if (!kernfs_get_active(kn))
		return -ENODEV;

	if (!kernfs_get_active(new_parent)) {
		kernfs_put_active(kn);
		return -ENODEV;
	}

1143
	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1144 1145 1146 1147

	kernfs_put_active(new_parent);
	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1148 1149
}

1150
const struct inode_operations kernfs_dir_iops = {
1151 1152 1153 1154 1155
	.lookup		= kernfs_iop_lookup,
	.permission	= kernfs_iop_permission,
	.setattr	= kernfs_iop_setattr,
	.getattr	= kernfs_iop_getattr,
	.listxattr	= kernfs_iop_listxattr,
T
Tejun Heo 已提交
1156 1157 1158 1159

	.mkdir		= kernfs_iop_mkdir,
	.rmdir		= kernfs_iop_rmdir,
	.rename		= kernfs_iop_rename,
1160 1161
};

1162
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1163
{
1164
	struct kernfs_node *last;
1165 1166 1167 1168 1169 1170

	while (true) {
		struct rb_node *rbn;

		last = pos;

T
Tejun Heo 已提交
1171
		if (kernfs_type(pos) != KERNFS_DIR)
1172 1173
			break;

1174
		rbn = rb_first(&pos->dir.children);
1175 1176 1177
		if (!rbn)
			break;

1178
		pos = rb_to_kn(rbn);
1179 1180 1181 1182 1183 1184
	}

	return last;
}

/**
1185
 * kernfs_next_descendant_post - find the next descendant for post-order walk
1186
 * @pos: the current position (%NULL to initiate traversal)
1187
 * @root: kernfs_node whose descendants to walk
1188 1189 1190 1191 1192
 *
 * Find the next descendant to visit for post-order traversal of @root's
 * descendants.  @root is included in the iteration and the last node to be
 * visited.
 */
1193 1194
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
						       struct kernfs_node *root)
1195 1196 1197
{
	struct rb_node *rbn;

1198
	lockdep_assert_held(&kernfs_mutex);
1199 1200 1201

	/* if first iteration, visit leftmost descendant which may be root */
	if (!pos)
1202
		return kernfs_leftmost_descendant(root);
1203 1204 1205 1206 1207 1208

	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

	/* if there's an unvisited sibling, visit its leftmost descendant */
1209
	rbn = rb_next(&pos->rb);
1210
	if (rbn)
1211
		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1212 1213

	/* no sibling left, visit parent */
1214
	return pos->parent;
1215 1216
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/**
 * kernfs_activate - activate a node which started deactivated
 * @kn: kernfs_node whose subtree is to be activated
 *
 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
 * needs to be explicitly activated.  A node which hasn't been activated
 * isn't visible to userland and deactivation is skipped during its
 * removal.  This is useful to construct atomic init sequences where
 * creation of multiple nodes should either succeed or fail atomically.
 *
 * The caller is responsible for ensuring that this function is not called
 * after kernfs_remove*() is invoked on @kn.
 */
void kernfs_activate(struct kernfs_node *kn)
{
	struct kernfs_node *pos;

	mutex_lock(&kernfs_mutex);

	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn))) {
		if (!pos || (pos->flags & KERNFS_ACTIVATED))
			continue;

		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);

		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
		pos->flags |= KERNFS_ACTIVATED;
	}

	mutex_unlock(&kernfs_mutex);
}

T
Tejun Heo 已提交
1251
static void __kernfs_remove(struct kernfs_node *kn)
1252
{
1253 1254 1255
	struct kernfs_node *pos;

	lockdep_assert_held(&kernfs_mutex);
1256

1257 1258 1259 1260 1261 1262
	/*
	 * Short-circuit if non-root @kn has already finished removal.
	 * This is for kernfs_remove_self() which plays with active ref
	 * after removal.
	 */
	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1263 1264
		return;

1265
	pr_debug("kernfs %s: removing\n", kn->name);
1266

T
Tejun Heo 已提交
1267
	/* prevent any new usage under @kn by deactivating all nodes */
1268 1269
	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn)))
T
Tejun Heo 已提交
1270 1271
		if (kernfs_active(pos))
			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1272 1273

	/* deactivate and unlink the subtree node-by-node */
1274
	do {
1275 1276 1277
		pos = kernfs_leftmost_descendant(kn);

