m_can.c 46.3 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
// CAN bus driver for Bosch M_CAN controller
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//      Dong Aisheng <b29396@freescale.com>
// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/

/* Bosch M_CAN user manual can be obtained from:
8 9 10 11 12 13 14 15 16 17 18 19
 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
 * mcan_users_manual_v302.pdf
 */

#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
F
Faiz Abbas 已提交
20
#include <linux/pm_runtime.h>
21
#include <linux/iopoll.h>
22
#include <linux/can/dev.h>
23
#include <linux/pinctrl/consumer.h>
24

25
#include "m_can.h"
26 27 28 29 30 31

/* registers definition */
enum m_can_reg {
	M_CAN_CREL	= 0x0,
	M_CAN_ENDN	= 0x4,
	M_CAN_CUST	= 0x8,
32
	M_CAN_DBTP	= 0xc,
33 34 35
	M_CAN_TEST	= 0x10,
	M_CAN_RWD	= 0x14,
	M_CAN_CCCR	= 0x18,
36
	M_CAN_NBTP	= 0x1c,
37 38 39 40 41 42
	M_CAN_TSCC	= 0x20,
	M_CAN_TSCV	= 0x24,
	M_CAN_TOCC	= 0x28,
	M_CAN_TOCV	= 0x2c,
	M_CAN_ECR	= 0x40,
	M_CAN_PSR	= 0x44,
43 44
/* TDCR Register only available for version >=3.1.x */
	M_CAN_TDCR	= 0x48,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	M_CAN_IR	= 0x50,
	M_CAN_IE	= 0x54,
	M_CAN_ILS	= 0x58,
	M_CAN_ILE	= 0x5c,
	M_CAN_GFC	= 0x80,
	M_CAN_SIDFC	= 0x84,
	M_CAN_XIDFC	= 0x88,
	M_CAN_XIDAM	= 0x90,
	M_CAN_HPMS	= 0x94,
	M_CAN_NDAT1	= 0x98,
	M_CAN_NDAT2	= 0x9c,
	M_CAN_RXF0C	= 0xa0,
	M_CAN_RXF0S	= 0xa4,
	M_CAN_RXF0A	= 0xa8,
	M_CAN_RXBC	= 0xac,
	M_CAN_RXF1C	= 0xb0,
	M_CAN_RXF1S	= 0xb4,
	M_CAN_RXF1A	= 0xb8,
	M_CAN_RXESC	= 0xbc,
	M_CAN_TXBC	= 0xc0,
	M_CAN_TXFQS	= 0xc4,
	M_CAN_TXESC	= 0xc8,
	M_CAN_TXBRP	= 0xcc,
	M_CAN_TXBAR	= 0xd0,
	M_CAN_TXBCR	= 0xd4,
	M_CAN_TXBTO	= 0xd8,
	M_CAN_TXBCF	= 0xdc,
	M_CAN_TXBTIE	= 0xe0,
	M_CAN_TXBCIE	= 0xe4,
	M_CAN_TXEFC	= 0xf0,
	M_CAN_TXEFS	= 0xf4,
	M_CAN_TXEFA	= 0xf8,
};

79 80
/* napi related */
#define M_CAN_NAPI_WEIGHT	64
81

82 83
/* message ram configuration data length */
#define MRAM_CFG_LEN	8
84

85 86 87 88 89 90 91 92
/* Core Release Register (CREL) */
#define CREL_REL_SHIFT		28
#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
#define CREL_STEP_SHIFT		24
#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
#define CREL_SUBSTEP_SHIFT	20
#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)

93 94 95 96 97 98 99 100 101 102
/* Data Bit Timing & Prescaler Register (DBTP) */
#define DBTP_TDC		BIT(23)
#define DBTP_DBRP_SHIFT		16
#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
#define DBTP_DTSEG1_SHIFT	8
#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
#define DBTP_DTSEG2_SHIFT	4
#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
#define DBTP_DSJW_SHIFT		0
#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103

104 105 106 107 108 109
/* Transmitter Delay Compensation Register (TDCR) */
#define TDCR_TDCO_SHIFT		8
#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
#define TDCR_TDCF_SHIFT		0
#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)

110
/* Test Register (TEST) */
111
#define TEST_LBCK		BIT(4)
112 113

/* CC Control Register(CCCR) */
114 115 116 117 118 119 120 121 122 123
#define CCCR_CMR_MASK		0x3
#define CCCR_CMR_SHIFT		10
#define CCCR_CMR_CANFD		0x1
#define CCCR_CMR_CANFD_BRS	0x2
#define CCCR_CMR_CAN		0x3
#define CCCR_CME_MASK		0x3
#define CCCR_CME_SHIFT		8
#define CCCR_CME_CAN		0
#define CCCR_CME_CANFD		0x1
#define CCCR_CME_CANFD_BRS	0x2
124
#define CCCR_TXP		BIT(14)
125 126
#define CCCR_TEST		BIT(7)
#define CCCR_MON		BIT(5)
127 128 129
#define CCCR_CSR		BIT(4)
#define CCCR_CSA		BIT(3)
#define CCCR_ASM		BIT(2)
130 131 132
#define CCCR_CCE		BIT(1)
#define CCCR_INIT		BIT(0)
#define CCCR_CANFD		0x10
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/* for version >=3.1.x */
#define CCCR_EFBI		BIT(13)
#define CCCR_PXHD		BIT(12)
#define CCCR_BRSE		BIT(9)
#define CCCR_FDOE		BIT(8)
/* only for version >=3.2.x */
#define CCCR_NISO		BIT(15)

/* Nominal Bit Timing & Prescaler Register (NBTP) */
#define NBTP_NSJW_SHIFT		25
#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
#define NBTP_NBRP_SHIFT		16
#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
#define NBTP_NTSEG1_SHIFT	8
#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
#define NBTP_NTSEG2_SHIFT	0
#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Error Counter Register(ECR) */
#define ECR_RP			BIT(15)
#define ECR_REC_SHIFT		8
#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
#define ECR_TEC_SHIFT		0
#define ECR_TEC_MASK		0xff

/* Protocol Status Register(PSR) */
#define PSR_BO		BIT(7)
#define PSR_EW		BIT(6)
#define PSR_EP		BIT(5)
#define PSR_LEC_MASK	0x7

/* Interrupt Register(IR) */
#define IR_ALL_INT	0xffffffff
166 167 168 169 170 171 172

/* Renamed bits for versions > 3.1.x */
#define IR_ARA		BIT(29)
#define IR_PED		BIT(28)
#define IR_PEA		BIT(27)

