dir.c 42.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
/*
 * fs/kernfs/dir.c - kernfs directory implementation
 *
 * Copyright (c) 2001-3 Patrick Mochel
 * Copyright (c) 2007 SUSE Linux Products GmbH
 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 */
9

10
#include <linux/sched.h>
11 12 13 14 15 16 17 18 19
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>

#include "kernfs-internal.h"

20
DEFINE_MUTEX(kernfs_mutex);
21 22
static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23
static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24

25
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26

T
Tejun Heo 已提交
27 28 29 30 31 32
static bool kernfs_active(struct kernfs_node *kn)
{
	lockdep_assert_held(&kernfs_mutex);
	return atomic_read(&kn->active) >= 0;
}

33 34 35 36 37 38 39 40 41
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	return kn->flags & KERNFS_LOCKDEP;
#else
	return false;
#endif
}

42 43
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
44 45 46
	if (!kn)
		return strlcpy(buf, "(null)", buflen);

47 48 49
	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}

50 51
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52
{
53
	size_t depth = 0;
54

55 56 57 58 59 60
	while (to->parent && to != from) {
		depth++;
		to = to->parent;
	}
	return depth;
}
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
						  struct kernfs_node *b)
{
	size_t da, db;
	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);

	if (ra != rb)
		return NULL;

	da = kernfs_depth(ra->kn, a);
	db = kernfs_depth(rb->kn, b);

	while (da > db) {
		a = a->parent;
		da--;
	}
	while (db > da) {
		b = b->parent;
		db--;
	}

	/* worst case b and a will be the same at root */
	while (b != a) {
		b = b->parent;
		a = a->parent;
	}

	return a;
}

/**
 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
 * where kn_from is treated as root of the path.
 * @kn_from: kernfs node which should be treated as root for the path
 * @kn_to: kernfs node to which path is needed
 * @buf: buffer to copy the path into
 * @buflen: size of @buf
 *
 * We need to handle couple of scenarios here:
 * [1] when @kn_from is an ancestor of @kn_to at some level
 * kn_from: /n1/n2/n3
 * kn_to:   /n1/n2/n3/n4/n5
 * result:  /n4/n5
 *
 * [2] when @kn_from is on a different hierarchy and we need to find common
 * ancestor between @kn_from and @kn_to.
 * kn_from: /n1/n2/n3/n4
 * kn_to:   /n1/n2/n5
 * result:  /../../n5
 * OR
 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 * kn_to:   /n1/n2/n3         [depth=3]
 * result:  /../..
 *
116 117
 * [3] when @kn_to is NULL result will be "(null)"
 *
118 119 120
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
121 122 123 124 125 126 127
 */
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
					struct kernfs_node *kn_from,
					char *buf, size_t buflen)
{
	struct kernfs_node *kn, *common;
	const char parent_str[] = "/..";
128 129
	size_t depth_from, depth_to, len = 0;
	int i, j;
130

131 132 133
	if (!kn_to)
		return strlcpy(buf, "(null)", buflen);

134 135 136 137 138 139 140 141
	if (!kn_from)
		kn_from = kernfs_root(kn_to)->kn;

	if (kn_from == kn_to)
		return strlcpy(buf, "/", buflen);

	common = kernfs_common_ancestor(kn_from, kn_to);
	if (WARN_ON(!common))
142
		return -EINVAL;
143 144 145 146 147 148 149 150 151 152 153 154

	depth_to = kernfs_depth(common, kn_to);
	depth_from = kernfs_depth(common, kn_from);

	if (buf)
		buf[0] = '\0';

	for (i = 0; i < depth_from; i++)
		len += strlcpy(buf + len, parent_str,
			       len < buflen ? buflen - len : 0);

	/* Calculate how many bytes we need for the rest */
155 156 157 158 159 160 161
	for (i = depth_to - 1; i >= 0; i--) {
		for (kn = kn_to, j = 0; j < i; j++)
			kn = kn->parent;
		len += strlcpy(buf + len, "/",
			       len < buflen ? buflen - len : 0);
		len += strlcpy(buf + len, kn->name,
			       len < buflen ? buflen - len : 0);
162
	}
163

164
	return len;
165 166 167 168 169 170 171 172 173 174 175 176
}

/**
 * kernfs_name - obtain the name of a given node
 * @kn: kernfs_node of interest
 * @buf: buffer to copy @kn's name into
 * @buflen: size of @buf
 *
 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 *
177 178
 * Fills buffer with "(null)" if @kn is NULL.
 *
179 180 181 182 183 184 185 186 187 188 189 190 191
 * This function can be called from any context.
 */
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_name_locked(kn, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}

192 193 194 195 196 197 198 199 200 201 202 203
/**
 * kernfs_path_from_node - build path of node @to relative to @from.
 * @from: parent kernfs_node relative to which we need to build the path
 * @to: kernfs_node of interest
 * @buf: buffer to copy @to's path into
 * @buflen: size of @buf
 *
 * Builds @to's path relative to @from in @buf. @from and @to must
 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 * path (which includes '..'s) as needed to reach from @from to @to is
 * returned.
 *
204 205 206
 * Returns the length of the full path.  If the full length is equal to or
 * greater than @buflen, @buf contains the truncated path with the trailing
 * '\0'.  On error, -errno is returned.
207 208 209 210 211 212 213 214 215 216 217 218 219 220
 */
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
			  char *buf, size_t buflen)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);

	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
	pr_cont("%s", kernfs_pr_cont_buf);

	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 * @kn: kernfs_node of interest
 *
 * This function can be called from any context.
 */
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
	unsigned long flags;
248
	int sz;
249 250 251

	spin_lock_irqsave(&kernfs_rename_lock, flags);