		/*
T
Tejun Heo 已提交
1278 1279 1280 1281
		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
		 * base ref could have been put by someone else by the time
		 * the function returns.  Make sure it doesn't go away
		 * underneath us.
1282 1283 1284
		 */
		kernfs_get(pos);

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		/*
		 * Drain iff @kn was activated.  This avoids draining and
		 * its lockdep annotations for nodes which have never been
		 * activated and allows embedding kernfs_remove() in create
		 * error paths without worrying about draining.
		 */
		if (kn->flags & KERNFS_ACTIVATED)
			kernfs_drain(pos);
		else
			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

		/*
		 * kernfs_unlink_sibling() succeeds once per node.  Use it
		 * to decide who's responsible for cleanups.
		 */
		if (!pos->parent || kernfs_unlink_sibling(pos)) {
			struct kernfs_iattrs *ps_iattr =
				pos->parent ? pos->parent->iattr : NULL;

			/* update timestamps on the parent */
			if (ps_iattr) {
1306 1307
				ktime_get_real_ts64(&ps_iattr->ia_ctime);
				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1308 1309
			}

T
Tejun Heo 已提交
1310
			kernfs_put(pos);
1311 1312 1313 1314
		}

		kernfs_put(pos);
	} while (pos != kn);
1315 1316 1317
}

/**
1318 1319
 * kernfs_remove - remove a kernfs_node recursively
 * @kn: the kernfs_node to remove
1320
 *
1321
 * Remove @kn along with all its subdirectories and files.
1322
 */
1323
void kernfs_remove(struct kernfs_node *kn)
1324
{
T
Tejun Heo 已提交
1325 1326 1327
	mutex_lock(&kernfs_mutex);
	__kernfs_remove(kn);
	mutex_unlock(&kernfs_mutex);
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/**
 * kernfs_break_active_protection - break out of active protection
 * @kn: the self kernfs_node
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
 * this function must also be matched with an invocation of
 * kernfs_unbreak_active_protection().
 *
 * This function releases the active reference of @kn the caller is
 * holding.  Once this function is called, @kn may be removed at any point
 * and the caller is solely responsible for ensuring that the objects it
 * dereferences are accessible.
 */
void kernfs_break_active_protection(struct kernfs_node *kn)
{
	/*
	 * Take out ourself out of the active ref dependency chain.  If
	 * we're called without an active ref, lockdep will complain.
	 */
	kernfs_put_active(kn);
}

/**
 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
 * @kn: the self kernfs_node
 *
 * If kernfs_break_active_protection() was called, this function must be
 * invoked before finishing the kernfs operation.  Note that while this
 * function restores the active reference, it doesn't and can't actually
 * restore the active protection - @kn may already or be in the process of
 * being removed.  Once kernfs_break_active_protection() is invoked, that
 * protection is irreversibly gone for the kernfs operation instance.
 *
 * While this function may be called at any point after
 * kernfs_break_active_protection() is invoked, its most useful location
 * would be right before the enclosing kernfs operation returns.
 */
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
	/*
	 * @kn->active could be in any state; however, the increment we do
	 * here will be undone as soon as the enclosing kernfs operation
	 * finishes and this temporary bump can't break anything.  If @kn
	 * is alive, nothing changes.  If @kn is being deactivated, the
	 * soon-to-follow put will either finish deactivation or restore
	 * deactivated state.  If @kn is already removed, the temporary
	 * bump is guaranteed to be gone before @kn is released.
	 */
	atomic_inc(&kn->active);
	if (kernfs_lockdep(kn))
		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}

/**
 * kernfs_remove_self - remove a kernfs_node from its own method
 * @kn: the self kernfs_node to remove
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  This can be used to
 * implement a file operation which deletes itself.
 *
 * For example, the "delete" file for a sysfs device directory can be
 * implemented by invoking kernfs_remove_self() on the "delete" file
 * itself.  This function breaks the circular dependency of trying to
 * deactivate self while holding an active ref itself.  It isn't necessary
 * to modify the usual removal path to use kernfs_remove_self().  The
 * "delete" implementation can simply invoke kernfs_remove_self() on self
 * before proceeding with the usual removal path.  kernfs will ignore later
 * kernfs_remove() on self.
 *
 * kernfs_remove_self() can be called multiple times concurrently on the
 * same kernfs_node.  Only the first one actually performs removal and
 * returns %true.  All others will wait until the kernfs operation which
 * won self-removal finishes and return %false.  Note that the losers wait
 * for the completion of not only the winning kernfs_remove_self() but also
 * the whole kernfs_ops which won the arbitration.  This can be used to
 * guarantee, for example, all concurrent writes to a "delete" file to
 * finish only after the whole operation is complete.
 */
bool kernfs_remove_self(struct kernfs_node *kn)
{
	bool ret;

	mutex_lock(&kernfs_mutex);
	kernfs_break_active_protection(kn);

