filter.c 50.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * Linux Socket Filter - Kernel level socket filtering
 *
4 5
 * Based on the design of the Berkeley Packet Filter. The new
 * internal format has been designed by PLUMgrid:
L
Linus Torvalds 已提交
6
 *
7 8 9 10 11 12 13
 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
 *
 * Authors:
 *
 *	Jay Schulist <jschlst@samba.org>
 *	Alexei Starovoitov <ast@plumgrid.com>
 *	Daniel Borkmann <dborkman@redhat.com>
L
Linus Torvalds 已提交
14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * Andi Kleen - Fix a few bad bugs and races.
21
 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
L
Linus Torvalds 已提交
22 23 24 25 26 27 28 29 30 31 32
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
33
#include <linux/gfp.h>
L
Linus Torvalds 已提交
34 35
#include <net/ip.h>
#include <net/protocol.h>
36
#include <net/netlink.h>
L
Linus Torvalds 已提交
37 38
#include <linux/skbuff.h>
#include <net/sock.h>
39
#include <net/flow_dissector.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/uaccess.h>
43
#include <asm/unaligned.h>
L
Linus Torvalds 已提交
44
#include <linux/filter.h>
45
#include <linux/ratelimit.h>
46
#include <linux/seccomp.h>
E
Eric Dumazet 已提交
47
#include <linux/if_vlan.h>
48
#include <linux/bpf.h>
49
#include <net/sch_generic.h>
50
#include <net/cls_cgroup.h>
51
#include <net/dst_metadata.h>
52
#include <net/dst.h>
L
Linus Torvalds 已提交
53

S
Stephen Hemminger 已提交
54 55 56 57 58 59
/**
 *	sk_filter - run a packet through a socket filter
 *	@sk: sock associated with &sk_buff
 *	@skb: buffer to filter
 *
 * Run the filter code and then cut skb->data to correct size returned by
L
Li RongQing 已提交
60
 * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
S
Stephen Hemminger 已提交
61
 * than pkt_len we keep whole skb->data. This is the socket level
L
Li RongQing 已提交
62
 * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
S
Stephen Hemminger 已提交
63 64 65 66 67 68 69 70
 * be accepted or -EPERM if the packet should be tossed.
 *
 */
int sk_filter(struct sock *sk, struct sk_buff *skb)
{
	int err;
	struct sk_filter *filter;

71 72 73 74 75 76 77 78
	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

S
Stephen Hemminger 已提交
79 80 81 82
	err = security_sock_rcv_skb(sk, skb);
	if (err)
		return err;

83 84
	rcu_read_lock();
	filter = rcu_dereference(sk->sk_filter);
S
Stephen Hemminger 已提交
85
	if (filter) {
86
		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
87

S
Stephen Hemminger 已提交
88 89
		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
	}
90
	rcu_read_unlock();
S
Stephen Hemminger 已提交
91 92 93 94 95

	return err;
}
EXPORT_SYMBOL(sk_filter);

96
static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97
{
98
	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
99 100
}

101
static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
102
{
103
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
104 105 106 107 108
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

109 110 111
	if (skb->len < sizeof(struct nlattr))
		return 0;

112
	if (a > skb->len - sizeof(struct nlattr))
113 114
		return 0;

115
	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
116 117 118 119 120 121
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

122
static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
123
{
124
	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
125 126 127 128 129
	struct nlattr *nla;

	if (skb_is_nonlinear(skb))
		return 0;

130 131 132
	if (skb->len < sizeof(struct nlattr))
		return 0;

133
	if (a > skb->len - sizeof(struct nlattr))
134 135
		return 0;

136 137
	nla = (struct nlattr *) &skb->data[a];
	if (nla->nla_len > skb->len - a)
138 139
		return 0;

140
	nla = nla_find_nested(nla, x);
141 142 143 144 145 146
	if (nla)
		return (void *) nla - (void *) skb->data;

	return 0;
}

147
static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
148 149 150 151
{
	return raw_smp_processor_id();
}

C
Chema Gonzalez 已提交
152
/* note that this only generates 32-bit random numbers */
153
static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
C
Chema Gonzalez 已提交
154
{
155
	return prandom_u32();
C
Chema Gonzalez 已提交
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
			      struct bpf_insn *insn_buf)
{
	struct bpf_insn *insn = insn_buf;

	switch (skb_field) {
	case SKF_AD_MARK:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, mark));
		break;

	case SKF_AD_PKTTYPE:
		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
#ifdef __BIG_ENDIAN_BITFIELD
		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
#endif
		break;

	case SKF_AD_QUEUE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, queue_mapping));
		break;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	case SKF_AD_VLAN_TAG:
	case SKF_AD_VLAN_TAG_PRESENT:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);

		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_tci));
		if (skb_field == SKF_AD_VLAN_TAG) {
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
						~VLAN_TAG_PRESENT);
		} else {
			/* dst_reg >>= 12 */
			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
			/* dst_reg &= 1 */
			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
		}
		break;
204 205 206 207 208
	}

	return insn - insn_buf;
}

209
static bool convert_bpf_extensions(struct sock_filter *fp,
210
				   struct bpf_insn **insnp)
211
{
212
	struct bpf_insn *insn = *insnp;
213
	u32 cnt;
214 215 216

	switch (fp->k) {
	case SKF_AD_OFF + SKF_AD_PROTOCOL:
217 218 219 220 221 222 223
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		/* A = *(u16 *) (CTX + offsetof(protocol)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, protocol));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
224 225 226
		break;

	case SKF_AD_OFF + SKF_AD_PKTTYPE:
227 228
		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
229 230 231 232 233 234
		break;

	case SKF_AD_OFF + SKF_AD_IFINDEX:
	case SKF_AD_OFF + SKF_AD_HATYPE:
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
235 236 237 238 239 240 241 242 243 244 245 246 247 248
		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      BPF_REG_TMP, BPF_REG_CTX,
				      offsetof(struct sk_buff, dev));
		/* if (tmp != 0) goto pc + 1 */
		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
		*insn++ = BPF_EXIT_INSN();
		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, ifindex));
		else
			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
					    offsetof(struct net_device, type));
249 250 251
		break;

	case SKF_AD_OFF + SKF_AD_MARK:
252 253
		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
254 255 256 257 258
		break;

	case SKF_AD_OFF + SKF_AD_RXHASH:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

259 260
		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
				    offsetof(struct sk_buff, hash));
261 262 263
		break;

	case SKF_AD_OFF + SKF_AD_QUEUE:
264 265
		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
266 267 268
		break;

	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
269 270 271 272
		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
		break;
273

274 275 276 277
	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					 BPF_REG_A, BPF_REG_CTX, insn);
		insn += cnt - 1;
278 279
		break;

280 281 282 283 284 285 286 287 288 289
	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
				      offsetof(struct sk_buff, vlan_proto));
		/* A = ntohs(A) [emitting a nop or swap16] */
		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
		break;