/* Bits for version 3.0.x */
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define IR_STE		BIT(31)
#define IR_FOE		BIT(30)
#define IR_ACKE		BIT(29)
#define IR_BE		BIT(28)
#define IR_CRCE		BIT(27)
#define IR_WDI		BIT(26)
#define IR_BO		BIT(25)
#define IR_EW		BIT(24)
#define IR_EP		BIT(23)
#define IR_ELO		BIT(22)
#define IR_BEU		BIT(21)
#define IR_BEC		BIT(20)
#define IR_DRX		BIT(19)
#define IR_TOO		BIT(18)
#define IR_MRAF		BIT(17)
#define IR_TSW		BIT(16)
#define IR_TEFL		BIT(15)
#define IR_TEFF		BIT(14)
#define IR_TEFW		BIT(13)
#define IR_TEFN		BIT(12)
#define IR_TFE		BIT(11)
#define IR_TCF		BIT(10)
#define IR_TC		BIT(9)
#define IR_HPM		BIT(8)
#define IR_RF1L		BIT(7)
#define IR_RF1F		BIT(6)
#define IR_RF1W		BIT(5)
#define IR_RF1N		BIT(4)
#define IR_RF0L		BIT(3)
#define IR_RF0F		BIT(2)
#define IR_RF0W		BIT(1)
#define IR_RF0N		BIT(0)
#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
206 207 208 209 210 211 212 213 214 215

/* Interrupts for version 3.0.x */
#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
/* Interrupts for version >= 3.1.x */
#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
216 217
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
218
#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
219 220 221 222 223 224 225

/* Interrupt Line Select (ILS) */
#define ILS_ALL_INT0	0x0
#define ILS_ALL_INT1	0xFFFFFFFF

/* Interrupt Line Enable (ILE) */
#define ILE_EINT1	BIT(1)
226
#define ILE_EINT0	BIT(0)
227 228

/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
229
#define RXFC_FWM_SHIFT	24
230
#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
231 232
#define RXFC_FS_SHIFT	16
#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
233 234 235 236

/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
#define RXFS_RFL	BIT(25)
#define RXFS_FF		BIT(24)
237
#define RXFS_FPI_SHIFT	16
238
#define RXFS_FPI_MASK	0x3f0000
239
#define RXFS_FGI_SHIFT	8
240 241 242 243 244
#define RXFS_FGI_MASK	0x3f00
#define RXFS_FFL_MASK	0x7f

/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
#define M_CAN_RXESC_8BYTES	0x0
245
#define M_CAN_RXESC_64BYTES	0x777
246 247

/* Tx Buffer Configuration(TXBC) */
248 249 250 251 252 253 254 255 256 257 258 259 260
#define TXBC_NDTB_SHIFT		16
#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
#define TXBC_TFQS_SHIFT		24
#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)

/* Tx FIFO/Queue Status (TXFQS) */
#define TXFQS_TFQF		BIT(21)
#define TXFQS_TFQPI_SHIFT	16
#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
#define TXFQS_TFGI_SHIFT	8
#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
#define TXFQS_TFFL_SHIFT	0
#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
261 262 263

/* Tx Buffer Element Size Configuration(TXESC) */
#define TXESC_TBDS_8BYTES	0x0
264
#define TXESC_TBDS_64BYTES	0x7
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/* Tx Event FIFO Configuration (TXEFC) */
#define TXEFC_EFS_SHIFT		16
#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)

/* Tx Event FIFO Status (TXEFS) */
#define TXEFS_TEFL		BIT(25)
#define TXEFS_EFF		BIT(24)
#define TXEFS_EFGI_SHIFT	8
#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
#define TXEFS_EFFL_SHIFT	0
#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)

/* Tx Event FIFO Acknowledge (TXEFA) */
#define TXEFA_EFAI_SHIFT	0
#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
281 282 283 284

/* Message RAM Configuration (in bytes) */
#define SIDF_ELEMENT_SIZE	4
#define XIDF_ELEMENT_SIZE	8
285 286
#define RXF0_ELEMENT_SIZE	72
#define RXF1_ELEMENT_SIZE	72
287
#define RXB_ELEMENT_SIZE	72
288
#define TXE_ELEMENT_SIZE	8
289
#define TXB_ELEMENT_SIZE	72
290 291 292 293 294 295 296

/* Message RAM Elements */
#define M_CAN_FIFO_ID		0x0
#define M_CAN_FIFO_DLC		0x4
#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))

/* Rx Buffer Element */
297
/* R0 */
298 299 300
#define RX_BUF_ESI		BIT(31)
#define RX_BUF_XTD		BIT(30)
#define RX_BUF_RTR		BIT(29)
301 302
/* R1 */
#define RX_BUF_ANMF		BIT(31)
303
#define RX_BUF_FDF		BIT(21)
304
#define RX_BUF_BRS		BIT(20)
305 306

/* Tx Buffer Element */
307 308
/* T0 */
#define TX_BUF_ESI		BIT(31)
309 310
#define TX_BUF_XTD		BIT(30)
#define TX_BUF_RTR		BIT(29)
311 312 313 314 315 316
/* T1 */
#define TX_BUF_EFC		BIT(23)
#define TX_BUF_FDF		BIT(21)
#define TX_BUF_BRS		BIT(20)
#define TX_BUF_MM_SHIFT		24
#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
317

318 319 320 321 322
/* Tx event FIFO Element */
/* E1 */
#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)

323
static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324
{
325
	return cdev->ops->read_reg(cdev, reg);
326
}
327

328
static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329
			       u32 val)
330
{
331
	cdev->ops->write_reg(cdev, reg, val);
332 333
}

334
static u32 m_can_fifo_read(struct m_can_classdev *cdev,
335
			   u32 fgi, unsigned int offset)
336
{
337
	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
338 339
			  offset;

340
	return cdev->ops->read_fifo(cdev, addr_offset);
341 342
}

343
static void m_can_fifo_write(struct m_can_classdev *cdev,
344
			     u32 fpi, unsigned int offset, u32 val)
345
{
346
	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
347 348
			  offset;

349
	cdev->ops->write_fifo(cdev, addr_offset, val);
350 351
}

352
static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
353
					   u32 fpi, u32 val)
354
{
355
	cdev->ops->write_fifo(cdev, fpi, val);
356 357
}

358
static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
359
{
360
	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
361 362
			  offset;

363
	return cdev->ops->read_fifo(cdev, addr_offset);
364 365
}

366
static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
367
{
368
		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
369 370
}

371
void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
372
{
373
	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
374 375 376
	u32 timeout = 10;
	u32 val = 0;

377 378 379 380
	/* Clear the Clock stop request if it was set */
	if (cccr & CCCR_CSR)
		cccr &= ~CCCR_CSR;