	/*
	 * SUICIDAL is used to arbitrate among competing invocations.  Only
	 * the first one will actually perform removal.  When the removal
	 * is complete, SUICIDED is set and the active ref is restored
	 * while holding kernfs_mutex.  The ones which lost arbitration
	 * waits for SUICDED && drained which can happen only after the
	 * enclosing kernfs operation which executed the winning instance
	 * of kernfs_remove_self() finished.
	 */
	if (!(kn->flags & KERNFS_SUICIDAL)) {
		kn->flags |= KERNFS_SUICIDAL;
		__kernfs_remove(kn);
		kn->flags |= KERNFS_SUICIDED;
		ret = true;
	} else {
		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
		DEFINE_WAIT(wait);

		while (true) {
			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);

			if ((kn->flags & KERNFS_SUICIDED) &&
			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
				break;

			mutex_unlock(&kernfs_mutex);
			schedule();
			mutex_lock(&kernfs_mutex);
		}
		finish_wait(waitq, &wait);
		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
		ret = false;
	}

	/*
	 * This must be done while holding kernfs_mutex; otherwise, waiting
	 * for SUICIDED && deactivated could finish prematurely.
	 */
	kernfs_unbreak_active_protection(kn);

	mutex_unlock(&kernfs_mutex);
	return ret;
}

1461
/**
1462 1463 1464 1465
 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
 * @parent: parent of the target
 * @name: name of the kernfs_node to remove
 * @ns: namespace tag of the kernfs_node to remove
1466
 *
1467 1468
 * Look for the kernfs_node with @name and @ns under @parent and remove it.
 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1469
 */
1470
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1471 1472
			     const void *ns)
{
1473
	struct kernfs_node *kn;
1474

1475
	if (!parent) {
1476
		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1477 1478 1479 1480
			name);
		return -ENOENT;
	}

T
Tejun Heo 已提交
1481
	mutex_lock(&kernfs_mutex);
1482

1483 1484
	kn = kernfs_find_ns(parent, name, ns);
	if (kn)
T
Tejun Heo 已提交
1485
		__kernfs_remove(kn);
1486

T
Tejun Heo 已提交
1487
	mutex_unlock(&kernfs_mutex);
1488

1489
	if (kn)
1490 1491 1492 1493 1494 1495 1496
		return 0;
	else
		return -ENOENT;
}

/**
 * kernfs_rename_ns - move and rename a kernfs_node
1497
 * @kn: target node
1498 1499 1500 1501
 * @new_parent: new parent to put @sd under
 * @new_name: new name
 * @new_ns: new namespace tag
 */
1502
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1503 1504
		     const char *new_name, const void *new_ns)
{
1505 1506
	struct kernfs_node *old_parent;
	const char *old_name = NULL;
1507 1508
	int error;

1509 1510 1511 1512
	/* can't move or rename root */
	if (!kn->parent)
		return -EINVAL;

1513 1514
	mutex_lock(&kernfs_mutex);

1515
	error = -ENOENT;
1516 1517
	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
	    (new_parent->flags & KERNFS_EMPTY_DIR))
1518 1519
		goto out;

1520
	error = 0;
1521 1522
	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
	    (strcmp(kn->name, new_name) == 0))
1523
		goto out;	/* nothing to rename */
1524 1525 1526

	error = -EEXIST;
	if (kernfs_find_ns(new_parent, new_name, new_ns))
1527
		goto out;
1528

1529
	/* rename kernfs_node */
1530
	if (strcmp(kn->name, new_name) != 0) {
1531
		error = -ENOMEM;
1532
		new_name = kstrdup_const(new_name, GFP_KERNEL);
1533
		if (!new_name)
1534
			goto out;
1535 1536
	} else {
		new_name = NULL;
1537 1538 1539 1540 1541
	}