290 291 292 293
	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
	case SKF_AD_OFF + SKF_AD_NLATTR:
	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
	case SKF_AD_OFF + SKF_AD_CPU:
C
Chema Gonzalez 已提交
294
	case SKF_AD_OFF + SKF_AD_RANDOM:
295
		/* arg1 = CTX */
296
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
297
		/* arg2 = A */
298
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
299
		/* arg3 = X */
300
		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
301
		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
302 303
		switch (fp->k) {
		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
304
			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
305 306
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR:
307
			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
308 309
			break;
		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
310
			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
311 312
			break;
		case SKF_AD_OFF + SKF_AD_CPU:
313
			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
314
			break;
C
Chema Gonzalez 已提交
315
		case SKF_AD_OFF + SKF_AD_RANDOM:
316
			*insn = BPF_EMIT_CALL(__get_random_u32);
C
Chema Gonzalez 已提交
317
			break;
318 319 320 321
		}
		break;

	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
322 323
		/* A ^= X */
		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		break;

	default:
		/* This is just a dummy call to avoid letting the compiler
		 * evict __bpf_call_base() as an optimization. Placed here
		 * where no-one bothers.
		 */
		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
		return false;
	}

	*insnp = insn;
	return true;
}

/**
340
 *	bpf_convert_filter - convert filter program
341 342 343 344 345 346 347 348 349
 *	@prog: the user passed filter program
 *	@len: the length of the user passed filter program
 *	@new_prog: buffer where converted program will be stored
 *	@new_len: pointer to store length of converted program
 *
 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
 * Conversion workflow:
 *
 * 1) First pass for calculating the new program length:
350
 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
351 352 353
 *
 * 2) 2nd pass to remap in two passes: 1st pass finds new
 *    jump offsets, 2nd pass remapping:
354
 *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
355
 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
356 357 358 359 360 361 362
 *
 * User BPF's register A is mapped to our BPF register 6, user BPF
 * register X is mapped to BPF register 7; frame pointer is always
 * register 10; Context 'void *ctx' is stored in register 1, that is,
 * for socket filters: ctx == 'struct sk_buff *', for seccomp:
 * ctx == 'struct seccomp_data *'.
 */
363 364
static int bpf_convert_filter(struct sock_filter *prog, int len,
			      struct bpf_insn *new_prog, int *new_len)
365 366
{
	int new_flen = 0, pass = 0, target, i;
367
	struct bpf_insn *new_insn;
368 369 370 371 372
	struct sock_filter *fp;
	int *addrs = NULL;
	u8 bpf_src;

	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
373
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
374

375
	if (len <= 0 || len > BPF_MAXINSNS)
376 377 378
		return -EINVAL;

	if (new_prog) {
379 380
		addrs = kcalloc(len, sizeof(*addrs),
				GFP_KERNEL | __GFP_NOWARN);
381 382 383 384 385 386 387 388
		if (!addrs)
			return -ENOMEM;
	}

do_pass:
	new_insn = new_prog;
	fp = prog;

389 390
	if (new_insn)
		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
391 392 393
	new_insn++;

	for (i = 0; i < len; fp++, i++) {
394 395
		struct bpf_insn tmp_insns[6] = { };
		struct bpf_insn *insn = tmp_insns;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

		if (addrs)
			addrs[i] = new_insn - new_prog;

		switch (fp->code) {
		/* All arithmetic insns and skb loads map as-is. */
		case BPF_ALU | BPF_ADD | BPF_X:
		case BPF_ALU | BPF_ADD | BPF_K:
		case BPF_ALU | BPF_SUB | BPF_X:
		case BPF_ALU | BPF_SUB | BPF_K:
		case BPF_ALU | BPF_AND | BPF_X:
		case BPF_ALU | BPF_AND | BPF_K:
		case BPF_ALU | BPF_OR | BPF_X:
		case BPF_ALU | BPF_OR | BPF_K:
		case BPF_ALU | BPF_LSH | BPF_X:
		case BPF_ALU | BPF_LSH | BPF_K:
		case BPF_ALU | BPF_RSH | BPF_X:
		case BPF_ALU | BPF_RSH | BPF_K:
		case BPF_ALU | BPF_XOR | BPF_X:
		case BPF_ALU | BPF_XOR | BPF_K:
		case BPF_ALU | BPF_MUL | BPF_X:
		case BPF_ALU | BPF_MUL | BPF_K:
		case BPF_ALU | BPF_DIV | BPF_X:
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_X:
		case BPF_ALU | BPF_MOD | BPF_K:
		case BPF_ALU | BPF_NEG:
		case BPF_LD | BPF_ABS | BPF_W:
		case BPF_LD | BPF_ABS | BPF_H:
		case BPF_LD | BPF_ABS | BPF_B:
		case BPF_LD | BPF_IND | BPF_W:
		case BPF_LD | BPF_IND | BPF_H:
		case BPF_LD | BPF_IND | BPF_B:
			/* Check for overloaded BPF extension and
			 * directly convert it if found, otherwise
			 * just move on with mapping.
			 */
			if (BPF_CLASS(fp->code) == BPF_LD &&
			    BPF_MODE(fp->code) == BPF_ABS &&
			    convert_bpf_extensions(fp, &insn))
				break;

438
			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
439 440
			break;

441 442 443 444 445 446 447
		/* Jump transformation cannot use BPF block macros
		 * everywhere as offset calculation and target updates
		 * require a bit more work than the rest, i.e. jump
		 * opcodes map as-is, but offsets need adjustment.
		 */

#define BPF_EMIT_JMP							\
448 449 450 451 452 453 454 455
	do {								\
		if (target >= len || target < 0)			\
			goto err;					\
		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
		insn->off -= insn - tmp_insns;				\
	} while (0)

456 457 458 459
		case BPF_JMP | BPF_JA:
			target = i + fp->k + 1;
			insn->code = fp->code;
			BPF_EMIT_JMP;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			break;

		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
				/* BPF immediates are signed, zero extend
				 * immediate into tmp register and use it
				 * in compare insn.
				 */
475
				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
476

477 478
				insn->dst_reg = BPF_REG_A;
				insn->src_reg = BPF_REG_TMP;
479 480
				bpf_src = BPF_X;
			} else {
481
				insn->dst_reg = BPF_REG_A;
482 483
				insn->imm = fp->k;
				bpf_src = BPF_SRC(fp->code);
484
				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
L
Linus Torvalds 已提交
485
			}
486 487 488 489 490

			/* Common case where 'jump_false' is next insn. */
			if (fp->jf == 0) {
				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
				target = i + fp->jt + 1;
491
				BPF_EMIT_JMP;
492
				break;
L
Linus Torvalds 已提交
493
			}
494 495 496 497 498

			/* Convert JEQ into JNE when 'jump_true' is next insn. */
			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
				insn->code = BPF_JMP | BPF_JNE | bpf_src;
				target = i + fp->jf + 1;
499
				BPF_EMIT_JMP;
500
				break;
501
			}
502 503 504 505

			/* Other jumps are mapped into two insns: Jxx and JA. */
			target = i + fp->jt + 1;
			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
506
			BPF_EMIT_JMP;
507 508 509 510
			insn++;

			insn->code = BPF_JMP | BPF_JA;
			target = i + fp->jf + 1;
511
			BPF_EMIT_JMP;
512 513 514 515
			break;

