m_can.c 46.4 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
// CAN bus driver for Bosch M_CAN controller
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//      Dong Aisheng <b29396@freescale.com>
// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/

/* Bosch M_CAN user manual can be obtained from:
8 9 10 11 12 13 14 15 16 17 18 19
 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
 * mcan_users_manual_v302.pdf
 */

#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
F
Faiz Abbas 已提交
20
#include <linux/pm_runtime.h>
21
#include <linux/iopoll.h>
22
#include <linux/can/dev.h>
23
#include <linux/pinctrl/consumer.h>
24

25
#include "m_can.h"
26 27 28 29 30 31

/* registers definition */
enum m_can_reg {
	M_CAN_CREL	= 0x0,
	M_CAN_ENDN	= 0x4,
	M_CAN_CUST	= 0x8,
32
	M_CAN_DBTP	= 0xc,
33 34 35
	M_CAN_TEST	= 0x10,
	M_CAN_RWD	= 0x14,
	M_CAN_CCCR	= 0x18,
36
	M_CAN_NBTP	= 0x1c,
37 38 39 40 41 42
	M_CAN_TSCC	= 0x20,
	M_CAN_TSCV	= 0x24,
	M_CAN_TOCC	= 0x28,
	M_CAN_TOCV	= 0x2c,
	M_CAN_ECR	= 0x40,
	M_CAN_PSR	= 0x44,
43 44
/* TDCR Register only available for version >=3.1.x */
	M_CAN_TDCR	= 0x48,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	M_CAN_IR	= 0x50,
	M_CAN_IE	= 0x54,
	M_CAN_ILS	= 0x58,
	M_CAN_ILE	= 0x5c,
	M_CAN_GFC	= 0x80,
	M_CAN_SIDFC	= 0x84,
	M_CAN_XIDFC	= 0x88,
	M_CAN_XIDAM	= 0x90,
	M_CAN_HPMS	= 0x94,
	M_CAN_NDAT1	= 0x98,
	M_CAN_NDAT2	= 0x9c,
	M_CAN_RXF0C	= 0xa0,
	M_CAN_RXF0S	= 0xa4,
	M_CAN_RXF0A	= 0xa8,
	M_CAN_RXBC	= 0xac,
	M_CAN_RXF1C	= 0xb0,
	M_CAN_RXF1S	= 0xb4,
	M_CAN_RXF1A	= 0xb8,
	M_CAN_RXESC	= 0xbc,
	M_CAN_TXBC	= 0xc0,
	M_CAN_TXFQS	= 0xc4,
	M_CAN_TXESC	= 0xc8,
	M_CAN_TXBRP	= 0xcc,
	M_CAN_TXBAR	= 0xd0,
	M_CAN_TXBCR	= 0xd4,
	M_CAN_TXBTO	= 0xd8,
	M_CAN_TXBCF	= 0xdc,
	M_CAN_TXBTIE	= 0xe0,
	M_CAN_TXBCIE	= 0xe4,
	M_CAN_TXEFC	= 0xf0,
	M_CAN_TXEFS	= 0xf4,
	M_CAN_TXEFA	= 0xf8,
};

79 80
/* napi related */
#define M_CAN_NAPI_WEIGHT	64
81

82 83
/* message ram configuration data length */
#define MRAM_CFG_LEN	8
84

85 86 87 88 89 90 91 92
/* Core Release Register (CREL) */
#define CREL_REL_SHIFT		28
#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
#define CREL_STEP_SHIFT		24
#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
#define CREL_SUBSTEP_SHIFT	20
#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)

93 94 95 96 97 98 99 100 101 102
/* Data Bit Timing & Prescaler Register (DBTP) */
#define DBTP_TDC		BIT(23)
#define DBTP_DBRP_SHIFT		16
#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
#define DBTP_DTSEG1_SHIFT	8
#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
#define DBTP_DTSEG2_SHIFT	4
#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
#define DBTP_DSJW_SHIFT		0
#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103

104 105 106 107 108 109
/* Transmitter Delay Compensation Register (TDCR) */
#define TDCR_TDCO_SHIFT		8
#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
#define TDCR_TDCF_SHIFT		0
#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)

110
/* Test Register (TEST) */
111
#define TEST_LBCK		BIT(4)
112 113

/* CC Control Register(CCCR) */
114 115 116 117 118 119 120 121 122 123
#define CCCR_CMR_MASK		0x3
#define CCCR_CMR_SHIFT		10
#define CCCR_CMR_CANFD		0x1
#define CCCR_CMR_CANFD_BRS	0x2
#define CCCR_CMR_CAN		0x3
#define CCCR_CME_MASK		0x3
#define CCCR_CME_SHIFT		8
#define CCCR_CME_CAN		0
#define CCCR_CME_CANFD		0x1
#define CCCR_CME_CANFD_BRS	0x2
124
#define CCCR_TXP		BIT(14)
125
#define CCCR_TEST		BIT(7)
126
#define CCCR_DAR		BIT(6)
127
#define CCCR_MON		BIT(5)
128 129 130
#define CCCR_CSR		BIT(4)
#define CCCR_CSA		BIT(3)
#define CCCR_ASM		BIT(2)
131 132 133
#define CCCR_CCE		BIT(1)
#define CCCR_INIT		BIT(0)
#define CCCR_CANFD		0x10
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* for version >=3.1.x */
#define CCCR_EFBI		BIT(13)
#define CCCR_PXHD		BIT(12)
#define CCCR_BRSE		BIT(9)
#define CCCR_FDOE		BIT(8)
/* only for version >=3.2.x */
#define CCCR_NISO		BIT(15)

/* Nominal Bit Timing & Prescaler Register (NBTP) */
#define NBTP_NSJW_SHIFT		25
#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
#define NBTP_NBRP_SHIFT		16
#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
#define NBTP_NTSEG1_SHIFT	8
#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
#define NBTP_NTSEG2_SHIFT	0
#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

/* Error Counter Register(ECR) */
#define ECR_RP			BIT(15)
#define ECR_REC_SHIFT		8
#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
#define ECR_TEC_SHIFT		0
#define ECR_TEC_MASK		0xff

/* Protocol Status Register(PSR) */
#define PSR_BO		BIT(7)
#define PSR_EW		BIT(6)
#define PSR_EP		BIT(5)
#define PSR_LEC_MASK	0x7

/* Interrupt Register(IR) */
#define IR_ALL_INT	0xffffffff
167 168 169 170 171 172 173

/* Renamed bits for versions > 3.1.x */
#define IR_ARA		BIT(29)
#define IR_PED		BIT(28)
#define IR_PEA		BIT(27)