252 253 254 255 256 257 258 259 260 261 262 263 264
	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
					  sizeof(kernfs_pr_cont_buf));
	if (sz < 0) {
		pr_cont("(error)");
		goto out;
	}

	if (sz >= sizeof(kernfs_pr_cont_buf)) {
		pr_cont("(name too long)");
		goto out;
	}

	pr_cont("%s", kernfs_pr_cont_buf);
265

266
out:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
}

/**
 * kernfs_get_parent - determine the parent node and pin it
 * @kn: kernfs_node of interest
 *
 * Determines @kn's parent, pins and returns it.  This function can be
 * called from any context.
 */
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
	struct kernfs_node *parent;
	unsigned long flags;

	spin_lock_irqsave(&kernfs_rename_lock, flags);
	parent = kn->parent;
	kernfs_get(parent);
	spin_unlock_irqrestore(&kernfs_rename_lock, flags);

	return parent;
}

290
/**
291
 *	kernfs_name_hash
292 293 294 295 296
 *	@name: Null terminated string to hash
 *	@ns:   Namespace tag to hash
 *
 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
 */
297
static unsigned int kernfs_name_hash(const char *name, const void *ns)
298
{
299
	unsigned long hash = init_name_hash(ns);
300 301 302
	unsigned int len = strlen(name);
	while (len--)
		hash = partial_name_hash(*name++, hash);
303
	hash = end_name_hash(hash);
304 305
	hash &= 0x7fffffffU;
	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
R
Richard Cochran 已提交
306
	if (hash < 2)
307 308 309 310 311 312
		hash += 2;
	if (hash >= INT_MAX)
		hash = INT_MAX - 1;
	return hash;
}

313 314
static int kernfs_name_compare(unsigned int hash, const char *name,
			       const void *ns, const struct kernfs_node *kn)
315
{
316 317 318 319 320 321 322 323
	if (hash < kn->hash)
		return -1;
	if (hash > kn->hash)
		return 1;
	if (ns < kn->ns)
		return -1;
	if (ns > kn->ns)
		return 1;
324
	return strcmp(name, kn->name);
325 326
}

327 328
static int kernfs_sd_compare(const struct kernfs_node *left,
			     const struct kernfs_node *right)
329
{
330
	return kernfs_name_compare(left->hash, left->name, left->ns, right);
331 332 333
}

/**
334
 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
335
 *	@kn: kernfs_node of interest
336
 *
337
 *	Link @kn into its sibling rbtree which starts from
338
 *	@kn->parent->dir.children.
339 340
 *
 *	Locking:
341
 *	mutex_lock(kernfs_mutex)
342 343 344 345
 *
 *	RETURNS:
 *	0 on susccess -EEXIST on failure.
 */
346
static int kernfs_link_sibling(struct kernfs_node *kn)
347
{
348
	struct rb_node **node = &kn->parent->dir.children.rb_node;
349 350 351
	struct rb_node *parent = NULL;

	while (*node) {
352
		struct kernfs_node *pos;
353 354
		int result;

355
		pos = rb_to_kn(*node);
356
		parent = *node;
357
		result = kernfs_sd_compare(kn, pos);
358
		if (result < 0)
359
			node = &pos->rb.rb_left;
360
		else if (result > 0)
361
			node = &pos->rb.rb_right;
362 363 364
		else
			return -EEXIST;
	}
J
Jianyu Zhan 已提交
365

366
	/* add new node and rebalance the tree */
367 368
	rb_link_node(&kn->rb, parent, node);
	rb_insert_color(&kn->rb, &kn->parent->dir.children);
J
Jianyu Zhan 已提交
369 370 371 372 373

	/* successfully added, account subdir number */
	if (kernfs_type(kn) == KERNFS_DIR)
		kn->parent->dir.subdirs++;

374 375 376 377
	return 0;
}

/**
378
 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
379
 *	@kn: kernfs_node of interest
380
 *
381 382 383
 *	Try to unlink @kn from its sibling rbtree which starts from
 *	kn->parent->dir.children.  Returns %true if @kn was actually
 *	removed, %false if @kn wasn't on the rbtree.
384 385
 *
 *	Locking:
386
 *	mutex_lock(kernfs_mutex)
387
 */
388
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
389
{
390 391 392
	if (RB_EMPTY_NODE(&kn->rb))
		return false;

T
Tejun Heo 已提交
393
	if (kernfs_type(kn) == KERNFS_DIR)
394
		kn->parent->dir.subdirs--;
395

396
	rb_erase(&kn->rb, &kn->parent->dir.children);
397 398
	RB_CLEAR_NODE(&kn->rb);
	return true;
399 400 401
}

/**
402
 *	kernfs_get_active - get an active reference to kernfs_node
403
 *	@kn: kernfs_node to get an active reference to
404
 *
405
 *	Get an active reference of @kn.  This function is noop if @kn
406 407 408
 *	is NULL.
 *
 *	RETURNS:
409
 *	Pointer to @kn on success, NULL on failure.
410
 */
411
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
412
{
413
	if (unlikely(!kn))
414 415
		return NULL;

416 417
	if (!atomic_inc_unless_negative(&kn->active))
		return NULL;
418

419
	if (kernfs_lockdep(kn))
420 421
		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
	return kn;
422 423 424
}

/**
425
 *	kernfs_put_active - put an active reference to kernfs_node
426
 *	@kn: kernfs_node to put an active reference to
427
 *
428
 *	Put an active reference to @kn.  This function is noop if @kn
429 430
 *	is NULL.
 */
431
void kernfs_put_active(struct kernfs_node *kn)
432 433 434
{
	int v;

435
	if (unlikely(!kn))
436 437
		return;

438
	if (kernfs_lockdep(kn))
439
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
440
	v = atomic_dec_return(&kn->active);
T
Tejun Heo 已提交
441
	if (likely(v != KN_DEACTIVATED_BIAS))
442 443
		return;

444
	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
445 446 447
}

/**
T
Tejun Heo 已提交
448 449
 * kernfs_drain - drain kernfs_node
 * @kn: kernfs_node to drain
450
 *
T
Tejun Heo 已提交
451 452 453
 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 * removers may invoke this function concurrently on @kn and all will
 * return after draining is complete.
454
 */
T
Tejun Heo 已提交
455
static void kernfs_drain(struct kernfs_node *kn)
456
	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
457
{
458
	struct kernfs_root *root = kernfs_root(kn);
459

460
	lockdep_assert_held(&kernfs_mutex);
T
Tejun Heo 已提交
461
	WARN_ON_ONCE(kernfs_active(kn));
462

463
	mutex_unlock(&kernfs_mutex);
464

465
	if (kernfs_lockdep(kn)) {
466 467 468 469
		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
			lock_contended(&kn->dep_map, _RET_IP_);
	}
470

471
	/* but everyone should wait for draining */
472 473
	wait_event(root->deactivate_waitq,
		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
474

475
	if (kernfs_lockdep(kn)) {
476 477 478
		lock_acquired(&kn->dep_map, _RET_IP_);
		rwsem_release(&kn->dep_map, 1, _RET_IP_);
	}
479