		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
		case BPF_LDX | BPF_MSH | BPF_B:
516
			/* tmp = A */
517
			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
518
			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
519
			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
520
			/* A &= 0xf */
521
			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
522
			/* A <<= 2 */
523
			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
524
			/* X = A */
525
			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
526
			/* A = tmp */
527
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
528 529 530 531 532
			break;

		/* RET_K, RET_A are remaped into 2 insns. */
		case BPF_RET | BPF_A:
		case BPF_RET | BPF_K:
533 534 535
			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
						BPF_K : BPF_X, BPF_REG_0,
						BPF_REG_A, fp->k);
536
			*insn = BPF_EXIT_INSN();
537 538 539 540 541
			break;

		/* Store to stack. */
		case BPF_ST:
		case BPF_STX:
542 543 544
			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
					    BPF_ST ? BPF_REG_A : BPF_REG_X,
					    -(BPF_MEMWORDS - fp->k) * 4);
545 546 547 548 549
			break;

		/* Load from stack. */
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
550 551 552
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
					    -(BPF_MEMWORDS - fp->k) * 4);
553 554 555 556 557
			break;

		/* A = K or X = K */
		case BPF_LD | BPF_IMM:
		case BPF_LDX | BPF_IMM:
558 559
			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
					      BPF_REG_A : BPF_REG_X, fp->k);
560 561 562 563
			break;

		/* X = A */
		case BPF_MISC | BPF_TAX:
564
			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
565 566 567 568
			break;

		/* A = X */
		case BPF_MISC | BPF_TXA:
569
			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
570 571 572 573 574
			break;

		/* A = skb->len or X = skb->len */
		case BPF_LD | BPF_W | BPF_LEN:
		case BPF_LDX | BPF_W | BPF_LEN:
575 576 577
			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
					    offsetof(struct sk_buff, len));
578 579
			break;

580
		/* Access seccomp_data fields. */
581
		case BPF_LDX | BPF_ABS | BPF_W:
582 583
			/* A = *(u32 *) (ctx + K) */
			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
584 585
			break;

S
Stephen Hemminger 已提交
586
		/* Unknown instruction. */
L
Linus Torvalds 已提交
587
		default:
588
			goto err;
L
Linus Torvalds 已提交
589
		}
590 591 592 593 594 595

		insn++;
		if (new_prog)
			memcpy(new_insn, tmp_insns,
			       sizeof(*insn) * (insn - tmp_insns));
		new_insn += insn - tmp_insns;
L
Linus Torvalds 已提交
596 597
	}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	if (!new_prog) {
		/* Only calculating new length. */
		*new_len = new_insn - new_prog;
		return 0;
	}

	pass++;
	if (new_flen != new_insn - new_prog) {
		new_flen = new_insn - new_prog;
		if (pass > 2)
			goto err;
		goto do_pass;
	}

	kfree(addrs);
	BUG_ON(*new_len != new_flen);
L
Linus Torvalds 已提交
614
	return 0;
615 616 617
err:
	kfree(addrs);
	return -EINVAL;
L
Linus Torvalds 已提交
618 619
}

620 621
/* Security:
 *
622
 * As we dont want to clear mem[] array for each packet going through
L
Li RongQing 已提交
623
 * __bpf_prog_run(), we check that filter loaded by user never try to read
624
 * a cell if not previously written, and we check all branches to be sure
L
Lucas De Marchi 已提交
625
 * a malicious user doesn't try to abuse us.
626
 */
627
static int check_load_and_stores(const struct sock_filter *filter, int flen)
628
{
629
	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
630 631 632
	int pc, ret = 0;

	BUILD_BUG_ON(BPF_MEMWORDS > 16);
633

634
	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
635 636
	if (!masks)
		return -ENOMEM;
637

638 639 640 641 642 643
	memset(masks, 0xff, flen * sizeof(*masks));

	for (pc = 0; pc < flen; pc++) {
		memvalid &= masks[pc];

		switch (filter[pc].code) {
644 645
		case BPF_ST:
		case BPF_STX:
646 647
			memvalid |= (1 << filter[pc].k);
			break;
648 649
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
650 651 652 653 654
			if (!(memvalid & (1 << filter[pc].k))) {
				ret = -EINVAL;
				goto error;
			}
			break;
655 656
		case BPF_JMP | BPF_JA:
			/* A jump must set masks on target */
657 658 659
			masks[pc + 1 + filter[pc].k] &= memvalid;
			memvalid = ~0;
			break;
660 661 662 663 664 665 666 667 668
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* A jump must set masks on targets */
669 670 671 672 673 674 675 676 677 678 679
			masks[pc + 1 + filter[pc].jt] &= memvalid;
			masks[pc + 1 + filter[pc].jf] &= memvalid;
			memvalid = ~0;
			break;
		}
	}
error:
	kfree(masks);
	return ret;
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static bool chk_code_allowed(u16 code_to_probe)
{
	static const bool codes[] = {
		/* 32 bit ALU operations */
		[BPF_ALU | BPF_ADD | BPF_K] = true,
		[BPF_ALU | BPF_ADD | BPF_X] = true,
		[BPF_ALU | BPF_SUB | BPF_K] = true,
		[BPF_ALU | BPF_SUB | BPF_X] = true,
		[BPF_ALU | BPF_MUL | BPF_K] = true,
		[BPF_ALU | BPF_MUL | BPF_X] = true,
		[BPF_ALU | BPF_DIV | BPF_K] = true,
		[BPF_ALU | BPF_DIV | BPF_X] = true,
		[BPF_ALU | BPF_MOD | BPF_K] = true,
		[BPF_ALU | BPF_MOD | BPF_X] = true,
		[BPF_ALU | BPF_AND | BPF_K] = true,
		[BPF_ALU | BPF_AND | BPF_X] = true,
		[BPF_ALU | BPF_OR | BPF_K] = true,
		[BPF_ALU | BPF_OR | BPF_X] = true,
		[BPF_ALU | BPF_XOR | BPF_K] = true,
		[BPF_ALU | BPF_XOR | BPF_X] = true,
		[BPF_ALU | BPF_LSH | BPF_K] = true,
		[BPF_ALU | BPF_LSH | BPF_X] = true,
		[BPF_ALU | BPF_RSH | BPF_K] = true,
		[BPF_ALU | BPF_RSH | BPF_X] = true,
		[BPF_ALU | BPF_NEG] = true,
		/* Load instructions */
		[BPF_LD | BPF_W | BPF_ABS] = true,
		[BPF_LD | BPF_H | BPF_ABS] = true,
		[BPF_LD | BPF_B | BPF_ABS] = true,
		[BPF_LD | BPF_W | BPF_LEN] = true,
		[BPF_LD | BPF_W | BPF_IND] = true,
		[BPF_LD | BPF_H | BPF_IND] = true,
		[BPF_LD | BPF_B | BPF_IND] = true,
		[BPF_LD | BPF_IMM] = true,
		[BPF_LD | BPF_MEM] = true,
		[BPF_LDX | BPF_W | BPF_LEN] = true,
		[BPF_LDX | BPF_B | BPF_MSH] = true,
		[BPF_LDX | BPF_IMM] = true,
		[BPF_LDX | BPF_MEM] = true,
		/* Store instructions */
		[BPF_ST] = true,
		[BPF_STX] = true,
		/* Misc instructions */
		[BPF_MISC | BPF_TAX] = true,
		[BPF_MISC | BPF_TXA] = true,
		/* Return instructions */
		[BPF_RET | BPF_K] = true,
		[BPF_RET | BPF_A] = true,
		/* Jump instructions */
		[BPF_JMP | BPF_JA] = true,
		[BPF_JMP | BPF_JEQ | BPF_K] = true,
		[BPF_JMP | BPF_JEQ | BPF_X] = true,
		[BPF_JMP | BPF_JGE | BPF_K] = true,
		[BPF_JMP | BPF_JGE | BPF_X] = true,
		[BPF_JMP | BPF_JGT | BPF_K] = true,
		[BPF_JMP | BPF_JGT | BPF_X] = true,
		[BPF_JMP | BPF_JSET | BPF_K] = true,
		[BPF_JMP | BPF_JSET | BPF_X] = true,
	};

