m_can.c 47.7 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
// CAN bus driver for Bosch M_CAN controller
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//      Dong Aisheng <b29396@freescale.com>
// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/

/* Bosch M_CAN user manual can be obtained from:
8 9 10 11 12 13 14 15 16 17 18 19
 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
 * mcan_users_manual_v302.pdf
 */

#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
F
Faiz Abbas 已提交
20
#include <linux/pm_runtime.h>
21
#include <linux/iopoll.h>
22
#include <linux/can/dev.h>
23
#include <linux/pinctrl/consumer.h>
24

25
#include "m_can.h"
26 27 28 29 30 31

/* registers definition */
enum m_can_reg {
	M_CAN_CREL	= 0x0,
	M_CAN_ENDN	= 0x4,
	M_CAN_CUST	= 0x8,
32
	M_CAN_DBTP	= 0xc,
33 34 35
	M_CAN_TEST	= 0x10,
	M_CAN_RWD	= 0x14,
	M_CAN_CCCR	= 0x18,
36
	M_CAN_NBTP	= 0x1c,
37 38 39 40 41 42
	M_CAN_TSCC	= 0x20,
	M_CAN_TSCV	= 0x24,
	M_CAN_TOCC	= 0x28,
	M_CAN_TOCV	= 0x2c,
	M_CAN_ECR	= 0x40,
	M_CAN_PSR	= 0x44,
43 44
/* TDCR Register only available for version >=3.1.x */
	M_CAN_TDCR	= 0x48,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	M_CAN_IR	= 0x50,
	M_CAN_IE	= 0x54,
	M_CAN_ILS	= 0x58,
	M_CAN_ILE	= 0x5c,
	M_CAN_GFC	= 0x80,
	M_CAN_SIDFC	= 0x84,
	M_CAN_XIDFC	= 0x88,
	M_CAN_XIDAM	= 0x90,
	M_CAN_HPMS	= 0x94,
	M_CAN_NDAT1	= 0x98,
	M_CAN_NDAT2	= 0x9c,
	M_CAN_RXF0C	= 0xa0,
	M_CAN_RXF0S	= 0xa4,
	M_CAN_RXF0A	= 0xa8,
	M_CAN_RXBC	= 0xac,
	M_CAN_RXF1C	= 0xb0,
	M_CAN_RXF1S	= 0xb4,
	M_CAN_RXF1A	= 0xb8,
	M_CAN_RXESC	= 0xbc,
	M_CAN_TXBC	= 0xc0,
	M_CAN_TXFQS	= 0xc4,
	M_CAN_TXESC	= 0xc8,
	M_CAN_TXBRP	= 0xcc,
	M_CAN_TXBAR	= 0xd0,
	M_CAN_TXBCR	= 0xd4,
	M_CAN_TXBTO	= 0xd8,
	M_CAN_TXBCF	= 0xdc,
	M_CAN_TXBTIE	= 0xe0,
	M_CAN_TXBCIE	= 0xe4,
	M_CAN_TXEFC	= 0xf0,
	M_CAN_TXEFS	= 0xf4,
	M_CAN_TXEFA	= 0xf8,
};

79 80
/* napi related */
#define M_CAN_NAPI_WEIGHT	64
81

82 83
/* message ram configuration data length */
#define MRAM_CFG_LEN	8
84

85 86 87 88 89 90 91 92
/* Core Release Register (CREL) */
#define CREL_REL_SHIFT		28
#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
#define CREL_STEP_SHIFT		24
#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
#define CREL_SUBSTEP_SHIFT	20
#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)

93 94 95 96 97 98 99 100 101 102
/* Data Bit Timing & Prescaler Register (DBTP) */
#define DBTP_TDC		BIT(23)
#define DBTP_DBRP_SHIFT		16
#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
#define DBTP_DTSEG1_SHIFT	8
#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
#define DBTP_DTSEG2_SHIFT	4
#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
#define DBTP_DSJW_SHIFT		0
#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103

104 105 106 107 108 109
/* Transmitter Delay Compensation Register (TDCR) */
#define TDCR_TDCO_SHIFT		8
#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
#define TDCR_TDCF_SHIFT		0
#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)

110
/* Test Register (TEST) */
111
#define TEST_LBCK		BIT(4)
112 113

/* CC Control Register(CCCR) */
114 115 116 117 118 119 120 121 122 123
#define CCCR_CMR_MASK		0x3
#define CCCR_CMR_SHIFT		10
#define CCCR_CMR_CANFD		0x1
#define CCCR_CMR_CANFD_BRS	0x2
#define CCCR_CMR_CAN		0x3
#define CCCR_CME_MASK		0x3
#define CCCR_CME_SHIFT		8
#define CCCR_CME_CAN		0
#define CCCR_CME_CANFD		0x1
#define CCCR_CME_CANFD_BRS	0x2
124
#define CCCR_TXP		BIT(14)
125
#define CCCR_TEST		BIT(7)
126
#define CCCR_DAR		BIT(6)
127
#define CCCR_MON		BIT(5)
128 129 130
#define CCCR_CSR		BIT(4)
#define CCCR_CSA		BIT(3)
#define CCCR_ASM		BIT(2)
131 132 133
#define CCCR_CCE		BIT(1)
#define CCCR_INIT		BIT(0)
#define CCCR_CANFD		0x10
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* for version >=3.1.x */
#define CCCR_EFBI		BIT(13)
#define CCCR_PXHD		BIT(12)
#define CCCR_BRSE		BIT(9)
#define CCCR_FDOE		BIT(8)
/* only for version >=3.2.x */
#define CCCR_NISO		BIT(15)

/* Nominal Bit Timing & Prescaler Register (NBTP) */
#define NBTP_NSJW_SHIFT		25
#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
#define NBTP_NBRP_SHIFT		16
#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
#define NBTP_NTSEG1_SHIFT	8
#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
#define NBTP_NTSEG2_SHIFT	0
#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

/* Error Counter Register(ECR) */
#define ECR_RP			BIT(15)
#define ECR_REC_SHIFT		8
#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
#define ECR_TEC_SHIFT		0
#define ECR_TEC_MASK		0xff

/* Protocol Status Register(PSR) */
#define PSR_BO		BIT(7)
#define PSR_EW		BIT(6)
#define PSR_EP		BIT(5)
#define PSR_LEC_MASK	0x7

/* Interrupt Register(IR) */
#define IR_ALL_INT	0xffffffff
167 168 169 170 171 172 173

/* Renamed bits for versions > 3.1.x */
#define IR_ARA		BIT(29)
#define IR_PED		BIT(28)
#define IR_PEA		BIT(27)