480
	kernfs_drain_open_files(kn);
481

482
	mutex_lock(&kernfs_mutex);
483 484 485
}

/**
486 487
 * kernfs_get - get a reference count on a kernfs_node
 * @kn: the target kernfs_node
488
 */
489
void kernfs_get(struct kernfs_node *kn)
490
{
491
	if (kn) {
492 493
		WARN_ON(!atomic_read(&kn->count));
		atomic_inc(&kn->count);
494 495 496 497 498
	}
}
EXPORT_SYMBOL_GPL(kernfs_get);

/**
499 500
 * kernfs_put - put a reference count on a kernfs_node
 * @kn: the target kernfs_node
501
 *
502
 * Put a reference count of @kn and destroy it if it reached zero.
503
 */
504
void kernfs_put(struct kernfs_node *kn)
505
{
506
	struct kernfs_node *parent;
507
	struct kernfs_root *root;
508

509 510 511 512
	/*
	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
	 * depends on this to filter reused stale node
	 */
513
	if (!kn || !atomic_dec_and_test(&kn->count))
514
		return;
515
	root = kernfs_root(kn);
516
 repeat:
T
Tejun Heo 已提交
517 518
	/*
	 * Moving/renaming is always done while holding reference.
519
	 * kn->parent won't change beneath us.
520
	 */
521
	parent = kn->parent;
522

T
Tejun Heo 已提交
523 524 525
	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
526

T
Tejun Heo 已提交
527
	if (kernfs_type(kn) == KERNFS_LINK)
528
		kernfs_put(kn->symlink.target_kn);
T
Tejun Heo 已提交
529 530 531

	kfree_const(kn->name);

532 533
	if (kn->iattr) {
		simple_xattrs_free(&kn->iattr->xattrs);
534
		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
535
	}
536
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
537
	idr_remove(&root->ino_idr, kn->id.ino);
538
	spin_unlock(&kernfs_idr_lock);
539
	kmem_cache_free(kernfs_node_cache, kn);
540

541 542
	kn = parent;
	if (kn) {
543
		if (atomic_dec_and_test(&kn->count))
544 545
			goto repeat;
	} else {
546
		/* just released the root kn, free @root too */
547
		idr_destroy(&root->ino_idr);
548 549
		kfree(root);
	}
550 551 552
}
EXPORT_SYMBOL_GPL(kernfs_put);

553
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
554
{
555
	struct kernfs_node *kn;
556 557 558 559

	if (flags & LOOKUP_RCU)
		return -ECHILD;

T
Tejun Heo 已提交
560
	/* Always perform fresh lookup for negatives */
561
	if (d_really_is_negative(dentry))
T
Tejun Heo 已提交
562 563
		goto out_bad_unlocked;

S
Shaohua Li 已提交
564
	kn = kernfs_dentry_node(dentry);
565
	mutex_lock(&kernfs_mutex);
566

T
Tejun Heo 已提交
567 568
	/* The kernfs node has been deactivated */
	if (!kernfs_active(kn))
569 570
		goto out_bad;

571
	/* The kernfs node has been moved? */
S
Shaohua Li 已提交
572
	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
573 574
		goto out_bad;

575
	/* The kernfs node has been renamed */
576
	if (strcmp(dentry->d_name.name, kn->name) != 0)
577 578
		goto out_bad;

579
	/* The kernfs node has been moved to a different namespace */
580
	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
581
	    kernfs_info(dentry->d_sb)->ns != kn->ns)
582 583
		goto out_bad;

584
	mutex_unlock(&kernfs_mutex);
585 586
	return 1;
out_bad:
587
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
588
out_bad_unlocked:
589 590 591
	return 0;
}

592
const struct dentry_operations kernfs_dops = {
593
	.d_revalidate	= kernfs_dop_revalidate,
594 595
};

596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 * @dentry: the dentry in question
 *
 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 * kernfs one, %NULL is returned.
 *
 * While the returned kernfs_node will stay accessible as long as @dentry
 * is accessible, the returned node can be in any state and the caller is
 * fully responsible for determining what's accessible.
 */
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
S
Shaohua Li 已提交
609 610 611
	if (dentry->d_sb->s_op == &kernfs_sops &&
	    !d_really_is_negative(dentry))
		return kernfs_dentry_node(dentry);
612 613 614
	return NULL;
}

615
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
616
					     struct kernfs_node *parent,
617
					     const char *name, umode_t mode,
618
					     kuid_t uid, kgid_t gid,
619
					     unsigned flags)
620
{
621
	struct kernfs_node *kn;
S
Shaohua Li 已提交
622 623
	u32 gen;
	int cursor;
624
	int ret;
625

T
Tejun Heo 已提交
626 627 628
	name = kstrdup_const(name, GFP_KERNEL);
	if (!name)
		return NULL;
629

630
	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
631
	if (!kn)
632 633
		goto err_out1;

634 635
	idr_preload(GFP_KERNEL);
	spin_lock(&kernfs_idr_lock);
S
Shaohua Li 已提交
636 637 638 639 640
	cursor = idr_get_cursor(&root->ino_idr);
	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
	if (ret >= 0 && ret < cursor)
		root->next_generation++;
	gen = root->next_generation;
641 642
	spin_unlock(&kernfs_idr_lock);
	idr_preload_end();
643
	if (ret < 0)
644
		goto err_out2;
S
Shaohua Li 已提交
645 646
	kn->id.ino = ret;
	kn->id.generation = gen;
647

648
	/*
649
	 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
650 651
	 * kernfs_find_and_get_node_by_ino
	 */
652
	atomic_set_release(&kn->count, 1);
T
Tejun Heo 已提交
653
	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
654
	RB_CLEAR_NODE(&kn->rb);
655

656 657
	kn->name = name;
	kn->mode = mode;
T
Tejun Heo 已提交
658
	kn->flags = flags;
659

660 661 662 663 664 665 666 667 668 669 670 671
	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
		struct iattr iattr = {
			.ia_valid = ATTR_UID | ATTR_GID,
			.ia_uid = uid,
			.ia_gid = gid,
		};

		ret = __kernfs_setattr(kn, &iattr);
		if (ret < 0)
			goto err_out3;
	}

672 673 674 675 676 677
	if (parent) {
		ret = security_kernfs_init_security(parent, kn);
		if (ret)
			goto err_out3;
	}

