i915_gem_execbuffer.c 75.4 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21 22
#include "gt/intel_gt_pm.h"

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27 28
#include "i915_trace.h"

29 30 31 32 33 34
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
35

36 37 38 39 40 41
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 43 44 45
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
46
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47
#define UPDATE			PIN_OFFSET_FIXED
48 49

#define BATCH_OFFSET_BIAS (256*1024)
50

51
#define __I915_EXEC_ILLEGAL_FLAGS \
52 53 54
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
55

56 57 58 59 60 61 62 63 64
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

216
struct i915_execbuffer {
217 218 219 220
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 222
	struct i915_vma **vma;
	unsigned int *flags;
223 224

	struct intel_engine_cs *engine; /** engine to queue the request to */
225 226
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
227

228
	struct i915_request *request; /** our request to build */
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
245
	struct reloc_cache {
246 247 248
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
249
		unsigned int gen; /** Cached value of INTEL_GEN */
250
		bool use_64bit_reloc : 1;
251 252 253
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
254

255
		struct i915_request *rq;
256 257
		u32 *rq_cmd;
		unsigned int rq_size;
258
	} reloc_cache;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
274 275
};

276
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

297 298
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
299
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
300 301
}

302
static int eb_create(struct i915_execbuffer *eb)
303
{
304 305
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
306

307 308 309 310 311 312 313 314 315 316 317
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
318
		do {
319
			gfp_t flags;
320 321 322 323 324 325 326

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
327
			flags = GFP_KERNEL;
328 329 330
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

331
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
332
					      flags);
333 334 335 336
			if (eb->buckets)
				break;
		} while (--size);

337 338
		if (unlikely(!size))
			return -ENOMEM;
339

340
		eb->lut_size = size;
341
	} else {
342
		eb->lut_size = -eb->buffer_count;
343
	}
344

345
	return 0;
346 347
}

348 349
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
350 351
		 const struct i915_vma *vma,
		 unsigned int flags)
352 353 354 355 356 357 358
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

359
	if (flags & EXEC_OBJECT_PINNED &&
360 361 362
	    vma->node.start != entry->offset)
		return true;

363
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
364 365 366
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

367
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
368 369 370
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

371 372 373 374
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

375 376 377
	return false;
}

378
static inline bool
379
eb_pin_vma(struct i915_execbuffer *eb,
380
	   const struct drm_i915_gem_exec_object2 *entry,
381 382
	   struct i915_vma *vma)
{
383 384
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
385

386
	if (vma->node.size)
387
		pin_flags = vma->node.start;
388
	else
389
		pin_flags = entry->offset & PIN_OFFSET_MASK;
390

391 392 393
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
394

395 396
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
397

398
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
399
		if (unlikely(i915_vma_pin_fence(vma))) {
400
			i915_vma_unpin(vma);
401
			return false;
402 403
		}

404
		if (vma->fence)
405
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
406 407
	}

408 409
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
410 411
}

412
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
413
{
414
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
415

416
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
417
		__i915_vma_unpin_fence(vma);
418

419
	__i915_vma_unpin(vma);
420 421
}

422
static inline void
423
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
424
{
425
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
426
		return;
427

428 429
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
430 431
}

432 433 434 435
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
436
{
437 438
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
439

440 441 442 443 444 445 446 447
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
448
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
449 450 451 452 453 454 455 456
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
457 458
	}

459
	if (unlikely(vma->exec_flags)) {
460 461 462 463 464 465 466 467 468 469 470 471
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

472 473 474 475 476 477 478 479 480 481 482 483
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

484
	return 0;
485 486
}

487
static int
488 489 490
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
491
{
492
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
493 494 495 496 497 498 499 500
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
501 502
	}

503
	if (eb->lut_size > 0) {
504
		vma->exec_handle = entry->handle;
505
		hlist_add_head(&vma->exec_node,
506 507
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
508
	}
509

510 511 512 513 514 515 516 517 518
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
519
	eb->vma[i] = vma;
520
	eb->flags[i] = entry->flags;
521
	vma->exec_flags = &eb->flags[i];
522

523 524 525 526 527 528 529 530 531 532
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
533 534
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
535 536 537 538 539 540 541
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

542
	err = 0;
543
	if (eb_pin_vma(eb, entry, vma)) {
544 545 546 547
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
548 549 550 551 552 553
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
554 555
		if (unlikely(err))
			vma->exec_flags = NULL;
556 557 558 559 560 561 562 563 564 565
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

566 567 568 569 570
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
571 572 573 574 575 576 577 578 579

