intel_ringbuffer.c 59.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32
#include <drm/i915_drm.h>
33

34 35
#include "gem/i915_gem_context.h"

36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "intel_context.h"
39 40
#include "intel_gt.h"
#include "intel_renderstate.h"
41
#include "intel_reset.h"
42
#include "intel_workarounds.h"
43

44 45 46 47 48
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

49
unsigned int intel_ring_update_space(struct intel_ring *ring)
50
{
51 52 53 54 55 56
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
57 58
}

59
static int
60
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
61
{
62
	unsigned int num_store_dw;
63
	u32 cmd, *cs;
64 65

	cmd = MI_FLUSH;
66
	num_store_dw = 0;
67
	if (mode & EMIT_INVALIDATE)
68
		cmd |= MI_READ_FLUSH;
69 70
	if (mode & EMIT_FLUSH)
		num_store_dw = 4;
71

72
	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
73 74
	if (IS_ERR(cs))
		return PTR_ERR(cs);
75

76
	*cs++ = cmd;
77 78
	while (num_store_dw--) {
		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
79
		*cs++ = intel_gt_scratch_offset(rq->engine->gt);
80 81 82 83
		*cs++ = 0;
	}
	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;

84
	intel_ring_advance(rq, cs);
85 86 87 88 89

	return 0;
}

static int
90
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
91
{
92
	u32 cmd, *cs;
93
	int i;
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

123
	cmd = MI_FLUSH;
124
	if (mode & EMIT_INVALIDATE) {
125
		cmd |= MI_EXE_FLUSH;
126
		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
127 128
			cmd |= MI_INVALIDATE_ISP;
	}
129

130 131 132 133 134
	i = 2;
	if (mode & EMIT_INVALIDATE)
		i += 20;

	cs = intel_ring_begin(rq, i);
135 136
	if (IS_ERR(cs))
		return PTR_ERR(cs);
137

138
	*cs++ = cmd;
139 140 141 142 143 144 145 146 147 148 149 150 151

	/*
	 * A random delay to let the CS invalidate take effect? Without this
	 * delay, the GPU relocation path fails as the CS does not see
	 * the updated contents. Just as important, if we apply the flushes
	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
	 * write and before the invalidate on the next batch), the relocations
	 * still fail. This implies that is a delay following invalidation
	 * that is required to reset the caches as opposed to a delay to
	 * ensure the memory is written.
	 */
	if (mode & EMIT_INVALIDATE) {
		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
152 153
		*cs++ = intel_gt_scratch_offset(rq->engine->gt) |
			PIPE_CONTROL_GLOBAL_GTT;
154 155 156 157 158 159 160
		*cs++ = 0;
		*cs++ = 0;

		for (i = 0; i < 12; i++)
			*cs++ = MI_FLUSH;

		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
161 162
		*cs++ = intel_gt_scratch_offset(rq->engine->gt) |
			PIPE_CONTROL_GLOBAL_GTT;
163 164 165 166 167 168
		*cs++ = 0;
		*cs++ = 0;
	}

	*cs++ = cmd;

169
	intel_ring_advance(rq, cs);
170 171

	return 0;
172 173
}

174
/*
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
212
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
213
{
214 215
	u32 scratch_addr =
		intel_gt_scratch_offset(rq->engine->gt) + 2 * CACHELINE_BYTES;
216 217
	u32 *cs;

218
	cs = intel_ring_begin(rq, 6);
219 220 221 222 223 224 225 226 227
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
228
	intel_ring_advance(rq, cs);
229

230
	cs = intel_ring_begin(rq, 6);
231 232 233 234 235 236 237 238 239
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
240
	intel_ring_advance(rq, cs);
241 242 243 244 245

	return 0;
}

static int
246
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
247
{
248 249
	u32 scratch_addr =
		intel_gt_scratch_offset(rq->engine->gt) + 2 * CACHELINE_BYTES;
250
	u32 *cs, flags = 0;
251 252
	int ret;

253
	/* Force SNB workarounds for PIPE_CONTROL flushes */
254
	ret = gen6_emit_post_sync_nonzero_flush(rq);
255 256 257
	if (ret)
		return ret;

258 259 260 261
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
262
	if (mode & EMIT_FLUSH) {
263 264 265 266 267 268
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
269
		flags |= PIPE_CONTROL_CS_STALL;
270
	}
271
	if (mode & EMIT_INVALIDATE) {
272 273 274 275 276 277 278 279 280
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
281
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
282
	}
283

284
	cs = intel_ring_begin(rq, 4);
285 286
	if (IS_ERR(cs))
		return PTR_ERR(cs);
287

288 289 290 291
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
292
	intel_ring_advance(rq, cs);
293 294 295 296

	return 0;
}

297
static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
298 299 300 301 302 303 304 305 306
{
	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_QW_WRITE;
307 308
	*cs++ = intel_gt_scratch_offset(rq->engine->gt) |
		PIPE_CONTROL_GLOBAL_GTT;
309 310 311 312 313 314 315 316 317
	*cs++ = 0;

	/* Finally we can flush and with it emit the breadcrumb */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_CS_STALL);
318 319 320
	*cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = rq->fence.seqno;

321 322 323 324 325
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
326 327

	return cs;
328 329
}

330
static int
331
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
332
{
333
	u32 *cs;
334

335
	cs = intel_ring_begin(rq, 4);
336 337
	if (IS_ERR(cs))
		return PTR_ERR(cs);
338

339 340 341 342
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
343
	intel_ring_advance(rq, cs);
344 345 346 347

	return 0;
}

348
static int
349
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
350
{
351 352
	u32 scratch_addr =
		intel_gt_scratch_offset(rq->engine->gt) + 2 * CACHELINE_BYTES;
353
	u32 *cs, flags = 0;
354

355 356 357 358 359 360 361 362 363 364
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

365 366 367 368
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
369
	if (mode & EMIT_FLUSH) {
370 371
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
372
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
373
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
374
	}
375
	if (mode & EMIT_INVALIDATE) {
376 377 378 379 380 381
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
382
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
383 384 385 386
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
387
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388

389 390
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

391 392 393
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
394
		gen7_render_ring_cs_stall_wa(rq);
395 396
	}

397
	cs = intel_ring_begin(rq, 4);
398 399
	if (IS_ERR(cs))
		return PTR_ERR(cs);
400

401 402 403 404
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
405
	intel_ring_advance(rq, cs);
406 407 408 409

	return 0;
}

410
static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
411 412 413 414 415 416 417 418 419
{
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_GLOBAL_GTT_IVB |
		 PIPE_CONTROL_CS_STALL);
420 421 422
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = rq->fence.seqno;