678
	return kn;
679

680 681
 err_out3:
	idr_remove(&root->ino_idr, kn->id.ino);
682
 err_out2:
683
	kmem_cache_free(kernfs_node_cache, kn);
684
 err_out1:
T
Tejun Heo 已提交
685
	kfree_const(name);
686 687 688
	return NULL;
}

689 690
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
				    const char *name, umode_t mode,
691
				    kuid_t uid, kgid_t gid,
692 693 694 695
				    unsigned flags)
{
	struct kernfs_node *kn;

696
	kn = __kernfs_new_node(kernfs_root(parent), parent,
697
			       name, mode, uid, gid, flags);
698 699 700 701 702 703 704
	if (kn) {
		kernfs_get(parent);
		kn->parent = parent;
	}
	return kn;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
/*
 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
 * @root: the kernfs root
 * @ino: inode number
 *
 * RETURNS:
 * NULL on failure. Return a kernfs node with reference counter incremented
 */
struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
						    unsigned int ino)
{
	struct kernfs_node *kn;

	rcu_read_lock();
	kn = idr_find(&root->ino_idr, ino);
	if (!kn)
		goto out;

	/*
	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
	 * is freed, but reused before RCU grace period. But a freed node (see
	 * kernfs_put) or an incompletedly initialized node (see
	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
	 * filter out such node.
	 */
	if (!atomic_inc_not_zero(&kn->count)) {
		kn = NULL;
		goto out;
	}

	/*
	 * The node could be a new node or a reused node. If it's a new node,
	 * we are ok. If it's reused because of RCU (because of
	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
	 * hence we can use 'ino' to filter stale node.
	 */
S
Shaohua Li 已提交
742
	if (kn->id.ino != ino)
743 744 745 746 747 748 749 750 751 752
		goto out;
	rcu_read_unlock();

	return kn;
out:
	rcu_read_unlock();
	kernfs_put(kn);
	return NULL;
}

753
/**
754
 *	kernfs_add_one - add kernfs_node to parent without warning
755
 *	@kn: kernfs_node to be added
756
 *
757 758 759
 *	The caller must already have initialized @kn->parent.  This
 *	function increments nlink of the parent's inode if @kn is a
 *	directory and link into the children list of the parent.
760 761 762 763 764
 *
 *	RETURNS:
 *	0 on success, -EEXIST if entry with the given name already
 *	exists.
 */
T
Tejun Heo 已提交
765
int kernfs_add_one(struct kernfs_node *kn)
766
{
767
	struct kernfs_node *parent = kn->parent;
768
	struct kernfs_iattrs *ps_iattr;
T
Tejun Heo 已提交
769
	bool has_ns;
770 771
	int ret;

T
Tejun Heo 已提交
772 773 774 775 776 777 778
	mutex_lock(&kernfs_mutex);

	ret = -EINVAL;
	has_ns = kernfs_ns_enabled(parent);
	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
		 has_ns ? "required" : "invalid", parent->name, kn->name))
		goto out_unlock;
779

T
Tejun Heo 已提交
780
	if (kernfs_type(parent) != KERNFS_DIR)
T
Tejun Heo 已提交
781
		goto out_unlock;
782

T
Tejun Heo 已提交
783
	ret = -ENOENT;
784 785 786
	if (parent->flags & KERNFS_EMPTY_DIR)
		goto out_unlock;

787
	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
T
Tejun Heo 已提交
788
		goto out_unlock;
789

790
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
791

792
	ret = kernfs_link_sibling(kn);
793
	if (ret)
T
Tejun Heo 已提交
794
		goto out_unlock;
795 796

	/* Update timestamps on the parent */
797
	ps_iattr = parent->iattr;
798
	if (ps_iattr) {
799 800
		ktime_get_real_ts64(&ps_iattr->ia_ctime);
		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
801 802
	}

803 804 805 806 807 808 809 810 811 812 813 814 815
	mutex_unlock(&kernfs_mutex);

	/*
	 * Activate the new node unless CREATE_DEACTIVATED is requested.
	 * If not activated here, the kernfs user is responsible for
	 * activating the node with kernfs_activate().  A node which hasn't
	 * been activated is not visible to userland and its removal won't
	 * trigger deactivation.
	 */
	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);
	return 0;

T
Tejun Heo 已提交
816
out_unlock:
817
	mutex_unlock(&kernfs_mutex);
T
Tejun Heo 已提交
818
	return ret;
819 820 821
}

/**
822 823
 * kernfs_find_ns - find kernfs_node with the given name
 * @parent: kernfs_node to search under
824 825 826
 * @name: name to look for
 * @ns: the namespace tag to use
 *
827 828
 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 * the found kernfs_node on success, %NULL on failure.
829
 */
830 831 832
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
					  const unsigned char *name,
					  const void *ns)
833
{
834
	struct rb_node *node = parent->dir.children.rb_node;
835
	bool has_ns = kernfs_ns_enabled(parent);
836 837
	unsigned int hash;

838
	lockdep_assert_held(&kernfs_mutex);
839 840

	if (has_ns != (bool)ns) {
841
		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
842
		     has_ns ? "required" : "invalid", parent->name, name);
843 844 845
		return NULL;
	}

846
	hash = kernfs_name_hash(name, ns);
847
	while (node) {
848
		struct kernfs_node *kn;
849 850
		int result;

851
		kn = rb_to_kn(node);
852
		result = kernfs_name_compare(hash, name, ns, kn);
853 854 855 856 857
		if (result < 0)
			node = node->rb_left;
		else if (result > 0)
			node = node->rb_right;
		else
858
			return kn;
859 860 861 862
	}
	return NULL;
}

863 864 865 866
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
					  const unsigned char *path,
					  const void *ns)
{
867 868
	size_t len;
	char *p, *name;
869 870 871

	lockdep_assert_held(&kernfs_mutex);

872 873 874 875 876 877 878
	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
	spin_lock_irq(&kernfs_rename_lock);

	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));

	if (len >= sizeof(kernfs_pr_cont_buf)) {
		spin_unlock_irq(&kernfs_rename_lock);
879
		return NULL;
880 881 882
	}

	p = kernfs_pr_cont_buf;
883 884 885 886 887 888 889

	while ((name = strsep(&p, "/")) && parent) {
		if (*name == '\0')
			continue;
		parent = kernfs_find_ns(parent, name, ns);
	}