	if (code_to_probe >= ARRAY_SIZE(codes))
		return false;

	return codes[code_to_probe];
}

L
Linus Torvalds 已提交
746
/**
747
 *	bpf_check_classic - verify socket filter code
L
Linus Torvalds 已提交
748 749 750 751 752
 *	@filter: filter to verify
 *	@flen: length of filter
 *
 * Check the user's filter code. If we let some ugly
 * filter code slip through kaboom! The filter must contain
753 754
 * no references or jumps that are out of range, no illegal
 * instructions, and must end with a RET instruction.
L
Linus Torvalds 已提交
755
 *
756 757 758
 * All jumps are forward as they are not signed.
 *
 * Returns 0 if the rule set is legal or -EINVAL if not.
L
Linus Torvalds 已提交
759
 */
760 761
static int bpf_check_classic(const struct sock_filter *filter,
			     unsigned int flen)
L
Linus Torvalds 已提交
762
{
763
	bool anc_found;
764
	int pc;
L
Linus Torvalds 已提交
765

766
	if (flen == 0 || flen > BPF_MAXINSNS)
L
Linus Torvalds 已提交
767 768
		return -EINVAL;

769
	/* Check the filter code now */
L
Linus Torvalds 已提交
770
	for (pc = 0; pc < flen; pc++) {
771
		const struct sock_filter *ftest = &filter[pc];
772

773 774
		/* May we actually operate on this code? */
		if (!chk_code_allowed(ftest->code))
775
			return -EINVAL;
776

777
		/* Some instructions need special checks */
778 779 780 781
		switch (ftest->code) {
		case BPF_ALU | BPF_DIV | BPF_K:
		case BPF_ALU | BPF_MOD | BPF_K:
			/* Check for division by zero */
E
Eric Dumazet 已提交
782 783 784
			if (ftest->k == 0)
				return -EINVAL;
			break;
785 786 787 788 789
		case BPF_LD | BPF_MEM:
		case BPF_LDX | BPF_MEM:
		case BPF_ST:
		case BPF_STX:
			/* Check for invalid memory addresses */
790 791 792
			if (ftest->k >= BPF_MEMWORDS)
				return -EINVAL;
			break;
793 794
		case BPF_JMP | BPF_JA:
			/* Note, the large ftest->k might cause loops.
795 796 797
			 * Compare this with conditional jumps below,
			 * where offsets are limited. --ANK (981016)
			 */
798
			if (ftest->k >= (unsigned int)(flen - pc - 1))
799
				return -EINVAL;
800
			break;
801 802 803 804 805 806 807 808 809
		case BPF_JMP | BPF_JEQ | BPF_K:
		case BPF_JMP | BPF_JEQ | BPF_X:
		case BPF_JMP | BPF_JGE | BPF_K:
		case BPF_JMP | BPF_JGE | BPF_X:
		case BPF_JMP | BPF_JGT | BPF_K:
		case BPF_JMP | BPF_JGT | BPF_X:
		case BPF_JMP | BPF_JSET | BPF_K:
		case BPF_JMP | BPF_JSET | BPF_X:
			/* Both conditionals must be safe */
810
			if (pc + ftest->jt + 1 >= flen ||
811 812
			    pc + ftest->jf + 1 >= flen)
				return -EINVAL;
813
			break;
814 815 816
		case BPF_LD | BPF_W | BPF_ABS:
		case BPF_LD | BPF_H | BPF_ABS:
		case BPF_LD | BPF_B | BPF_ABS:
817
			anc_found = false;
818 819 820
			if (bpf_anc_helper(ftest) & BPF_ANC)
				anc_found = true;
			/* Ancillary operation unknown or unsupported */
821 822
			if (anc_found == false && ftest->k >= SKF_AD_OFF)
				return -EINVAL;
823 824
		}
	}
825

826
	/* Last instruction must be a RET code */
827
	switch (filter[flen - 1].code) {
828 829
	case BPF_RET | BPF_K:
	case BPF_RET | BPF_A:
830
		return check_load_and_stores(filter, flen);
831
	}
832

833
	return -EINVAL;
L
Linus Torvalds 已提交
834 835
}

836 837
static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
				      const struct sock_fprog *fprog)
838
{
839
	unsigned int fsize = bpf_classic_proglen(fprog);
840 841 842 843 844 845 846 847
	struct sock_fprog_kern *fkprog;

	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
	if (!fp->orig_prog)
		return -ENOMEM;

	fkprog = fp->orig_prog;
	fkprog->len = fprog->len;
848 849 850

	fkprog->filter = kmemdup(fp->insns, fsize,
				 GFP_KERNEL | __GFP_NOWARN);
851 852 853 854 855 856 857 858
	if (!fkprog->filter) {
		kfree(fp->orig_prog);
		return -ENOMEM;
	}

	return 0;
}

859
static void bpf_release_orig_filter(struct bpf_prog *fp)
860 861 862 863 864 865 866 867 868
{
	struct sock_fprog_kern *fprog = fp->orig_prog;

	if (fprog) {
		kfree(fprog->filter);
		kfree(fprog);
	}
}

869 870
static void __bpf_prog_release(struct bpf_prog *prog)
{
871
	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
872 873 874 875 876
		bpf_prog_put(prog);
	} else {
		bpf_release_orig_filter(prog);
		bpf_prog_free(prog);
	}
877 878
}

879 880
static void __sk_filter_release(struct sk_filter *fp)
{
881 882
	__bpf_prog_release(fp->prog);
	kfree(fp);
883 884
}

885
/**
E
Eric Dumazet 已提交
886
 * 	sk_filter_release_rcu - Release a socket filter by rcu_head
887 888
 *	@rcu: rcu_head that contains the sk_filter to free
 */
889
static void sk_filter_release_rcu(struct rcu_head *rcu)
890 891 892
{
	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);

893
	__sk_filter_release(fp);
894
}
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