423 424 425 426 427
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
428 429

	return cs;
430 431
}

432
static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
433
{
434 435 436 437 438 439 440
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

441 442 443 444
	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
445 446

	return cs;
447 448
}

449
#define GEN7_XCS_WA 32
450
static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
451 452 453
{
	int i;

454 455 456 457 458 459 460
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

461 462
	for (i = 0; i < GEN7_XCS_WA; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
463 464
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
465 466 467 468 469 470 471
	}

	*cs++ = MI_FLUSH_DW;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = MI_USER_INTERRUPT;
472
	*cs++ = MI_NOOP;
473 474 475

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
476 477

	return cs;
478 479 480
}
#undef GEN7_XCS_WA

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Keep the render interrupt unmasked as this papers over
	 * lost interrupts following a reset.
	 */
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 6)
			mask &= ~BIT(0);
		else
			mask &= ~I915_USER_INTERRUPT;
	}

	intel_engine_set_hwsp_writemask(engine, mask);
}

static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500 501
	u32 addr;

502
	addr = lower_32_bits(phys);
503
	if (INTEL_GEN(dev_priv) >= 4)
504 505
		addr |= (phys >> 28) & 0xf0;

506 507 508
	I915_WRITE(HWS_PGA, addr);
}

509
static struct page *status_page(struct intel_engine_cs *engine)
510
{
511
	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
512

513 514 515 516 517 518 519
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	return sg_page(obj->mm.pages->sgl);
}

static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
{
	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
520 521 522 523
	set_hwstam(engine, ~0u);
}

static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
524
{
525
	struct drm_i915_private *dev_priv = engine->i915;
526
	i915_reg_t hwsp;
527

528 529
	/*
	 * The ring status page addresses are no longer next to the rest of
530 531
	 * the ring registers as of gen7.
	 */
532
	if (IS_GEN(dev_priv, 7)) {
533
		switch (engine->id) {
534 535 536 537 538 539
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
540 541
			/* fallthrough */
		case RCS0:
542
			hwsp = RENDER_HWS_PGA_GEN7;
543
			break;
544
		case BCS0:
545
			hwsp = BLT_HWS_PGA_GEN7;
546
			break;
547
		case VCS0:
548
			hwsp = BSD_HWS_PGA_GEN7;
549
			break;
550
		case VECS0:
551
			hwsp = VEBOX_HWS_PGA_GEN7;
552 553
			break;
		}
554
	} else if (IS_GEN(dev_priv, 6)) {
555
		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
556
	} else {
557
		hwsp = RING_HWS_PGA(engine->mmio_base);
558
	}
559

560 561 562
	I915_WRITE(hwsp, offset);
	POSTING_READ(hwsp);
}
563

564 565 566 567 568 569 570 571
static void flush_cs_tlb(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!IS_GEN_RANGE(dev_priv, 6, 7))
		return;

	/* ring should be idle before issuing a sync flush*/
572 573 574 575 576 577 578 579
	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

	ENGINE_WRITE(engine, RING_INSTPM,
		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					INSTPM_SYNC_FLUSH));
	if (intel_wait_for_register(engine->uncore,
				    RING_INSTPM(engine->mmio_base),
				    INSTPM_SYNC_FLUSH, 0,
580 581 582 583
				    1000))
		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
			  engine->name);
}
584

585 586
static void ring_setup_status_page(struct intel_engine_cs *engine)
{
587
	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
588
	set_hwstam(engine, ~0u);
589

590
	flush_cs_tlb(engine);
591 592
}

593
static bool stop_ring(struct intel_engine_cs *engine)
594
{
595
	struct drm_i915_private *dev_priv = engine->i915;
596

597
	if (INTEL_GEN(dev_priv) > 2) {
598 599 600
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
		if (intel_wait_for_register(engine->uncore,
601 602 603 604
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
605 606
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
607 608 609

			/*
			 * Sometimes we observe that the idle flag is not
610 611 612
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
613 614
			if (ENGINE_READ(engine, RING_HEAD) !=
			    ENGINE_READ(engine, RING_TAIL))
615
				return false;
616 617
		}
	}
618

619
	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
620

621 622
	ENGINE_WRITE(engine, RING_HEAD, 0);
	ENGINE_WRITE(engine, RING_TAIL, 0);
623

624
	/* The ring must be empty before it is disabled */
625
	ENGINE_WRITE(engine, RING_CTL, 0);
626

627
	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
628
}
629

630
static int xcs_resume(struct intel_engine_cs *engine)
631
{
632
	struct drm_i915_private *dev_priv = engine->i915;
633
	struct intel_ring *ring = engine->buffer;
634 635
	int ret = 0;

636 637 638
	GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
		  engine->name, ring->head, ring->tail);

639
	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
640

641
	if (!stop_ring(engine)) {
642
		/* G45 ring initialization often fails to reset head to zero */
643 644 645
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
646 647 648 649
				ENGINE_READ(engine, RING_CTL),
				ENGINE_READ(engine, RING_HEAD),
				ENGINE_READ(engine, RING_TAIL),
				ENGINE_READ(engine, RING_START));
650

651
		if (!stop_ring(engine)) {
652 653
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
654
				  engine->name,
655 656 657 658
				  ENGINE_READ(engine, RING_CTL),
				  ENGINE_READ(engine, RING_HEAD),
				  ENGINE_READ(engine, RING_TAIL),
				  ENGINE_READ(engine, RING_START));
659 660
			ret = -EIO;
			goto out;
661
		}
662 663
	}

664
	if (HWS_NEEDS_PHYSICAL(dev_priv))
665
		ring_setup_phys_status_page(engine);
666
	else
667
		ring_setup_status_page(engine);
668

669
	intel_engine_reset_breadcrumbs(engine);
670

671
	/* Enforce ordering by reading HEAD register back */
672
	ENGINE_READ(engine, RING_HEAD);
673

674 675 676 677
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
678
	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
679 680

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
681
	if (ENGINE_READ(engine, RING_HEAD))
682
		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
683
				 engine->name, ENGINE_READ(engine, RING_HEAD));
684

685 686 687
	/* Check that the ring offsets point within the ring! */
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
688
	intel_ring_update_space(ring);
C
Chris Wilson 已提交
689 690

	/* First wake the ring up to an empty/idle ring */
691 692 693
	ENGINE_WRITE(engine, RING_HEAD, ring->head);
	ENGINE_WRITE(engine, RING_TAIL, ring->head);
	ENGINE_POSTING_READ(engine, RING_TAIL);
694