890 891
	spin_unlock_irq(&kernfs_rename_lock);

892 893 894
	return parent;
}

895
/**
896 897
 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 * @parent: kernfs_node to search under
898 899 900
 * @name: name to look for
 * @ns: the namespace tag to use
 *
901
 * Look for kernfs_node with name @name under @parent and get a reference
902
 * if found.  This function may sleep and returns pointer to the found
903
 * kernfs_node on success, %NULL on failure.
904
 */
905 906
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
					   const char *name, const void *ns)
907
{
908
	struct kernfs_node *kn;
909

910
	mutex_lock(&kernfs_mutex);
911 912
	kn = kernfs_find_ns(parent, name, ns);
	kernfs_get(kn);
913
	mutex_unlock(&kernfs_mutex);
914

915
	return kn;
916 917 918
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
/**
 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 * @parent: kernfs_node to search under
 * @path: path to look for
 * @ns: the namespace tag to use
 *
 * Look for kernfs_node with path @path under @parent and get a reference
 * if found.  This function may sleep and returns pointer to the found
 * kernfs_node on success, %NULL on failure.
 */
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
					   const char *path, const void *ns)
{
	struct kernfs_node *kn;

	mutex_lock(&kernfs_mutex);
	kn = kernfs_walk_ns(parent, path, ns);
	kernfs_get(kn);
	mutex_unlock(&kernfs_mutex);

	return kn;
}

942 943
/**
 * kernfs_create_root - create a new kernfs hierarchy
944
 * @scops: optional syscall operations for the hierarchy
945
 * @flags: KERNFS_ROOT_* flags
946 947 948 949 950
 * @priv: opaque data associated with the new directory
 *
 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 * failure.
 */
951
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
952
				       unsigned int flags, void *priv)
953 954
{
	struct kernfs_root *root;
955
	struct kernfs_node *kn;
956 957 958 959 960

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

961
	idr_init(&root->ino_idr);
962
	INIT_LIST_HEAD(&root->supers);
S
Shaohua Li 已提交
963
	root->next_generation = 1;
964

965
	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
966
			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
967
			       KERNFS_DIR);
968
	if (!kn) {
969
		idr_destroy(&root->ino_idr);
970 971 972 973
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}

974
	kn->priv = priv;
975
	kn->dir.root = root;
976

977
	root->syscall_ops = scops;
978
	root->flags = flags;
979
	root->kn = kn;
980
	init_waitqueue_head(&root->deactivate_waitq);
981

982 983 984
	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
		kernfs_activate(kn);

985 986 987 988 989 990 991 992 993 994 995 996
	return root;
}

/**
 * kernfs_destroy_root - destroy a kernfs hierarchy
 * @root: root of the hierarchy to destroy
 *
 * Destroy the hierarchy anchored at @root by removing all existing
 * directories and destroying @root.
 */
void kernfs_destroy_root(struct kernfs_root *root)
{
997
	kernfs_remove(root->kn);	/* will also free @root */
998 999
}

1000 1001 1002 1003
/**
 * kernfs_create_dir_ns - create a directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
1004
 * @mode: mode of the new directory
1005 1006
 * @uid: uid of the new directory
 * @gid: gid of the new directory
1007 1008 1009 1010 1011
 * @priv: opaque data associated with the new directory
 * @ns: optional namespace tag of the directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
1012
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1013
					 const char *name, umode_t mode,
1014
					 kuid_t uid, kgid_t gid,
1015
					 void *priv, const void *ns)
1016
{
1017
	struct kernfs_node *kn;
1018 1019 1020
	int rc;

	/* allocate */
1021 1022
	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
			     uid, gid, KERNFS_DIR);
1023
	if (!kn)
1024 1025
		return ERR_PTR(-ENOMEM);

1026 1027
	kn->dir.root = parent->dir.root;
	kn->ns = ns;
1028
	kn->priv = priv;
1029 1030

	/* link in */
T
Tejun Heo 已提交
1031
	rc = kernfs_add_one(kn);
1032
	if (!rc)
1033
		return kn;
1034

1035
	kernfs_put(kn);
1036 1037 1038
	return ERR_PTR(rc);
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * kernfs_create_empty_dir - create an always empty directory
 * @parent: parent in which to create a new directory
 * @name: name of the new directory
 *
 * Returns the created node on success, ERR_PTR() value on failure.
 */
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
					    const char *name)
{
	struct kernfs_node *kn;
	int rc;

	/* allocate */
1053 1054
	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (!kn)
		return ERR_PTR(-ENOMEM);

	kn->flags |= KERNFS_EMPTY_DIR;
	kn->dir.root = parent->dir.root;
	kn->ns = NULL;
	kn->priv = NULL;

	/* link in */
	rc = kernfs_add_one(kn);
	if (!rc)
		return kn;

	kernfs_put(kn);
	return ERR_PTR(rc);
}

1072 1073 1074
static struct dentry *kernfs_iop_lookup(struct inode *dir,
					struct dentry *dentry,
					unsigned int flags)
1075
{
T
Tejun Heo 已提交
1076
	struct dentry *ret;
S
Shaohua Li 已提交
1077
	struct kernfs_node *parent = dir->i_private;
1078
	struct kernfs_node *kn;
1079 1080 1081
	struct inode *inode;
	const void *ns = NULL;

1082
	mutex_lock(&kernfs_mutex);
1083

1084
	if (kernfs_ns_enabled(parent))
1085
		ns = kernfs_info(dir->i_sb)->ns;
1086

1087
	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1088 1089

	/* no such entry */
1090
	if (!kn || !kernfs_active(kn)) {
T
Tejun Heo 已提交
1091
		ret = NULL;
1092 1093 1094 1095
		goto out_unlock;
	}

	/* attach dentry and inode */
1096
	inode = kernfs_get_inode(dir->i_sb, kn);
1097 1098 1099 1100 1101 1102
	if (!inode) {
		ret = ERR_PTR(-ENOMEM);
		goto out_unlock;
	}

	/* instantiate and hash dentry */
1103
	ret = d_splice_alias(inode, dentry);
1104
 out_unlock:
1105
	mutex_unlock(&kernfs_mutex);
1106 1107 1108
	return ret;
}