381
	if (enable) {
382 383 384 385
		/* Clear the Clock stop request if it was set */
		if (cccr & CCCR_CSR)
			cccr &= ~CCCR_CSR;

386
		/* enable m_can configuration */
387
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
388
		udelay(5);
389
		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
390
		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
391
	} else {
392
		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
393 394 395 396 397 398
	}

	/* there's a delay for module initialization */
	if (enable)
		val = CCCR_INIT | CCCR_CCE;

399
	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
400
		if (timeout == 0) {
401
			netdev_warn(cdev->net, "Failed to init module\n");
402 403 404 405 406 407 408
			return;
		}
		timeout--;
		udelay(1);
	}
}

409
static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
410
{
411
	/* Only interrupt line 0 is used in this driver */
412
	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
413 414
}

415
static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
416
{
417
	m_can_write(cdev, M_CAN_ILE, 0x0);
418 419
}

420 421
static void m_can_clean(struct net_device *net)
{
422
	struct m_can_classdev *cdev = netdev_priv(net);
423

424
	if (cdev->tx_skb) {
425 426 427
		int putidx = 0;

		net->stats.tx_errors++;
428 429
		if (cdev->version > 30)
			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
430 431
				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);

432 433
		can_free_echo_skb(cdev->net, putidx);
		cdev->tx_skb = NULL;
434 435 436
	}
}

437
static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
438
{
439
	struct net_device_stats *stats = &dev->stats;
440
	struct m_can_classdev *cdev = netdev_priv(dev);
441 442
	struct canfd_frame *cf;
	struct sk_buff *skb;
443
	u32 id, fgi, dlc;
444
	int i;
445 446

	/* calculate the fifo get index for where to read data */
447
	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
448
	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
449
	if (dlc & RX_BUF_FDF)
450 451 452 453 454 455 456 457
		skb = alloc_canfd_skb(dev, &cf);
	else
		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
	if (!skb) {
		stats->rx_dropped++;
		return;
	}

458
	if (dlc & RX_BUF_FDF)
459 460 461 462
		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
	else
		cf->len = get_can_dlc((dlc >> 16) & 0x0F);

463
	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
464 465 466 467 468
	if (id & RX_BUF_XTD)
		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		cf->can_id = (id >> 18) & CAN_SFF_MASK;

469 470 471 472
	if (id & RX_BUF_ESI) {
		cf->flags |= CANFD_ESI;
		netdev_dbg(dev, "ESI Error\n");
	}
473

474
	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
475 476
		cf->can_id |= CAN_RTR_FLAG;
	} else {
477 478 479 480 481
		if (dlc & RX_BUF_BRS)
			cf->flags |= CANFD_BRS;

		for (i = 0; i < cf->len; i += 4)
			*(u32 *)(cf->data + i) =
482
				m_can_fifo_read(cdev, fgi,
483
						M_CAN_FIFO_DATA(i / 4));
484 485 486
	}

	/* acknowledge rx fifo 0 */
487
	m_can_write(cdev, M_CAN_RXF0A, fgi);
488 489 490 491 492

	stats->rx_packets++;
	stats->rx_bytes += cf->len;

	netif_receive_skb(skb);
493 494 495 496
}

static int m_can_do_rx_poll(struct net_device *dev, int quota)
{
497
	struct m_can_classdev *cdev = netdev_priv(dev);
498 499 500
	u32 pkts = 0;
	u32 rxfs;

501
	rxfs = m_can_read(cdev, M_CAN_RXF0S);
502 503 504 505 506 507 508 509 510
	if (!(rxfs & RXFS_FFL_MASK)) {
		netdev_dbg(dev, "no messages in fifo0\n");
		return 0;
	}

	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
		if (rxfs & RXFS_RFL)
			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");

511
		m_can_read_fifo(dev, rxfs);
512 513 514

		quota--;
		pkts++;
515
		rxfs = m_can_read(cdev, M_CAN_RXF0S);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	}

	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

	return pkts;
}

static int m_can_handle_lost_msg(struct net_device *dev)
{
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	netdev_err(dev, "msg lost in rxf0\n");

	stats->rx_errors++;
	stats->rx_over_errors++;

	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return 0;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_lec_err(struct net_device *dev,
				enum m_can_lec_type lec_type)
{
550
	struct m_can_classdev *cdev = netdev_priv(dev);
551 552 553 554
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

555
	cdev->can.can_stats.bus_error++;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	stats->rx_errors++;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/* check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
579
		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
580 581 582 583 584 585 586 587 588 589 590
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
591
		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
592 593 594 595 596 597 598 599 600 601 602 603
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

604 605 606
static int __m_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
{
607
	struct m_can_classdev *cdev = netdev_priv(dev);
608 609
	unsigned int ecr;

610
	ecr = m_can_read(cdev, M_CAN_ECR);
611
	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
612
	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
613 614 615 616

	return 0;
}

617
static int m_can_clk_start(struct m_can_classdev *cdev)
618 619 620
{
	int err;

621
	if (cdev->pm_clock_support == 0)
622 623
		return 0;

624
	err = pm_runtime_get_sync(cdev->dev);
F
Faiz Abbas 已提交
625
	if (err < 0) {
626
		pm_runtime_put_noidle(cdev->dev);
F
Faiz Abbas 已提交
627 628
		return err;
	}
629

F
Faiz Abbas 已提交
630
	return 0;
631
}
632

633
static void m_can_clk_stop(struct m_can_classdev *cdev)
634
{
635 636
	if (cdev->pm_clock_support)
		pm_runtime_put_sync(cdev->dev);
637 638 639 640 641
}

static int m_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
642
	struct m_can_classdev *cdev = netdev_priv(dev);
643 644
	int err;

645
	err = m_can_clk_start(cdev);
646 647 648 649 650
	if (err)
		return err;

	__m_can_get_berr_counter(dev, bec);

651
	m_can_clk_stop(cdev);
652 653 654 655 656 657 658

	return 0;
}

static int m_can_handle_state_change(struct net_device *dev,
				     enum can_state new_state)
{
659
	struct m_can_classdev *cdev = netdev_priv(dev);
660 661 662 663 664 665 666 667 668
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;
	unsigned int ecr;

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
669 670
		cdev->can.can_stats.error_warning++;
		cdev->can.state = CAN_STATE_ERROR_WARNING;
671 672 673
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
674 675
		cdev->can.can_stats.error_passive++;
		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
676 677 678
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
679 680 681
		cdev->can.state = CAN_STATE_BUS_OFF;
		m_can_disable_all_interrupts(cdev);
		cdev->can.can_stats.bus_off++;
682 683 684 685 686 687 688 689 690 691 692
		can_bus_off(dev);
		break;
	default:
		break;
	}