/* Bits for version 3.0.x */
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#define IR_STE		BIT(31)
#define IR_FOE		BIT(30)
#define IR_ACKE		BIT(29)
#define IR_BE		BIT(28)
#define IR_CRCE		BIT(27)
#define IR_WDI		BIT(26)
#define IR_BO		BIT(25)
#define IR_EW		BIT(24)
#define IR_EP		BIT(23)
#define IR_ELO		BIT(22)
#define IR_BEU		BIT(21)
#define IR_BEC		BIT(20)
#define IR_DRX		BIT(19)
#define IR_TOO		BIT(18)
#define IR_MRAF		BIT(17)
#define IR_TSW		BIT(16)
#define IR_TEFL		BIT(15)
#define IR_TEFF		BIT(14)
#define IR_TEFW		BIT(13)
#define IR_TEFN		BIT(12)
#define IR_TFE		BIT(11)
#define IR_TCF		BIT(10)
#define IR_TC		BIT(9)
#define IR_HPM		BIT(8)
#define IR_RF1L		BIT(7)
#define IR_RF1F		BIT(6)
#define IR_RF1W		BIT(5)
#define IR_RF1N		BIT(4)
#define IR_RF0L		BIT(3)
#define IR_RF0F		BIT(2)
#define IR_RF0W		BIT(1)
#define IR_RF0N		BIT(0)
#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
207 208 209 210 211 212 213 214 215 216

/* Interrupts for version 3.0.x */
#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
/* Interrupts for version >= 3.1.x */
#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
217 218
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
219
#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
220 221 222 223 224 225 226

/* Interrupt Line Select (ILS) */
#define ILS_ALL_INT0	0x0
#define ILS_ALL_INT1	0xFFFFFFFF

/* Interrupt Line Enable (ILE) */
#define ILE_EINT1	BIT(1)
227
#define ILE_EINT0	BIT(0)
228 229

/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
230
#define RXFC_FWM_SHIFT	24
231
#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
232 233
#define RXFC_FS_SHIFT	16
#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
234 235 236 237

/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
#define RXFS_RFL	BIT(25)
#define RXFS_FF		BIT(24)
238
#define RXFS_FPI_SHIFT	16
239
#define RXFS_FPI_MASK	0x3f0000
240
#define RXFS_FGI_SHIFT	8
241 242 243 244 245
#define RXFS_FGI_MASK	0x3f00
#define RXFS_FFL_MASK	0x7f

/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
#define M_CAN_RXESC_8BYTES	0x0
246
#define M_CAN_RXESC_64BYTES	0x777
247 248

/* Tx Buffer Configuration(TXBC) */
249 250 251 252 253 254 255 256 257 258 259 260 261
#define TXBC_NDTB_SHIFT		16
#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
#define TXBC_TFQS_SHIFT		24
#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)

/* Tx FIFO/Queue Status (TXFQS) */
#define TXFQS_TFQF		BIT(21)
#define TXFQS_TFQPI_SHIFT	16
#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
#define TXFQS_TFGI_SHIFT	8
#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
#define TXFQS_TFFL_SHIFT	0
#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
262 263 264

/* Tx Buffer Element Size Configuration(TXESC) */
#define TXESC_TBDS_8BYTES	0x0
265
#define TXESC_TBDS_64BYTES	0x7
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* Tx Event FIFO Configuration (TXEFC) */
#define TXEFC_EFS_SHIFT		16
#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)

/* Tx Event FIFO Status (TXEFS) */
#define TXEFS_TEFL		BIT(25)
#define TXEFS_EFF		BIT(24)
#define TXEFS_EFGI_SHIFT	8
#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
#define TXEFS_EFFL_SHIFT	0
#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)

/* Tx Event FIFO Acknowledge (TXEFA) */
#define TXEFA_EFAI_SHIFT	0
#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
282 283 284 285

/* Message RAM Configuration (in bytes) */
#define SIDF_ELEMENT_SIZE	4
#define XIDF_ELEMENT_SIZE	8
286 287
#define RXF0_ELEMENT_SIZE	72
#define RXF1_ELEMENT_SIZE	72
288
#define RXB_ELEMENT_SIZE	72
289
#define TXE_ELEMENT_SIZE	8
290
#define TXB_ELEMENT_SIZE	72
291 292 293 294 295 296 297

/* Message RAM Elements */
#define M_CAN_FIFO_ID		0x0
#define M_CAN_FIFO_DLC		0x4
#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))

/* Rx Buffer Element */
298
/* R0 */
299 300 301
#define RX_BUF_ESI		BIT(31)
#define RX_BUF_XTD		BIT(30)
#define RX_BUF_RTR		BIT(29)
302 303
/* R1 */
#define RX_BUF_ANMF		BIT(31)
304
#define RX_BUF_FDF		BIT(21)
305
#define RX_BUF_BRS		BIT(20)
306 307

/* Tx Buffer Element */
308 309
/* T0 */
#define TX_BUF_ESI		BIT(31)
310 311
#define TX_BUF_XTD		BIT(30)
#define TX_BUF_RTR		BIT(29)
312 313 314 315 316 317
/* T1 */
#define TX_BUF_EFC		BIT(23)
#define TX_BUF_FDF		BIT(21)
#define TX_BUF_BRS		BIT(20)
#define TX_BUF_MM_SHIFT		24
#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
318

319 320 321 322 323
/* Tx event FIFO Element */
/* E1 */
#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)

324
static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325
{
326
	return cdev->ops->read_reg(cdev, reg);
327
}
328

329
static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330
			       u32 val)
331
{
332
	cdev->ops->write_reg(cdev, reg, val);
333 334
}

335
static u32 m_can_fifo_read(struct m_can_classdev *cdev,
336
			   u32 fgi, unsigned int offset)
337
{
338
	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 340
			  offset;

341
	return cdev->ops->read_fifo(cdev, addr_offset);
342 343
}

344
static void m_can_fifo_write(struct m_can_classdev *cdev,
345
			     u32 fpi, unsigned int offset, u32 val)
346
{
347
	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348 349
			  offset;

350
	cdev->ops->write_fifo(cdev, addr_offset, val);
351 352
}

353
static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
354
					   u32 fpi, u32 val)
355
{
356
	cdev->ops->write_fifo(cdev, fpi, val);
357 358
}

359
static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
360
{
361
	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362 363
			  offset;

364
	return cdev->ops->read_fifo(cdev, addr_offset);
365 366
}

367
static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368
{
369
		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370 371
}

372
void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373
{
374
	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375 376 377
	u32 timeout = 10;
	u32 val = 0;