T
Tejun Heo 已提交
1109 1110 1111 1112
static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
			    umode_t mode)
{
	struct kernfs_node *parent = dir->i_private;
1113
	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1114
	int ret;
T
Tejun Heo 已提交
1115

1116
	if (!scops || !scops->mkdir)
T
Tejun Heo 已提交
1117 1118
		return -EPERM;

1119 1120 1121
	if (!kernfs_get_active(parent))
		return -ENODEV;

1122
	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1123 1124 1125

	kernfs_put_active(parent);
	return ret;
T
Tejun Heo 已提交
1126 1127 1128 1129
}

static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
S
Shaohua Li 已提交
1130
	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1131
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1132
	int ret;
T
Tejun Heo 已提交
1133

1134
	if (!scops || !scops->rmdir)
T
Tejun Heo 已提交
1135 1136
		return -EPERM;

1137 1138 1139
	if (!kernfs_get_active(kn))
		return -ENODEV;

1140
	ret = scops->rmdir(kn);
1141 1142 1143

	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1144 1145 1146
}

static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1147 1148
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags)
T
Tejun Heo 已提交
1149
{
S
Shaohua Li 已提交
1150
	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
T
Tejun Heo 已提交
1151
	struct kernfs_node *new_parent = new_dir->i_private;
1152
	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1153
	int ret;
T
Tejun Heo 已提交
1154

1155 1156 1157
	if (flags)
		return -EINVAL;

1158
	if (!scops || !scops->rename)
T
Tejun Heo 已提交
1159 1160
		return -EPERM;

1161 1162 1163 1164 1165 1166 1167 1168
	if (!kernfs_get_active(kn))
		return -ENODEV;

	if (!kernfs_get_active(new_parent)) {
		kernfs_put_active(kn);
		return -ENODEV;
	}

1169
	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1170 1171 1172 1173

	kernfs_put_active(new_parent);
	kernfs_put_active(kn);
	return ret;
T
Tejun Heo 已提交
1174 1175
}

1176
const struct inode_operations kernfs_dir_iops = {
1177 1178 1179 1180 1181
	.lookup		= kernfs_iop_lookup,
	.permission	= kernfs_iop_permission,
	.setattr	= kernfs_iop_setattr,
	.getattr	= kernfs_iop_getattr,
	.listxattr	= kernfs_iop_listxattr,
T
Tejun Heo 已提交
1182 1183 1184 1185

	.mkdir		= kernfs_iop_mkdir,
	.rmdir		= kernfs_iop_rmdir,
	.rename		= kernfs_iop_rename,
1186 1187
};

1188
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1189
{
1190
	struct kernfs_node *last;
1191 1192 1193 1194 1195 1196

	while (true) {
		struct rb_node *rbn;

		last = pos;

T
Tejun Heo 已提交
1197
		if (kernfs_type(pos) != KERNFS_DIR)
1198 1199
			break;

1200
		rbn = rb_first(&pos->dir.children);
1201 1202 1203
		if (!rbn)
			break;

1204
		pos = rb_to_kn(rbn);
1205 1206 1207 1208 1209 1210
	}

	return last;
}

/**
1211
 * kernfs_next_descendant_post - find the next descendant for post-order walk
1212
 * @pos: the current position (%NULL to initiate traversal)
1213
 * @root: kernfs_node whose descendants to walk
1214 1215 1216 1217 1218
 *
 * Find the next descendant to visit for post-order traversal of @root's
 * descendants.  @root is included in the iteration and the last node to be
 * visited.
 */
1219 1220
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
						       struct kernfs_node *root)
1221 1222 1223
{
	struct rb_node *rbn;

1224
	lockdep_assert_held(&kernfs_mutex);
1225 1226 1227

	/* if first iteration, visit leftmost descendant which may be root */
	if (!pos)
1228
		return kernfs_leftmost_descendant(root);
1229 1230 1231 1232 1233 1234

	/* if we visited @root, we're done */
	if (pos == root)
		return NULL;

	/* if there's an unvisited sibling, visit its leftmost descendant */
1235
	rbn = rb_next(&pos->rb);
1236
	if (rbn)
1237
		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1238 1239

	/* no sibling left, visit parent */
1240
	return pos->parent;
1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/**
 * kernfs_activate - activate a node which started deactivated
 * @kn: kernfs_node whose subtree is to be activated
 *
 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
 * needs to be explicitly activated.  A node which hasn't been activated
 * isn't visible to userland and deactivation is skipped during its
 * removal.  This is useful to construct atomic init sequences where
 * creation of multiple nodes should either succeed or fail atomically.
 *
 * The caller is responsible for ensuring that this function is not called
 * after kernfs_remove*() is invoked on @kn.
 */
void kernfs_activate(struct kernfs_node *kn)
{
	struct kernfs_node *pos;

	mutex_lock(&kernfs_mutex);

	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn))) {
		if (!pos || (pos->flags & KERNFS_ACTIVATED))
			continue;

		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);

		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
		pos->flags |= KERNFS_ACTIVATED;
	}

	mutex_unlock(&kernfs_mutex);
}

T
Tejun Heo 已提交
1277
static void __kernfs_remove(struct kernfs_node *kn)
1278
{
1279 1280 1281
	struct kernfs_node *pos;

	lockdep_assert_held(&kernfs_mutex);
1282

1283 1284 1285 1286 1287 1288
	/*
	 * Short-circuit if non-root @kn has already finished removal.
	 * This is for kernfs_remove_self() which plays with active ref
	 * after removal.
	 */
	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1289 1290
		return;

1291
	pr_debug("kernfs %s: removing\n", kn->name);
1292

T
Tejun Heo 已提交
1293
	/* prevent any new usage under @kn by deactivating all nodes */
1294 1295
	pos = NULL;
	while ((pos = kernfs_next_descendant_post(pos, kn)))
T
Tejun Heo 已提交
1296 1297
		if (kernfs_active(pos))
			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1298 1299

	/* deactivate and unlink the subtree node-by-node */
1300
	do {
1301 1302 1303
		pos = kernfs_leftmost_descendant(kn);

		/*
T
Tejun Heo 已提交
1304 1305 1306 1307
		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
		 * base ref could have been put by someone else by the time
		 * the function returns.  Make sure it doesn't go away
		 * underneath us.
1308 1309 1310
		 */
		kernfs_get(pos);