/* Bits for version 3.0.x */
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#define IR_STE		BIT(31)
#define IR_FOE		BIT(30)
#define IR_ACKE		BIT(29)
#define IR_BE		BIT(28)
#define IR_CRCE		BIT(27)
#define IR_WDI		BIT(26)
#define IR_BO		BIT(25)
#define IR_EW		BIT(24)
#define IR_EP		BIT(23)
#define IR_ELO		BIT(22)
#define IR_BEU		BIT(21)
#define IR_BEC		BIT(20)
#define IR_DRX		BIT(19)
#define IR_TOO		BIT(18)
#define IR_MRAF		BIT(17)
#define IR_TSW		BIT(16)
#define IR_TEFL		BIT(15)
#define IR_TEFF		BIT(14)
#define IR_TEFW		BIT(13)
#define IR_TEFN		BIT(12)
#define IR_TFE		BIT(11)
#define IR_TCF		BIT(10)
#define IR_TC		BIT(9)
#define IR_HPM		BIT(8)
#define IR_RF1L		BIT(7)
#define IR_RF1F		BIT(6)
#define IR_RF1W		BIT(5)
#define IR_RF1N		BIT(4)
#define IR_RF0L		BIT(3)
#define IR_RF0F		BIT(2)
#define IR_RF0W		BIT(1)
#define IR_RF0N		BIT(0)
#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
207 208 209 210 211 212 213 214 215 216

/* Interrupts for version 3.0.x */
#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
/* Interrupts for version >= 3.1.x */
#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
217 218
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
219
#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
220 221 222 223 224 225 226

/* Interrupt Line Select (ILS) */
#define ILS_ALL_INT0	0x0
#define ILS_ALL_INT1	0xFFFFFFFF

/* Interrupt Line Enable (ILE) */
#define ILE_EINT1	BIT(1)
227
#define ILE_EINT0	BIT(0)
228 229

/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
230
#define RXFC_FWM_SHIFT	24
231
#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
232 233
#define RXFC_FS_SHIFT	16
#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
234 235 236 237

/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
#define RXFS_RFL	BIT(25)
#define RXFS_FF		BIT(24)
238
#define RXFS_FPI_SHIFT	16
239
#define RXFS_FPI_MASK	0x3f0000
240
#define RXFS_FGI_SHIFT	8
241 242 243 244 245
#define RXFS_FGI_MASK	0x3f00
#define RXFS_FFL_MASK	0x7f

/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
#define M_CAN_RXESC_8BYTES	0x0
246
#define M_CAN_RXESC_64BYTES	0x777
247 248

/* Tx Buffer Configuration(TXBC) */
249 250 251 252 253 254 255 256 257 258 259 260 261
#define TXBC_NDTB_SHIFT		16
#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
#define TXBC_TFQS_SHIFT		24
#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)

/* Tx FIFO/Queue Status (TXFQS) */
#define TXFQS_TFQF		BIT(21)
#define TXFQS_TFQPI_SHIFT	16
#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
#define TXFQS_TFGI_SHIFT	8
#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
#define TXFQS_TFFL_SHIFT	0
#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
262 263 264

/* Tx Buffer Element Size Configuration(TXESC) */
#define TXESC_TBDS_8BYTES	0x0
265
#define TXESC_TBDS_64BYTES	0x7
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* Tx Event FIFO Configuration (TXEFC) */
#define TXEFC_EFS_SHIFT		16
#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)

/* Tx Event FIFO Status (TXEFS) */
#define TXEFS_TEFL		BIT(25)
#define TXEFS_EFF		BIT(24)
#define TXEFS_EFGI_SHIFT	8
#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
#define TXEFS_EFFL_SHIFT	0
#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)

/* Tx Event FIFO Acknowledge (TXEFA) */
#define TXEFA_EFAI_SHIFT	0
#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
282 283 284 285

/* Message RAM Configuration (in bytes) */
#define SIDF_ELEMENT_SIZE	4
#define XIDF_ELEMENT_SIZE	8
286 287
#define RXF0_ELEMENT_SIZE	72
#define RXF1_ELEMENT_SIZE	72
288
#define RXB_ELEMENT_SIZE	72
289
#define TXE_ELEMENT_SIZE	8
290
#define TXB_ELEMENT_SIZE	72
291 292 293 294 295 296 297

/* Message RAM Elements */
#define M_CAN_FIFO_ID		0x0
#define M_CAN_FIFO_DLC		0x4
#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))

/* Rx Buffer Element */
298
/* R0 */
299 300 301
#define RX_BUF_ESI		BIT(31)
#define RX_BUF_XTD		BIT(30)
#define RX_BUF_RTR		BIT(29)
302 303
/* R1 */
#define RX_BUF_ANMF		BIT(31)
304
#define RX_BUF_FDF		BIT(21)
305
#define RX_BUF_BRS		BIT(20)
306 307

/* Tx Buffer Element */
308 309
/* T0 */
#define TX_BUF_ESI		BIT(31)
310 311
#define TX_BUF_XTD		BIT(30)
#define TX_BUF_RTR		BIT(29)
312 313 314 315 316 317
/* T1 */
#define TX_BUF_EFC		BIT(23)
#define TX_BUF_FDF		BIT(21)
#define TX_BUF_BRS		BIT(20)
#define TX_BUF_MM_SHIFT		24
#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
318

319 320 321 322 323
/* Tx event FIFO Element */
/* E1 */
#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)

324
static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325
{
326
	return cdev->ops->read_reg(cdev, reg);
327
}
328

329
static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330
			       u32 val)
331
{
332
	cdev->ops->write_reg(cdev, reg, val);
333 334
}

335
static u32 m_can_fifo_read(struct m_can_classdev *cdev,
336
			   u32 fgi, unsigned int offset)
337
{
338
	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 340
			  offset;

341
	return cdev->ops->read_fifo(cdev, addr_offset);
342 343
}

344
static void m_can_fifo_write(struct m_can_classdev *cdev,
345
			     u32 fpi, unsigned int offset, u32 val)
346
{
347
	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348 349
			  offset;

350
	cdev->ops->write_fifo(cdev, addr_offset, val);
351 352
}

353
static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
354
					   u32 fpi, u32 val)
355
{
356
	cdev->ops->write_fifo(cdev, fpi, val);
357 358
}

359
static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
360
{
361
	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362 363
			  offset;

364
	return cdev->ops->read_fifo(cdev, addr_offset);
365 366
}

367
static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368
{
369
		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370 371
}

372
void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373
{
374
	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375 376 377
	u32 timeout = 10;
	u32 val = 0;

378 379 380 381
	/* Clear the Clock stop request if it was set */
	if (cccr & CCCR_CSR)
		cccr &= ~CCCR_CSR;

382
	if (enable) {
383 384 385 386
		/* Clear the Clock stop request if it was set */
		if (cccr & CCCR_CSR)
			cccr &= ~CCCR_CSR;

387
		/* enable m_can configuration */
388
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
389
		udelay(5);
390
		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
391
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
392
	} else {
393
		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
394 395 396 397 398 399
	}