378 379 380 381
	/* Clear the Clock stop request if it was set */
	if (cccr & CCCR_CSR)
		cccr &= ~CCCR_CSR;

382
	if (enable) {
383 384 385 386
		/* Clear the Clock stop request if it was set */
		if (cccr & CCCR_CSR)
			cccr &= ~CCCR_CSR;

387
		/* enable m_can configuration */
388
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
389
		udelay(5);
390
		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
391
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
392
	} else {
393
		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
394 395 396 397 398 399
	}

	/* there's a delay for module initialization */
	if (enable)
		val = CCCR_INIT | CCCR_CCE;

400
	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
401
		if (timeout == 0) {
402
			netdev_warn(cdev->net, "Failed to init module\n");
403 404 405 406 407 408 409
			return;
		}
		timeout--;
		udelay(1);
	}
}

410
static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
411
{
412
	/* Only interrupt line 0 is used in this driver */
413
	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
414 415
}

416
static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
417
{
418
	m_can_write(cdev, M_CAN_ILE, 0x0);
419 420
}

421 422
static void m_can_clean(struct net_device *net)
{
423
	struct m_can_classdev *cdev = netdev_priv(net);
424

425
	if (cdev->tx_skb) {
426 427 428
		int putidx = 0;

		net->stats.tx_errors++;
429 430
		if (cdev->version > 30)
			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
431 432
				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);

433 434
		can_free_echo_skb(cdev->net, putidx);
		cdev->tx_skb = NULL;
435 436 437
	}
}

438
static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
439
{
440
	struct net_device_stats *stats = &dev->stats;
441
	struct m_can_classdev *cdev = netdev_priv(dev);
442 443
	struct canfd_frame *cf;
	struct sk_buff *skb;
444
	u32 id, fgi, dlc;
445
	int i;
446 447

	/* calculate the fifo get index for where to read data */
448
	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
449
	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
450
	if (dlc & RX_BUF_FDF)
451 452 453 454 455 456 457 458
		skb = alloc_canfd_skb(dev, &cf);
	else
		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
	if (!skb) {
		stats->rx_dropped++;
		return;
	}

459
	if (dlc & RX_BUF_FDF)
460 461 462 463
		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
	else
		cf->len = get_can_dlc((dlc >> 16) & 0x0F);

464
	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
465 466 467 468 469
	if (id & RX_BUF_XTD)
		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		cf->can_id = (id >> 18) & CAN_SFF_MASK;

470 471 472 473
	if (id & RX_BUF_ESI) {
		cf->flags |= CANFD_ESI;
		netdev_dbg(dev, "ESI Error\n");
	}
474

475
	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
476 477
		cf->can_id |= CAN_RTR_FLAG;
	} else {
478 479 480 481 482
		if (dlc & RX_BUF_BRS)
			cf->flags |= CANFD_BRS;

		for (i = 0; i < cf->len; i += 4)
			*(u32 *)(cf->data + i) =
483
				m_can_fifo_read(cdev, fgi,
484
						M_CAN_FIFO_DATA(i / 4));
485 486 487
	}

	/* acknowledge rx fifo 0 */
488
	m_can_write(cdev, M_CAN_RXF0A, fgi);
489 490 491 492 493

	stats->rx_packets++;
	stats->rx_bytes += cf->len;

	netif_receive_skb(skb);
494 495 496 497
}

static int m_can_do_rx_poll(struct net_device *dev, int quota)
{
498
	struct m_can_classdev *cdev = netdev_priv(dev);
499 500 501
	u32 pkts = 0;
	u32 rxfs;

502
	rxfs = m_can_read(cdev, M_CAN_RXF0S);
503 504 505 506 507 508 509 510 511
	if (!(rxfs & RXFS_FFL_MASK)) {
		netdev_dbg(dev, "no messages in fifo0\n");
		return 0;
	}

	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
		if (rxfs & RXFS_RFL)
			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");

512
		m_can_read_fifo(dev, rxfs);
513 514 515

		quota--;
		pkts++;
516
		rxfs = m_can_read(cdev, M_CAN_RXF0S);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	}

	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

	return pkts;
}

static int m_can_handle_lost_msg(struct net_device *dev)
{
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	netdev_err(dev, "msg lost in rxf0\n");

	stats->rx_errors++;
	stats->rx_over_errors++;

	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return 0;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_lec_err(struct net_device *dev,
				enum m_can_lec_type lec_type)
{
551
	struct m_can_classdev *cdev = netdev_priv(dev);
552 553 554 555
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

556
	cdev->can.can_stats.bus_error++;
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	stats->rx_errors++;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/* check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
580
		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
581 582 583 584 585 586 587 588 589 590 591
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
592
		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
593 594 595 596 597 598 599 600 601 602 603 604
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

605 606 607
static int __m_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
{
608
	struct m_can_classdev *cdev = netdev_priv(dev);
609 610
	unsigned int ecr;

611
	ecr = m_can_read(cdev, M_CAN_ECR);
612
	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
613
	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
614 615 616 617

	return 0;
}

618
static int m_can_clk_start(struct m_can_classdev *cdev)
619 620 621
{
	int err;

622
	if (cdev->pm_clock_support == 0)
623 624
		return 0;

625
	err = pm_runtime_get_sync(cdev->dev);
F
Faiz Abbas 已提交
626
	if (err < 0) {
627
		pm_runtime_put_noidle(cdev->dev);
F
Faiz Abbas 已提交
628 629
		return err;
	}
630

F
Faiz Abbas 已提交
631
	return 0;
632
}
633

634
static void m_can_clk_stop(struct m_can_classdev *cdev)
635
{
636 637
	if (cdev->pm_clock_support)
		pm_runtime_put_sync(cdev->dev);
638 639 640 641 642
}

static int m_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
643
	struct m_can_classdev *cdev = netdev_priv(dev);
644 645
	int err;

646
	err = m_can_clk_start(cdev);
647 648 649 650 651
	if (err)
		return err;

	__m_can_get_berr_counter(dev, bec);

652
	m_can_clk_stop(cdev);
653 654 655 656 657 658 659

	return 0;
}

static int m_can_handle_state_change(struct net_device *dev,
				     enum can_state new_state)
{
660
	struct m_can_classdev *cdev = netdev_priv(dev);
661 662 663 664 665 666 667 668 669
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;
	unsigned int ecr;

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
670 671
		cdev->can.can_stats.error_warning++;
		cdev->can.state = CAN_STATE_ERROR_WARNING;
672 673 674
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
675 676
		cdev->can.can_stats.error_passive++;
		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
677 678 679
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
680 681 682
		cdev->can.state = CAN_STATE_BUS_OFF;
		m_can_disable_all_interrupts(cdev);
		cdev->can.can_stats.bus_off++;
683 684 685 686 687 688 689 690 691 692 693
		can_bus_off(dev);
		break;
	default:
		break;
	}