/**
 *	sk_filter_release - release a socket filter
 *	@fp: filter to remove
 *
 *	Remove a filter from a socket and release its resources.
 */
static void sk_filter_release(struct sk_filter *fp)
{
	if (atomic_dec_and_test(&fp->refcnt))
		call_rcu(&fp->rcu, sk_filter_release_rcu);
}

void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
{
910
	u32 filter_size = bpf_prog_size(fp->prog->len);
911

912 913
	atomic_sub(filter_size, &sk->sk_omem_alloc);
	sk_filter_release(fp);
914
}
915

916 917 918 919
/* try to charge the socket memory if there is space available
 * return true on success
 */
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
920
{
921
	u32 filter_size = bpf_prog_size(fp->prog->len);
922 923 924 925 926 927 928

	/* same check as in sock_kmalloc() */
	if (filter_size <= sysctl_optmem_max &&
	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
		atomic_inc(&fp->refcnt);
		atomic_add(filter_size, &sk->sk_omem_alloc);
		return true;
929
	}
930
	return false;
931 932
}

933
static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
934 935
{
	struct sock_filter *old_prog;
936
	struct bpf_prog *old_fp;
937
	int err, new_len, old_len = fp->len;
938 939 940 941 942 943 944

	/* We are free to overwrite insns et al right here as it
	 * won't be used at this point in time anymore internally
	 * after the migration to the internal BPF instruction
	 * representation.
	 */
	BUILD_BUG_ON(sizeof(struct sock_filter) !=
945
		     sizeof(struct bpf_insn));
946 947 948 949 950 951

	/* Conversion cannot happen on overlapping memory areas,
	 * so we need to keep the user BPF around until the 2nd
	 * pass. At this time, the user BPF is stored in fp->insns.
	 */
	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
952
			   GFP_KERNEL | __GFP_NOWARN);
953 954 955 956 957 958
	if (!old_prog) {
		err = -ENOMEM;
		goto out_err;
	}

	/* 1st pass: calculate the new program length. */
959
	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
960 961 962 963 964
	if (err)
		goto out_err_free;

	/* Expand fp for appending the new filter representation. */
	old_fp = fp;
965
	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
966 967 968 969 970 971 972 973 974 975 976
	if (!fp) {
		/* The old_fp is still around in case we couldn't
		 * allocate new memory, so uncharge on that one.
		 */
		fp = old_fp;
		err = -ENOMEM;
		goto out_err_free;
	}

	fp->len = new_len;

977
	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
978
	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
979
	if (err)
980
		/* 2nd bpf_convert_filter() can fail only if it fails
981 982
		 * to allocate memory, remapping must succeed. Note,
		 * that at this time old_fp has already been released
983
		 * by krealloc().
984 985 986
		 */
		goto out_err_free;

987
	bpf_prog_select_runtime(fp);
988

989 990 991 992 993 994
	kfree(old_prog);
	return fp;

out_err_free:
	kfree(old_prog);
out_err:
995
	__bpf_prog_release(fp);
996 997 998
	return ERR_PTR(err);
}

999 1000
static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
					   bpf_aux_classic_check_t trans)
1001 1002 1003
{
	int err;

1004
	fp->bpf_func = NULL;
1005
	fp->jited = 0;
1006

1007
	err = bpf_check_classic(fp->insns, fp->len);
1008
	if (err) {
1009
		__bpf_prog_release(fp);
1010
		return ERR_PTR(err);
1011
	}
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	/* There might be additional checks and transformations
	 * needed on classic filters, f.e. in case of seccomp.
	 */
	if (trans) {
		err = trans(fp->insns, fp->len);
		if (err) {
			__bpf_prog_release(fp);
			return ERR_PTR(err);
		}
	}

1024 1025 1026
	/* Probe if we can JIT compile the filter and if so, do
	 * the compilation of the filter.
	 */
1027
	bpf_jit_compile(fp);
1028 1029 1030 1031

	/* JIT compiler couldn't process this filter, so do the
	 * internal BPF translation for the optimized interpreter.
	 */
1032
	if (!fp->jited)
1033
		fp = bpf_migrate_filter(fp);
1034 1035

	return fp;
1036 1037 1038
}

/**
1039
 *	bpf_prog_create - create an unattached filter
R
Randy Dunlap 已提交
1040
 *	@pfp: the unattached filter that is created
1041
 *	@fprog: the filter program
1042
 *
R
Randy Dunlap 已提交
1043
 * Create a filter independent of any socket. We first run some
1044 1045 1046 1047
 * sanity checks on it to make sure it does not explode on us later.
 * If an error occurs or there is insufficient memory for the filter
 * a negative errno code is returned. On success the return is zero.
 */
1048
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1049
{
1050
	unsigned int fsize = bpf_classic_proglen(fprog);
1051
	struct bpf_prog *fp;
1052 1053 1054 1055 1056

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

1057
	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1058 1059
	if (!fp)
		return -ENOMEM;
1060

1061 1062 1063
	memcpy(fp->insns, fprog->filter, fsize);

	fp->len = fprog->len;
1064 1065 1066 1067 1068
	/* Since unattached filters are not copied back to user
	 * space through sk_get_filter(), we do not need to hold
	 * a copy here, and can spare us the work.
	 */
	fp->orig_prog = NULL;
1069

1070
	/* bpf_prepare_filter() already takes care of freeing
1071 1072
	 * memory in case something goes wrong.
	 */
1073
	fp = bpf_prepare_filter(fp, NULL);
1074 1075
	if (IS_ERR(fp))
		return PTR_ERR(fp);
1076 1077 1078 1079

	*pfp = fp;
	return 0;
}
1080
EXPORT_SYMBOL_GPL(bpf_prog_create);
1081

1082 1083 1084 1085 1086
/**
 *	bpf_prog_create_from_user - create an unattached filter from user buffer
 *	@pfp: the unattached filter that is created
 *	@fprog: the filter program
 *	@trans: post-classic verifier transformation handler
1087
 *	@save_orig: save classic BPF program
1088 1089 1090 1091 1092 1093
 *
 * This function effectively does the same as bpf_prog_create(), only
 * that it builds up its insns buffer from user space provided buffer.
 * It also allows for passing a bpf_aux_classic_check_t handler.
 */
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1094
			      bpf_aux_classic_check_t trans, bool save_orig)
1095 1096 1097
{
	unsigned int fsize = bpf_classic_proglen(fprog);
	struct bpf_prog *fp;
1098
	int err;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	/* Make sure new filter is there and in the right amounts. */
	if (fprog->filter == NULL)
		return -EINVAL;

	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
	if (!fp)
		return -ENOMEM;

	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
		__bpf_prog_free(fp);
		return -EFAULT;
	}

	fp->len = fprog->len;
	fp->orig_prog = NULL;

1116 1117 1118 1119 1120 1121 1122 1123
	if (save_orig) {
		err = bpf_prog_store_orig_filter(fp, fprog);
		if (err) {
			__bpf_prog_free(fp);
			return -ENOMEM;
		}
	}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/* bpf_prepare_filter() already takes care of freeing
	 * memory in case something goes wrong.
	 */
	fp = bpf_prepare_filter(fp, trans);
	if (IS_ERR(fp))
		return PTR_ERR(fp);