	/* there's a delay for module initialization */
	if (enable)
		val = CCCR_INIT | CCCR_CCE;

400
	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
401
		if (timeout == 0) {
402
			netdev_warn(cdev->net, "Failed to init module\n");
403 404 405 406 407 408 409
			return;
		}
		timeout--;
		udelay(1);
	}
}

410
static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
411
{
412
	/* Only interrupt line 0 is used in this driver */
413
	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
414 415
}

416
static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
417
{
418
	m_can_write(cdev, M_CAN_ILE, 0x0);
419 420
}

421 422
static void m_can_clean(struct net_device *net)
{
423
	struct m_can_classdev *cdev = netdev_priv(net);
424

425
	if (cdev->tx_skb) {
426 427 428
		int putidx = 0;

		net->stats.tx_errors++;
429 430
		if (cdev->version > 30)
			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
431 432
				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);

433 434
		can_free_echo_skb(cdev->net, putidx);
		cdev->tx_skb = NULL;
435 436 437
	}
}

438
static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
439
{
440
	struct net_device_stats *stats = &dev->stats;
441
	struct m_can_classdev *cdev = netdev_priv(dev);
442 443
	struct canfd_frame *cf;
	struct sk_buff *skb;
444
	u32 id, fgi, dlc;
445
	int i;
446 447

	/* calculate the fifo get index for where to read data */
448
	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
449
	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
450
	if (dlc & RX_BUF_FDF)
451 452 453 454 455 456 457 458
		skb = alloc_canfd_skb(dev, &cf);
	else
		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
	if (!skb) {
		stats->rx_dropped++;
		return;
	}

459
	if (dlc & RX_BUF_FDF)
460 461 462 463
		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
	else
		cf->len = get_can_dlc((dlc >> 16) & 0x0F);

464
	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
465 466 467 468 469
	if (id & RX_BUF_XTD)
		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		cf->can_id = (id >> 18) & CAN_SFF_MASK;

470 471 472 473
	if (id & RX_BUF_ESI) {
		cf->flags |= CANFD_ESI;
		netdev_dbg(dev, "ESI Error\n");
	}
474

475
	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
476 477
		cf->can_id |= CAN_RTR_FLAG;
	} else {
478 479 480 481 482
		if (dlc & RX_BUF_BRS)
			cf->flags |= CANFD_BRS;

		for (i = 0; i < cf->len; i += 4)
			*(u32 *)(cf->data + i) =
483
				m_can_fifo_read(cdev, fgi,
484
						M_CAN_FIFO_DATA(i / 4));
485 486 487
	}

	/* acknowledge rx fifo 0 */
488
	m_can_write(cdev, M_CAN_RXF0A, fgi);
489 490 491 492 493

	stats->rx_packets++;
	stats->rx_bytes += cf->len;

	netif_receive_skb(skb);
494 495 496 497
}

static int m_can_do_rx_poll(struct net_device *dev, int quota)
{
498
	struct m_can_classdev *cdev = netdev_priv(dev);
499 500 501
	u32 pkts = 0;
	u32 rxfs;

502
	rxfs = m_can_read(cdev, M_CAN_RXF0S);
503 504 505 506 507 508 509 510 511
	if (!(rxfs & RXFS_FFL_MASK)) {
		netdev_dbg(dev, "no messages in fifo0\n");
		return 0;
	}

	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
		if (rxfs & RXFS_RFL)
			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");

512
		m_can_read_fifo(dev, rxfs);
513 514 515

		quota--;
		pkts++;
516
		rxfs = m_can_read(cdev, M_CAN_RXF0S);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	}

	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

	return pkts;
}

static int m_can_handle_lost_msg(struct net_device *dev)
{
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	netdev_err(dev, "msg lost in rxf0\n");

	stats->rx_errors++;
	stats->rx_over_errors++;

	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return 0;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_lec_err(struct net_device *dev,
				enum m_can_lec_type lec_type)
{
551
	struct m_can_classdev *cdev = netdev_priv(dev);
552 553 554 555
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

556
	cdev->can.can_stats.bus_error++;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	stats->rx_errors++;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/* check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
580
		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
581 582 583 584 585 586 587 588 589 590 591
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
592
		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
593 594 595 596 597 598 599 600 601 602 603 604
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

605 606 607
static int __m_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
{
608
	struct m_can_classdev *cdev = netdev_priv(dev);
609 610
	unsigned int ecr;

611
	ecr = m_can_read(cdev, M_CAN_ECR);
612
	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
613
	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
614 615 616 617

	return 0;
}

618
static int m_can_clk_start(struct m_can_classdev *cdev)
619 620 621
{
	int err;

622
	if (cdev->pm_clock_support == 0)
623 624
		return 0;

625
	err = pm_runtime_get_sync(cdev->dev);
F
Faiz Abbas 已提交
626
	if (err < 0) {
627
		pm_runtime_put_noidle(cdev->dev);
F
Faiz Abbas 已提交
628 629
		return err;
	}
630

F
Faiz Abbas 已提交
631
	return 0;
632
}
633

634
static void m_can_clk_stop(struct m_can_classdev *cdev)
635
{
636 637
	if (cdev->pm_clock_support)
		pm_runtime_put_sync(cdev->dev);
638 639 640 641 642
}

static int m_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
643
	struct m_can_classdev *cdev = netdev_priv(dev);
644 645
	int err;

646
	err = m_can_clk_start(cdev);
647 648 649 650 651
	if (err)
		return err;

	__m_can_get_berr_counter(dev, bec);

652
	m_can_clk_stop(cdev);
653 654 655 656 657 658 659

	return 0;
}

static int m_can_handle_state_change(struct net_device *dev,
				     enum can_state new_state)
{
660
	struct m_can_classdev *cdev = netdev_priv(dev);
661 662 663 664 665 666 667
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;
	unsigned int ecr;

	switch (new_state) {
668
	case CAN_STATE_ERROR_WARNING:
669
		/* error warning state */
670 671
		cdev->can.can_stats.error_warning++;
		cdev->can.state = CAN_STATE_ERROR_WARNING;
672 673 674
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
675 676
		cdev->can.can_stats.error_passive++;
		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
677 678 679
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
680 681 682
		cdev->can.state = CAN_STATE_BUS_OFF;
		m_can_disable_all_interrupts(cdev);
		cdev->can.can_stats.bus_off++;
683 684 685 686 687 688 689 690 691 692 693
		can_bus_off(dev);
		break;
	default:
		break;
	}

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

694
	__m_can_get_berr_counter(dev, &bec);
695 696

	switch (new_state) {
697
	case CAN_STATE_ERROR_WARNING:
698 699 700 701 702 703 704 705 706 707 708
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
709
		ecr = m_can_read(cdev, M_CAN_ECR);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (ecr & ECR_RP)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
{
734
	struct m_can_classdev *cdev = netdev_priv(dev);
735 736
	int work_done = 0;