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
580 581 582
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
583 584
	int err;

585 586 587
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
588 589 590 591 592

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
593 594
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
595

596 597
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
598

599 600 601 602 603
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
604 605
	}

606 607 608
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
609 610 611 612 613 614 615 616
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

617
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
618
		err = i915_vma_pin_fence(vma);
619 620 621 622 623
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

624
		if (vma->fence)
625
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
626 627
	}

628 629
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
671 672
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
673

674 675
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
676 677
				continue;

678
			eb_unreserve_vma(vma, &eb->flags[i]);
679

680
			if (flags & EXEC_OBJECT_PINNED)
681
				/* Pinned must have their slot */
682
				list_add(&vma->exec_link, &eb->unbound);
683
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
684
				/* Map require the lowest 256MiB (aperture) */
685
				list_add_tail(&vma->exec_link, &eb->unbound);
686 687 688
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
689 690 691 692 693 694 695 696 697 698 699
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
700
			err = i915_gem_evict_vm(eb->context->vm);
701 702 703 704 705 706 707 708
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
709
}
710

711 712
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
713 714 715 716
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
717 718 719 720 721 722 723
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
724 725
	if (unlikely(!ctx))
		return -ENOENT;
726

727
	eb->gem_context = ctx;
728
	if (ctx->vm)
729
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
730 731

	eb->context_flags = 0;
732
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
733 734 735 736 737 738
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
739
{
740
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
741
	struct drm_i915_gem_object *obj;
742
	unsigned int i, batch;
743
	int err;
744

745
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
746 747
		return -EIO;

748 749
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
750

751 752
	batch = eb_batch_index(eb);

753 754 755 756 757 758
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

759 760
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
761
		struct i915_lut_handle *lut;
762
		struct i915_vma *vma;
763

764 765
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
766
			goto add_vma;
767

768
		obj = i915_gem_object_lookup(eb->file, handle);
769
		if (unlikely(!obj)) {
770
			err = -ENOENT;
771
			goto err_vma;
772 773
		}

774
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
775
		if (IS_ERR(vma)) {
776
			err = PTR_ERR(vma);
777
			goto err_obj;
778 779
		}

780
		lut = i915_lut_handle_alloc();
781 782 783 784 785 786 787
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
788
			i915_lut_handle_free(lut);
789
			goto err_obj;
790
		}
791

792 793
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
794
			i915_vma_reopen(vma);
795
		lut->handle = handle;
796 797 798 799 800
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
801

802
add_vma:
803
		err = eb_add_vma(eb, i, batch, vma);
804
		if (unlikely(err))
805
			goto err_vma;
806

807 808
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
809 810
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
811 812
	}

813 814
	mutex_unlock(&eb->gem_context->mutex);

815 816 817
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

818
err_obj:
819
	i915_gem_object_put(obj);
820 821
err_vma:
	eb->vma[i] = NULL;
822 823
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
824
	return err;
825 826
}

827
static struct i915_vma *
828
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
829
{
830 831
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
832
			return NULL;
833
		return eb->vma[handle];
834 835
	} else {
		struct hlist_head *head;
836
		struct i915_vma *vma;
837

838
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
839
		hlist_for_each_entry(vma, head, exec_node) {
840 841
			if (vma->exec_handle == handle)
				return vma;
842 843 844
		}
		return NULL;
	}
845 846
}

847
static void eb_release_vmas(const struct i915_execbuffer *eb)
848
{
849 850 851 852
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
853 854
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
855

856
		if (!vma)
857
			break;
858

859 860 861
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
862

863 864
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
865

866
		if (flags & __EXEC_OBJECT_HAS_REF)
867
			i915_vma_put(vma);
868
	}
869 870
}

871
static void eb_reset_vmas(const struct i915_execbuffer *eb)
872
{
873
	eb_release_vmas(eb);
874
	if (eb->lut_size > 0)
875 876
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
877 878
}

879
static void eb_destroy(const struct i915_execbuffer *eb)
880
{
881 882
	GEM_BUG_ON(eb->reloc_cache.rq);

883
	if (eb->lut_size > 0)
884
		kfree(eb->buckets);
885 886
}

887
static inline u64
888
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889
		  const struct i915_vma *target)
890
{
891
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
892 893
}

894 895
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
896
{
897
	cache->page = -1;
898
	cache->vaddr = 0;
899
	/* Must be a variable in the struct to allow GCC to unroll. */
900
	cache->gen = INTEL_GEN(i915);
901
	cache->has_llc = HAS_LLC(i915);
902
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
903 904
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
905
	cache->node.allocated = false;
906 907
	cache->rq = NULL;
	cache->rq_size = 0;
908
}
909