695
	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
696 697

	/* If the head is still not zero, the ring is dead */
698
	if (intel_wait_for_register(engine->uncore,
699
				    RING_CTL(engine->mmio_base),
700 701
				    RING_VALID, RING_VALID,
				    50)) {
702
		DRM_ERROR("%s initialization failed "
703
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
704
			  engine->name,
705 706 707 708 709
			  ENGINE_READ(engine, RING_CTL),
			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
			  ENGINE_READ(engine, RING_HEAD), ring->head,
			  ENGINE_READ(engine, RING_TAIL), ring->tail,
			  ENGINE_READ(engine, RING_START),
710
			  i915_ggtt_offset(ring->vma));
711 712
		ret = -EIO;
		goto out;
713 714
	}

715
	if (INTEL_GEN(dev_priv) > 2)
716 717
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
718

C
Chris Wilson 已提交
719 720
	/* Now awake, let it get started */
	if (ring->tail != ring->head) {
721 722
		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
		ENGINE_POSTING_READ(engine, RING_TAIL);
C
Chris Wilson 已提交
723 724
	}

725
	/* Papering over lost _interrupts_ immediately following the restart */
726
	intel_engine_queue_breadcrumbs(engine);
727
out:
728
	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
729 730

	return ret;
731 732
}

733
static void reset_prepare(struct intel_engine_cs *engine)
734
{
735
	intel_engine_stop_cs(engine);
736 737
}

738
static void reset_ring(struct intel_engine_cs *engine, bool stalled)
739
{
740 741
	struct i915_request *pos, *rq;
	unsigned long flags;
742
	u32 head;
743

744
	rq = NULL;
745 746
	spin_lock_irqsave(&engine->active.lock, flags);
	list_for_each_entry(pos, &engine->active.requests, sched.link) {
747
		if (!i915_request_completed(pos)) {
748 749 750
			rq = pos;
			break;
		}
751
	}
752 753

	/*
754
	 * The guilty request will get skipped on a hung engine.
755
	 *
756 757 758 759 760 761 762 763 764 765 766 767 768
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
769
	 *
770 771 772
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
773
	 */
774

775
	if (rq) {
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		/*
		 * Try to restore the logical GPU state to match the
		 * continuation of the request queue. If we skip the
		 * context/PD restore, then the next request may try to execute
		 * assuming that its context is valid and loaded on the GPU and
		 * so may try to access invalid memory, prompting repeated GPU
		 * hangs.
		 *
		 * If the request was guilty, we still restore the logical
		 * state in case the next request requires it (e.g. the
		 * aliasing ppgtt), but skip over the hung batch.
		 *
		 * If the request was innocent, we try to replay the request
		 * with the restored context.
		 */
		i915_reset_request(rq, stalled);

		GEM_BUG_ON(rq->ring != engine->buffer);
		head = rq->head;
	} else {
		head = engine->buffer->tail;
797
	}
798 799
	engine->buffer->head = intel_ring_wrap(engine->buffer, head);

800
	spin_unlock_irqrestore(&engine->active.lock, flags);
801 802
}

803 804 805 806
static void reset_finish(struct intel_engine_cs *engine)
{
}

807
static int intel_rcs_ctx_init(struct i915_request *rq)
808 809 810
{
	int ret;

811
	ret = intel_engine_emit_ctx_wa(rq);
812 813 814
	if (ret != 0)
		return ret;

815
	ret = intel_renderstate_emit(rq);
816
	if (ret)
817
		return ret;
818

819
	return 0;
820 821
}

822
static int rcs_resume(struct intel_engine_cs *engine)
823
{
824
	struct drm_i915_private *dev_priv = engine->i915;
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839
	/*
	 * Disable CONSTANT_BUFFER before it is loaded from the context
	 * image. For as it is loaded, it is executed and the stored
	 * address may no longer be valid, leading to a GPU hang.
	 *
	 * This imposes the requirement that userspace reload their
	 * CONSTANT_BUFFER on every batch, fortunately a requirement
	 * they are already accustomed to from before contexts were
	 * enabled.
	 */
	if (IS_GEN(dev_priv, 4))
		I915_WRITE(ECOSKPD,
			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));

840
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
841
	if (IS_GEN_RANGE(dev_priv, 4, 6))
842
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
843 844 845 846

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
847
	 *
848
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
849
	 */
850
	if (IS_GEN_RANGE(dev_priv, 6, 7))
851 852
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

853
	/* Required for the hardware to program scanline values for waiting */
854
	/* WaEnableFlushTlbInvalidationMode:snb */
855
	if (IS_GEN(dev_priv, 6))
856
		I915_WRITE(GFX_MODE,
857
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
858

859
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
860
	if (IS_GEN(dev_priv, 7))
861
		I915_WRITE(GFX_MODE_GEN7,
862
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
863
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
864

865
	if (IS_GEN(dev_priv, 6)) {
866 867 868 869 870 871
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
872
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
873 874
	}

875
	if (IS_GEN_RANGE(dev_priv, 6, 7))
876
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
877

878
	return xcs_resume(engine);
879 880
}

881 882
static void cancel_requests(struct intel_engine_cs *engine)
{
883
	struct i915_request *request;
884 885
	unsigned long flags;

886
	spin_lock_irqsave(&engine->active.lock, flags);
887 888

	/* Mark all submitted requests as skipped. */
889
	list_for_each_entry(request, &engine->active.requests, sched.link) {
890 891
		if (!i915_request_signaled(request))
			dma_fence_set_error(&request->fence, -EIO);
892

893
		i915_request_mark_complete(request);
894
	}
895

896 897
	/* Remaining _unready_ requests will be nop'ed when submitted */

898
	spin_unlock_irqrestore(&engine->active.lock, flags);
899 900
}

901
static void i9xx_submit_request(struct i915_request *request)
902
{
903
	i915_request_submit(request);
904

905 906
	ENGINE_WRITE(request->engine, RING_TAIL,
		     intel_ring_set_tail(request->ring, request->tail));
907 908
}

909
static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
910
{
911 912 913
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

914 915
	*cs++ = MI_FLUSH;

916 917 918 919
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
	*cs++ = rq->fence.seqno;

920
	*cs++ = MI_USER_INTERRUPT;
921
	*cs++ = MI_NOOP;
922

923 924
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
925 926

	return cs;
927
}
928

929
#define GEN5_WA_STORES 8 /* must be at least 1! */
930
static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
931
{
932 933
	int i;