	*pfp = fp;
	return 0;
}
1134
EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1135

1136
void bpf_prog_destroy(struct bpf_prog *fp)
1137
{
1138
	__bpf_prog_release(fp);
1139
}
1140
EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
{
	struct sk_filter *fp, *old_fp;

	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	fp->prog = prog;
	atomic_set(&fp->refcnt, 0);

	if (!sk_filter_charge(sk, fp)) {
		kfree(fp);
		return -ENOMEM;
	}

	old_fp = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
	rcu_assign_pointer(sk->sk_filter, fp);

	if (old_fp)
		sk_filter_uncharge(sk, old_fp);

	return 0;
}

L
Linus Torvalds 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/**
 *	sk_attach_filter - attach a socket filter
 *	@fprog: the filter program
 *	@sk: the socket to use
 *
 * Attach the user's filter code. We first run some sanity checks on
 * it to make sure it does not explode on us later. If an error
 * occurs or there is insufficient memory for the filter a negative
 * errno code is returned. On success the return is zero.
 */
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
1180
	unsigned int fsize = bpf_classic_proglen(fprog);
1181 1182
	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
	struct bpf_prog *prog;
L
Linus Torvalds 已提交
1183 1184
	int err;

1185 1186 1187
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

L
Linus Torvalds 已提交
1188
	/* Make sure new filter is there and in the right amounts. */
1189 1190
	if (fprog->filter == NULL)
		return -EINVAL;
L
Linus Torvalds 已提交
1191

1192
	prog = bpf_prog_alloc(bpf_fsize, 0);
1193
	if (!prog)
L
Linus Torvalds 已提交
1194
		return -ENOMEM;
1195

1196
	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1197
		__bpf_prog_free(prog);
L
Linus Torvalds 已提交
1198 1199 1200
		return -EFAULT;
	}

1201
	prog->len = fprog->len;
L
Linus Torvalds 已提交
1202

1203
	err = bpf_prog_store_orig_filter(prog, fprog);
1204
	if (err) {
1205
		__bpf_prog_free(prog);
1206 1207 1208
		return -ENOMEM;
	}

1209
	/* bpf_prepare_filter() already takes care of freeing
1210 1211
	 * memory in case something goes wrong.
	 */
1212
	prog = bpf_prepare_filter(prog, NULL);
1213 1214 1215
	if (IS_ERR(prog))
		return PTR_ERR(prog);

1216 1217
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1218
		__bpf_prog_release(prog);
1219
		return err;
1220 1221
	}

1222
	return 0;
L
Linus Torvalds 已提交
1223
}
1224
EXPORT_SYMBOL_GPL(sk_attach_filter);
L
Linus Torvalds 已提交
1225

1226 1227 1228
int sk_attach_bpf(u32 ufd, struct sock *sk)
{
	struct bpf_prog *prog;
1229
	int err;
1230 1231 1232 1233 1234

	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

	prog = bpf_prog_get(ufd);
1235 1236
	if (IS_ERR(prog))
		return PTR_ERR(prog);
1237

1238
	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1239 1240 1241 1242
		bpf_prog_put(prog);
		return -EINVAL;
	}

1243 1244
	err = __sk_attach_prog(prog, sk);
	if (err < 0) {
1245
		bpf_prog_put(prog);
1246
		return err;
1247 1248 1249 1250 1251
	}

	return 0;
}

1252 1253 1254
#define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)

static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1255 1256
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1257
	int offset = (int) r2;
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	void *from = (void *) (long) r3;
	unsigned int len = (unsigned int) r4;
	char buf[16];
	void *ptr;

	/* bpf verifier guarantees that:
	 * 'from' pointer points to bpf program stack
	 * 'len' bytes of it were initialized
	 * 'len' > 0
	 * 'skb' is a valid pointer to 'struct sk_buff'
	 *
	 * so check for invalid 'offset' and too large 'len'
	 */
1271
	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1272 1273
		return -EFAULT;

1274
	if (unlikely(skb_cloned(skb) &&
1275
		     !skb_clone_writable(skb, offset + len)))
1276 1277 1278 1279 1280 1281
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, len, buf);
	if (unlikely(!ptr))
		return -EFAULT;

1282 1283
	if (BPF_RECOMPUTE_CSUM(flags))
		skb_postpull_rcsum(skb, ptr, len);
1284 1285 1286 1287 1288 1289 1290

	memcpy(ptr, from, len);

	if (ptr == buf)
		/* skb_store_bits cannot return -EFAULT here */
		skb_store_bits(skb, offset, ptr, len);

1291
	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
	return 0;
}

const struct bpf_func_proto bpf_skb_store_bytes_proto = {
	.func		= bpf_skb_store_bytes,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_PTR_TO_STACK,
	.arg4_type	= ARG_CONST_STACK_SIZE,
1304 1305 1306 1307 1308 1309
	.arg5_type	= ARG_ANYTHING,
};

#define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
#define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)

1310
static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1311 1312
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1313
	int offset = (int) r2;
1314 1315
	__sum16 sum, *ptr;

1316
	if (unlikely((u32) offset > 0xffff))
1317 1318
		return -EFAULT;

1319
	if (unlikely(skb_cloned(skb) &&
1320
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

	switch (BPF_HEADER_FIELD_SIZE(flags)) {
	case 2:
		csum_replace2(ptr, from, to);
		break;
	case 4:
		csum_replace4(ptr, from, to);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l3_csum_replace_proto = {
	.func		= bpf_l3_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
};

1356
static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1357 1358
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1359
	bool is_pseudo = !!BPF_IS_PSEUDO_HEADER(flags);
1360
	int offset = (int) r2;
1361 1362
	__sum16 sum, *ptr;

1363
	if (unlikely((u32) offset > 0xffff))
1364 1365
		return -EFAULT;

1366
	if (unlikely(skb_cloned(skb) &&
1367
		     !skb_clone_writable(skb, offset + sizeof(sum))))
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		return -EFAULT;

	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
	if (unlikely(!ptr))
		return -EFAULT;

	switch (BPF_HEADER_FIELD_SIZE(flags)) {
	case 2:
		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
		break;
	case 4:
		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
		break;
	default:
		return -EINVAL;
	}

	if (ptr == &sum)
		/* skb_store_bits guaranteed to not return -EFAULT here */
		skb_store_bits(skb, offset, ptr, sizeof(sum));

	return 0;
}

const struct bpf_func_proto bpf_l4_csum_replace_proto = {
	.func		= bpf_l4_csum_replace,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_ANYTHING,
	.arg5_type	= ARG_ANYTHING,
1401 1402
};

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
#define BPF_IS_REDIRECT_INGRESS(flags)	((flags) & 1)

static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
	if (unlikely(!dev))
		return -EINVAL;

	skb2 = skb_clone(skb, GFP_ATOMIC);
	if (unlikely(!skb2))
		return -ENOMEM;

	if (BPF_IS_REDIRECT_INGRESS(flags))
		return dev_forward_skb(dev, skb2);

	skb2->dev = dev;
	return dev_queue_xmit(skb2);
}

const struct bpf_func_proto bpf_clone_redirect_proto = {
	.func           = bpf_clone_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
struct redirect_info {
	u32 ifindex;
	u32 flags;
};

static DEFINE_PER_CPU(struct redirect_info, redirect_info);
static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);

	ri->ifindex = ifindex;
	ri->flags = flags;
	return TC_ACT_REDIRECT;
}

int skb_do_redirect(struct sk_buff *skb)
{
	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
	struct net_device *dev;