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

693
	__m_can_get_berr_counter(dev, &bec);
694 695 696 697 698 699 700 701 702 703 704 705 706 707

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
708
		ecr = m_can_read(cdev, M_CAN_ECR);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		if (ecr & ECR_RP)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
{
733
	struct m_can_classdev *cdev = netdev_priv(dev);
734 735
	int work_done = 0;

736
	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
737 738 739 740 741
		netdev_dbg(dev, "entered error warning state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_WARNING);
	}

742
	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
743
		netdev_dbg(dev, "entered error passive state\n");
744 745 746 747
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_PASSIVE);
	}

748
	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
749
		netdev_dbg(dev, "entered error bus off state\n");
750 751 752 753 754 755 756 757 758 759 760
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_BUS_OFF);
	}

	return work_done;
}

static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
{
	if (irqstatus & IR_WDI)
		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
761
	if (irqstatus & IR_ELO)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		netdev_err(dev, "Error Logging Overflow\n");
	if (irqstatus & IR_BEU)
		netdev_err(dev, "Bit Error Uncorrected\n");
	if (irqstatus & IR_BEC)
		netdev_err(dev, "Bit Error Corrected\n");
	if (irqstatus & IR_TOO)
		netdev_err(dev, "Timeout reached\n");
	if (irqstatus & IR_MRAF)
		netdev_err(dev, "Message RAM access failure occurred\n");
}

static inline bool is_lec_err(u32 psr)
{
	psr &= LEC_UNUSED;

	return psr && (psr != LEC_UNUSED);
}

static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
				   u32 psr)
{
783
	struct m_can_classdev *cdev = netdev_priv(dev);
784 785 786 787 788 789
	int work_done = 0;

	if (irqstatus & IR_RF0L)
		work_done += m_can_handle_lost_msg(dev);

	/* handle lec errors on the bus */
790
	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
791 792 793 794 795 796 797 798 799
	    is_lec_err(psr))
		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);

	/* other unproccessed error interrupts */
	m_can_handle_other_err(dev, irqstatus);

	return work_done;
}

800
static int m_can_rx_handler(struct net_device *dev, int quota)
801
{
802
	struct m_can_classdev *cdev = netdev_priv(dev);
803 804 805
	int work_done = 0;
	u32 irqstatus, psr;

806
	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
807 808 809
	if (!irqstatus)
		goto end;

810 811 812 813 814 815 816 817 818 819
	/* Errata workaround for issue "Needless activation of MRAF irq"
	 * During frame reception while the MCAN is in Error Passive state
	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
	 * it may happen that MCAN_IR.MRAF is set although there was no
	 * Message RAM access failure.
	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
	 * The Message RAM Access Failure interrupt routine needs to check
	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
	 * In this case, reset MCAN_IR.MRAF. No further action is required.
	 */
820 821
	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
822 823 824 825
		struct can_berr_counter bec;

		__m_can_get_berr_counter(dev, &bec);
		if (bec.rxerr == 127) {
826
			m_can_write(cdev, M_CAN_IR, IR_MRAF);
827 828 829 830
			irqstatus &= ~IR_MRAF;
		}
	}

831 832
	psr = m_can_read(cdev, M_CAN_PSR);

833 834 835
	if (irqstatus & IR_ERR_STATE)
		work_done += m_can_handle_state_errors(dev, psr);

836
	if (irqstatus & IR_ERR_BUS_30X)
837 838 839 840
		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);

	if (irqstatus & IR_RF0N)
		work_done += m_can_do_rx_poll(dev, (quota - work_done));
841 842 843
end:
	return work_done;
}
844

845 846
static int m_can_rx_peripheral(struct net_device *dev)
{
847
	struct m_can_classdev *cdev = netdev_priv(dev);
848 849 850

	m_can_rx_handler(dev, 1);

851
	m_can_enable_all_interrupts(cdev);
852 853 854 855 856 857 858

	return 0;
}

static int m_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
859
	struct m_can_classdev *cdev = netdev_priv(dev);
860 861 862
	int work_done;

	work_done = m_can_rx_handler(dev, quota);
863
	if (work_done < quota) {
864
		napi_complete_done(napi, work_done);
865
		m_can_enable_all_interrupts(cdev);
866 867 868 869 870
	}

	return work_done;
}

871 872 873 874 875 876 877 878
static void m_can_echo_tx_event(struct net_device *dev)
{
	u32 txe_count = 0;
	u32 m_can_txefs;
	u32 fgi = 0;
	int i = 0;
	unsigned int msg_mark;

879
	struct m_can_classdev *cdev = netdev_priv(dev);
880 881 882
	struct net_device_stats *stats = &dev->stats;

	/* read tx event fifo status */
883
	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
884 885 886 887 888 889 890 891

	/* Get Tx Event fifo element count */
	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
			>> TXEFS_EFFL_SHIFT;

	/* Get and process all sent elements */
	for (i = 0; i < txe_count; i++) {
		/* retrieve get index */
892
		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
893 894 895
			>> TXEFS_EFGI_SHIFT;

		/* get message marker */
896
		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
897 898 899
			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;

		/* ack txe element */
900
		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
901 902 903 904 905 906 907 908
						(fgi << TXEFA_EFAI_SHIFT)));

		/* update stats */
		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
		stats->tx_packets++;
	}
}

909 910 911
static irqreturn_t m_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
912
	struct m_can_classdev *cdev = netdev_priv(dev);
913 914 915
	struct net_device_stats *stats = &dev->stats;
	u32 ir;

916
	ir = m_can_read(cdev, M_CAN_IR);
917 918 919 920 921
	if (!ir)
		return IRQ_NONE;

	/* ACK all irqs */
	if (ir & IR_ALL_INT)
922
		m_can_write(cdev, M_CAN_IR, ir);
923

924 925
	if (cdev->ops->clear_interrupts)
		cdev->ops->clear_interrupts(cdev);
926

927 928 929 930 931
	/* schedule NAPI in case of
	 * - rx IRQ
	 * - state change IRQ
	 * - bus error IRQ and bus error reporting
	 */
932
	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
933 934 935 936
		cdev->irqstatus = ir;
		m_can_disable_all_interrupts(cdev);
		if (!cdev->is_peripheral)
			napi_schedule(&cdev->napi);
937 938
		else
			m_can_rx_peripheral(dev);
939 940
	}