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

694
	__m_can_get_berr_counter(dev, &bec);
695 696 697 698 699 700 701 702 703 704 705 706 707 708

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
709
		ecr = m_can_read(cdev, M_CAN_ECR);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (ecr & ECR_RP)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
{
734
	struct m_can_classdev *cdev = netdev_priv(dev);
735 736
	int work_done = 0;

737
	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
738 739 740 741 742
		netdev_dbg(dev, "entered error warning state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_WARNING);
	}

743
	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
744
		netdev_dbg(dev, "entered error passive state\n");
745 746 747 748
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_PASSIVE);
	}

749
	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
750
		netdev_dbg(dev, "entered error bus off state\n");
751 752 753 754 755 756 757 758 759 760 761
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_BUS_OFF);
	}

	return work_done;
}

static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
{
	if (irqstatus & IR_WDI)
		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
762
	if (irqstatus & IR_ELO)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
		netdev_err(dev, "Error Logging Overflow\n");
	if (irqstatus & IR_BEU)
		netdev_err(dev, "Bit Error Uncorrected\n");
	if (irqstatus & IR_BEC)
		netdev_err(dev, "Bit Error Corrected\n");
	if (irqstatus & IR_TOO)
		netdev_err(dev, "Timeout reached\n");
	if (irqstatus & IR_MRAF)
		netdev_err(dev, "Message RAM access failure occurred\n");
}

static inline bool is_lec_err(u32 psr)
{
	psr &= LEC_UNUSED;

	return psr && (psr != LEC_UNUSED);
}

static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
				   u32 psr)
{
784
	struct m_can_classdev *cdev = netdev_priv(dev);
785 786 787 788 789 790
	int work_done = 0;

	if (irqstatus & IR_RF0L)
		work_done += m_can_handle_lost_msg(dev);

	/* handle lec errors on the bus */
791
	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
792 793 794 795 796 797 798 799 800
	    is_lec_err(psr))
		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);

	/* other unproccessed error interrupts */
	m_can_handle_other_err(dev, irqstatus);

	return work_done;
}

801
static int m_can_rx_handler(struct net_device *dev, int quota)
802
{
803
	struct m_can_classdev *cdev = netdev_priv(dev);
804 805 806
	int work_done = 0;
	u32 irqstatus, psr;

807
	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
808 809 810
	if (!irqstatus)
		goto end;

811 812 813 814 815 816 817 818 819 820
	/* Errata workaround for issue "Needless activation of MRAF irq"
	 * During frame reception while the MCAN is in Error Passive state
	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
	 * it may happen that MCAN_IR.MRAF is set although there was no
	 * Message RAM access failure.
	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
	 * The Message RAM Access Failure interrupt routine needs to check
	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
	 * In this case, reset MCAN_IR.MRAF. No further action is required.
	 */
821 822
	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
823 824 825 826
		struct can_berr_counter bec;

		__m_can_get_berr_counter(dev, &bec);
		if (bec.rxerr == 127) {
827
			m_can_write(cdev, M_CAN_IR, IR_MRAF);
828 829 830 831
			irqstatus &= ~IR_MRAF;
		}
	}

832 833
	psr = m_can_read(cdev, M_CAN_PSR);

834 835 836
	if (irqstatus & IR_ERR_STATE)
		work_done += m_can_handle_state_errors(dev, psr);

837
	if (irqstatus & IR_ERR_BUS_30X)
838 839 840 841
		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);

	if (irqstatus & IR_RF0N)
		work_done += m_can_do_rx_poll(dev, (quota - work_done));
842 843 844
end:
	return work_done;
}
845

846 847
static int m_can_rx_peripheral(struct net_device *dev)
{
848
	struct m_can_classdev *cdev = netdev_priv(dev);
849 850 851

	m_can_rx_handler(dev, 1);

852
	m_can_enable_all_interrupts(cdev);
853 854 855 856 857 858 859

	return 0;
}

static int m_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
860
	struct m_can_classdev *cdev = netdev_priv(dev);
861 862 863
	int work_done;

	work_done = m_can_rx_handler(dev, quota);
864
	if (work_done < quota) {
865
		napi_complete_done(napi, work_done);
866
		m_can_enable_all_interrupts(cdev);
867 868 869 870 871
	}

	return work_done;
}

872 873 874 875 876 877 878 879
static void m_can_echo_tx_event(struct net_device *dev)
{
	u32 txe_count = 0;
	u32 m_can_txefs;
	u32 fgi = 0;
	int i = 0;
	unsigned int msg_mark;

880
	struct m_can_classdev *cdev = netdev_priv(dev);
881 882 883
	struct net_device_stats *stats = &dev->stats;

	/* read tx event fifo status */
884
	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
885 886 887 888 889 890 891 892

	/* Get Tx Event fifo element count */
	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
			>> TXEFS_EFFL_SHIFT;

	/* Get and process all sent elements */
	for (i = 0; i < txe_count; i++) {
		/* retrieve get index */
893
		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
894 895 896
			>> TXEFS_EFGI_SHIFT;

		/* get message marker */
897
		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
898 899 900
			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;

		/* ack txe element */
901
		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
902 903 904 905 906 907 908 909
						(fgi << TXEFA_EFAI_SHIFT)));

		/* update stats */
		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
		stats->tx_packets++;
	}
}

910 911 912
static irqreturn_t m_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
913
	struct m_can_classdev *cdev = netdev_priv(dev);
914 915 916
	struct net_device_stats *stats = &dev->stats;
	u32 ir;

917
	ir = m_can_read(cdev, M_CAN_IR);
918 919 920 921 922
	if (!ir)
		return IRQ_NONE;

	/* ACK all irqs */
	if (ir & IR_ALL_INT)
923
		m_can_write(cdev, M_CAN_IR, ir);
924

925 926
	if (cdev->ops->clear_interrupts)
		cdev->ops->clear_interrupts(cdev);
927

928 929 930 931 932
	/* schedule NAPI in case of
	 * - rx IRQ
	 * - state change IRQ
	 * - bus error IRQ and bus error reporting
	 */
933
	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
934 935 936 937
		cdev->irqstatus = ir;
		m_can_disable_all_interrupts(cdev);
		if (!cdev->is_peripheral)
			napi_schedule(&cdev->napi);
938 939
		else
			m_can_rx_peripheral(dev);
940 941
	}