	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
	ri->ifindex = 0;
	if (unlikely(!dev)) {
		kfree_skb(skb);
		return -EINVAL;
	}

	if (BPF_IS_REDIRECT_INGRESS(ri->flags))
		return dev_forward_skb(dev, skb);

	skb->dev = dev;
	return dev_queue_xmit(skb);
}

const struct bpf_func_proto bpf_redirect_proto = {
	.func           = bpf_redirect,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_ANYTHING,
	.arg2_type      = ARG_ANYTHING,
};

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	return task_get_classid((struct sk_buff *) (unsigned long) r1);
}

static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
	.func           = bpf_get_cgroup_classid,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
#ifdef CONFIG_IP_ROUTE_CLASSID
	const struct dst_entry *dst;

	dst = skb_dst((struct sk_buff *) (unsigned long) r1);
	if (dst)
		return dst->tclassid;
#endif
	return 0;
}

static const struct bpf_func_proto bpf_get_route_realm_proto = {
	.func           = bpf_get_route_realm,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	__be16 vlan_proto = (__force __be16) r2;

	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
		     vlan_proto != htons(ETH_P_8021AD)))
		vlan_proto = htons(ETH_P_8021Q);

	return skb_vlan_push(skb, vlan_proto, vlan_tci);
}

const struct bpf_func_proto bpf_skb_vlan_push_proto = {
	.func           = bpf_skb_vlan_push,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
	.arg2_type      = ARG_ANYTHING,
	.arg3_type      = ARG_ANYTHING,
};
1527
EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;

	return skb_vlan_pop(skb);
}

const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
	.func           = bpf_skb_vlan_pop,
	.gpl_only       = false,
	.ret_type       = RET_INTEGER,
	.arg1_type      = ARG_PTR_TO_CTX,
};
1542
EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

bool bpf_helper_changes_skb_data(void *func)
{
	if (func == bpf_skb_vlan_push)
		return true;
	if (func == bpf_skb_vlan_pop)
		return true;
	return false;
}

1553 1554 1555 1556
static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
1557
	struct ip_tunnel_info *info = skb_tunnel_info(skb);
1558 1559 1560

	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
		return -EINVAL;
1561 1562
	if (ip_tunnel_info_af(info) != AF_INET)
		return -EINVAL;
1563 1564

	to->tunnel_id = be64_to_cpu(info->key.tun_id);
1565
	to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	return 0;
}

const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
	.func		= bpf_skb_get_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

static struct metadata_dst __percpu *md_dst;

static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
{
	struct sk_buff *skb = (struct sk_buff *) (long) r1;
	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
	struct metadata_dst *md = this_cpu_ptr(md_dst);
	struct ip_tunnel_info *info;

	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
		return -EINVAL;

	skb_dst_drop(skb);
	dst_hold((struct dst_entry *) md);
	skb_dst_set(skb, (struct dst_entry *) md);

	info = &md->u.tun_info;
	info->mode = IP_TUNNEL_INFO_TX;
1598
	info->key.tun_flags = TUNNEL_KEY;
1599
	info->key.tun_id = cpu_to_be64(from->tunnel_id);
1600
	info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	return 0;
}

const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
	.func		= bpf_skb_set_tunnel_key,
	.gpl_only	= false,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_PTR_TO_CTX,
	.arg2_type	= ARG_PTR_TO_STACK,
	.arg3_type	= ARG_CONST_STACK_SIZE,
	.arg4_type	= ARG_ANYTHING,
};

static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
{
	if (!md_dst) {
		/* race is not possible, since it's called from
		 * verifier that is holding verifier mutex
		 */
		md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
		if (!md_dst)
			return NULL;
	}
	return &bpf_skb_set_tunnel_key_proto;
}

1628 1629
static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)
1630 1631 1632 1633 1634 1635 1636 1637
{
	switch (func_id) {
	case BPF_FUNC_map_lookup_elem:
		return &bpf_map_lookup_elem_proto;
	case BPF_FUNC_map_update_elem:
		return &bpf_map_update_elem_proto;
	case BPF_FUNC_map_delete_elem:
		return &bpf_map_delete_elem_proto;
1638 1639
	case BPF_FUNC_get_prandom_u32:
		return &bpf_get_prandom_u32_proto;
1640 1641
	case BPF_FUNC_get_smp_processor_id:
		return &bpf_get_smp_processor_id_proto;
1642 1643
	case BPF_FUNC_tail_call:
		return &bpf_tail_call_proto;
1644 1645
	case BPF_FUNC_ktime_get_ns:
		return &bpf_ktime_get_ns_proto;
1646 1647
	case BPF_FUNC_trace_printk:
		return bpf_get_trace_printk_proto();
1648 1649 1650 1651 1652
	default:
		return NULL;
	}
}

1653 1654 1655 1656 1657 1658
static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)
{
	switch (func_id) {
	case BPF_FUNC_skb_store_bytes:
		return &bpf_skb_store_bytes_proto;
1659 1660 1661 1662
	case BPF_FUNC_l3_csum_replace:
		return &bpf_l3_csum_replace_proto;
	case BPF_FUNC_l4_csum_replace:
		return &bpf_l4_csum_replace_proto;
1663 1664
	case BPF_FUNC_clone_redirect:
		return &bpf_clone_redirect_proto;
1665 1666
	case BPF_FUNC_get_cgroup_classid:
		return &bpf_get_cgroup_classid_proto;
1667 1668 1669 1670
	case BPF_FUNC_skb_vlan_push:
		return &bpf_skb_vlan_push_proto;
	case BPF_FUNC_skb_vlan_pop:
		return &bpf_skb_vlan_pop_proto;
1671 1672 1673 1674
	case BPF_FUNC_skb_get_tunnel_key:
		return &bpf_skb_get_tunnel_key_proto;
	case BPF_FUNC_skb_set_tunnel_key:
		return bpf_get_skb_set_tunnel_key_proto();
1675 1676
	case BPF_FUNC_redirect:
		return &bpf_redirect_proto;
1677 1678
	case BPF_FUNC_get_route_realm:
		return &bpf_get_route_realm_proto;
1679 1680 1681 1682 1683
	default:
		return sk_filter_func_proto(func_id);
	}
}

1684
static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1685
{
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/* check bounds */
	if (off < 0 || off >= sizeof(struct __sk_buff))
		return false;

	/* disallow misaligned access */
	if (off % size != 0)
		return false;

	/* all __sk_buff fields are __u32 */
	if (size != 4)
		return false;

	return true;
}

1701 1702 1703
static bool sk_filter_is_valid_access(int off, int size,
				      enum bpf_access_type type)
{
1704 1705 1706
	if (off == offsetof(struct __sk_buff, tc_classid))
		return false;