910 911 912 913 914 915 916 917
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
918 919
}

920 921
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

922 923 924 925 926 927 928
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

929 930 931 932
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
933 934

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
935
	i915_gem_object_unpin_map(cache->rq->batch->obj);
936

937
	intel_gt_chipset_flush(cache->rq->engine->gt);
938

939
	i915_request_add(cache->rq);
940 941 942
	cache->rq = NULL;
}

943
static void reloc_cache_reset(struct reloc_cache *cache)
944
{
945
	void *vaddr;
946

947 948 949
	if (cache->rq)
		reloc_gpu_flush(cache);

950 951
	if (!cache->vaddr)
		return;
952

953 954 955 956
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
957

958
		kunmap_atomic(vaddr);
959
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
960
	} else {
961 962 963
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
964
		io_mapping_unmap_atomic((void __iomem *)vaddr);
965

966
		if (cache->node.allocated) {
967 968 969
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
970 971 972
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
973
		}
974
	}
975 976 977

	cache->vaddr = 0;
	cache->page = -1;
978 979 980 981
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
982
			unsigned long page)
983
{
984 985 986 987 988 989
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
990
		int err;
991

992
		err = i915_gem_object_prepare_write(obj, &flushes);
993 994
		if (err)
			return ERR_PTR(err);
995 996 997

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
998

999 1000 1001 1002
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1003 1004
	}

1005 1006
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1007
	cache->page = page;
1008

1009
	return vaddr;
1010 1011
}

1012 1013
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1014
			 unsigned long page)
1015
{
1016
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1017
	unsigned long offset;
1018
	void *vaddr;
1019

1020
	if (cache->vaddr) {
1021
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1022
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1023 1024
	} else {
		struct i915_vma *vma;
1025
		int err;
1026

1027 1028 1029
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1030
		if (use_cpu_reloc(cache, obj))
1031
			return NULL;
1032

1033
		i915_gem_object_lock(obj);
1034
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1035
		i915_gem_object_unlock(obj);
1036 1037
		if (err)
			return ERR_PTR(err);
1038

1039
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1040
					       PIN_MAPPABLE |
1041 1042
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1043 1044
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1045
			err = drm_mm_insert_node_in_range
1046
				(&ggtt->vm.mm, &cache->node,
1047
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1048
				 0, ggtt->mappable_end,
1049
				 DRM_MM_INSERT_LOW);
1050
			if (err) /* no inactive aperture space, use cpu reloc */
1051
				return NULL;
1052 1053 1054
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1055
		}
1056
	}
1057

1058 1059
	offset = cache->node.start;
	if (cache->node.allocated) {
1060 1061 1062
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1063 1064
	} else {
		offset += page << PAGE_SHIFT;
1065 1066
	}

1067
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1068
							 offset);
1069 1070
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1071

1072
	return vaddr;
1073 1074
}

1075 1076
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1077
			 unsigned long page)
1078
{
1079
	void *vaddr;
1080

1081 1082 1083 1084 1085 1086 1087 1088
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1089 1090
	}

1091
	return vaddr;
1092 1093
}

1094
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1095
{
1096 1097 1098 1099 1100
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1101

1102
		*addr = value;
1103

1104 1105
		/*
		 * Writes to the same cacheline are serialised by the CPU
1106 1107 1108 1109 1110 1111 1112 1113 1114
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1137 1138 1139 1140 1141
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1142
	struct intel_engine_pool_node *pool;
1143
	struct i915_request *rq;
1144 1145 1146 1147
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1148 1149 1150
	pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1151

1152
	cmd = i915_gem_object_pin_map(pool->obj,
1153 1154 1155
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1156 1157 1158 1159
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1160

1161
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1171
	rq = i915_request_create(eb->context);
1172 1173 1174 1175 1176
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1177 1178 1179 1180
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1181
	err = reloc_move_to_gpu(rq, vma);
1182 1183 1184 1185 1186 1187 1188
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1189
		goto skip_request;
1190