942
	if (cdev->version == 30) {
943 944 945 946 947 948 949 950 951 952 953 954 955
		if (ir & IR_TC) {
			/* Transmission Complete Interrupt*/
			stats->tx_bytes += can_get_echo_skb(dev, 0);
			stats->tx_packets++;
			can_led_event(dev, CAN_LED_EVENT_TX);
			netif_wake_queue(dev);
		}
	} else  {
		if (ir & IR_TEFN) {
			/* New TX FIFO Element arrived */
			m_can_echo_tx_event(dev);
			can_led_event(dev, CAN_LED_EVENT_TX);
			if (netif_queue_stopped(dev) &&
956
			    !m_can_tx_fifo_full(cdev))
957 958
				netif_wake_queue(dev);
		}
959 960 961 962 963
	}

	return IRQ_HANDLED;
}

964
static const struct can_bittiming_const m_can_bittiming_const_30X = {
965 966 967 968 969 970 971 972 973 974 975
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 64,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 1024,
	.brp_inc = 1,
};

976
static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
977 978 979 980 981 982 983 984 985 986 987
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static const struct can_bittiming_const m_can_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 256,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 128,
	.sjw_max = 128,
	.brp_min = 1,
	.brp_max = 512,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 32,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

1012 1013
static int m_can_set_bittiming(struct net_device *dev)
{
1014 1015 1016
	struct m_can_classdev *cdev = netdev_priv(dev);
	const struct can_bittiming *bt = &cdev->can.bittiming;
	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1017 1018 1019 1020 1021 1022 1023
	u16 brp, sjw, tseg1, tseg2;
	u32 reg_btp;

	brp = bt->brp - 1;
	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
1024 1025
	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1026
	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1027

1028
	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1029
		reg_btp = 0;
1030 1031 1032 1033
		brp = dbt->brp - 1;
		sjw = dbt->sjw - 1;
		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
		tseg2 = dbt->phase_seg2 - 1;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
		 * This is mentioned in the "Bit Time Requirements for CAN FD"
		 * paper presented at the International CAN Conference 2013
		 */
		if (dbt->bitrate > 2500000) {
			u32 tdco, ssp;

			/* Use the same value of secondary sampling point
			 * as the data sampling point
			 */
			ssp = dbt->sample_point;

			/* Equation based on Bosch's M_CAN User Manual's
			 * Transmitter Delay Compensation Section
			 */
1050
			tdco = (cdev->can.clock.freq / 1000) *
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			       ssp / dbt->bitrate;

			/* Max valid TDCO value is 127 */
			if (tdco > 127) {
				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
					    tdco);
				tdco = 127;
			}

			reg_btp |= DBTP_TDC;
1061
			m_can_write(cdev, M_CAN_TDCR,
1062 1063 1064 1065 1066 1067 1068 1069
				    tdco << TDCR_TDCO_SHIFT);
		}

		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
			   (sjw << DBTP_DSJW_SHIFT) |
			   (tseg1 << DBTP_DTSEG1_SHIFT) |
			   (tseg2 << DBTP_DTSEG2_SHIFT);

1070
		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1071
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080

	return 0;
}

/* Configure M_CAN chip:
 * - set rx buffer/fifo element size
 * - configure rx fifo
 * - accept non-matching frame into fifo 0
 * - configure tx buffer
1081
 *		- >= v3.1.x: TX FIFO is used
1082 1083 1084 1085 1086
 * - configure mode
 * - setup bittiming
 */
static void m_can_chip_config(struct net_device *dev)
{
1087
	struct m_can_classdev *cdev = netdev_priv(dev);
1088 1089
	u32 cccr, test;

1090
	m_can_config_endisable(cdev, true);
1091

1092
	/* RX Buffer/FIFO Element Size 64 bytes data field */
1093
	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1094 1095

	/* Accept Non-matching Frames Into FIFO 0 */
1096
	m_can_write(cdev, M_CAN_GFC, 0x0);
1097

1098
	if (cdev->version == 30) {
1099
		/* only support one Tx Buffer currently */
1100 1101
		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
				cdev->mcfg[MRAM_TXB].off);
1102 1103
	} else {
		/* TX FIFO is used for newer IP Core versions */
1104 1105 1106
		m_can_write(cdev, M_CAN_TXBC,
			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
			    (cdev->mcfg[MRAM_TXB].off));
1107
	}
1108

1109
	/* support 64 bytes payload */
1110
	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1111

1112
	/* TX Event FIFO */
1113 1114 1115
	if (cdev->version == 30) {
		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
				cdev->mcfg[MRAM_TXE].off);
1116 1117
	} else {
		/* Full TX Event FIFO is used */
1118 1119
		m_can_write(cdev, M_CAN_TXEFC,
			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1120
			     & TXEFC_EFS_MASK) |
1121
			    cdev->mcfg[MRAM_TXE].off);
1122
	}
1123 1124

	/* rx fifo configuration, blocking mode, fifo size 1 */
1125 1126 1127
	m_can_write(cdev, M_CAN_RXF0C,
		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
		     cdev->mcfg[MRAM_RXF0].off);
1128

1129 1130 1131
	m_can_write(cdev, M_CAN_RXF1C,
		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
		     cdev->mcfg[MRAM_RXF1].off);
1132

1133 1134
	cccr = m_can_read(cdev, M_CAN_CCCR);
	test = m_can_read(cdev, M_CAN_TEST);
1135
	test &= ~TEST_LBCK;
1136
	if (cdev->version == 30) {
1137
	/* Version 3.0.x */
1138

1139
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1140 1141 1142
			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
			(CCCR_CME_MASK << CCCR_CME_SHIFT));

1143
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1144 1145 1146 1147
			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;

	} else {
	/* Version 3.1.x or 3.2.x */
1148
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1149
			  CCCR_NISO | CCCR_DAR);
1150 1151

		/* Only 3.2.x has NISO Bit implemented */
1152
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1153 1154
			cccr |= CCCR_NISO;

1155
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1156 1157
			cccr |= (CCCR_BRSE | CCCR_FDOE);
	}
1158

1159
	/* Loopback Mode */
1160
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1161
		cccr |= CCCR_TEST | CCCR_MON;
1162 1163 1164
		test |= TEST_LBCK;
	}

1165
	/* Enable Monitoring (all versions) */
1166
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1167
		cccr |= CCCR_MON;
1168

1169 1170 1171 1172
	/* Disable Auto Retransmission (all versions) */
	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
		cccr |= CCCR_DAR;

1173
	/* Write config */
1174 1175
	m_can_write(cdev, M_CAN_CCCR, cccr);
	m_can_write(cdev, M_CAN_TEST, test);
1176