941
	if (cdev->version == 30) {
942 943 944 945 946 947 948 949 950 951 952 953 954
		if (ir & IR_TC) {
			/* Transmission Complete Interrupt*/
			stats->tx_bytes += can_get_echo_skb(dev, 0);
			stats->tx_packets++;
			can_led_event(dev, CAN_LED_EVENT_TX);
			netif_wake_queue(dev);
		}
	} else  {
		if (ir & IR_TEFN) {
			/* New TX FIFO Element arrived */
			m_can_echo_tx_event(dev);
			can_led_event(dev, CAN_LED_EVENT_TX);
			if (netif_queue_stopped(dev) &&
955
			    !m_can_tx_fifo_full(cdev))
956 957
				netif_wake_queue(dev);
		}
958 959 960 961 962
	}

	return IRQ_HANDLED;
}

963
static const struct can_bittiming_const m_can_bittiming_const_30X = {
964 965 966 967 968 969 970 971 972 973 974
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 64,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 1024,
	.brp_inc = 1,
};

975
static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
976 977 978 979 980 981 982 983 984 985 986
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static const struct can_bittiming_const m_can_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 256,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 128,
	.sjw_max = 128,
	.brp_min = 1,
	.brp_max = 512,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 32,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

1011 1012
static int m_can_set_bittiming(struct net_device *dev)
{
1013 1014 1015
	struct m_can_classdev *cdev = netdev_priv(dev);
	const struct can_bittiming *bt = &cdev->can.bittiming;
	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1016 1017 1018 1019 1020 1021 1022
	u16 brp, sjw, tseg1, tseg2;
	u32 reg_btp;

	brp = bt->brp - 1;
	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
1023 1024
	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1025
	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1026

1027
	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1028
		reg_btp = 0;
1029 1030 1031 1032
		brp = dbt->brp - 1;
		sjw = dbt->sjw - 1;
		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
		tseg2 = dbt->phase_seg2 - 1;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
		 * This is mentioned in the "Bit Time Requirements for CAN FD"
		 * paper presented at the International CAN Conference 2013
		 */
		if (dbt->bitrate > 2500000) {
			u32 tdco, ssp;

			/* Use the same value of secondary sampling point
			 * as the data sampling point
			 */
			ssp = dbt->sample_point;

			/* Equation based on Bosch's M_CAN User Manual's
			 * Transmitter Delay Compensation Section
			 */
1049
			tdco = (cdev->can.clock.freq / 1000) *
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
			       ssp / dbt->bitrate;

			/* Max valid TDCO value is 127 */
			if (tdco > 127) {
				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
					    tdco);
				tdco = 127;
			}

			reg_btp |= DBTP_TDC;
1060
			m_can_write(cdev, M_CAN_TDCR,
1061 1062 1063 1064 1065 1066 1067 1068
				    tdco << TDCR_TDCO_SHIFT);
		}

		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
			   (sjw << DBTP_DSJW_SHIFT) |
			   (tseg1 << DBTP_DTSEG1_SHIFT) |
			   (tseg2 << DBTP_DTSEG2_SHIFT);

1069
		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1070
	}
1071 1072 1073 1074 1075 1076 1077 1078 1079

	return 0;
}

/* Configure M_CAN chip:
 * - set rx buffer/fifo element size
 * - configure rx fifo
 * - accept non-matching frame into fifo 0
 * - configure tx buffer
1080
 *		- >= v3.1.x: TX FIFO is used
1081 1082 1083 1084 1085
 * - configure mode
 * - setup bittiming
 */
static void m_can_chip_config(struct net_device *dev)
{
1086
	struct m_can_classdev *cdev = netdev_priv(dev);
1087 1088
	u32 cccr, test;

1089
	m_can_config_endisable(cdev, true);
1090

1091
	/* RX Buffer/FIFO Element Size 64 bytes data field */
1092
	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1093 1094

	/* Accept Non-matching Frames Into FIFO 0 */
1095
	m_can_write(cdev, M_CAN_GFC, 0x0);
1096

1097
	if (cdev->version == 30) {
1098
		/* only support one Tx Buffer currently */
1099 1100
		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
				cdev->mcfg[MRAM_TXB].off);
1101 1102
	} else {
		/* TX FIFO is used for newer IP Core versions */
1103 1104 1105
		m_can_write(cdev, M_CAN_TXBC,
			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
			    (cdev->mcfg[MRAM_TXB].off));
1106
	}
1107

1108
	/* support 64 bytes payload */
1109
	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1110

1111
	/* TX Event FIFO */
1112 1113 1114
	if (cdev->version == 30) {
		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
				cdev->mcfg[MRAM_TXE].off);
1115 1116
	} else {
		/* Full TX Event FIFO is used */
1117 1118
		m_can_write(cdev, M_CAN_TXEFC,
			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1119
			     & TXEFC_EFS_MASK) |
1120
			    cdev->mcfg[MRAM_TXE].off);
1121
	}
1122 1123

	/* rx fifo configuration, blocking mode, fifo size 1 */
1124 1125 1126
	m_can_write(cdev, M_CAN_RXF0C,
		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
		     cdev->mcfg[MRAM_RXF0].off);
1127

1128 1129 1130
	m_can_write(cdev, M_CAN_RXF1C,
		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
		     cdev->mcfg[MRAM_RXF1].off);
1131

1132 1133
	cccr = m_can_read(cdev, M_CAN_CCCR);
	test = m_can_read(cdev, M_CAN_TEST);
1134
	test &= ~TEST_LBCK;
1135
	if (cdev->version == 30) {
1136
	/* Version 3.0.x */
1137

1138 1139 1140 1141
		cccr &= ~(CCCR_TEST | CCCR_MON |
			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
			(CCCR_CME_MASK << CCCR_CME_SHIFT));

1142
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1143 1144 1145 1146
			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;

	} else {
	/* Version 3.1.x or 3.2.x */
1147 1148
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
			  CCCR_NISO);
1149 1150

		/* Only 3.2.x has NISO Bit implemented */
1151
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1152 1153
			cccr |= CCCR_NISO;

1154
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1155 1156
			cccr |= (CCCR_BRSE | CCCR_FDOE);
	}
1157

1158
	/* Loopback Mode */
1159
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1160
		cccr |= CCCR_TEST | CCCR_MON;
1161 1162 1163
		test |= TEST_LBCK;
	}

1164
	/* Enable Monitoring (all versions) */
1165
	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1166
		cccr |= CCCR_MON;
1167

1168
	/* Write config */
1169 1170
	m_can_write(cdev, M_CAN_CCCR, cccr);
	m_can_write(cdev, M_CAN_TEST, test);
1171

1172
	/* Enable interrupts */
1173 1174 1175 1176
	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		if (cdev->version == 30)
			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1177 1178
				    ~(IR_ERR_LEC_30X));
		else
1179
			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1180
				    ~(IR_ERR_LEC_31X));
1181
	else
1182
		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1183 1184