737
	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
738 739 740 741 742
		netdev_dbg(dev, "entered error warning state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_WARNING);
	}

743
	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
744
		netdev_dbg(dev, "entered error passive state\n");
745 746 747 748
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_PASSIVE);
	}

749
	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
750
		netdev_dbg(dev, "entered error bus off state\n");
751 752 753 754 755 756 757 758 759 760 761
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_BUS_OFF);
	}

	return work_done;
}

static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
{
	if (irqstatus & IR_WDI)
		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
762
	if (irqstatus & IR_ELO)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		netdev_err(dev, "Error Logging Overflow\n");
	if (irqstatus & IR_BEU)
		netdev_err(dev, "Bit Error Uncorrected\n");
	if (irqstatus & IR_BEC)
		netdev_err(dev, "Bit Error Corrected\n");
	if (irqstatus & IR_TOO)
		netdev_err(dev, "Timeout reached\n");
	if (irqstatus & IR_MRAF)
		netdev_err(dev, "Message RAM access failure occurred\n");
}

static inline bool is_lec_err(u32 psr)
{
	psr &= LEC_UNUSED;

	return psr && (psr != LEC_UNUSED);
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static inline bool m_can_is_protocol_err(u32 irqstatus)
{
	return irqstatus & IR_ERR_LEC_31X;
}

static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
{
	struct net_device_stats *stats = &dev->stats;
	struct m_can_classdev *cdev = netdev_priv(dev);
	struct can_frame *cf;
	struct sk_buff *skb;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);

	/* update tx error stats since there is protocol error */
	stats->tx_errors++;

	/* update arbitration lost status */
	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
		cdev->can.can_stats.arbitration_lost++;
		if (skb) {
			cf->can_id |= CAN_ERR_LOSTARB;
			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
		}
	}

	if (unlikely(!skb)) {
		netdev_dbg(dev, "allocation of skb failed\n");
		return 0;
	}
	netif_receive_skb(skb);

	return 1;
}

818 819 820
static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
				   u32 psr)
{
821
	struct m_can_classdev *cdev = netdev_priv(dev);
822 823 824 825 826 827
	int work_done = 0;

	if (irqstatus & IR_RF0L)
		work_done += m_can_handle_lost_msg(dev);

	/* handle lec errors on the bus */
828
	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
829 830 831
	    is_lec_err(psr))
		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);

832 833 834 835 836
	/* handle protocol errors in arbitration phase */
	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
	    m_can_is_protocol_err(irqstatus))
		work_done += m_can_handle_protocol_error(dev, irqstatus);

837 838 839 840 841 842
	/* other unproccessed error interrupts */
	m_can_handle_other_err(dev, irqstatus);

	return work_done;
}

843
static int m_can_rx_handler(struct net_device *dev, int quota)
844
{
845
	struct m_can_classdev *cdev = netdev_priv(dev);
846 847 848
	int work_done = 0;
	u32 irqstatus, psr;

849
	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
850 851 852
	if (!irqstatus)
		goto end;

853 854 855 856 857 858 859 860 861 862
	/* Errata workaround for issue "Needless activation of MRAF irq"
	 * During frame reception while the MCAN is in Error Passive state
	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
	 * it may happen that MCAN_IR.MRAF is set although there was no
	 * Message RAM access failure.
	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
	 * The Message RAM Access Failure interrupt routine needs to check
	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
	 * In this case, reset MCAN_IR.MRAF. No further action is required.
	 */
863 864
	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
865 866 867 868
		struct can_berr_counter bec;

		__m_can_get_berr_counter(dev, &bec);
		if (bec.rxerr == 127) {
869
			m_can_write(cdev, M_CAN_IR, IR_MRAF);
870 871 872 873
			irqstatus &= ~IR_MRAF;
		}
	}

874 875
	psr = m_can_read(cdev, M_CAN_PSR);

876 877 878
	if (irqstatus & IR_ERR_STATE)
		work_done += m_can_handle_state_errors(dev, psr);

879
	if (irqstatus & IR_ERR_BUS_30X)
880 881 882 883
		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);

	if (irqstatus & IR_RF0N)
		work_done += m_can_do_rx_poll(dev, (quota - work_done));
884 885 886
end:
	return work_done;
}
887

888 889
static int m_can_rx_peripheral(struct net_device *dev)
{
890
	struct m_can_classdev *cdev = netdev_priv(dev);
891 892 893

	m_can_rx_handler(dev, 1);

894
	m_can_enable_all_interrupts(cdev);
895 896 897 898 899 900 901

	return 0;
}

static int m_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
902
	struct m_can_classdev *cdev = netdev_priv(dev);
903 904 905
	int work_done;

	work_done = m_can_rx_handler(dev, quota);
906
	if (work_done < quota) {
907
		napi_complete_done(napi, work_done);
908
		m_can_enable_all_interrupts(cdev);
909 910 911 912 913
	}

	return work_done;
}

914 915 916 917 918 919 920 921
static void m_can_echo_tx_event(struct net_device *dev)
{
	u32 txe_count = 0;
	u32 m_can_txefs;
	u32 fgi = 0;
	int i = 0;
	unsigned int msg_mark;

922
	struct m_can_classdev *cdev = netdev_priv(dev);
923 924 925
	struct net_device_stats *stats = &dev->stats;

	/* read tx event fifo status */
926
	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
927 928 929 930 931 932 933 934

	/* Get Tx Event fifo element count */
	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
			>> TXEFS_EFFL_SHIFT;

	/* Get and process all sent elements */
	for (i = 0; i < txe_count; i++) {
		/* retrieve get index */
935
		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
936 937 938
			>> TXEFS_EFGI_SHIFT;

		/* get message marker */
939
		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
940 941 942
			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;

		/* ack txe element */
943
		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
944 945 946 947 948 949 950 951
						(fgi << TXEFA_EFAI_SHIFT)));

		/* update stats */
		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
		stats->tx_packets++;
	}
}

952 953 954
static irqreturn_t m_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
955
	struct m_can_classdev *cdev = netdev_priv(dev);
956 957 958
	struct net_device_stats *stats = &dev->stats;
	u32 ir;

959 960
	if (pm_runtime_suspended(cdev->dev))
		return IRQ_NONE;
961
	ir = m_can_read(cdev, M_CAN_IR);
962 963 964 965 966
	if (!ir)
		return IRQ_NONE;

	/* ACK all irqs */
	if (ir & IR_ALL_INT)
967
		m_can_write(cdev, M_CAN_IR, ir);
968

969 970
	if (cdev->ops->clear_interrupts)
		cdev->ops->clear_interrupts(cdev);
971