1177
	/* Enable interrupts */
1178 1179 1180 1181
	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		if (cdev->version == 30)
			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1182 1183
				    ~(IR_ERR_LEC_30X));
		else
1184
			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1185
				    ~(IR_ERR_LEC_31X));
1186
	else
1187
		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1188 1189

	/* route all interrupts to INT0 */
1190
	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1191 1192 1193 1194

	/* set bittiming params */
	m_can_set_bittiming(dev);

1195
	m_can_config_endisable(cdev, false);
1196

1197 1198
	if (cdev->ops->init)
		cdev->ops->init(cdev);
1199 1200 1201 1202
}

static void m_can_start(struct net_device *dev)
{
1203
	struct m_can_classdev *cdev = netdev_priv(dev);
1204 1205 1206 1207

	/* basic m_can configuration */
	m_can_chip_config(dev);

1208
	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1209

1210
	m_can_enable_all_interrupts(cdev);
1211 1212 1213 1214 1215 1216
}

static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
1217
		m_can_clean(dev);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		m_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

1228 1229 1230 1231 1232
/* Checks core release number of M_CAN
 * returns 0 if an unsupported device is detected
 * else it returns the release and step coded as:
 * return value = 10 * <release> + 1 * <step>
 */
1233
static int m_can_check_core_release(struct m_can_classdev *cdev)
1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	u32 crel_reg;
	u8 rel;
	u8 step;
	int res;

	/* Read Core Release Version and split into version number
	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
	 */
1243
	crel_reg = m_can_read(cdev, M_CAN_CREL);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);

	if (rel == 3) {
		/* M_CAN v3.x.y: create return value */
		res = 30 + step;
	} else {
		/* Unsupported M_CAN version */
		res = 0;
	}

	return res;
}

/* Selectable Non ISO support only in version 3.2.x
 * This function checks if the bit is writable.
 */
1261
static bool m_can_niso_supported(struct m_can_classdev *cdev)
1262
{
1263 1264 1265
	u32 cccr_reg, cccr_poll = 0;
	int niso_timeout = -ETIMEDOUT;
	int i;
1266

1267 1268
	m_can_config_endisable(cdev, true);
	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1269
	cccr_reg |= CCCR_NISO;
1270
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1271

1272
	for (i = 0; i <= 10; i++) {
1273
		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1274 1275 1276 1277 1278 1279 1280
		if (cccr_poll == cccr_reg) {
			niso_timeout = 0;
			break;
		}

		usleep_range(1, 5);
	}
1281 1282 1283

	/* Clear NISO */
	cccr_reg &= ~(CCCR_NISO);
1284
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1285

1286
	m_can_config_endisable(cdev, false);
1287 1288 1289 1290 1291

	/* return false if time out (-ETIMEDOUT), else return true */
	return !niso_timeout;
}

1292
static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1293
{
1294
	struct net_device *dev = m_can_dev->net;
1295 1296
	int m_can_version;

1297
	m_can_version = m_can_check_core_release(m_can_dev);
1298 1299
	/* return if unsupported version */
	if (!m_can_version) {
1300
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1301 1302
			m_can_version);
		return -EINVAL;
1303
	}
1304

1305 1306 1307
	if (!m_can_dev->is_peripheral)
		netif_napi_add(dev, &m_can_dev->napi,
			       m_can_poll, M_CAN_NAPI_WEIGHT);
1308

1309
	/* Shared properties of all M_CAN versions */
1310 1311 1312
	m_can_dev->version = m_can_version;
	m_can_dev->can.do_set_mode = m_can_set_mode;
	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1313

1314
	/* Set M_CAN supported operations */
1315
	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1316
					CAN_CTRLMODE_LISTENONLY |
1317
					CAN_CTRLMODE_BERR_REPORTING |
1318 1319
					CAN_CTRLMODE_FD |
					CAN_CTRLMODE_ONE_SHOT;
1320

1321
	/* Set properties depending on M_CAN version */
1322
	switch (m_can_dev->version) {
1323 1324 1325
	case 30:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1326 1327 1328 1329 1330 1331
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_30X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_30X;
1332 1333 1334 1335
		break;
	case 31:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1336 1337 1338 1339 1340 1341
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;
1342 1343
		break;
	case 32:
1344 1345 1346 1347 1348 1349 1350 1351 1352
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;

		m_can_dev->can.ctrlmode_supported |=
						(m_can_niso_supported(m_can_dev)
1353 1354 1355 1356
						? CAN_CTRLMODE_FD_NON_ISO
						: 0);
		break;
	default:
1357 1358
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
			m_can_dev->version);
1359
		return -EINVAL;
1360 1361
	}

1362 1363
	if (m_can_dev->ops->init)
		m_can_dev->ops->init(m_can_dev);
1364 1365 1366 1367 1368 1369

	return 0;
}

static void m_can_stop(struct net_device *dev)
{
1370
	struct m_can_classdev *cdev = netdev_priv(dev);
1371 1372

	/* disable all interrupts */
1373
	m_can_disable_all_interrupts(cdev);
1374 1375

	/* set the state as STOPPED */
1376
	cdev->can.state = CAN_STATE_STOPPED;
1377 1378 1379 1380
}

static int m_can_close(struct net_device *dev)
{
1381
	struct m_can_classdev *cdev = netdev_priv(dev);
1382 1383

	netif_stop_queue(dev);
1384 1385 1386 1387

	if (!cdev->is_peripheral)
		napi_disable(&cdev->napi);

1388
	m_can_stop(dev);
1389
	m_can_clk_stop(cdev);
1390
	free_irq(dev->irq, dev);
1391

1392 1393 1394 1395
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		destroy_workqueue(cdev->tx_wq);
		cdev->tx_wq = NULL;
1396 1397
	}

1398 1399 1400 1401 1402 1403
	close_candev(dev);
	can_led_event(dev, CAN_LED_EVENT_STOP);

	return 0;
}

1404 1405
static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
{
1406
	struct m_can_classdev *cdev = netdev_priv(dev);
1407
	/*get wrap around for loopback skb index */
1408
	unsigned int wrap = cdev->can.echo_skb_max;
1409 1410 1411 1412 1413 1414
	int next_idx;

	/* calculate next index */
	next_idx = (++putidx >= wrap ? 0 : putidx);

	/* check if occupied */
1415
	return !!cdev->can.echo_skb[next_idx];
1416 1417
}

1418
static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1419
{
1420 1421 1422
	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
	struct net_device *dev = cdev->net;
	struct sk_buff *skb = cdev->tx_skb;
1423
	u32 id, cccr, fdflags;
1424
	int i;
1425
	int putidx;
1426