	/* route all interrupts to INT0 */
1185
	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1186 1187 1188 1189

	/* set bittiming params */
	m_can_set_bittiming(dev);

1190
	m_can_config_endisable(cdev, false);
1191

1192 1193
	if (cdev->ops->init)
		cdev->ops->init(cdev);
1194 1195 1196 1197
}

static void m_can_start(struct net_device *dev)
{
1198
	struct m_can_classdev *cdev = netdev_priv(dev);
1199 1200 1201 1202

	/* basic m_can configuration */
	m_can_chip_config(dev);

1203
	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1204

1205
	m_can_enable_all_interrupts(cdev);
1206 1207 1208 1209 1210 1211
}

static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
1212
		m_can_clean(dev);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		m_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

1223 1224 1225 1226 1227
/* Checks core release number of M_CAN
 * returns 0 if an unsupported device is detected
 * else it returns the release and step coded as:
 * return value = 10 * <release> + 1 * <step>
 */
1228
static int m_can_check_core_release(struct m_can_classdev *cdev)
1229 1230 1231 1232 1233 1234 1235 1236 1237
{
	u32 crel_reg;
	u8 rel;
	u8 step;
	int res;

	/* Read Core Release Version and split into version number
	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
	 */
1238
	crel_reg = m_can_read(cdev, M_CAN_CREL);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);

	if (rel == 3) {
		/* M_CAN v3.x.y: create return value */
		res = 30 + step;
	} else {
		/* Unsupported M_CAN version */
		res = 0;
	}

	return res;
}

/* Selectable Non ISO support only in version 3.2.x
 * This function checks if the bit is writable.
 */
1256
static bool m_can_niso_supported(struct m_can_classdev *cdev)
1257
{
1258 1259 1260
	u32 cccr_reg, cccr_poll = 0;
	int niso_timeout = -ETIMEDOUT;
	int i;
1261

1262 1263
	m_can_config_endisable(cdev, true);
	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1264
	cccr_reg |= CCCR_NISO;
1265
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1266

1267
	for (i = 0; i <= 10; i++) {
1268
		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1269 1270 1271 1272 1273 1274 1275
		if (cccr_poll == cccr_reg) {
			niso_timeout = 0;
			break;
		}

		usleep_range(1, 5);
	}
1276 1277 1278

	/* Clear NISO */
	cccr_reg &= ~(CCCR_NISO);
1279
	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1280

1281
	m_can_config_endisable(cdev, false);
1282 1283 1284 1285 1286

	/* return false if time out (-ETIMEDOUT), else return true */
	return !niso_timeout;
}

1287
static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1288
{
1289
	struct net_device *dev = m_can_dev->net;
1290 1291
	int m_can_version;

1292
	m_can_version = m_can_check_core_release(m_can_dev);
1293 1294
	/* return if unsupported version */
	if (!m_can_version) {
1295
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1296 1297
			m_can_version);
		return -EINVAL;
1298
	}
1299

1300 1301 1302
	if (!m_can_dev->is_peripheral)
		netif_napi_add(dev, &m_can_dev->napi,
			       m_can_poll, M_CAN_NAPI_WEIGHT);
1303

1304
	/* Shared properties of all M_CAN versions */
1305 1306 1307
	m_can_dev->version = m_can_version;
	m_can_dev->can.do_set_mode = m_can_set_mode;
	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1308

1309
	/* Set M_CAN supported operations */
1310
	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1311
					CAN_CTRLMODE_LISTENONLY |
1312 1313
					CAN_CTRLMODE_BERR_REPORTING |
					CAN_CTRLMODE_FD;
1314

1315
	/* Set properties depending on M_CAN version */
1316
	switch (m_can_dev->version) {
1317 1318 1319
	case 30:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1320 1321 1322 1323 1324 1325
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_30X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_30X;
1326 1327 1328 1329
		break;
	case 31:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1330 1331 1332 1333 1334 1335
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;
1336 1337
		break;
	case 32:
1338 1339 1340 1341 1342 1343 1344 1345 1346
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;

		m_can_dev->can.ctrlmode_supported |=
						(m_can_niso_supported(m_can_dev)
1347 1348 1349 1350
						? CAN_CTRLMODE_FD_NON_ISO
						: 0);
		break;
	default:
1351 1352
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
			m_can_dev->version);
1353
		return -EINVAL;
1354 1355
	}

1356 1357
	if (m_can_dev->ops->init)
		m_can_dev->ops->init(m_can_dev);
1358 1359 1360 1361 1362 1363

	return 0;
}

static void m_can_stop(struct net_device *dev)
{
1364
	struct m_can_classdev *cdev = netdev_priv(dev);
1365 1366

	/* disable all interrupts */
1367
	m_can_disable_all_interrupts(cdev);
1368 1369

	/* set the state as STOPPED */
1370
	cdev->can.state = CAN_STATE_STOPPED;
1371 1372 1373 1374
}

static int m_can_close(struct net_device *dev)
{
1375
	struct m_can_classdev *cdev = netdev_priv(dev);
1376 1377

	netif_stop_queue(dev);
1378 1379 1380 1381

	if (!cdev->is_peripheral)
		napi_disable(&cdev->napi);

1382
	m_can_stop(dev);
1383
	m_can_clk_stop(cdev);
1384
	free_irq(dev->irq, dev);
1385

1386 1387 1388 1389
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		destroy_workqueue(cdev->tx_wq);
		cdev->tx_wq = NULL;
1390 1391
	}

1392 1393 1394 1395 1396 1397
	close_candev(dev);
	can_led_event(dev, CAN_LED_EVENT_STOP);

	return 0;
}

1398 1399
static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
{
1400
	struct m_can_classdev *cdev = netdev_priv(dev);
1401
	/*get wrap around for loopback skb index */
1402
	unsigned int wrap = cdev->can.echo_skb_max;
1403 1404 1405 1406 1407 1408
	int next_idx;

	/* calculate next index */
	next_idx = (++putidx >= wrap ? 0 : putidx);

	/* check if occupied */
1409
	return !!cdev->can.echo_skb[next_idx];
1410 1411
}

1412
static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1413
{
1414 1415 1416
	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
	struct net_device *dev = cdev->net;
	struct sk_buff *skb = cdev->tx_skb;
1417
	u32 id, cccr, fdflags;
1418
	int i;
1419
	int putidx;
1420