972 973 974 975 976
	/* schedule NAPI in case of
	 * - rx IRQ
	 * - state change IRQ
	 * - bus error IRQ and bus error reporting
	 */
977
	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
978 979 980 981
		cdev->irqstatus = ir;
		m_can_disable_all_interrupts(cdev);
		if (!cdev->is_peripheral)
			napi_schedule(&cdev->napi);
982 983
		else
			m_can_rx_peripheral(dev);
984 985
	}

986
	if (cdev->version == 30) {
987 988 989 990 991 992 993 994 995 996 997 998 999
		if (ir & IR_TC) {
			/* Transmission Complete Interrupt*/
			stats->tx_bytes += can_get_echo_skb(dev, 0);
			stats->tx_packets++;
			can_led_event(dev, CAN_LED_EVENT_TX);
			netif_wake_queue(dev);
		}
	} else  {
		if (ir & IR_TEFN) {
			/* New TX FIFO Element arrived */
			m_can_echo_tx_event(dev);
			can_led_event(dev, CAN_LED_EVENT_TX);
			if (netif_queue_stopped(dev) &&
1000
			    !m_can_tx_fifo_full(cdev))
1001 1002
				netif_wake_queue(dev);
		}
1003 1004 1005 1006 1007
	}

	return IRQ_HANDLED;
}

1008
static const struct can_bittiming_const m_can_bittiming_const_30X = {
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 64,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 1024,
	.brp_inc = 1,
};

1020
static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static const struct can_bittiming_const m_can_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 256,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 128,
	.sjw_max = 128,
	.brp_min = 1,
	.brp_max = 512,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 32,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

1056 1057
static int m_can_set_bittiming(struct net_device *dev)
{
1058 1059 1060
	struct m_can_classdev *cdev = netdev_priv(dev);
	const struct can_bittiming *bt = &cdev->can.bittiming;
	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1061 1062 1063 1064 1065 1066 1067
	u16 brp, sjw, tseg1, tseg2;
	u32 reg_btp;

	brp = bt->brp - 1;
	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
1068 1069
	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1070
	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1071

1072
	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1073
		reg_btp = 0;
1074 1075 1076 1077
		brp = dbt->brp - 1;
		sjw = dbt->sjw - 1;
		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
		tseg2 = dbt->phase_seg2 - 1;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
		 * This is mentioned in the "Bit Time Requirements for CAN FD"
		 * paper presented at the International CAN Conference 2013
		 */
		if (dbt->bitrate > 2500000) {
			u32 tdco, ssp;

			/* Use the same value of secondary sampling point
			 * as the data sampling point
			 */
			ssp = dbt->sample_point;

			/* Equation based on Bosch's M_CAN User Manual's
			 * Transmitter Delay Compensation Section
			 */
1094
			tdco = (cdev->can.clock.freq / 1000) *
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			       ssp / dbt->bitrate;

			/* Max valid TDCO value is 127 */
			if (tdco > 127) {
				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
					    tdco);
				tdco = 127;
			}

			reg_btp |= DBTP_TDC;
1105
			m_can_write(cdev, M_CAN_TDCR,
1106 1107 1108 1109 1110 1111 1112 1113
				    tdco << TDCR_TDCO_SHIFT);
		}

		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
			   (sjw << DBTP_DSJW_SHIFT) |
			   (tseg1 << DBTP_DTSEG1_SHIFT) |
			   (tseg2 << DBTP_DTSEG2_SHIFT);

1114
		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1115
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124

	return 0;
}

/* Configure M_CAN chip:
 * - set rx buffer/fifo element size
 * - configure rx fifo
 * - accept non-matching frame into fifo 0
 * - configure tx buffer
1125
 *		- >= v3.1.x: TX FIFO is used
1126 1127 1128 1129 1130
 * - configure mode
 * - setup bittiming
 */
static void m_can_chip_config(struct net_device *dev)
{
1131
	struct m_can_classdev *cdev = netdev_priv(dev);
1132 1133
	u32 cccr, test;

1134
	m_can_config_endisable(cdev, true);
1135

1136
	/* RX Buffer/FIFO Element Size 64 bytes data field */
1137
	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1138 1139

	/* Accept Non-matching Frames Into FIFO 0 */
1140
	m_can_write(cdev, M_CAN_GFC, 0x0);
1141

1142
	if (cdev->version == 30) {
1143
		/* only support one Tx Buffer currently */
1144 1145
		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
				cdev->mcfg[MRAM_TXB].off);
1146 1147
	} else {
		/* TX FIFO is used for newer IP Core versions */
1148 1149 1150
		m_can_write(cdev, M_CAN_TXBC,
			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
			    (cdev->mcfg[MRAM_TXB].off));
1151
	}
1152

1153
	/* support 64 bytes payload */
1154
	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1155

1156
	/* TX Event FIFO */
1157 1158 1159
	if (cdev->version == 30) {
		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
				cdev->mcfg[MRAM_TXE].off);
1160 1161
	} else {
		/* Full TX Event FIFO is used */
1162 1163
		m_can_write(cdev, M_CAN_TXEFC,
			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1164
			     & TXEFC_EFS_MASK) |
1165
			    cdev->mcfg[MRAM_TXE].off);
1166
	}
1167 1168

	/* rx fifo configuration, blocking mode, fifo size 1 */
1169 1170 1171
	m_can_write(cdev, M_CAN_RXF0C,
		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
		     cdev->mcfg[MRAM_RXF0].off);
1172

1173 1174 1175
	m_can_write(cdev, M_CAN_RXF1C,
		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
		     cdev->mcfg[MRAM_RXF1].off);
1176

1177 1178
	cccr = m_can_read(cdev, M_CAN_CCCR);
	test = m_can_read(cdev, M_CAN_TEST);
1179
	test &= ~TEST_LBCK;
1180
	if (cdev->version == 30) {
1181
	/* Version 3.0.x */
1182

1183
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1184 1185 1186
			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
			(CCCR_CME_MASK << CCCR_CME_SHIFT));

1187
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1188 1189 1190 1191
			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;

	} else {
	/* Version 3.1.x or 3.2.x */
1192
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1193
			  CCCR_NISO | CCCR_DAR);
1194 1195

		/* Only 3.2.x has NISO Bit implemented */
1196
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1197 1198
			cccr |= CCCR_NISO;

1199
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1200 1201
			cccr |= (CCCR_BRSE | CCCR_FDOE);
	}
1202

1203
	/* Loopback Mode */
1204
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1205
		cccr |= CCCR_TEST | CCCR_MON;
1206 1207 1208
		test |= TEST_LBCK;
	}

1209
	/* Enable Monitoring (all versions) */
1210
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1211
		cccr |= CCCR_MON;
1212

1213 1214 1215 1216
	/* Disable Auto Retransmission (all versions) */
	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
		cccr |= CCCR_DAR;