1191
	i915_vma_lock(batch);
1192 1193 1194
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1195
	i915_vma_unlock(batch);
1196 1197
	if (err)
		goto skip_request;
1198 1199

	rq->batch = batch;
1200
	i915_vma_unpin(batch);
1201 1202 1203 1204 1205 1206

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1207
	goto out_pool;
1208

1209 1210
skip_request:
	i915_request_skip(rq, err);
1211
err_request:
1212
	i915_request_add(rq);
1213 1214 1215
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1216 1217 1218
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1235 1236 1237 1238
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1239 1240 1241
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1253 1254
static u64
relocate_entry(struct i915_vma *vma,
1255
	       const struct drm_i915_gem_relocation_entry *reloc,
1256 1257
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1258
{
1259
	u64 offset = reloc->offset;
1260 1261
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1262
	void *vaddr;
1263

1264 1265
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1266
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1267 1268 1269 1270 1271 1272 1273 1274 1275
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1276
		else
1277
			len = 3;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1323
repeat:
1324
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1325 1326 1327 1328 1329
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1330
			eb->reloc_cache.vaddr);
1331 1332 1333 1334 1335 1336

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1337 1338
	}

1339
out:
1340
	return target->node.start | UPDATE;
1341 1342
}

1343 1344 1345 1346
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1347
{
1348
	struct i915_vma *target;
1349
	int err;
1350

1351
	/* we've already hold a reference to all valid objects */
1352 1353
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1354
		return -ENOENT;
1355

1356
	/* Validate that the target is in a valid r/w GPU domain */
1357
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1358
		DRM_DEBUG("reloc with multiple write domains: "
1359
			  "target %d offset %d "
1360
			  "read %08x write %08x",
1361
			  reloc->target_handle,
1362 1363 1364
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1365
		return -EINVAL;
1366
	}
1367 1368
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1369
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1370
			  "target %d offset %d "
1371
			  "read %08x write %08x",
1372
			  reloc->target_handle,
1373 1374 1375
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1376
		return -EINVAL;
1377 1378
	}

1379
	if (reloc->write_domain) {
1380
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1381

1382 1383 1384 1385 1386 1387 1388
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1389
		    IS_GEN(eb->i915, 6)) {
1390 1391 1392 1393 1394 1395
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1396
	}
1397

1398 1399
	/*
	 * If the relocation already has the right value in it, no
1400 1401
	 * more work needs to be done.
	 */
1402 1403
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1404
		return 0;
1405 1406

	/* Check that the relocation address is valid... */
1407
	if (unlikely(reloc->offset >
1408
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1409
		DRM_DEBUG("Relocation beyond object bounds: "
1410 1411 1412 1413
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1414
		return -EINVAL;
1415
	}
1416
	if (unlikely(reloc->offset & 3)) {
1417
		DRM_DEBUG("Relocation not 4-byte aligned: "
1418 1419 1420
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1421
		return -EINVAL;
1422 1423
	}

1424 1425 1426 1427 1428 1429
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1430
	 * out of our synchronisation.
1431
	 */
1432
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1433

1434
	/* and update the user's relocation entry */
1435
	return relocate_entry(vma, reloc, eb, target);
1436 1437
}

1438
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1439
{
1440
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1441 1442
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1443
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1444
	unsigned int remain;
1445

1446
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1447
	remain = entry->relocation_count;
1448 1449
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1450

1451 1452 1453 1454 1455
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1456
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1457 1458 1459 1460 1461 1462 1463
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1464

1465 1466
		/*
		 * This is the fast path and we cannot handle a pagefault
1467 1468 1469 1470 1471 1472 1473
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1474
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1475
		pagefault_enable();
1476 1477
		if (unlikely(copied)) {
			remain = -EFAULT;
1478 1479
			goto out;
		}
1480

1481
		remain -= count;
1482
		do {
1483
			u64 offset = eb_relocate_entry(eb, vma, r);
1484

1485 1486 1487
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1488
				goto out;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1512 1513 1514 1515
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1516
			}
1517 1518 1519
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1520
out:
1521
	reloc_cache_reset(&eb->reloc_cache);
1522
	return remain;
1523 1524 1525
}

static int
1526
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1527
{
1528
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1529 1530 1531 1532
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1533 1534

	for (i = 0; i < entry->relocation_count; i++) {
1535
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1536

1537 1538 1539 1540
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1541
	}
1542 1543 1544 1545
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1546 1547
}

1548
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1549
{
1550 1551 1552
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1553

1554 1555 1556
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1557

1558 1559
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1560

1561 1562
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1563
	if (!access_ok(addr, size))
1564
		return -EFAULT;
1565

1566 1567 1568 1569 1570
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1571
	}
1572
	return __get_user(c, end - 1);
1573
}
1574

1575
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1576
{
1577 1578 1579
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1580

1581 1582 1583 1584 1585 1586
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1587