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		/*
		 * Drain iff @kn was activated.  This avoids draining and
		 * its lockdep annotations for nodes which have never been
		 * activated and allows embedding kernfs_remove() in create
		 * error paths without worrying about draining.
		 */
		if (kn->flags & KERNFS_ACTIVATED)
			kernfs_drain(pos);
		else
			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

		/*
		 * kernfs_unlink_sibling() succeeds once per node.  Use it
		 * to decide who's responsible for cleanups.
		 */
		if (!pos->parent || kernfs_unlink_sibling(pos)) {
			struct kernfs_iattrs *ps_iattr =
				pos->parent ? pos->parent->iattr : NULL;

			/* update timestamps on the parent */
			if (ps_iattr) {
1332 1333
				ktime_get_real_ts64(&ps_iattr->ia_ctime);
				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1334 1335
			}

T
Tejun Heo 已提交
1336
			kernfs_put(pos);
1337 1338 1339 1340
		}

		kernfs_put(pos);
	} while (pos != kn);
1341 1342 1343
}

/**
1344 1345
 * kernfs_remove - remove a kernfs_node recursively
 * @kn: the kernfs_node to remove
1346
 *
1347
 * Remove @kn along with all its subdirectories and files.
1348
 */
1349
void kernfs_remove(struct kernfs_node *kn)
1350
{
T
Tejun Heo 已提交
1351 1352 1353
	mutex_lock(&kernfs_mutex);
	__kernfs_remove(kn);
	mutex_unlock(&kernfs_mutex);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/**
 * kernfs_break_active_protection - break out of active protection
 * @kn: the self kernfs_node
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
 * this function must also be matched with an invocation of
 * kernfs_unbreak_active_protection().
 *
 * This function releases the active reference of @kn the caller is
 * holding.  Once this function is called, @kn may be removed at any point
 * and the caller is solely responsible for ensuring that the objects it
 * dereferences are accessible.
 */
void kernfs_break_active_protection(struct kernfs_node *kn)
{
	/*
	 * Take out ourself out of the active ref dependency chain.  If
	 * we're called without an active ref, lockdep will complain.
	 */
	kernfs_put_active(kn);
}

/**
 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
 * @kn: the self kernfs_node
 *
 * If kernfs_break_active_protection() was called, this function must be
 * invoked before finishing the kernfs operation.  Note that while this
 * function restores the active reference, it doesn't and can't actually
 * restore the active protection - @kn may already or be in the process of
 * being removed.  Once kernfs_break_active_protection() is invoked, that
 * protection is irreversibly gone for the kernfs operation instance.
 *
 * While this function may be called at any point after
 * kernfs_break_active_protection() is invoked, its most useful location
 * would be right before the enclosing kernfs operation returns.
 */
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
	/*
	 * @kn->active could be in any state; however, the increment we do
	 * here will be undone as soon as the enclosing kernfs operation
	 * finishes and this temporary bump can't break anything.  If @kn
	 * is alive, nothing changes.  If @kn is being deactivated, the
	 * soon-to-follow put will either finish deactivation or restore
	 * deactivated state.  If @kn is already removed, the temporary
	 * bump is guaranteed to be gone before @kn is released.
	 */
	atomic_inc(&kn->active);
	if (kernfs_lockdep(kn))
		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}

/**
 * kernfs_remove_self - remove a kernfs_node from its own method
 * @kn: the self kernfs_node to remove
 *
 * The caller must be running off of a kernfs operation which is invoked
 * with an active reference - e.g. one of kernfs_ops.  This can be used to
 * implement a file operation which deletes itself.
 *
 * For example, the "delete" file for a sysfs device directory can be
 * implemented by invoking kernfs_remove_self() on the "delete" file
 * itself.  This function breaks the circular dependency of trying to
 * deactivate self while holding an active ref itself.  It isn't necessary
 * to modify the usual removal path to use kernfs_remove_self().  The
 * "delete" implementation can simply invoke kernfs_remove_self() on self
 * before proceeding with the usual removal path.  kernfs will ignore later
 * kernfs_remove() on self.
 *
 * kernfs_remove_self() can be called multiple times concurrently on the
 * same kernfs_node.  Only the first one actually performs removal and
 * returns %true.  All others will wait until the kernfs operation which
 * won self-removal finishes and return %false.  Note that the losers wait
 * for the completion of not only the winning kernfs_remove_self() but also
 * the whole kernfs_ops which won the arbitration.  This can be used to
 * guarantee, for example, all concurrent writes to a "delete" file to
 * finish only after the whole operation is complete.
 */
bool kernfs_remove_self(struct kernfs_node *kn)
{
	bool ret;

	mutex_lock(&kernfs_mutex);
	kernfs_break_active_protection(kn);

	/*
	 * SUICIDAL is used to arbitrate among competing invocations.  Only
	 * the first one will actually perform removal.  When the removal
	 * is complete, SUICIDED is set and the active ref is restored
	 * while holding kernfs_mutex.  The ones which lost arbitration
	 * waits for SUICDED && drained which can happen only after the
	 * enclosing kernfs operation which executed the winning instance
	 * of kernfs_remove_self() finished.
	 */
	if (!(kn->flags & KERNFS_SUICIDAL)) {
		kn->flags |= KERNFS_SUICIDAL;
		__kernfs_remove(kn);
		kn->flags |= KERNFS_SUICIDED;
		ret = true;
	} else {
		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
		DEFINE_WAIT(wait);

		while (true) {
			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);

			if ((kn->flags & KERNFS_SUICIDED) &&
			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
				break;

			mutex_unlock(&kernfs_mutex);
			schedule();
			mutex_lock(&kernfs_mutex);
		}
		finish_wait(waitq, &wait);
		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
		ret = false;
	}

	/*
	 * This must be done while holding kernfs_mutex; otherwise, waiting
	 * for SUICIDED && deactivated could finish prematurely.
	 */
	kernfs_unbreak_active_protection(kn);

	mutex_unlock(&kernfs_mutex);
	return ret;
}

1487
/**
1488 1489 1490 1491
 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
 * @parent: parent of the target
 * @name: name of the kernfs_node to remove
 * @ns: namespace tag of the kernfs_node to remove
1492
 *
1493 1494
 * Look for the kernfs_node with @name and @ns under @parent and remove it.
 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1495
 */
1496
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1497 1498
			     const void *ns)
{
1499
	struct kernfs_node *kn;
1500

1501
	if (!parent) {
1502
		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1503 1504 1505 1506
			name);
		return -ENOENT;
	}