934 935 936
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

937 938 939 940 941
	*cs++ = MI_FLUSH;

	BUILD_BUG_ON(GEN5_WA_STORES < 1);
	for (i = 0; i < GEN5_WA_STORES; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
942 943
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
944 945 946 947 948 949
	}

	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
950 951

	return cs;
952
}
953
#undef GEN5_WA_STORES
954

955 956
static void
gen5_irq_enable(struct intel_engine_cs *engine)
957
{
958
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
959 960 961
}

static void
962
gen5_irq_disable(struct intel_engine_cs *engine)
963
{
964
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
965 966
}

967 968
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
969
{
970
	engine->i915->irq_mask &= ~engine->irq_enable_mask;
971 972
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
973 974
}

975
static void
976
i9xx_irq_disable(struct intel_engine_cs *engine)
977
{
978
	engine->i915->irq_mask |= engine->irq_enable_mask;
979
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
980 981
}

982 983
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
984
{
T
Tvrtko Ursulin 已提交
985
	struct drm_i915_private *i915 = engine->i915;
C
Chris Wilson 已提交
986

T
Tvrtko Ursulin 已提交
987 988 989
	i915->irq_mask &= ~engine->irq_enable_mask;
	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
	ENGINE_POSTING_READ16(engine, RING_IMR);
C
Chris Wilson 已提交
990 991 992
}

static void
993
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
994
{
995
	struct drm_i915_private *i915 = engine->i915;
C
Chris Wilson 已提交
996

997 998
	i915->irq_mask |= engine->irq_enable_mask;
	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
C
Chris Wilson 已提交
999 1000
}

1001
static int
1002
bsd_ring_flush(struct i915_request *rq, u32 mode)
1003
{
1004
	u32 *cs;
1005

1006
	cs = intel_ring_begin(rq, 2);
1007 1008
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1009

1010 1011
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
1012
	intel_ring_advance(rq, cs);
1013
	return 0;
1014 1015
}

1016 1017
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1018
{
1019 1020
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1021 1022

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1023
	ENGINE_POSTING_READ(engine, RING_IMR);
1024

1025
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1026 1027 1028
}

static void
1029
gen6_irq_disable(struct intel_engine_cs *engine)
1030
{
1031 1032
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1033 1034
}

1035 1036
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1037
{
1038
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1039 1040

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1041
	ENGINE_POSTING_READ(engine, RING_IMR);
1042

1043
	gen6_unmask_pm_irq(engine->i915, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1044 1045 1046
}

static void
1047
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1048
{
1049 1050
	ENGINE_WRITE(engine, RING_IMR, ~0);
	gen6_mask_pm_irq(engine->i915, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1051 1052
}

1053
static int
1054
i965_emit_bb_start(struct i915_request *rq,
1055 1056
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1057
{
1058
	u32 *cs;
1059

1060
	cs = intel_ring_begin(rq, 2);
1061 1062
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1063

1064 1065 1066
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
1067
	intel_ring_advance(rq, cs);
1068

1069 1070 1071
	return 0;
}

1072
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1073
#define I830_BATCH_LIMIT SZ_256K
1074 1075
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1076
static int
1077
i830_emit_bb_start(struct i915_request *rq,
1078 1079
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1080
{
1081
	u32 *cs, cs_offset = intel_gt_scratch_offset(rq->engine->gt);
1082

1083
	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1084

1085
	cs = intel_ring_begin(rq, 6);
1086 1087
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1088

1089
	/* Evict the invalid PTE TLBs */
1090 1091 1092 1093 1094 1095
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
1096
	intel_ring_advance(rq, cs);
1097

1098
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1099 1100 1101
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1102
		cs = intel_ring_begin(rq, 6 + 2);
1103 1104
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1105 1106 1107 1108 1109

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1110 1111 1112 1113 1114 1115 1116 1117 1118
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
1119
		intel_ring_advance(rq, cs);
1120 1121

		/* ... and execute it. */
1122
		offset = cs_offset;
1123
	}
1124

1125
	cs = intel_ring_begin(rq, 2);
1126 1127
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1128

1129 1130 1131
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1132
	intel_ring_advance(rq, cs);
1133

1134 1135 1136 1137
	return 0;
}

static int
1138
i915_emit_bb_start(struct i915_request *rq,
1139 1140
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1141
{
1142
	u32 *cs;
1143

1144
	cs = intel_ring_begin(rq, 2);
1145 1146
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1147

1148 1149 1150
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1151
	intel_ring_advance(rq, cs);
1152 1153 1154 1155

	return 0;
}

1156
int intel_ring_pin(struct intel_ring *ring)
1157
{
1158
	struct i915_vma *vma = ring->vma;
1159
	unsigned int flags;
1160
	void *addr;
1161 1162
	int ret;

1163 1164
	if (atomic_fetch_inc(&ring->pin_count))
		return 0;
1165

1166
	ret = intel_timeline_pin(ring->timeline);
1167
	if (ret)
1168
		goto err_unpin;
1169

1170
	flags = PIN_GLOBAL;
1171 1172 1173 1174

	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

1175
	if (vma->obj->stolen)
1176
		flags |= PIN_MAPPABLE;
C
Chris Wilson 已提交
1177 1178
	else
		flags |= PIN_HIGH;
1179

1180
	ret = i915_vma_pin(vma, 0, 0, flags);
1181
	if (unlikely(ret))
1182
		goto err_timeline;
1183

1184
	if (i915_vma_is_map_and_fenceable(vma))
1185 1186
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1187 1188
		addr = i915_gem_object_pin_map(vma->obj,
					       i915_coherent_map_type(vma->vm->i915));
1189 1190
	if (IS_ERR(addr)) {
		ret = PTR_ERR(addr);
1191
		goto err_ring;
1192
	}
1193

1194 1195
	vma->obj->pin_global++;

1196
	GEM_BUG_ON(ring->vaddr);
1197
	ring->vaddr = addr;
1198

1199
	GEM_TRACE("ring:%llx pin\n", ring->timeline->fence_context);
1200
	return 0;
1201

1202
err_ring:
1203
	i915_vma_unpin(vma);
1204
err_timeline:
1205
	intel_timeline_unpin(ring->timeline);
1206 1207
err_unpin:
	atomic_dec(&ring->pin_count);
1208
	return ret;
1209 1210
}

1211 1212
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
1213 1214
	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));

1215 1216 1217 1218 1219 1220
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1221 1222
void intel_ring_unpin(struct intel_ring *ring)
{
1223 1224
	if (!atomic_dec_and_test(&ring->pin_count))
		return;
1225