1421 1422
	/* Generate ID field for TX buffer Element */
	/* Common to all supported M_CAN versions */
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (cf->can_id & CAN_EFF_FLAG) {
		id = cf->can_id & CAN_EFF_MASK;
		id |= TX_BUF_XTD;
	} else {
		id = ((cf->can_id & CAN_SFF_MASK) << 18);
	}

	if (cf->can_id & CAN_RTR_FLAG)
		id |= TX_BUF_RTR;

1433
	if (cdev->version == 30) {
1434 1435 1436
		netif_stop_queue(dev);

		/* message ram configuration */
1437 1438
		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1439
				 can_len2dlc(cf->len) << 16);
1440

1441
		for (i = 0; i < cf->len; i += 4)
1442
			m_can_fifo_write(cdev, 0,
1443 1444 1445 1446 1447
					 M_CAN_FIFO_DATA(i / 4),
					 *(u32 *)(cf->data + i));

		can_put_echo_skb(skb, dev, 0);

1448 1449
		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
			cccr = m_can_read(cdev, M_CAN_CCCR);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
			if (can_is_canfd_skb(skb)) {
				if (cf->flags & CANFD_BRS)
					cccr |= CCCR_CMR_CANFD_BRS <<
						CCCR_CMR_SHIFT;
				else
					cccr |= CCCR_CMR_CANFD <<
						CCCR_CMR_SHIFT;
			} else {
				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
			}
1461
			m_can_write(cdev, M_CAN_CCCR, cccr);
1462
		}
1463 1464
		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1465 1466 1467 1468 1469
		/* End of xmit function for version 3.0.x */
	} else {
		/* Transmit routine for version >= v3.1.x */

		/* Check if FIFO full */
1470
		if (m_can_tx_fifo_full(cdev)) {
1471 1472 1473 1474
			/* This shouldn't happen */
			netif_stop_queue(dev);
			netdev_warn(dev,
				    "TX queue active although FIFO is full.");
1475 1476

			if (cdev->is_peripheral) {
1477 1478 1479 1480 1481 1482
				kfree_skb(skb);
				dev->stats.tx_dropped++;
				return NETDEV_TX_OK;
			} else {
				return NETDEV_TX_BUSY;
			}
1483
		}
1484

1485
		/* get put index for frame */
1486
		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1487 1488
				  >> TXFQS_TFQPI_SHIFT);
		/* Write ID Field to FIFO Element */
1489
		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1490

1491 1492
		/* get CAN FD configuration of frame */
		fdflags = 0;
1493
		if (can_is_canfd_skb(skb)) {
1494
			fdflags |= TX_BUF_FDF;
1495
			if (cf->flags & CANFD_BRS)
1496
				fdflags |= TX_BUF_BRS;
1497 1498
		}

1499 1500 1501 1502 1503
		/* Construct DLC Field. Also contains CAN-FD configuration
		 * use put index of fifo as message marker
		 * it is used in TX interrupt for
		 * sending the correct echo frame
		 */
1504
		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1505 1506 1507 1508 1509 1510
				 ((putidx << TX_BUF_MM_SHIFT) &
				  TX_BUF_MM_MASK) |
				 (can_len2dlc(cf->len) << 16) |
				 fdflags | TX_BUF_EFC);

		for (i = 0; i < cf->len; i += 4)
1511
			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1512 1513 1514 1515 1516 1517 1518 1519
					 *(u32 *)(cf->data + i));

		/* Push loopback echo.
		 * Will be looped back on TX interrupt based on message marker
		 */
		can_put_echo_skb(skb, dev, putidx);

		/* Enable TX FIFO element to start transfer  */
1520
		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1521 1522

		/* stop network queue if fifo full */
1523
		if (m_can_tx_fifo_full(cdev) ||
1524 1525
		    m_can_next_echo_skb_occupied(dev, putidx))
			netif_stop_queue(dev);
1526
	}
1527 1528 1529 1530

	return NETDEV_TX_OK;
}

1531 1532
static void m_can_tx_work_queue(struct work_struct *ws)
{
1533
	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1534
						tx_work);
1535 1536 1537

	m_can_tx_handler(cdev);
	cdev->tx_skb = NULL;
1538 1539 1540 1541 1542
}

static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
1543
	struct m_can_classdev *cdev = netdev_priv(dev);
1544 1545 1546 1547

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

1548 1549
	if (cdev->is_peripheral) {
		if (cdev->tx_skb) {
1550 1551 1552 1553
			netdev_err(dev, "hard_xmit called while tx busy\n");
			return NETDEV_TX_BUSY;
		}

1554
		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1555 1556 1557 1558 1559 1560 1561
			m_can_clean(dev);
		} else {
			/* Need to stop the queue to avoid numerous requests
			 * from being sent.  Suggested improvement is to create
			 * a queueing mechanism that will queue the skbs and
			 * process them in order.
			 */
1562 1563 1564
			cdev->tx_skb = skb;
			netif_stop_queue(cdev->net);
			queue_work(cdev->tx_wq, &cdev->tx_work);
1565 1566
		}
	} else {
1567 1568
		cdev->tx_skb = skb;
		return m_can_tx_handler(cdev);
1569 1570 1571 1572 1573 1574 1575
	}

	return NETDEV_TX_OK;
}

static int m_can_open(struct net_device *dev)
{
1576
	struct m_can_classdev *cdev = netdev_priv(dev);
1577 1578
	int err;

1579
	err = m_can_clk_start(cdev);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	if (err)
		return err;

	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
		goto exit_disable_clks;
	}

	/* register interrupt handler */
1591 1592 1593
	if (cdev->is_peripheral) {
		cdev->tx_skb = NULL;
		cdev->tx_wq = alloc_workqueue("mcan_wq",
1594
					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1595
		if (!cdev->tx_wq) {
1596 1597 1598 1599
			err = -ENOMEM;
			goto out_wq_fail;
		}

1600
		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
					   dev->name, dev);
	} else {
		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
				  dev);
	}

	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

	/* start the m_can controller */
	m_can_start(dev);

	can_led_event(dev, CAN_LED_EVENT_OPEN);

1620 1621
	if (!cdev->is_peripheral)
		napi_enable(&cdev->napi);
1622 1623 1624 1625 1626 1627

	netif_start_queue(dev);

	return 0;

exit_irq_fail:
1628 1629
	if (cdev->is_peripheral)
		destroy_workqueue(cdev->tx_wq);
1630 1631 1632
out_wq_fail:
	close_candev(dev);
exit_disable_clks:
1633
	m_can_clk_stop(cdev);
1634 1635 1636
	return err;
}