1427 1428
	/* Generate ID field for TX buffer Element */
	/* Common to all supported M_CAN versions */
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	if (cf->can_id & CAN_EFF_FLAG) {
		id = cf->can_id & CAN_EFF_MASK;
		id |= TX_BUF_XTD;
	} else {
		id = ((cf->can_id & CAN_SFF_MASK) << 18);
	}

	if (cf->can_id & CAN_RTR_FLAG)
		id |= TX_BUF_RTR;

1439
	if (cdev->version == 30) {
1440 1441 1442
		netif_stop_queue(dev);

		/* message ram configuration */
1443 1444
		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1445
				 can_len2dlc(cf->len) << 16);
1446

1447
		for (i = 0; i < cf->len; i += 4)
1448
			m_can_fifo_write(cdev, 0,
1449 1450 1451 1452 1453
					 M_CAN_FIFO_DATA(i / 4),
					 *(u32 *)(cf->data + i));

		can_put_echo_skb(skb, dev, 0);

1454 1455
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
			cccr = m_can_read(cdev, M_CAN_CCCR);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
			if (can_is_canfd_skb(skb)) {
				if (cf->flags & CANFD_BRS)
					cccr |= CCCR_CMR_CANFD_BRS <<
						CCCR_CMR_SHIFT;
				else
					cccr |= CCCR_CMR_CANFD <<
						CCCR_CMR_SHIFT;
			} else {
				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
			}
1467
			m_can_write(cdev, M_CAN_CCCR, cccr);
1468
		}
1469 1470
		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1471 1472 1473 1474 1475
		/* End of xmit function for version 3.0.x */
	} else {
		/* Transmit routine for version >= v3.1.x */

		/* Check if FIFO full */
1476
		if (m_can_tx_fifo_full(cdev)) {
1477 1478 1479 1480
			/* This shouldn't happen */
			netif_stop_queue(dev);
			netdev_warn(dev,
				    "TX queue active although FIFO is full.");
1481 1482

			if (cdev->is_peripheral) {
1483 1484 1485 1486 1487 1488
				kfree_skb(skb);
				dev->stats.tx_dropped++;
				return NETDEV_TX_OK;
			} else {
				return NETDEV_TX_BUSY;
			}
1489
		}
1490

1491
		/* get put index for frame */
1492
		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1493 1494
				  >> TXFQS_TFQPI_SHIFT);
		/* Write ID Field to FIFO Element */
1495
		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1496

1497 1498
		/* get CAN FD configuration of frame */
		fdflags = 0;
1499
		if (can_is_canfd_skb(skb)) {
1500
			fdflags |= TX_BUF_FDF;
1501
			if (cf->flags & CANFD_BRS)
1502
				fdflags |= TX_BUF_BRS;
1503 1504
		}

1505 1506 1507 1508 1509
		/* Construct DLC Field. Also contains CAN-FD configuration
		 * use put index of fifo as message marker
		 * it is used in TX interrupt for
		 * sending the correct echo frame
		 */
1510
		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1511 1512 1513 1514 1515 1516
				 ((putidx << TX_BUF_MM_SHIFT) &
				  TX_BUF_MM_MASK) |
				 (can_len2dlc(cf->len) << 16) |
				 fdflags | TX_BUF_EFC);

		for (i = 0; i < cf->len; i += 4)
1517
			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1518 1519 1520 1521 1522 1523 1524 1525
					 *(u32 *)(cf->data + i));

		/* Push loopback echo.
		 * Will be looped back on TX interrupt based on message marker
		 */
		can_put_echo_skb(skb, dev, putidx);

		/* Enable TX FIFO element to start transfer  */
1526
		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1527 1528

		/* stop network queue if fifo full */
1529
		if (m_can_tx_fifo_full(cdev) ||
1530 1531
		    m_can_next_echo_skb_occupied(dev, putidx))
			netif_stop_queue(dev);
1532
	}
1533 1534 1535 1536

	return NETDEV_TX_OK;
}

1537 1538
static void m_can_tx_work_queue(struct work_struct *ws)
{
1539
	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1540
						tx_work);
1541 1542 1543

	m_can_tx_handler(cdev);
	cdev->tx_skb = NULL;
1544 1545 1546 1547 1548
}

static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
1549
	struct m_can_classdev *cdev = netdev_priv(dev);
1550 1551 1552 1553

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

1554 1555
	if (cdev->is_peripheral) {
		if (cdev->tx_skb) {
1556 1557 1558 1559
			netdev_err(dev, "hard_xmit called while tx busy\n");
			return NETDEV_TX_BUSY;
		}

1560
		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1561 1562 1563 1564 1565 1566 1567
			m_can_clean(dev);
		} else {
			/* Need to stop the queue to avoid numerous requests
			 * from being sent.  Suggested improvement is to create
			 * a queueing mechanism that will queue the skbs and
			 * process them in order.
			 */
1568 1569 1570
			cdev->tx_skb = skb;
			netif_stop_queue(cdev->net);
			queue_work(cdev->tx_wq, &cdev->tx_work);
1571 1572
		}
	} else {
1573 1574
		cdev->tx_skb = skb;
		return m_can_tx_handler(cdev);
1575 1576 1577 1578 1579 1580 1581
	}

	return NETDEV_TX_OK;
}

static int m_can_open(struct net_device *dev)
{
1582
	struct m_can_classdev *cdev = netdev_priv(dev);
1583 1584
	int err;

1585
	err = m_can_clk_start(cdev);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	if (err)
		return err;

	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
		goto exit_disable_clks;
	}

	/* register interrupt handler */
1597 1598 1599
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		cdev->tx_wq = alloc_workqueue("mcan_wq",
1600
					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1601
		if (!cdev->tx_wq) {
1602 1603 1604 1605
			err = -ENOMEM;
			goto out_wq_fail;
		}

1606
		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
					   dev->name, dev);
	} else {
		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
				  dev);
	}

	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

	/* start the m_can controller */
	m_can_start(dev);

	can_led_event(dev, CAN_LED_EVENT_OPEN);

1626 1627
	if (!cdev->is_peripheral)
		napi_enable(&cdev->napi);
1628 1629 1630 1631 1632 1633

	netif_start_queue(dev);

	return 0;

exit_irq_fail:
1634 1635
	if (cdev->is_peripheral)
		destroy_workqueue(cdev->tx_wq);
1636 1637 1638
out_wq_fail:
	close_candev(dev);
exit_disable_clks:
1639
	m_can_clk_stop(cdev);
1640 1641 1642
	return err;
}