1588 1589
		if (nreloc == 0)
			continue;
1590

1591 1592 1593
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1594

1595 1596
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1597

1598
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1599 1600 1601 1602
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1603

1604 1605 1606 1607 1608 1609 1610
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1611
					     (char __user *)urelocs + copied,
1612
					     len)) {
1613
end_user:
1614
				user_access_end();
1615
end:
1616 1617 1618 1619
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1620

1621 1622
			copied += len;
		} while (copied < size);
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1634
		if (!user_access_begin(urelocs, size))
1635
			goto end;
1636

1637 1638 1639 1640 1641
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1642

1643 1644
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1645

1646
	return 0;
1647

1648 1649 1650 1651 1652 1653 1654 1655
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1656 1657
}

1658
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1659
{
1660 1661
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1662

1663
	if (unlikely(i915_modparams.prefault_disable))
1664
		return 0;
1665

1666 1667
	for (i = 0; i < count; i++) {
		int err;
1668

1669 1670 1671 1672
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1673

1674
	return 0;
1675 1676
}

1677
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1678
{
1679
	struct drm_device *dev = &eb->i915->drm;
1680
	bool have_copy = false;
1681
	struct i915_vma *vma;
1682 1683 1684 1685 1686 1687 1688
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1689

1690
	/* We may process another execbuffer during the unlock... */
1691
	eb_reset_vmas(eb);
1692 1693
	mutex_unlock(&dev->struct_mutex);

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1715
	}
1716 1717 1718
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1719 1720
	}

1721 1722 1723
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1724 1725
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1726
		mutex_lock(&dev->struct_mutex);
1727
		goto out;
1728 1729
	}

1730
	/* reacquire the objects */
1731 1732
	err = eb_lookup_vmas(eb);
	if (err)
1733
		goto err;
1734

1735 1736
	GEM_BUG_ON(!eb->batch);

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1749 1750
	}

1751 1752
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1753 1754 1755 1756 1757 1758
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1780
	return err;
1781 1782
}

1783
static int eb_relocate(struct i915_execbuffer *eb)
1784
{
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1807
	struct ww_acquire_ctx acquire;
1808
	unsigned int i;
1809 1810 1811
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1812

1813
	for (i = 0; i < count; i++) {
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1845 1846
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1847
		struct drm_i915_gem_object *obj = vma->obj;
1848

1849 1850
		assert_vma_held(vma);

1851
		if (flags & EXEC_OBJECT_CAPTURE) {
1852
			struct i915_capture_list *capture;
1853 1854

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1855 1856 1857 1858 1859
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1860 1861
		}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1875
			if (i915_gem_clflush_object(obj, 0))
1876
				flags &= ~EXEC_OBJECT_ASYNC;
1877 1878
		}

1879 1880 1881 1882
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1883

1884 1885
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1886

1887
		i915_vma_unlock(vma);
1888

1889 1890 1891 1892
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1893
			i915_vma_put(vma);
1894
	}
1895 1896 1897 1898 1899
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1900
	eb->exec = NULL;
1901

1902
	/* Unconditionally flush any chipset caches (for streaming writes). */
1903
	intel_gt_chipset_flush(eb->engine->gt);
1904
	return 0;
1905 1906 1907 1908

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1909 1910
}

1911
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1912
{
1913
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1914 1915
		return false;

C
Chris Wilson 已提交
1916
	/* Kernel clipping was a DRI1 misfeature */
1917 1918 1919 1920
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1933 1934
}

1935
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1936
{
1937 1938
	u32 *cs;
	int i;
1939

1940
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1941 1942 1943
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1944

1945
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1946 1947
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1948

1949
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1950
	for (i = 0; i < 4; i++) {
1951 1952
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1953
	}
1954
	*cs++ = MI_NOOP;
1955
	intel_ring_advance(rq, cs);
1956 1957 1958 1959

	return 0;
}

1960
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1961
{
1962
	struct intel_engine_pool_node *pool;
1963
	struct i915_vma *vma;
1964
	int err;
1965

1966 1967 1968
	pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
	if (IS_ERR(pool))
		return ERR_CAST(pool);
1969

1970
	err = intel_engine_cmd_parser(eb->engine,
1971
				      eb->batch->obj,
1972
				      pool->obj,
1973 1974
				      eb->batch_start_offset,
				      eb->batch_len,
1975
				      is_master);
1976 1977
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1978 1979
			vma = NULL;
		else
1980
			vma = ERR_PTR(err);
1981
		goto err;
C
Chris Wilson 已提交
1982
	}
1983