1226 1227
	GEM_TRACE("ring:%llx unpin\n", ring->timeline->fence_context);

1228 1229 1230
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1231
	GEM_BUG_ON(!ring->vma);
1232
	i915_vma_unset_ggtt_write(ring->vma);
1233
	if (i915_vma_is_map_and_fenceable(ring->vma))
1234
		i915_vma_unpin_iomap(ring->vma);
1235 1236
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1237 1238

	GEM_BUG_ON(!ring->vaddr);
1239 1240
	ring->vaddr = NULL;

1241
	ring->vma->obj->pin_global--;
1242
	i915_vma_unpin(ring->vma);
1243

1244
	intel_timeline_unpin(ring->timeline);
1245 1246
}

1247
static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size)
1248
{
1249 1250
	struct i915_address_space *vm = &ggtt->vm;
	struct drm_i915_private *i915 = vm->i915;
1251
	struct drm_i915_gem_object *obj;
1252
	struct i915_vma *vma;
1253

1254
	obj = i915_gem_object_create_stolen(i915, size);
1255
	if (!obj)
1256
		obj = i915_gem_object_create_internal(i915, size);
1257 1258
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1259

1260 1261 1262 1263 1264
	/*
	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
	 * if supported by the platform's GGTT.
	 */
	if (vm->has_read_only)
1265
		i915_gem_object_set_readonly(obj);
1266

1267
	vma = i915_vma_instance(obj, vm, NULL);
1268 1269 1270 1271
	if (IS_ERR(vma))
		goto err;

	return vma;
1272

1273 1274 1275
err:
	i915_gem_object_put(obj);
	return vma;
1276 1277
}

1278
struct intel_ring *
1279
intel_engine_create_ring(struct intel_engine_cs *engine,
1280
			 struct intel_timeline *timeline,
1281
			 int size)
1282
{
1283
	struct drm_i915_private *i915 = engine->i915;
1284
	struct intel_ring *ring;
1285
	struct i915_vma *vma;
1286

1287
	GEM_BUG_ON(!is_power_of_2(size));
1288
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1289

1290
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1291
	if (!ring)
1292 1293
		return ERR_PTR(-ENOMEM);

1294
	kref_init(&ring->ref);
1295
	INIT_LIST_HEAD(&ring->request_list);
1296
	ring->timeline = intel_timeline_get(timeline);
1297

1298 1299 1300 1301 1302 1303
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1304
	if (IS_I830(i915) || IS_I845G(i915))
1305 1306 1307 1308
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1309
	vma = create_ring_vma(engine->gt->ggtt, size);
1310
	if (IS_ERR(vma)) {
1311
		kfree(ring);
1312
		return ERR_CAST(vma);
1313
	}
1314
	ring->vma = vma;
1315 1316 1317 1318

	return ring;
}

1319
void intel_ring_free(struct kref *ref)
1320
{
1321
	struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1322 1323

	i915_vma_close(ring->vma);
1324
	i915_vma_put(ring->vma);
1325

1326
	intel_timeline_put(ring->timeline);
1327 1328 1329
	kfree(ring);
}

1330 1331 1332 1333 1334
static void __ring_context_fini(struct intel_context *ce)
{
	i915_gem_object_put(ce->state->obj);
}

1335
static void ring_context_destroy(struct kref *ref)
1336
{
1337 1338
	struct intel_context *ce = container_of(ref, typeof(*ce), ref);

1339
	GEM_BUG_ON(intel_context_is_pinned(ce));
1340

1341 1342
	if (ce->state)
		__ring_context_fini(ce);
1343

1344
	intel_context_free(ce);
1345 1346
}

1347 1348
static int __context_pin_ppgtt(struct i915_gem_context *ctx)
{
1349
	struct i915_address_space *vm;
1350 1351
	int err = 0;

1352 1353 1354
	vm = ctx->vm ?: &ctx->i915->mm.aliasing_ppgtt->vm;
	if (vm)
		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1355 1356 1357 1358 1359 1360

	return err;
}

static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
{
1361
	struct i915_address_space *vm;
1362

1363 1364 1365
	vm = ctx->vm ?: &ctx->i915->mm.aliasing_ppgtt->vm;
	if (vm)
		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1366 1367
}

1368
static void ring_context_unpin(struct intel_context *ce)
1369
{
1370
	__context_unpin_ppgtt(ce->gem_context);
1371 1372
}

1373 1374 1375 1376 1377 1378
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1379
	int err;
1380

1381
	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1382 1383 1384
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915))
		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);

1422 1423
		i915_gem_object_flush_map(obj);
		i915_gem_object_unpin_map(obj);
1424 1425
	}

1426
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1427 1428 1429 1430
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1431 1432

	return vma;
1433 1434 1435 1436 1437 1438

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1439 1440
}

1441
static int ring_context_pin(struct intel_context *ce)
1442
{
1443
	struct intel_engine_cs *engine = ce->engine;
1444
	int err;
1445

1446 1447 1448 1449
	/* One ringbuffer to rule them all */
	GEM_BUG_ON(!engine->buffer);
	ce->ring = engine->buffer;

1450
	if (!ce->state && engine->context_size) {
1451 1452 1453
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
1454 1455
		if (IS_ERR(vma))
			return PTR_ERR(vma);
1456 1457 1458 1459

		ce->state = vma;
	}

1460
	err = intel_context_active_acquire(ce);
1461
	if (err)
1462
		return err;
1463

1464 1465
	err = __context_pin_ppgtt(ce->gem_context);
	if (err)
1466
		goto err_active;
1467

1468
	return 0;
1469

1470 1471
err_active:
	intel_context_active_release(ce);
1472
	return err;
1473 1474
}

1475 1476 1477 1478 1479
static void ring_context_reset(struct intel_context *ce)
{
	intel_ring_reset(ce->ring, 0);
}

1480
static const struct intel_context_ops ring_context_ops = {
1481
	.pin = ring_context_pin,
1482
	.unpin = ring_context_unpin,
1483

1484 1485 1486
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1487
	.reset = ring_context_reset,
1488 1489 1490
	.destroy = ring_context_destroy,
};

1491
static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1492 1493 1494 1495 1496 1497 1498 1499 1500
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1501
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1502 1503 1504
	*cs++ = PP_DIR_DCLV_2G;