	/*
	 * Move to the appropriate place in the appropriate directories rbtree.
	 */
1542
	kernfs_unlink_sibling(kn);
1543
	kernfs_get(new_parent);
1544 1545 1546 1547 1548

	/* rename_lock protects ->parent and ->name accessors */
	spin_lock_irq(&kernfs_rename_lock);

	old_parent = kn->parent;
1549
	kn->parent = new_parent;
1550 1551 1552

	kn->ns = new_ns;
	if (new_name) {
T
Tejun Heo 已提交
1553
		old_name = kn->name;
1554 1555 1556 1557 1558
		kn->name = new_name;
	}

	spin_unlock_irq(&kernfs_rename_lock);

1559
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1560
	kernfs_link_sibling(kn);
1561

1562
	kernfs_put(old_parent);
1563
	kfree_const(old_name);
1564

1565
	error = 0;
1566
 out:
1567
	mutex_unlock(&kernfs_mutex);
1568 1569 1570 1571
	return error;
}

/* Relationship between s_mode and the DT_xxx types */
1572
static inline unsigned char dt_type(struct kernfs_node *kn)
1573
{
1574
	return (kn->mode >> 12) & 15;
1575 1576
}

1577
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1578 1579 1580 1581 1582
{
	kernfs_put(filp->private_data);
	return 0;
}

1583
static struct kernfs_node *kernfs_dir_pos(const void *ns,
1584
	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1585 1586
{
	if (pos) {
T
Tejun Heo 已提交
1587
		int valid = kernfs_active(pos) &&
1588
			pos->parent == parent && hash == pos->hash;
1589 1590 1591 1592 1593
		kernfs_put(pos);
		if (!valid)
			pos = NULL;
	}
	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1594
		struct rb_node *node = parent->dir.children.rb_node;
1595
		while (node) {
1596
			pos = rb_to_kn(node);
1597

1598
			if (hash < pos->hash)
1599
				node = node->rb_left;
1600
			else if (hash > pos->hash)
1601 1602 1603 1604 1605
				node = node->rb_right;
			else
				break;
		}
	}
1606 1607
	/* Skip over entries which are dying/dead or in the wrong namespace */
	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1608
		struct rb_node *node = rb_next(&pos->rb);
1609 1610 1611
		if (!node)
			pos = NULL;
		else
1612
			pos = rb_to_kn(node);
1613 1614 1615 1616
	}
	return pos;
}

1617
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1618
	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1619
{
1620
	pos = kernfs_dir_pos(ns, parent, ino, pos);
1621
	if (pos) {
1622
		do {
1623
			struct rb_node *node = rb_next(&pos->rb);
1624 1625 1626
			if (!node)
				pos = NULL;
			else
1627
				pos = rb_to_kn(node);
1628 1629
		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
	}
1630 1631 1632
	return pos;
}

1633
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1634 1635
{
	struct dentry *dentry = file->f_path.dentry;
S
Shaohua Li 已提交
1636
	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1637
	struct kernfs_node *pos = file->private_data;
1638 1639 1640 1641
	const void *ns = NULL;

	if (!dir_emit_dots(file, ctx))
		return 0;
1642
	mutex_lock(&kernfs_mutex);
1643

1644
	if (kernfs_ns_enabled(parent))
1645
		ns = kernfs_info(dentry->d_sb)->ns;
1646

1647
	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1648
	     pos;
1649
	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1650
		const char *name = pos->name;
1651 1652
		unsigned int type = dt_type(pos);
		int len = strlen(name);
S
Shaohua Li 已提交
1653
		ino_t ino = pos->id.ino;
1654

1655
		ctx->pos = pos->hash;
1656 1657 1658
		file->private_data = pos;
		kernfs_get(pos);

1659
		mutex_unlock(&kernfs_mutex);
1660 1661
		if (!dir_emit(ctx, name, len, ino, type))
			return 0;
1662
		mutex_lock(&kernfs_mutex);
1663
	}
1664
	mutex_unlock(&kernfs_mutex);
1665 1666 1667 1668 1669
	file->private_data = NULL;
	ctx->pos = INT_MAX;
	return 0;
}

1670
const struct file_operations kernfs_dir_fops = {
1671
	.read		= generic_read_dir,
1672
	.iterate_shared	= kernfs_fop_readdir,
1673
	.release	= kernfs_dir_fop_release,
1674
	.llseek		= generic_file_llseek,
1675
};