1637 1638 1639 1640
static const struct net_device_ops m_can_netdev_ops = {
	.ndo_open = m_can_open,
	.ndo_stop = m_can_close,
	.ndo_start_xmit = m_can_start_xmit,
1641
	.ndo_change_mtu = can_change_mtu,
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
};

static int register_m_can_dev(struct net_device *dev)
{
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &m_can_netdev_ops;

	return register_candev(dev);
}

1652
static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1653
				const u32 *mram_config_vals)
1654
{
1655 1656 1657 1658 1659 1660 1661 1662
	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1663
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1664 1665 1666
	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1667
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1668 1669 1670 1671 1672 1673 1674 1675 1676
	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1677
			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1678

1679
	dev_dbg(cdev->dev,
1680
		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1681 1682 1683 1684 1685 1686 1687
		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1688 1689
}

1690
void m_can_init_ram(struct m_can_classdev *cdev)
1691
{
1692
	int end, i, start;
1693

1694 1695 1696
	/* initialize the entire Message RAM in use to avoid possible
	 * ECC/parity checksum errors when reading an uninitialized buffer
	 */
1697 1698 1699
	start = cdev->mcfg[MRAM_SIDF].off;
	end = cdev->mcfg[MRAM_TXB].off +
		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1700

1701
	for (i = start; i < end; i += 4)
1702
		m_can_fifo_write_no_off(cdev, i, 0x0);
1703 1704
}
EXPORT_SYMBOL_GPL(m_can_init_ram);
1705

1706
int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1707 1708
{
	int ret = 0;
1709

1710 1711
	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1712

1713 1714
	if (IS_ERR(m_can_dev->cclk)) {
		dev_err(m_can_dev->dev, "no clock found\n");
1715 1716 1717
		ret = -ENODEV;
	}

1718 1719 1720
	return ret;
}
EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1721

1722
struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1723
{
1724
	struct m_can_classdev *class_dev = NULL;
1725 1726 1727 1728 1729 1730 1731 1732 1733
	u32 mram_config_vals[MRAM_CFG_LEN];
	struct net_device *net_dev;
	u32 tx_fifo_size;
	int ret;

	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
					     "bosch,mram-cfg",
					     mram_config_vals,
					     sizeof(mram_config_vals) / 4);
1734
	if (ret) {
1735 1736
		dev_err(dev, "Could not get Message RAM configuration.");
		goto out;
1737 1738 1739 1740 1741 1742 1743 1744
	}

	/* Get TX FIFO size
	 * Defines the total amount of echo buffers for loopback
	 */
	tx_fifo_size = mram_config_vals[7];

	/* allocate the m_can device */
1745 1746 1747 1748
	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
	if (!net_dev) {
		dev_err(dev, "Failed to allocate CAN device");
		goto out;
1749
	}
1750

1751 1752
	class_dev = netdev_priv(net_dev);
	if (!class_dev) {
1753
		dev_err(dev, "Failed to init netdev cdevate");
1754 1755
		goto out;
	}
1756

1757 1758 1759
	class_dev->net = net_dev;
	class_dev->dev = dev;
	SET_NETDEV_DEV(net_dev, dev);
1760

1761 1762 1763 1764 1765 1766
	m_can_of_parse_mram(class_dev, mram_config_vals);
out:
	return class_dev;
}
EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);

1767
int m_can_class_register(struct m_can_classdev *m_can_dev)
1768 1769
{
	int ret;
F
Faiz Abbas 已提交
1770

1771 1772 1773 1774 1775 1776 1777 1778
	if (m_can_dev->pm_clock_support) {
		pm_runtime_enable(m_can_dev->dev);
		ret = m_can_clk_start(m_can_dev);
		if (ret)
			goto pm_runtime_fail;
	}

	ret = m_can_dev_setup(m_can_dev);
F
Faiz Abbas 已提交
1779 1780 1781
	if (ret)
		goto clk_disable;

1782
	ret = register_m_can_dev(m_can_dev->net);
1783
	if (ret) {
1784 1785
		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
			m_can_dev->net->name, ret);
F
Faiz Abbas 已提交
1786
		goto clk_disable;
1787 1788
	}

1789
	devm_can_led_init(m_can_dev->net);
1790

1791
	of_can_transceiver(m_can_dev->net);
1792

1793 1794
	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1795

1796 1797 1798
	/* Probe finished
	 * Stop clocks. They will be reactivated once the M_CAN device is opened
	 */
F
Faiz Abbas 已提交
1799
clk_disable:
1800
	m_can_clk_stop(m_can_dev);
F
Faiz Abbas 已提交
1801 1802
pm_runtime_fail:
	if (ret) {
1803 1804 1805
		if (m_can_dev->pm_clock_support)
			pm_runtime_disable(m_can_dev->dev);
		free_candev(m_can_dev->net);
F
Faiz Abbas 已提交
1806
	}
1807

1808 1809
	return ret;
}
1810
EXPORT_SYMBOL_GPL(m_can_class_register);
1811

1812
int m_can_class_suspend(struct device *dev)
1813 1814
{
	struct net_device *ndev = dev_get_drvdata(dev);
1815
	struct m_can_classdev *cdev = netdev_priv(ndev);
1816 1817 1818 1819

	if (netif_running(ndev)) {
		netif_stop_queue(ndev);
		netif_device_detach(ndev);
1820
		m_can_stop(ndev);
1821
		m_can_clk_stop(cdev);
1822 1823
	}

1824 1825
	pinctrl_pm_select_sleep_state(dev);

1826
	cdev->can.state = CAN_STATE_SLEEPING;
1827 1828 1829

	return 0;
}
1830
EXPORT_SYMBOL_GPL(m_can_class_suspend);
1831

1832
int m_can_class_resume(struct device *dev)
1833 1834
{
	struct net_device *ndev = dev_get_drvdata(dev);
1835
	struct m_can_classdev *cdev = netdev_priv(ndev);
1836

1837 1838
	pinctrl_pm_select_default_state(dev);

1839
	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1840 1841

	if (netif_running(ndev)) {
1842 1843
		int ret;

1844
		ret = m_can_clk_start(cdev);
1845 1846 1847
		if (ret)
			return ret;

1848
		m_can_init_ram(cdev);
1849
		m_can_start(ndev);
1850 1851 1852 1853 1854 1855
		netif_device_attach(ndev);
		netif_start_queue(ndev);
	}

	return 0;
}
1856
EXPORT_SYMBOL_GPL(m_can_class_resume);
1857

1858
void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1859
{
1860
	unregister_candev(m_can_dev->net);
1861

1862
	m_can_clk_stop(m_can_dev);
1863

1864
	free_candev(m_can_dev->net);
F
Faiz Abbas 已提交
1865
}
1866
EXPORT_SYMBOL_GPL(m_can_class_unregister);
1867 1868

MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1869
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1870 1871
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");