1217
	/* Write config */
1218 1219
	m_can_write(cdev, M_CAN_CCCR, cccr);
	m_can_write(cdev, M_CAN_TEST, test);
1220

1221
	/* Enable interrupts */
1222 1223 1224 1225
	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		if (cdev->version == 30)
			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1226 1227
				    ~(IR_ERR_LEC_30X));
		else
1228
			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1229
				    ~(IR_ERR_LEC_31X));
1230
	else
1231
		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1232 1233

	/* route all interrupts to INT0 */
1234
	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1235 1236 1237 1238

	/* set bittiming params */
	m_can_set_bittiming(dev);

1239
	m_can_config_endisable(cdev, false);
1240

1241 1242
	if (cdev->ops->init)
		cdev->ops->init(cdev);
1243 1244 1245 1246
}

static void m_can_start(struct net_device *dev)
{
1247
	struct m_can_classdev *cdev = netdev_priv(dev);
1248 1249 1250 1251

	/* basic m_can configuration */
	m_can_chip_config(dev);

1252
	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1253

1254
	m_can_enable_all_interrupts(cdev);
1255 1256 1257 1258 1259 1260
}

static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
1261
		m_can_clean(dev);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		m_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

1272 1273 1274 1275 1276
/* Checks core release number of M_CAN
 * returns 0 if an unsupported device is detected
 * else it returns the release and step coded as:
 * return value = 10 * <release> + 1 * <step>
 */
1277
static int m_can_check_core_release(struct m_can_classdev *cdev)
1278 1279 1280 1281 1282 1283 1284 1285 1286
{
	u32 crel_reg;
	u8 rel;
	u8 step;
	int res;

	/* Read Core Release Version and split into version number
	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
	 */
1287
	crel_reg = m_can_read(cdev, M_CAN_CREL);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);

	if (rel == 3) {
		/* M_CAN v3.x.y: create return value */
		res = 30 + step;
	} else {
		/* Unsupported M_CAN version */
		res = 0;
	}

	return res;
}

/* Selectable Non ISO support only in version 3.2.x
 * This function checks if the bit is writable.
 */
1305
static bool m_can_niso_supported(struct m_can_classdev *cdev)
1306
{
1307 1308 1309
	u32 cccr_reg, cccr_poll = 0;
	int niso_timeout = -ETIMEDOUT;
	int i;
1310

1311 1312
	m_can_config_endisable(cdev, true);
	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1313
	cccr_reg |= CCCR_NISO;
1314
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1315

1316
	for (i = 0; i <= 10; i++) {
1317
		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1318 1319 1320 1321 1322 1323 1324
		if (cccr_poll == cccr_reg) {
			niso_timeout = 0;
			break;
		}

		usleep_range(1, 5);
	}
1325 1326 1327

	/* Clear NISO */
	cccr_reg &= ~(CCCR_NISO);
1328
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1329

1330
	m_can_config_endisable(cdev, false);
1331 1332 1333 1334 1335

	/* return false if time out (-ETIMEDOUT), else return true */
	return !niso_timeout;
}

1336
static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1337
{
1338
	struct net_device *dev = m_can_dev->net;
1339 1340
	int m_can_version;

1341
	m_can_version = m_can_check_core_release(m_can_dev);
1342 1343
	/* return if unsupported version */
	if (!m_can_version) {
1344
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1345 1346
			m_can_version);
		return -EINVAL;
1347
	}
1348

1349 1350 1351
	if (!m_can_dev->is_peripheral)
		netif_napi_add(dev, &m_can_dev->napi,
			       m_can_poll, M_CAN_NAPI_WEIGHT);
1352

1353
	/* Shared properties of all M_CAN versions */
1354 1355 1356
	m_can_dev->version = m_can_version;
	m_can_dev->can.do_set_mode = m_can_set_mode;
	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1357

1358
	/* Set M_CAN supported operations */
1359
	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1360
					CAN_CTRLMODE_LISTENONLY |
1361
					CAN_CTRLMODE_BERR_REPORTING |
1362 1363
					CAN_CTRLMODE_FD |
					CAN_CTRLMODE_ONE_SHOT;
1364

1365
	/* Set properties depending on M_CAN version */
1366
	switch (m_can_dev->version) {
1367 1368 1369
	case 30:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1370 1371 1372 1373 1374 1375
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_30X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_30X;
1376 1377 1378 1379
		break;
	case 31:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1380 1381 1382 1383 1384 1385
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;
1386 1387
		break;
	case 32:
1388 1389 1390 1391 1392 1393 1394 1395 1396
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;

		m_can_dev->can.ctrlmode_supported |=
						(m_can_niso_supported(m_can_dev)
1397 1398 1399 1400
						? CAN_CTRLMODE_FD_NON_ISO
						: 0);
		break;
	default:
1401 1402
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
			m_can_dev->version);
1403
		return -EINVAL;
1404 1405
	}

1406 1407
	if (m_can_dev->ops->init)
		m_can_dev->ops->init(m_can_dev);
1408 1409 1410 1411 1412 1413

	return 0;
}

static void m_can_stop(struct net_device *dev)
{
1414
	struct m_can_classdev *cdev = netdev_priv(dev);
1415 1416

	/* disable all interrupts */
1417
	m_can_disable_all_interrupts(cdev);
1418

1419 1420 1421
	/* Set init mode to disengage from the network */
	m_can_config_endisable(cdev, true);

1422
	/* set the state as STOPPED */
1423
	cdev->can.state = CAN_STATE_STOPPED;
1424 1425 1426 1427
}

static int m_can_close(struct net_device *dev)
{
1428
	struct m_can_classdev *cdev = netdev_priv(dev);
1429 1430

	netif_stop_queue(dev);
1431 1432 1433 1434

	if (!cdev->is_peripheral)
		napi_disable(&cdev->napi);

1435
	m_can_stop(dev);
1436
	m_can_clk_stop(cdev);
1437
	free_irq(dev->irq, dev);
1438

1439 1440 1441 1442
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		destroy_workqueue(cdev->tx_wq);
		cdev->tx_wq = NULL;
1443 1444
	}

1445 1446 1447 1448 1449 1450
	close_candev(dev);
	can_led_event(dev, CAN_LED_EVENT_STOP);

	return 0;
}

1451 1452
static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
{
1453
	struct m_can_classdev *cdev = netdev_priv(dev);
1454
	/*get wrap around for loopback skb index */
1455
	unsigned int wrap = cdev->can.echo_skb_max;
1456 1457 1458 1459 1460 1461
	int next_idx;

	/* calculate next index */
	next_idx = (++putidx >= wrap ? 0 : putidx);

	/* check if occupied */
1462
	return !!cdev->can.echo_skb[next_idx];
1463 1464
}

1465
static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1466
{
1467 1468 1469
	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
	struct net_device *dev = cdev->net;
	struct sk_buff *skb = cdev->tx_skb;
1470
	u32 id, cccr, fdflags;
1471
	int i;
1472
	int putidx;
1473