1984
	vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
1985
	if (IS_ERR(vma))
1986
		goto err;
C
Chris Wilson 已提交
1987

1988 1989 1990 1991 1992
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1993

1994 1995 1996 1997 1998
	vma->private = pool;
	return vma;

err:
	intel_engine_pool_put(pool);
C
Chris Wilson 已提交
1999
	return vma;
2000
}
2001

2002
static void
2003
add_to_client(struct i915_request *rq, struct drm_file *file)
2004
{
2005 2006 2007 2008 2009 2010 2011
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2012 2013
}

2014
static int eb_submit(struct i915_execbuffer *eb)
2015
{
2016
	int err;
2017

2018 2019 2020
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2021

2022
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2023 2024 2025
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2026 2027
	}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2040
	err = eb->engine->emit_bb_start(eb->request,
2041 2042 2043
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2044 2045 2046
					eb->batch_flags);
	if (err)
		return err;
2047

C
Chris Wilson 已提交
2048
	return 0;
2049 2050
}

2051 2052 2053 2054 2055 2056
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2057
/*
2058
 * Find one BSD ring to dispatch the corresponding BSD command.
2059
 * The engine index is returned.
2060
 */
2061
static unsigned int
2062 2063
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2064 2065 2066
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2067
	/* Check whether the file_priv has already selected one ring. */
2068
	if ((int)file_priv->bsd_engine < 0)
2069 2070
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2071

2072
	return file_priv->bsd_engine;
2073 2074
}

2075
static const enum intel_engine_id user_ring_map[] = {
2076 2077 2078 2079 2080
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2081 2082
};

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int
__eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2119
{
2120
	int err;
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	if (likely(atomic_inc_not_zero(&ce->pin_count)))
		return 0;

	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
	if (err)
		return err;

	err = __intel_context_do_pin(ce);
	mutex_unlock(&eb->i915->drm.struct_mutex);

	return err;
}

static void
__eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
{
	if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
		return;

	mutex_lock(&eb->i915->drm.struct_mutex);
	intel_context_unpin(ce);
	mutex_unlock(&eb->i915->drm.struct_mutex);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2152 2153 2154 2155
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2156
	err = intel_gt_terminally_wedged(ce->engine->gt);
2157 2158 2159 2160 2161 2162 2163 2164
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2165
	err = __eb_pin_context(eb, ce);
2166 2167
	if (err)
		return err;
2168

2169 2170 2171 2172 2173 2174 2175 2176
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2177 2178 2179
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2180
		goto err_unpin;
2181
	}
2182 2183

	intel_context_enter(ce);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2199

2200
	eb->engine = ce->engine;
2201 2202
	eb->context = ce;
	return 0;
2203

2204 2205 2206 2207
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2208
err_unpin:
2209
	__eb_unpin_context(eb, ce);
2210
	return err;
2211 2212
}

2213
static void eb_unpin_engine(struct i915_execbuffer *eb)
2214
{
2215
	struct intel_context *ce = eb->context;
2216
	struct intel_timeline *tl = ce->timeline;
2217 2218 2219 2220 2221

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2222
	__eb_unpin_context(eb, ce);
2223
}
2224

2225 2226 2227 2228
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2229
{
2230
	struct drm_i915_private *i915 = eb->i915;
2231 2232
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2233 2234
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2235 2236
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2237
		return -1;
2238 2239
	}

2240
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2241 2242 2243
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2244
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2245 2246
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2247
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2248 2249 2250 2251
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2252
			return -1;
2253 2254
		}

2255
		return _VCS(bsd_idx);
2256 2257
	}

2258 2259 2260
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2261 2262
	}

2263 2264 2265 2266
	return user_ring_map[user_ring_id];
}

static int
2267 2268 2269
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2270 2271 2272 2273 2274
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2275 2276 2277 2278
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2279 2280 2281 2282 2283

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2284
	err = __eb_pin_engine(eb, ce);
2285 2286 2287
	intel_context_put(ce);

	return err;
2288 2289
}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2302
	const unsigned long nfences = args->num_cliprects;
2303 2304
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2305
	unsigned long n;
2306 2307 2308 2309 2310
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2311 2312 2313 2314 2315
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2316 2317 2318
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2319
	if (!access_ok(user, nfences * sizeof(*user)))
2320 2321
		return ERR_PTR(-EFAULT);

2322
	fences = kvmalloc_array(nfences, sizeof(*fences),
2323
				__GFP_NOWARN | GFP_KERNEL);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2336 2337 2338 2339 2340
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2341 2342 2343 2344 2345 2346 2347
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2348 2349 2350
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2386
		fence = drm_syncobj_fence_get(syncobj);
2387 2388 2389
		if (!fence)
			return -EINVAL;