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1505
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1506
	*cs++ = ppgtt->pd->base.ggtt_offset << 10;
1507 1508 1509 1510 1511 1512

	intel_ring_advance(rq, cs);

	return 0;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static int flush_pd_dir(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Stall until the page table load is complete */
	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1524
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1525
	*cs++ = intel_gt_scratch_offset(rq->engine->gt);
1526 1527 1528 1529 1530 1531
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);
	return 0;
}

1532
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1533 1534 1535 1536
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
1537 1538
	const int num_engines =
		IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1539
	bool force_restore = false;
1540 1541 1542 1543 1544 1545 1546 1547
	int len;
	u32 *cs;

	flags |= MI_MM_SPACE_GTT;
	if (IS_HASWELL(i915))
		/* These flags are for resource streamer on HSW+ */
		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
	else
1548
		/* We need to save the extended state for powersaving modes */
1549 1550 1551
		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;

	len = 4;
1552
	if (IS_GEN(i915, 7))
1553
		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1554 1555
	else if (IS_GEN(i915, 5))
		len += 2;
1556 1557 1558 1559 1560 1561
	if (flags & MI_FORCE_RESTORE) {
		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
		flags &= ~MI_FORCE_RESTORE;
		force_restore = true;
		len += 2;
	}
1562 1563 1564 1565 1566 1567

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1568
	if (IS_GEN(i915, 7)) {
1569
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1570
		if (num_engines) {
1571 1572
			struct intel_engine_cs *signaller;

1573
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
1584 1585 1586 1587 1588 1589 1590 1591
	} else if (IS_GEN(i915, 5)) {
		/*
		 * This w/a is only listed for pre-production ilk a/b steppings,
		 * but is also mentioned for programming the powerctx. To be
		 * safe, just apply the workaround; we do not use SyncFlush so
		 * this should never take effect and so be a no-op!
		 */
		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1592 1593
	}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (force_restore) {
		/*
		 * The HW doesn't handle being told to restore the current
		 * context very well. Quite often it likes goes to go off and
		 * sulk, especially when it is meant to be reloading PP_DIR.
		 * A very simple fix to force the reload is to simply switch
		 * away from the current context and back again.
		 *
		 * Note that the kernel_context will contain random state
		 * following the INHIBIT_RESTORE. We accept this since we
		 * never use the kernel_context state; it is merely a
		 * placeholder we use to flush other contexts.
		 */
		*cs++ = MI_SET_CONTEXT;
1608
		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1609 1610 1611 1612
			MI_MM_SPACE_GTT |
			MI_RESTORE_INHIBIT;
	}

1613 1614
	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
1615
	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1616 1617 1618 1619 1620 1621
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

1622
	if (IS_GEN(i915, 7)) {
1623
		if (num_engines) {
1624 1625 1626
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

1627
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
1641
			*cs++ = intel_gt_scratch_offset(rq->engine->gt);
1642 1643 1644
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1645 1646
	} else if (IS_GEN(i915, 5)) {
		*cs++ = MI_SUSPEND_FLUSH;
1647 1648 1649 1650 1651 1652 1653
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1654
static int remap_l3(struct i915_request *rq, int slice)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1682
static int switch_context(struct i915_request *rq)
1683 1684
{
	struct intel_engine_cs *engine = rq->engine;
1685
	struct i915_gem_context *ctx = rq->gem_context;
1686 1687
	struct i915_address_space *vm =
		ctx->vm ?: &rq->i915->mm.aliasing_ppgtt->vm;
1688
	unsigned int unwind_mm = 0;
1689 1690 1691 1692 1693
	u32 hw_flags = 0;
	int ret, i;

	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));

1694
	if (vm) {
1695
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		int loops;

		/*
		 * Baytail takes a little more convincing that it really needs
		 * to reload the PD between contexts. It is not just a little
		 * longer, as adding more stalls after the load_pd_dir (i.e.
		 * adding a long loop around flush_pd_dir) is not as effective
		 * as reloading the PD umpteen times. 32 is derived from
		 * experimentation (gem_exec_parallel/fds) and has no good
		 * explanation.
		 */
		loops = 1;
1708
		if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1709 1710 1711 1712 1713 1714 1715
			loops = 32;

		do {
			ret = load_pd_dir(rq, ppgtt);
			if (ret)
				goto err;
		} while (--loops);
1716

1717 1718 1719
		if (ppgtt->pd_dirty_engines & engine->mask) {
			unwind_mm = engine->mask;
			ppgtt->pd_dirty_engines &= ~unwind_mm;
1720 1721
			hw_flags = MI_FORCE_RESTORE;
		}
1722 1723
	}

1724
	if (rq->hw_context->state) {
1725
		GEM_BUG_ON(engine->id != RCS0);
1726 1727 1728 1729 1730 1731 1732 1733

		/*
		 * The kernel context(s) is treated as pure scratch and is not
		 * expected to retain any state (as we sacrifice it during
		 * suspend and on resume it may be corrupted). This is ok,
		 * as nothing actually executes using the kernel context; it
		 * is purely used for flushing user contexts.
		 */
1734
		if (i915_gem_context_is_kernel(ctx))
1735 1736 1737 1738 1739 1740 1741
			hw_flags = MI_RESTORE_INHIBIT;

		ret = mi_set_context(rq, hw_flags);
		if (ret)
			goto err_mm;
	}

1742
	if (vm) {
1743 1744 1745 1746
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

1747 1748 1749
		ret = flush_pd_dir(rq);
		if (ret)
			goto err_mm;
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

		/*
		 * Not only do we need a full barrier (post-sync write) after
		 * invalidating the TLBs, but we need to wait a little bit
		 * longer. Whether this is merely delaying us, or the
		 * subsequent flush is a key part of serialising with the
		 * post-sync op, this extra pass appears vital before a
		 * mm switch!
		 */
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

		ret = engine->emit_flush(rq, EMIT_FLUSH);
		if (ret)
			goto err_mm;
1766 1767
	}

1768
	if (ctx->remap_slice) {
1769
		for (i = 0; i < MAX_L3_SLICES; i++) {
1770
			if (!(ctx->remap_slice & BIT(i)))
1771 1772 1773 1774
				continue;

			ret = remap_l3(rq, i);
			if (ret)
1775
				goto err_mm;
1776 1777
		}

1778
		ctx->remap_slice = 0;
1779 1780 1781 1782 1783
	}

	return 0;

err_mm:
1784
	if (unwind_mm)
1785
		i915_vm_to_ppgtt(vm)->pd_dirty_engines |= unwind_mm;
1786 1787 1788 1789
err:
	return ret;
}

1790
static int ring_request_alloc(struct i915_request *request)
1791
{
1792
	int ret;
1793