1474 1475
	/* Generate ID field for TX buffer Element */
	/* Common to all supported M_CAN versions */
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (cf->can_id & CAN_EFF_FLAG) {
		id = cf->can_id & CAN_EFF_MASK;
		id |= TX_BUF_XTD;
	} else {
		id = ((cf->can_id & CAN_SFF_MASK) << 18);
	}

	if (cf->can_id & CAN_RTR_FLAG)
		id |= TX_BUF_RTR;

1486
	if (cdev->version == 30) {
1487 1488 1489
		netif_stop_queue(dev);

		/* message ram configuration */
1490 1491
		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1492
				 can_len2dlc(cf->len) << 16);
1493

1494
		for (i = 0; i < cf->len; i += 4)
1495
			m_can_fifo_write(cdev, 0,
1496 1497 1498 1499 1500
					 M_CAN_FIFO_DATA(i / 4),
					 *(u32 *)(cf->data + i));

		can_put_echo_skb(skb, dev, 0);

1501 1502
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
			cccr = m_can_read(cdev, M_CAN_CCCR);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
			if (can_is_canfd_skb(skb)) {
				if (cf->flags & CANFD_BRS)
					cccr |= CCCR_CMR_CANFD_BRS <<
						CCCR_CMR_SHIFT;
				else
					cccr |= CCCR_CMR_CANFD <<
						CCCR_CMR_SHIFT;
			} else {
				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
			}
1514
			m_can_write(cdev, M_CAN_CCCR, cccr);
1515
		}
1516 1517
		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1518 1519 1520 1521 1522
		/* End of xmit function for version 3.0.x */
	} else {
		/* Transmit routine for version >= v3.1.x */

		/* Check if FIFO full */
1523
		if (m_can_tx_fifo_full(cdev)) {
1524 1525 1526 1527
			/* This shouldn't happen */
			netif_stop_queue(dev);
			netdev_warn(dev,
				    "TX queue active although FIFO is full.");
1528 1529

			if (cdev->is_peripheral) {
1530 1531 1532 1533 1534 1535
				kfree_skb(skb);
				dev->stats.tx_dropped++;
				return NETDEV_TX_OK;
			} else {
				return NETDEV_TX_BUSY;
			}
1536
		}
1537

1538
		/* get put index for frame */
1539
		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1540 1541
				  >> TXFQS_TFQPI_SHIFT);
		/* Write ID Field to FIFO Element */
1542
		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1543

1544 1545
		/* get CAN FD configuration of frame */
		fdflags = 0;
1546
		if (can_is_canfd_skb(skb)) {
1547
			fdflags |= TX_BUF_FDF;
1548
			if (cf->flags & CANFD_BRS)
1549
				fdflags |= TX_BUF_BRS;
1550 1551
		}

1552 1553 1554 1555 1556
		/* Construct DLC Field. Also contains CAN-FD configuration
		 * use put index of fifo as message marker
		 * it is used in TX interrupt for
		 * sending the correct echo frame
		 */
1557
		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1558 1559 1560 1561 1562 1563
				 ((putidx << TX_BUF_MM_SHIFT) &
				  TX_BUF_MM_MASK) |
				 (can_len2dlc(cf->len) << 16) |
				 fdflags | TX_BUF_EFC);

		for (i = 0; i < cf->len; i += 4)
1564
			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1565 1566 1567 1568 1569 1570 1571 1572
					 *(u32 *)(cf->data + i));

		/* Push loopback echo.
		 * Will be looped back on TX interrupt based on message marker
		 */
		can_put_echo_skb(skb, dev, putidx);

		/* Enable TX FIFO element to start transfer  */
1573
		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1574 1575

		/* stop network queue if fifo full */
1576
		if (m_can_tx_fifo_full(cdev) ||
1577 1578
		    m_can_next_echo_skb_occupied(dev, putidx))
			netif_stop_queue(dev);
1579
	}
1580 1581 1582 1583

	return NETDEV_TX_OK;
}

1584 1585
static void m_can_tx_work_queue(struct work_struct *ws)
{
1586
	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1587
						tx_work);
1588 1589 1590

	m_can_tx_handler(cdev);
	cdev->tx_skb = NULL;
1591 1592 1593 1594 1595
}

static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
1596
	struct m_can_classdev *cdev = netdev_priv(dev);
1597 1598 1599 1600

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

1601 1602
	if (cdev->is_peripheral) {
		if (cdev->tx_skb) {
1603 1604 1605 1606
			netdev_err(dev, "hard_xmit called while tx busy\n");
			return NETDEV_TX_BUSY;
		}

1607
		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1608 1609 1610 1611 1612 1613 1614
			m_can_clean(dev);
		} else {
			/* Need to stop the queue to avoid numerous requests
			 * from being sent.  Suggested improvement is to create
			 * a queueing mechanism that will queue the skbs and
			 * process them in order.
			 */
1615 1616 1617
			cdev->tx_skb = skb;
			netif_stop_queue(cdev->net);
			queue_work(cdev->tx_wq, &cdev->tx_work);
1618 1619
		}
	} else {
1620 1621
		cdev->tx_skb = skb;
		return m_can_tx_handler(cdev);
1622 1623 1624 1625 1626 1627 1628
	}

	return NETDEV_TX_OK;
}

static int m_can_open(struct net_device *dev)
{
1629
	struct m_can_classdev *cdev = netdev_priv(dev);
1630 1631
	int err;

1632
	err = m_can_clk_start(cdev);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (err)
		return err;

	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
		goto exit_disable_clks;
	}

	/* register interrupt handler */
1644 1645 1646
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		cdev->tx_wq = alloc_workqueue("mcan_wq",
1647
					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1648
		if (!cdev->tx_wq) {
1649 1650 1651 1652
			err = -ENOMEM;
			goto out_wq_fail;
		}

1653
		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
					   dev->name, dev);
	} else {
		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
				  dev);
	}

	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

	/* start the m_can controller */
	m_can_start(dev);

	can_led_event(dev, CAN_LED_EVENT_OPEN);

1673 1674
	if (!cdev->is_peripheral)
		napi_enable(&cdev->napi);
1675 1676 1677 1678 1679 1680

	netif_start_queue(dev);

	return 0;

exit_irq_fail:
1681 1682
	if (cdev->is_peripheral)
		destroy_workqueue(cdev->tx_wq);
1683 1684 1685
out_wq_fail:
	close_candev(dev);
exit_disable_clks:
1686
	m_can_clk_stop(cdev);
1687 1688 1689
	return err;
}