2390
		err = i915_request_await_dma_fence(eb->request, fence);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2415
		drm_syncobj_replace_fence(syncobj, fence);
2416 2417 2418
	}
}

2419
static int
2420
i915_gem_do_execbuffer(struct drm_device *dev,
2421 2422
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2423 2424
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2425
{
2426
	struct i915_execbuffer eb;
2427
	struct dma_fence *in_fence = NULL;
2428
	struct dma_fence *exec_fence = NULL;
2429 2430
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2431
	int err;
2432

2433
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2434 2435
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2436

2437 2438 2439
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2440
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2441
		args->flags |= __EXEC_HAS_RELOC;
2442

2443
	eb.exec = exec;
2444 2445
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2446 2447
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2448
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2449 2450
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2451
	eb.buffer_count = args->buffer_count;
2452 2453 2454
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2455
	eb.batch_flags = 0;
2456
	if (args->flags & I915_EXEC_SECURE) {
2457
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2458 2459
		    return -EPERM;

2460
		eb.batch_flags |= I915_DISPATCH_SECURE;
2461
	}
2462
	if (args->flags & I915_EXEC_IS_PINNED)
2463
		eb.batch_flags |= I915_DISPATCH_PINNED;
2464

2465 2466
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2467 2468
		if (!in_fence)
			return -EINVAL;
2469 2470
	}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2484 2485 2486
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2487
			err = out_fence_fd;
2488
			goto err_exec_fence;
2489 2490 2491
		}
	}

2492 2493 2494 2495 2496
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2497

2498 2499 2500 2501
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2502
	err = eb_pin_engine(&eb, file, args);
2503
	if (unlikely(err))
2504
		goto err_context;
2505

2506 2507
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2508 2509
		goto err_engine;

2510
	err = eb_relocate(&eb);
2511
	if (err) {
2512 2513 2514 2515 2516 2517 2518 2519 2520
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2521
	}
2522

2523
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2524
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2525 2526
		err = -EINVAL;
		goto err_vma;
2527
	}
2528 2529
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2530
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2531 2532
		err = -EINVAL;
		goto err_vma;
2533
	}
2534

2535
	if (eb_use_cmdparser(&eb)) {
2536 2537
		struct i915_vma *vma;

2538
		vma = eb_parse(&eb, drm_is_current_master(file));
2539
		if (IS_ERR(vma)) {
2540 2541
			err = PTR_ERR(vma);
			goto err_vma;
2542
		}
2543

2544
		if (vma) {
2545 2546 2547 2548 2549 2550 2551 2552 2553
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2554
			eb.batch_flags |= I915_DISPATCH_SECURE;
2555 2556
			eb.batch_start_offset = 0;
			eb.batch = vma;
2557
		}
2558 2559
	}

2560 2561
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2562

2563 2564
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2565
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2566
	 * hsw should have this fixed, but bdw mucks it up again. */
2567
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2568
		struct i915_vma *vma;
2569

2570 2571 2572 2573 2574 2575
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2576
		 *   so we don't really have issues with multiple objects not
2577 2578 2579
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2580
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2581
		if (IS_ERR(vma)) {
2582 2583
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2584
		}
2585

2586
		eb.batch = vma;
2587
	}
2588

2589 2590 2591
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2592
	/* Allocate a request for this batch buffer nice and early. */
2593
	eb.request = i915_request_create(eb.context);
2594
	if (IS_ERR(eb.request)) {
2595
		err = PTR_ERR(eb.request);
2596
		goto err_batch_unpin;
2597
	}
2598

2599
	if (in_fence) {
2600
		err = i915_request_await_dma_fence(eb.request, in_fence);
2601
		if (err < 0)
2602 2603 2604
			goto err_request;
	}

2605 2606 2607 2608 2609 2610 2611
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2612 2613 2614 2615 2616 2617
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2618
	if (out_fence_fd != -1) {
2619
		out_fence = sync_file_create(&eb.request->fence);
2620
		if (!out_fence) {
2621
			err = -ENOMEM;
2622 2623 2624 2625
			goto err_request;
		}
	}

2626 2627
	/*
	 * Whilst this request exists, batch_obj will be on the
2628 2629 2630 2631 2632
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2633
	eb.request->batch = eb.batch;
2634 2635
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2636