1794
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1795
	GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1796

1797 1798
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1799 1800 1801
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1802
	request->reserved_space += LEGACY_REQUEST_SIZE;
1803

1804 1805
	/* Unconditionally invalidate GPU caches and TLBs. */
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1806 1807
	if (ret)
		return ret;
1808

1809
	ret = switch_context(request);
1810 1811 1812
	if (ret)
		return ret;

1813
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1814
	return 0;
1815 1816
}

1817
static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1818
{
1819
	struct i915_request *target;
1820 1821
	long timeout;

1822
	if (intel_ring_update_space(ring) >= bytes)
1823 1824
		return 0;

1825
	GEM_BUG_ON(list_empty(&ring->request_list));
1826
	list_for_each_entry(target, &ring->request_list, ring_link) {
1827
		/* Would completion of this request free enough space? */
1828 1829
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1830
			break;
1831
	}
1832

1833
	if (WARN_ON(&target->ring_link == &ring->request_list))
1834 1835
		return -ENOSPC;

1836
	timeout = i915_request_wait(target,
1837
				    I915_WAIT_INTERRUPTIBLE,
1838 1839 1840
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1841

1842
	i915_request_retire_upto(target);
1843 1844 1845 1846

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1847 1848
}

1849
u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
M
Mika Kuoppala 已提交
1850
{
1851
	struct intel_ring *ring = rq->ring;
1852 1853 1854 1855
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1856
	u32 *cs;
1857

1858 1859 1860
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1861
	total_bytes = bytes + rq->reserved_space;
1862
	GEM_BUG_ON(total_bytes > ring->effective_size);
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
1882
			total_bytes = rq->reserved_space + remain_actual;
1883
		}
M
Mika Kuoppala 已提交
1884 1885
	}

1886
	if (unlikely(total_bytes > ring->space)) {
1887 1888 1889 1890 1891 1892 1893 1894 1895
		int ret;

		/*
		 * Space is reserved in the ringbuffer for finalising the
		 * request, as that cannot be allowed to fail. During request
		 * finalisation, reserved_space is set to 0 to stop the
		 * overallocation and the assumption is that then we never need
		 * to wait (which has the risk of failing with EINTR).
		 *
1896
		 * See also i915_request_alloc() and i915_request_add().
1897
		 */
1898
		GEM_BUG_ON(!rq->reserved_space);
1899 1900

		ret = wait_for_space(ring, total_bytes);
M
Mika Kuoppala 已提交
1901
		if (unlikely(ret))
1902
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1903 1904
	}

1905
	if (unlikely(need_wrap)) {
1906 1907 1908
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1909
		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1910

1911
		/* Fill the tail with MI_NOOP */
1912
		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1913
		ring->space -= need_wrap;
1914
		ring->emit = 0;
1915
	}
1916

1917
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1918
	GEM_BUG_ON(ring->space < bytes);
1919
	cs = ring->vaddr + ring->emit;
1920
	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1921
	ring->emit += bytes;
1922
	ring->space -= bytes;
1923 1924

	return cs;
1925
}
1926

1927
/* Align the ring tail to a cacheline boundary */
1928
int intel_ring_cacheline_align(struct i915_request *rq)
1929
{
1930 1931
	int num_dwords;
	void *cs;
1932

1933
	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1934 1935 1936
	if (num_dwords == 0)
		return 0;

1937 1938 1939
	num_dwords = CACHELINE_DWORDS - num_dwords;
	GEM_BUG_ON(num_dwords & 1);

1940
	cs = intel_ring_begin(rq, num_dwords);
1941 1942
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1943

1944
	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1945
	intel_ring_advance(rq, cs);
1946

1947
	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1948 1949 1950
	return 0;
}

1951
static void gen6_bsd_submit_request(struct i915_request *request)
1952
{
1953
	struct intel_uncore *uncore = request->engine->uncore;
1954

1955
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1956

1957
       /* Every tail move must follow the sequence below */
1958 1959 1960 1961

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
1962 1963
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1964 1965

	/* Clear the context id. Here be magic! */
1966
	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1967

1968
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1969
	if (__intel_wait_for_register_fw(uncore,
1970 1971 1972 1973
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
1974
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1975

1976
	/* Now that the ring is fully powered up, update the tail */
1977
	i9xx_submit_request(request);
1978 1979 1980 1981

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
1982 1983
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1984

1985
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1986 1987
}

1988
static int mi_flush_dw(struct i915_request *rq, u32 flags)
1989
{
1990
	u32 cmd, *cs;
1991

1992
	cs = intel_ring_begin(rq, 4);
1993 1994
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1995

1996
	cmd = MI_FLUSH_DW;
1997

1998 1999
	/*
	 * We always require a command barrier so that subsequent
2000 2001 2002 2003 2004 2005
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2006
	/*
2007
	 * Bspec vol 1c.3 - blitter engine command streamer:
2008 2009 2010 2011
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2012
	cmd |= flags;
2013

2014 2015
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2016
	*cs++ = 0;
2017
	*cs++ = MI_NOOP;
2018

2019
	intel_ring_advance(rq, cs);
2020

2021 2022 2023
	return 0;
}

2024 2025
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
2026
	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2027 2028 2029 2030 2031 2032 2033
}

static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
{
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}

2034
static int
2035
hsw_emit_bb_start(struct i915_request *rq,
2036 2037
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2038
{
2039
	u32 *cs;
2040

2041
	cs = intel_ring_begin(rq, 2);
2042 2043
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2044

2045
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2046
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2047
	/* bit0-7 is the length on GEN6+ */
2048
	*cs++ = offset;
2049
	intel_ring_advance(rq, cs);
2050 2051 2052 2053

	return 0;
}

2054
static int
2055
gen6_emit_bb_start(struct i915_request *rq,
2056 2057
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2058
{
2059
	u32 *cs;
2060

2061
	cs = intel_ring_begin(rq, 2);
2062 2063
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2064

2065 2066
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
2067
	/* bit0-7 is the length on GEN6+ */
2068
	*cs++ = offset;
2069
	intel_ring_advance(rq, cs);
2070

2071
	return 0;
2072 2073
}

2074 2075
/* Blitter support (SandyBridge+) */

2076
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
2077
{
2078
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
Z
Zou Nan hai 已提交
2079 2080
}

2081 2082 2083
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
2084
	engine->cancel_requests = cancel_requests;
2085 2086 2087

	engine->park = NULL;
	engine->unpark = NULL;
2088 2089 2090 2091
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
2092
	i9xx_set_default_submission(engine);
2093 2094 2095
	engine->submit_request = gen6_bsd_submit_request;
}