1690 1691 1692 1693
static const struct net_device_ops m_can_netdev_ops = {
	.ndo_open = m_can_open,
	.ndo_stop = m_can_close,
	.ndo_start_xmit = m_can_start_xmit,
1694
	.ndo_change_mtu = can_change_mtu,
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
};

static int register_m_can_dev(struct net_device *dev)
{
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &m_can_netdev_ops;

	return register_candev(dev);
}

1705
static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1706
				const u32 *mram_config_vals)
1707
{
1708 1709 1710 1711 1712 1713 1714 1715
	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1716
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1717 1718 1719
	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1720
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1721 1722 1723 1724 1725 1726 1727 1728 1729
	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1730
			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1731

1732
	dev_dbg(cdev->dev,
1733
		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1734 1735 1736 1737 1738 1739 1740
		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1741 1742
}

1743
void m_can_init_ram(struct m_can_classdev *cdev)
1744
{
1745
	int end, i, start;
1746

1747 1748 1749
	/* initialize the entire Message RAM in use to avoid possible
	 * ECC/parity checksum errors when reading an uninitialized buffer
	 */
1750 1751 1752
	start = cdev->mcfg[MRAM_SIDF].off;
	end = cdev->mcfg[MRAM_TXB].off +
		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1753

1754
	for (i = start; i < end; i += 4)
1755
		m_can_fifo_write_no_off(cdev, i, 0x0);
1756 1757
}
EXPORT_SYMBOL_GPL(m_can_init_ram);
1758

1759
int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1760 1761
{
	int ret = 0;
1762

1763 1764
	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1765

1766 1767
	if (IS_ERR(m_can_dev->cclk)) {
		dev_err(m_can_dev->dev, "no clock found\n");
1768 1769 1770
		ret = -ENODEV;
	}

1771 1772 1773
	return ret;
}
EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1774

1775
struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1776
{
1777
	struct m_can_classdev *class_dev = NULL;
1778 1779 1780 1781 1782 1783 1784 1785 1786
	u32 mram_config_vals[MRAM_CFG_LEN];
	struct net_device *net_dev;
	u32 tx_fifo_size;
	int ret;

	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
					     "bosch,mram-cfg",
					     mram_config_vals,
					     sizeof(mram_config_vals) / 4);
1787
	if (ret) {
1788 1789
		dev_err(dev, "Could not get Message RAM configuration.");
		goto out;
1790 1791 1792 1793 1794 1795 1796 1797
	}

	/* Get TX FIFO size
	 * Defines the total amount of echo buffers for loopback
	 */
	tx_fifo_size = mram_config_vals[7];

	/* allocate the m_can device */
1798 1799 1800 1801
	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
	if (!net_dev) {
		dev_err(dev, "Failed to allocate CAN device");
		goto out;
1802
	}
1803

1804 1805
	class_dev = netdev_priv(net_dev);
	if (!class_dev) {
1806
		dev_err(dev, "Failed to init netdev cdevate");
1807 1808
		goto out;
	}
1809

1810 1811 1812
	class_dev->net = net_dev;
	class_dev->dev = dev;
	SET_NETDEV_DEV(net_dev, dev);
1813

1814 1815 1816 1817 1818 1819
	m_can_of_parse_mram(class_dev, mram_config_vals);
out:
	return class_dev;
}
EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);

1820 1821 1822 1823 1824 1825
void m_can_class_free_dev(struct net_device *net)
{
	free_candev(net);
}
EXPORT_SYMBOL_GPL(m_can_class_free_dev);

1826
int m_can_class_register(struct m_can_classdev *m_can_dev)
1827 1828
{
	int ret;
F
Faiz Abbas 已提交
1829

1830 1831 1832 1833 1834 1835 1836 1837
	if (m_can_dev->pm_clock_support) {
		pm_runtime_enable(m_can_dev->dev);
		ret = m_can_clk_start(m_can_dev);
		if (ret)
			goto pm_runtime_fail;
	}

	ret = m_can_dev_setup(m_can_dev);
F
Faiz Abbas 已提交
1838 1839 1840
	if (ret)
		goto clk_disable;

1841
	ret = register_m_can_dev(m_can_dev->net);
1842
	if (ret) {
1843 1844
		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
			m_can_dev->net->name, ret);
F
Faiz Abbas 已提交
1845
		goto clk_disable;
1846 1847
	}

1848
	devm_can_led_init(m_can_dev->net);
1849

1850
	of_can_transceiver(m_can_dev->net);
1851

1852 1853
	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1854

1855 1856 1857
	/* Probe finished
	 * Stop clocks. They will be reactivated once the M_CAN device is opened
	 */
F
Faiz Abbas 已提交
1858
clk_disable:
1859
	m_can_clk_stop(m_can_dev);
F
Faiz Abbas 已提交
1860 1861
pm_runtime_fail:
	if (ret) {
1862 1863
		if (m_can_dev->pm_clock_support)
			pm_runtime_disable(m_can_dev->dev);
F
Faiz Abbas 已提交
1864
	}
1865

1866 1867
	return ret;
}
1868
EXPORT_SYMBOL_GPL(m_can_class_register);
1869

1870
int m_can_class_suspend(struct device *dev)
1871 1872
{
	struct net_device *ndev = dev_get_drvdata(dev);
1873
	struct m_can_classdev *cdev = netdev_priv(ndev);
1874 1875 1876 1877

	if (netif_running(ndev)) {
		netif_stop_queue(ndev);
		netif_device_detach(ndev);
1878
		m_can_stop(ndev);
1879
		m_can_clk_stop(cdev);
1880 1881
	}

1882 1883
	pinctrl_pm_select_sleep_state(dev);

1884
	cdev->can.state = CAN_STATE_SLEEPING;
1885 1886 1887

	return 0;
}
1888
EXPORT_SYMBOL_GPL(m_can_class_suspend);
1889

1890
int m_can_class_resume(struct device *dev)
1891 1892
{
	struct net_device *ndev = dev_get_drvdata(dev);
1893
	struct m_can_classdev *cdev = netdev_priv(ndev);
1894

1895 1896
	pinctrl_pm_select_default_state(dev);

1897
	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1898 1899

	if (netif_running(ndev)) {
1900 1901
		int ret;

1902
		ret = m_can_clk_start(cdev);
1903 1904 1905
		if (ret)
			return ret;

1906
		m_can_init_ram(cdev);
1907
		m_can_start(ndev);
1908 1909 1910 1911 1912 1913
		netif_device_attach(ndev);
		netif_start_queue(ndev);
	}

	return 0;
}
1914
EXPORT_SYMBOL_GPL(m_can_class_resume);
1915

1916
void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1917
{
1918
	unregister_candev(m_can_dev->net);
1919

1920
	m_can_clk_stop(m_can_dev);
F
Faiz Abbas 已提交
1921
}
1922
EXPORT_SYMBOL_GPL(m_can_class_unregister);
1923 1924

MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1925
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1926 1927
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");