1643 1644 1645 1646
static const struct net_device_ops m_can_netdev_ops = {
	.ndo_open = m_can_open,
	.ndo_stop = m_can_close,
	.ndo_start_xmit = m_can_start_xmit,
1647
	.ndo_change_mtu = can_change_mtu,
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
};

static int register_m_can_dev(struct net_device *dev)
{
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &m_can_netdev_ops;

	return register_candev(dev);
}

1658
static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1659
				const u32 *mram_config_vals)
1660
{
1661 1662 1663 1664 1665 1666 1667 1668
	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1669
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1670 1671 1672
	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1673
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1674 1675 1676 1677 1678 1679 1680 1681 1682
	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1683
			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1684

1685
	dev_dbg(cdev->dev,
1686
		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1687 1688 1689 1690 1691 1692 1693
		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1694 1695
}

1696
void m_can_init_ram(struct m_can_classdev *cdev)
1697
{
1698
	int end, i, start;
1699

1700 1701 1702
	/* initialize the entire Message RAM in use to avoid possible
	 * ECC/parity checksum errors when reading an uninitialized buffer
	 */
1703 1704 1705
	start = cdev->mcfg[MRAM_SIDF].off;
	end = cdev->mcfg[MRAM_TXB].off +
		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1706

1707
	for (i = start; i < end; i += 4)
1708
		m_can_fifo_write_no_off(cdev, i, 0x0);
1709 1710
}
EXPORT_SYMBOL_GPL(m_can_init_ram);
1711

1712
int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1713 1714
{
	int ret = 0;
1715

1716 1717
	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1718

1719 1720
	if (IS_ERR(m_can_dev->cclk)) {
		dev_err(m_can_dev->dev, "no clock found\n");
1721 1722 1723
		ret = -ENODEV;
	}

1724 1725 1726
	return ret;
}
EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1727

1728
struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1729
{
1730
	struct m_can_classdev *class_dev = NULL;
1731 1732 1733 1734 1735 1736 1737 1738 1739
	u32 mram_config_vals[MRAM_CFG_LEN];
	struct net_device *net_dev;
	u32 tx_fifo_size;
	int ret;

	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
					     "bosch,mram-cfg",
					     mram_config_vals,
					     sizeof(mram_config_vals) / 4);
1740
	if (ret) {
1741 1742
		dev_err(dev, "Could not get Message RAM configuration.");
		goto out;
1743 1744 1745 1746 1747 1748 1749 1750
	}

	/* Get TX FIFO size
	 * Defines the total amount of echo buffers for loopback
	 */
	tx_fifo_size = mram_config_vals[7];

	/* allocate the m_can device */
1751 1752 1753 1754
	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
	if (!net_dev) {
		dev_err(dev, "Failed to allocate CAN device");
		goto out;
1755
	}
1756

1757 1758
	class_dev = netdev_priv(net_dev);
	if (!class_dev) {
1759
		dev_err(dev, "Failed to init netdev cdevate");
1760 1761
		goto out;
	}
1762

1763 1764 1765
	class_dev->net = net_dev;
	class_dev->dev = dev;
	SET_NETDEV_DEV(net_dev, dev);
1766

1767 1768 1769 1770 1771 1772
	m_can_of_parse_mram(class_dev, mram_config_vals);
out:
	return class_dev;
}
EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);

1773
int m_can_class_register(struct m_can_classdev *m_can_dev)
1774 1775
{
	int ret;
F
Faiz Abbas 已提交
1776

1777 1778 1779 1780 1781 1782 1783 1784
	if (m_can_dev->pm_clock_support) {
		pm_runtime_enable(m_can_dev->dev);
		ret = m_can_clk_start(m_can_dev);
		if (ret)
			goto pm_runtime_fail;
	}

	ret = m_can_dev_setup(m_can_dev);
F
Faiz Abbas 已提交
1785 1786 1787
	if (ret)
		goto clk_disable;

1788
	ret = register_m_can_dev(m_can_dev->net);
1789
	if (ret) {
1790 1791
		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
			m_can_dev->net->name, ret);
F
Faiz Abbas 已提交
1792
		goto clk_disable;
1793 1794
	}

1795
	devm_can_led_init(m_can_dev->net);
1796

1797
	of_can_transceiver(m_can_dev->net);
1798

1799 1800
	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1801

1802 1803 1804
	/* Probe finished
	 * Stop clocks. They will be reactivated once the M_CAN device is opened
	 */
F
Faiz Abbas 已提交
1805
clk_disable:
1806
	m_can_clk_stop(m_can_dev);
F
Faiz Abbas 已提交
1807 1808
pm_runtime_fail:
	if (ret) {
1809 1810 1811
		if (m_can_dev->pm_clock_support)
			pm_runtime_disable(m_can_dev->dev);
		free_candev(m_can_dev->net);
F
Faiz Abbas 已提交
1812
	}
1813

1814 1815
	return ret;
}
1816
EXPORT_SYMBOL_GPL(m_can_class_register);
1817

1818
int m_can_class_suspend(struct device *dev)
1819 1820
{
	struct net_device *ndev = dev_get_drvdata(dev);
1821
	struct m_can_classdev *cdev = netdev_priv(ndev);
1822 1823 1824 1825

	if (netif_running(ndev)) {
		netif_stop_queue(ndev);
		netif_device_detach(ndev);
1826
		m_can_stop(ndev);
1827
		m_can_clk_stop(cdev);
1828 1829
	}

1830 1831
	pinctrl_pm_select_sleep_state(dev);

1832
	cdev->can.state = CAN_STATE_SLEEPING;
1833 1834 1835

	return 0;
}
1836
EXPORT_SYMBOL_GPL(m_can_class_suspend);
1837

1838
int m_can_class_resume(struct device *dev)
1839 1840
{
	struct net_device *ndev = dev_get_drvdata(dev);
1841
	struct m_can_classdev *cdev = netdev_priv(ndev);
1842

1843 1844
	pinctrl_pm_select_default_state(dev);

1845
	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1846 1847

	if (netif_running(ndev)) {
1848 1849
		int ret;

1850
		ret = m_can_clk_start(cdev);
1851 1852 1853
		if (ret)
			return ret;

1854
		m_can_init_ram(cdev);
1855
		m_can_start(ndev);
1856 1857 1858 1859 1860 1861
		netif_device_attach(ndev);
		netif_start_queue(ndev);
	}

	return 0;
}
1862
EXPORT_SYMBOL_GPL(m_can_class_resume);
1863

1864
void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1865
{
1866
	unregister_candev(m_can_dev->net);
1867

1868
	m_can_clk_stop(m_can_dev);
1869

1870
	free_candev(m_can_dev->net);
F
Faiz Abbas 已提交
1871
}
1872
EXPORT_SYMBOL_GPL(m_can_class_unregister);
1873 1874

MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1875
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1876 1877
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");