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}

	return __is_valid_access(off, size, type);
}

static bool tc_cls_act_is_valid_access(int off, int size,
				       enum bpf_access_type type)
{
1723 1724 1725
	if (off == offsetof(struct __sk_buff, tc_classid))
		return type == BPF_WRITE ? true : false;

1726 1727 1728 1729
	if (type == BPF_WRITE) {
		switch (off) {
		case offsetof(struct __sk_buff, mark):
		case offsetof(struct __sk_buff, tc_index):
1730
		case offsetof(struct __sk_buff, priority):
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		case offsetof(struct __sk_buff, cb[0]) ...
			offsetof(struct __sk_buff, cb[4]):
			break;
		default:
			return false;
		}
	}
	return __is_valid_access(off, size, type);
}

static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
				      int src_reg, int ctx_off,
				      struct bpf_insn *insn_buf)
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
{
	struct bpf_insn *insn = insn_buf;

	switch (ctx_off) {
	case offsetof(struct __sk_buff, len):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, len));
		break;

1755 1756 1757 1758 1759 1760 1761
	case offsetof(struct __sk_buff, protocol):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, protocol));
		break;

1762 1763 1764 1765 1766 1767 1768
	case offsetof(struct __sk_buff, vlan_proto):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);

		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
				      offsetof(struct sk_buff, vlan_proto));
		break;

1769 1770 1771
	case offsetof(struct __sk_buff, priority):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);

1772 1773 1774 1775 1776 1777
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, priority));
1778 1779
		break;

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	case offsetof(struct __sk_buff, ingress_ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, skb_iif));
		break;

	case offsetof(struct __sk_buff, ifindex):
		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);

		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
				      dst_reg, src_reg,
				      offsetof(struct sk_buff, dev));
		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
				      offsetof(struct net_device, ifindex));
		break;

1798 1799 1800 1801 1802 1803 1804
	case offsetof(struct __sk_buff, hash):
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);

		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
				      offsetof(struct sk_buff, hash));
		break;

1805
	case offsetof(struct __sk_buff, mark):
1806 1807 1808 1809 1810 1811 1812 1813 1814
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
					      offsetof(struct sk_buff, mark));
		break;
1815 1816 1817 1818 1819 1820

	case offsetof(struct __sk_buff, pkt_type):
		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, queue_mapping):
		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1821 1822 1823 1824 1825 1826 1827 1828

	case offsetof(struct __sk_buff, vlan_present):
		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
					  dst_reg, src_reg, insn);

	case offsetof(struct __sk_buff, vlan_tci):
		return convert_skb_access(SKF_AD_VLAN_TAG,
					  dst_reg, src_reg, insn);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

	case offsetof(struct __sk_buff, cb[0]) ...
		offsetof(struct __sk_buff, cb[4]):
		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);

		ctx_off -= offsetof(struct __sk_buff, cb[0]);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, data);
		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		else
			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
		break;

1843 1844 1845 1846 1847 1848 1849 1850
	case offsetof(struct __sk_buff, tc_classid):
		ctx_off -= offsetof(struct __sk_buff, tc_classid);
		ctx_off += offsetof(struct sk_buff, cb);
		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
		WARN_ON(type != BPF_WRITE);
		*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
		break;

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	case offsetof(struct __sk_buff, tc_index):
#ifdef CONFIG_NET_SCHED
		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);

		if (type == BPF_WRITE)
			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		else
			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
					      offsetof(struct sk_buff, tc_index));
		break;
#else
		if (type == BPF_WRITE)
			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
		else
			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
		break;
#endif
1869 1870 1871
	}

	return insn - insn_buf;
1872 1873
}

1874 1875 1876
static const struct bpf_verifier_ops sk_filter_ops = {
	.get_func_proto = sk_filter_func_proto,
	.is_valid_access = sk_filter_is_valid_access,
1877
	.convert_ctx_access = bpf_net_convert_ctx_access,
1878 1879
};

1880 1881
static const struct bpf_verifier_ops tc_cls_act_ops = {
	.get_func_proto = tc_cls_act_func_proto,
1882 1883
	.is_valid_access = tc_cls_act_is_valid_access,
	.convert_ctx_access = bpf_net_convert_ctx_access,
1884 1885
};

1886 1887
static struct bpf_prog_type_list sk_filter_type __read_mostly = {
	.ops = &sk_filter_ops,
1888 1889 1890
	.type = BPF_PROG_TYPE_SOCKET_FILTER,
};

1891
static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1892
	.ops = &tc_cls_act_ops,
1893 1894 1895
	.type = BPF_PROG_TYPE_SCHED_CLS,
};

1896
static struct bpf_prog_type_list sched_act_type __read_mostly = {
1897
	.ops = &tc_cls_act_ops,
1898 1899 1900
	.type = BPF_PROG_TYPE_SCHED_ACT,
};

1901
static int __init register_sk_filter_ops(void)
1902
{
1903
	bpf_register_prog_type(&sk_filter_type);
1904
	bpf_register_prog_type(&sched_cls_type);
1905
	bpf_register_prog_type(&sched_act_type);
1906

1907 1908
	return 0;
}
1909 1910
late_initcall(register_sk_filter_ops);

1911 1912 1913 1914 1915
int sk_detach_filter(struct sock *sk)
{
	int ret = -ENOENT;
	struct sk_filter *filter;

1916 1917 1918
	if (sock_flag(sk, SOCK_FILTER_LOCKED))
		return -EPERM;

1919 1920
	filter = rcu_dereference_protected(sk->sk_filter,
					   sock_owned_by_user(sk));
1921
	if (filter) {
1922
		RCU_INIT_POINTER(sk->sk_filter, NULL);
E
Eric Dumazet 已提交
1923
		sk_filter_uncharge(sk, filter);
1924 1925
		ret = 0;
	}
1926

1927 1928
	return ret;
}
1929
EXPORT_SYMBOL_GPL(sk_detach_filter);
1930

1931 1932
int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
		  unsigned int len)
1933
{
1934
	struct sock_fprog_kern *fprog;
1935
	struct sk_filter *filter;
1936
	int ret = 0;
1937 1938 1939

	lock_sock(sk);
	filter = rcu_dereference_protected(sk->sk_filter,
1940
					   sock_owned_by_user(sk));
1941 1942
	if (!filter)
		goto out;
1943 1944 1945 1946

	/* We're copying the filter that has been originally attached,
	 * so no conversion/decode needed anymore.
	 */
1947
	fprog = filter->prog->orig_prog;
1948 1949

	ret = fprog->len;
1950
	if (!len)
1951
		/* User space only enquires number of filter blocks. */
1952
		goto out;
1953

1954
	ret = -EINVAL;
1955
	if (len < fprog->len)
1956 1957 1958
		goto out;

	ret = -EFAULT;
1959
	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1960
		goto out;
1961

1962 1963 1964 1965
	/* Instead of bytes, the API requests to return the number
	 * of filter blocks.
	 */
	ret = fprog->len;
1966 1967 1968 1969
out:
	release_sock(sk);
	return ret;
}