2637
	trace_i915_request_queue(eb.request, eb.batch_flags);
2638
	err = eb_submit(&eb);
2639
err_request:
2640
	add_to_client(eb.request, file);
2641
	i915_request_add(eb.request);
2642

2643 2644 2645
	if (fences)
		signal_fence_array(&eb, fences);

2646
	if (out_fence) {
2647
		if (err == 0) {
2648
			fd_install(out_fence_fd, out_fence->file);
2649
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2650 2651 2652 2653 2654 2655
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2656

2657
err_batch_unpin:
2658
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2659
		i915_vma_unpin(eb.batch);
2660 2661
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2662 2663 2664
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2665
	mutex_unlock(&dev->struct_mutex);
2666 2667
err_engine:
	eb_unpin_engine(&eb);
2668
err_context:
2669
	i915_gem_context_put(eb.gem_context);
2670
err_destroy:
2671
	eb_destroy(&eb);
2672
err_out_fence:
2673 2674
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2675 2676
err_exec_fence:
	dma_fence_put(exec_fence);
2677
err_in_fence:
2678
	dma_fence_put(in_fence);
2679
	return err;
2680 2681
}

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2702 2703 2704 2705 2706
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2707 2708
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2709 2710 2711 2712 2713
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2714
	const size_t count = args->buffer_count;
2715 2716
	unsigned int i;
	int err;
2717

2718 2719
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2720 2721 2722
		return -EINVAL;
	}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2737
	/* Copy in the exec list from userland */
2738
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2739
				   __GFP_NOWARN | GFP_KERNEL);
2740
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2741
				    __GFP_NOWARN | GFP_KERNEL);
2742
	if (exec_list == NULL || exec2_list == NULL) {
2743
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2744
			  args->buffer_count);
M
Michal Hocko 已提交
2745 2746
		kvfree(exec_list);
		kvfree(exec2_list);
2747 2748
		return -ENOMEM;
	}
2749
	err = copy_from_user(exec_list,
2750
			     u64_to_user_ptr(args->buffers_ptr),
2751
			     sizeof(*exec_list) * count);
2752
	if (err) {
2753
		DRM_DEBUG("copy %d exec entries failed %d\n",
2754
			  args->buffer_count, err);
M
Michal Hocko 已提交
2755 2756
		kvfree(exec_list);
		kvfree(exec2_list);
2757 2758 2759 2760 2761 2762 2763 2764 2765
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2766
		if (INTEL_GEN(to_i915(dev)) < 4)
2767 2768 2769 2770 2771
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2772
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2773
	if (exec2.flags & __EXEC_HAS_RELOC) {
2774
		struct drm_i915_gem_exec_object __user *user_exec_list =
2775
			u64_to_user_ptr(args->buffers_ptr);
2776

2777
		/* Copy the new buffer offsets back to the user's exec list. */
2778
		for (i = 0; i < args->buffer_count; i++) {
2779 2780 2781
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2782
			exec2_list[i].offset =
2783 2784 2785 2786 2787
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2788
				break;
2789 2790 2791
		}
	}

M
Michal Hocko 已提交
2792 2793
	kvfree(exec_list);
	kvfree(exec2_list);
2794
	return err;
2795 2796 2797
}

int
2798 2799
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2800 2801
{
	struct drm_i915_gem_execbuffer2 *args = data;
2802
	struct drm_i915_gem_exec_object2 *exec2_list;
2803
	struct drm_syncobj **fences = NULL;
2804
	const size_t count = args->buffer_count;
2805
	int err;
2806

2807 2808
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2809 2810 2811
		return -EINVAL;
	}

2812 2813 2814 2815
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2816
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2817
				    __GFP_NOWARN | GFP_KERNEL);
2818
	if (exec2_list == NULL) {
2819 2820
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2821 2822
		return -ENOMEM;
	}
2823 2824
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2825 2826
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2827
		kvfree(exec2_list);
2828 2829 2830
		return -EFAULT;
	}

2831 2832 2833 2834 2835 2836 2837 2838 2839
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2840 2841 2842 2843 2844 2845 2846 2847

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2848
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2849 2850
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2851

2852
		/* Copy the new buffer offsets back to the user's exec list. */
2853 2854 2855 2856 2857 2858 2859 2860
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2861
			goto end;
2862

2863
		for (i = 0; i < args->buffer_count; i++) {
2864 2865 2866
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2867
			exec2_list[i].offset =
2868 2869 2870 2871
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2872
		}
2873 2874
end_user:
		user_access_end();
2875
end:;
2876 2877
	}

2878
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2879
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2880
	kvfree(exec2_list);
2881
	return err;
2882
}