T
Tejun Heo 已提交
1507
	mutex_lock(&kernfs_mutex);
1508

1509 1510
	kn = kernfs_find_ns(parent, name, ns);
	if (kn)
T
Tejun Heo 已提交
1511
		__kernfs_remove(kn);
1512

T
Tejun Heo 已提交
1513
	mutex_unlock(&kernfs_mutex);
1514

1515
	if (kn)
1516 1517 1518 1519 1520 1521 1522
		return 0;
	else
		return -ENOENT;
}

/**
 * kernfs_rename_ns - move and rename a kernfs_node
1523
 * @kn: target node
1524 1525 1526 1527
 * @new_parent: new parent to put @sd under
 * @new_name: new name
 * @new_ns: new namespace tag
 */
1528
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1529 1530
		     const char *new_name, const void *new_ns)
{
1531 1532
	struct kernfs_node *old_parent;
	const char *old_name = NULL;
1533 1534
	int error;

1535 1536 1537 1538
	/* can't move or rename root */
	if (!kn->parent)
		return -EINVAL;

1539 1540
	mutex_lock(&kernfs_mutex);

1541
	error = -ENOENT;
1542 1543
	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
	    (new_parent->flags & KERNFS_EMPTY_DIR))
1544 1545
		goto out;

1546
	error = 0;
1547 1548
	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
	    (strcmp(kn->name, new_name) == 0))
1549
		goto out;	/* nothing to rename */
1550 1551 1552

	error = -EEXIST;
	if (kernfs_find_ns(new_parent, new_name, new_ns))
1553
		goto out;
1554

1555
	/* rename kernfs_node */
1556
	if (strcmp(kn->name, new_name) != 0) {
1557
		error = -ENOMEM;
1558
		new_name = kstrdup_const(new_name, GFP_KERNEL);
1559
		if (!new_name)
1560
			goto out;
1561 1562
	} else {
		new_name = NULL;
1563 1564 1565 1566 1567
	}

	/*
	 * Move to the appropriate place in the appropriate directories rbtree.
	 */
1568
	kernfs_unlink_sibling(kn);
1569
	kernfs_get(new_parent);
1570 1571 1572 1573 1574

	/* rename_lock protects ->parent and ->name accessors */
	spin_lock_irq(&kernfs_rename_lock);

	old_parent = kn->parent;
1575
	kn->parent = new_parent;
1576 1577 1578

	kn->ns = new_ns;
	if (new_name) {
T
Tejun Heo 已提交
1579
		old_name = kn->name;
1580 1581 1582 1583 1584
		kn->name = new_name;
	}

	spin_unlock_irq(&kernfs_rename_lock);

1585
	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1586
	kernfs_link_sibling(kn);
1587

1588
	kernfs_put(old_parent);
1589
	kfree_const(old_name);
1590

1591
	error = 0;
1592
 out:
1593
	mutex_unlock(&kernfs_mutex);
1594 1595 1596 1597
	return error;
}

/* Relationship between s_mode and the DT_xxx types */
1598
static inline unsigned char dt_type(struct kernfs_node *kn)
1599
{
1600
	return (kn->mode >> 12) & 15;
1601 1602
}

1603
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1604 1605 1606 1607 1608
{
	kernfs_put(filp->private_data);
	return 0;
}

1609
static struct kernfs_node *kernfs_dir_pos(const void *ns,
1610
	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1611 1612
{
	if (pos) {
T
Tejun Heo 已提交
1613
		int valid = kernfs_active(pos) &&
1614
			pos->parent == parent && hash == pos->hash;
1615 1616 1617 1618 1619
		kernfs_put(pos);
		if (!valid)
			pos = NULL;
	}
	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1620
		struct rb_node *node = parent->dir.children.rb_node;
1621
		while (node) {
1622
			pos = rb_to_kn(node);
1623

1624
			if (hash < pos->hash)
1625
				node = node->rb_left;
1626
			else if (hash > pos->hash)
1627 1628 1629 1630 1631
				node = node->rb_right;
			else
				break;
		}
	}
1632 1633
	/* Skip over entries which are dying/dead or in the wrong namespace */
	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1634
		struct rb_node *node = rb_next(&pos->rb);
1635 1636 1637
		if (!node)
			pos = NULL;
		else
1638
			pos = rb_to_kn(node);
1639 1640 1641 1642
	}
	return pos;
}

1643
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1644
	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1645
{
1646
	pos = kernfs_dir_pos(ns, parent, ino, pos);
1647
	if (pos) {
1648
		do {
1649
			struct rb_node *node = rb_next(&pos->rb);
1650 1651 1652
			if (!node)
				pos = NULL;
			else
1653
				pos = rb_to_kn(node);
1654 1655
		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
	}
1656 1657 1658
	return pos;
}

1659
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1660 1661
{
	struct dentry *dentry = file->f_path.dentry;
S
Shaohua Li 已提交
1662
	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1663
	struct kernfs_node *pos = file->private_data;
1664 1665 1666 1667
	const void *ns = NULL;

	if (!dir_emit_dots(file, ctx))
		return 0;
1668
	mutex_lock(&kernfs_mutex);
1669

1670
	if (kernfs_ns_enabled(parent))
1671
		ns = kernfs_info(dentry->d_sb)->ns;
1672

1673
	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1674
	     pos;
1675
	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1676
		const char *name = pos->name;
1677 1678
		unsigned int type = dt_type(pos);
		int len = strlen(name);
S
Shaohua Li 已提交
1679
		ino_t ino = pos->id.ino;
1680

1681
		ctx->pos = pos->hash;
1682 1683 1684
		file->private_data = pos;
		kernfs_get(pos);

1685
		mutex_unlock(&kernfs_mutex);
1686 1687
		if (!dir_emit(ctx, name, len, ino, type))
			return 0;
1688
		mutex_lock(&kernfs_mutex);
1689
	}
1690
	mutex_unlock(&kernfs_mutex);
1691 1692 1693 1694 1695
	file->private_data = NULL;
	ctx->pos = INT_MAX;
	return 0;
}

1696
const struct file_operations kernfs_dir_fops = {
1697
	.read		= generic_read_dir,
1698
	.iterate_shared	= kernfs_fop_readdir,
1699
	.release	= kernfs_dir_fop_release,
1700
	.llseek		= generic_file_llseek,
1701
};