2096 2097 2098 2099 2100 2101 2102
static void ring_destroy(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

2103 2104
	intel_engine_cleanup_common(engine);

2105 2106 2107 2108 2109 2110
	intel_ring_unpin(engine->buffer);
	intel_ring_put(engine->buffer);

	kfree(engine);
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static void setup_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (INTEL_GEN(i915) >= 6) {
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
	} else if (INTEL_GEN(i915) >= 5) {
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
	} else if (INTEL_GEN(i915) >= 3) {
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
	} else {
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
	}
}

static void setup_common(struct intel_engine_cs *engine)
2131
{
2132 2133
	struct drm_i915_private *i915 = engine->i915;

2134
	/* gen8+ are only supported with execlists */
2135
	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
2136

2137
	setup_irq(engine);
2138

2139 2140
	engine->destroy = ring_destroy;

2141
	engine->resume = xcs_resume;
2142 2143 2144
	engine->reset.prepare = reset_prepare;
	engine->reset.reset = reset_ring;
	engine->reset.finish = reset_finish;
2145

2146
	engine->cops = &ring_context_ops;
2147 2148
	engine->request_alloc = ring_request_alloc;

2149 2150 2151 2152 2153 2154
	/*
	 * Using a global execution timeline; the previous final breadcrumb is
	 * equivalent to our next initial bread so we can elide
	 * engine->emit_init_breadcrumb().
	 */
	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2155
	if (IS_GEN(i915, 5))
2156
		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2157 2158

	engine->set_default_submission = i9xx_set_default_submission;
2159

2160
	if (INTEL_GEN(i915) >= 6)
2161
		engine->emit_bb_start = gen6_emit_bb_start;
2162
	else if (INTEL_GEN(i915) >= 4)
2163
		engine->emit_bb_start = i965_emit_bb_start;
2164
	else if (IS_I830(i915) || IS_I845G(i915))
2165
		engine->emit_bb_start = i830_emit_bb_start;
2166
	else
2167
		engine->emit_bb_start = i915_emit_bb_start;
2168 2169
}

2170
static void setup_rcs(struct intel_engine_cs *engine)
2171
{
2172
	struct drm_i915_private *i915 = engine->i915;
2173

2174
	if (HAS_L3_DPF(i915))
2175
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2176

2177 2178
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

2179
	if (INTEL_GEN(i915) >= 7) {
2180
		engine->init_context = intel_rcs_ctx_init;
2181
		engine->emit_flush = gen7_render_ring_flush;
2182
		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2183
	} else if (IS_GEN(i915, 6)) {
2184 2185
		engine->init_context = intel_rcs_ctx_init;
		engine->emit_flush = gen6_render_ring_flush;
2186
		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2187
	} else if (IS_GEN(i915, 5)) {
2188
		engine->emit_flush = gen4_render_ring_flush;
2189
	} else {
2190
		if (INTEL_GEN(i915) < 4)
2191
			engine->emit_flush = gen2_render_ring_flush;
2192
		else
2193
			engine->emit_flush = gen4_render_ring_flush;
2194
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2195
	}
B
Ben Widawsky 已提交
2196

2197
	if (IS_HASWELL(i915))
2198
		engine->emit_bb_start = hsw_emit_bb_start;
2199

2200
	engine->resume = rcs_resume;
2201 2202
}

2203
static void setup_vcs(struct intel_engine_cs *engine)
2204
{
2205
	struct drm_i915_private *i915 = engine->i915;
2206

2207
	if (INTEL_GEN(i915) >= 6) {
2208
		/* gen6 bsd needs a special wa for tail updates */
2209
		if (IS_GEN(i915, 6))
2210
			engine->set_default_submission = gen6_bsd_set_default_submission;
2211
		engine->emit_flush = gen6_bsd_ring_flush;
2212
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2213

2214
		if (IS_GEN(i915, 6))
2215
			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2216
		else
2217
			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2218
	} else {
2219
		engine->emit_flush = bsd_ring_flush;
2220
		if (IS_GEN(i915, 5))
2221
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2222
		else
2223
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2224
	}
2225
}
2226

2227
static void setup_bcs(struct intel_engine_cs *engine)
2228
{
2229
	struct drm_i915_private *i915 = engine->i915;
2230

2231
	engine->emit_flush = gen6_ring_flush;
2232
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2233

2234
	if (IS_GEN(i915, 6))
2235
		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2236
	else
2237
		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2238
}
2239

2240
static void setup_vecs(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2241
{
2242
	struct drm_i915_private *i915 = engine->i915;
2243

2244
	GEM_BUG_ON(INTEL_GEN(i915) < 7);
2245

2246
	engine->emit_flush = gen6_ring_flush;
2247 2248 2249
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
2250

2251
	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
}

int intel_ring_submission_setup(struct intel_engine_cs *engine)
{
	setup_common(engine);

	switch (engine->class) {
	case RENDER_CLASS:
		setup_rcs(engine);
		break;
	case VIDEO_DECODE_CLASS:
		setup_vcs(engine);
		break;
	case COPY_ENGINE_CLASS:
		setup_bcs(engine);
		break;
	case VIDEO_ENHANCEMENT_CLASS:
		setup_vecs(engine);
		break;
	default:
		MISSING_CASE(engine->class);
		return -ENODEV;
	}

	return 0;
}

int intel_ring_submission_init(struct intel_engine_cs *engine)
{
2281
	struct intel_timeline *timeline;
2282 2283 2284
	struct intel_ring *ring;
	int err;

2285
	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2286 2287 2288 2289 2290 2291 2292
	if (IS_ERR(timeline)) {
		err = PTR_ERR(timeline);
		goto err;
	}
	GEM_BUG_ON(timeline->has_initial_breadcrumb);

	ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
2293
	intel_timeline_put(timeline);
2294 2295 2296 2297 2298 2299 2300 2301
	if (IS_ERR(ring)) {
		err = PTR_ERR(ring);
		goto err;
	}

	err = intel_ring_pin(ring);
	if (err)
		goto err_ring;
2302

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	GEM_BUG_ON(engine->buffer);
	engine->buffer = ring;

	err = intel_engine_init_common(engine);
	if (err)
		goto err_unpin;

	GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);

	return 0;

err_unpin:
	intel_ring_unpin(ring);
err_ring:
	intel_ring_put(ring);
err:
	intel_engine_cleanup_common(engine);
	return err;
B
Ben Widawsky 已提交
2321
}