m_can.c 46.1 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
// CAN bus driver for Bosch M_CAN controller
// Copyright (C) 2014 Freescale Semiconductor, Inc.
//      Dong Aisheng <b29396@freescale.com>
// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/

/* Bosch M_CAN user manual can be obtained from:
8 9 10 11 12 13 14 15 16 17 18 19
 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
 * mcan_users_manual_v302.pdf
 */

#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
F
Faiz Abbas 已提交
20
#include <linux/pm_runtime.h>
21
#include <linux/iopoll.h>
22
#include <linux/can/dev.h>
23
#include <linux/pinctrl/consumer.h>
24

25
#include "m_can.h"
26 27 28 29 30 31

/* registers definition */
enum m_can_reg {
	M_CAN_CREL	= 0x0,
	M_CAN_ENDN	= 0x4,
	M_CAN_CUST	= 0x8,
32
	M_CAN_DBTP	= 0xc,
33 34 35
	M_CAN_TEST	= 0x10,
	M_CAN_RWD	= 0x14,
	M_CAN_CCCR	= 0x18,
36
	M_CAN_NBTP	= 0x1c,
37 38 39 40 41 42
	M_CAN_TSCC	= 0x20,
	M_CAN_TSCV	= 0x24,
	M_CAN_TOCC	= 0x28,
	M_CAN_TOCV	= 0x2c,
	M_CAN_ECR	= 0x40,
	M_CAN_PSR	= 0x44,
43 44
/* TDCR Register only available for version >=3.1.x */
	M_CAN_TDCR	= 0x48,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	M_CAN_IR	= 0x50,
	M_CAN_IE	= 0x54,
	M_CAN_ILS	= 0x58,
	M_CAN_ILE	= 0x5c,
	M_CAN_GFC	= 0x80,
	M_CAN_SIDFC	= 0x84,
	M_CAN_XIDFC	= 0x88,
	M_CAN_XIDAM	= 0x90,
	M_CAN_HPMS	= 0x94,
	M_CAN_NDAT1	= 0x98,
	M_CAN_NDAT2	= 0x9c,
	M_CAN_RXF0C	= 0xa0,
	M_CAN_RXF0S	= 0xa4,
	M_CAN_RXF0A	= 0xa8,
	M_CAN_RXBC	= 0xac,
	M_CAN_RXF1C	= 0xb0,
	M_CAN_RXF1S	= 0xb4,
	M_CAN_RXF1A	= 0xb8,
	M_CAN_RXESC	= 0xbc,
	M_CAN_TXBC	= 0xc0,
	M_CAN_TXFQS	= 0xc4,
	M_CAN_TXESC	= 0xc8,
	M_CAN_TXBRP	= 0xcc,
	M_CAN_TXBAR	= 0xd0,
	M_CAN_TXBCR	= 0xd4,
	M_CAN_TXBTO	= 0xd8,
	M_CAN_TXBCF	= 0xdc,
	M_CAN_TXBTIE	= 0xe0,
	M_CAN_TXBCIE	= 0xe4,
	M_CAN_TXEFC	= 0xf0,
	M_CAN_TXEFS	= 0xf4,
	M_CAN_TXEFA	= 0xf8,
};

79 80
/* napi related */
#define M_CAN_NAPI_WEIGHT	64
81

82 83
/* message ram configuration data length */
#define MRAM_CFG_LEN	8
84

85 86 87 88 89 90 91 92
/* Core Release Register (CREL) */
#define CREL_REL_SHIFT		28
#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
#define CREL_STEP_SHIFT		24
#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
#define CREL_SUBSTEP_SHIFT	20
#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)

93 94 95 96 97 98 99 100 101 102
/* Data Bit Timing & Prescaler Register (DBTP) */
#define DBTP_TDC		BIT(23)
#define DBTP_DBRP_SHIFT		16
#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
#define DBTP_DTSEG1_SHIFT	8
#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
#define DBTP_DTSEG2_SHIFT	4
#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
#define DBTP_DSJW_SHIFT		0
#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
103

104 105 106 107 108 109
/* Transmitter Delay Compensation Register (TDCR) */
#define TDCR_TDCO_SHIFT		8
#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
#define TDCR_TDCF_SHIFT		0
#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)

110
/* Test Register (TEST) */
111
#define TEST_LBCK		BIT(4)
112 113

/* CC Control Register(CCCR) */
114 115 116 117 118 119 120 121 122 123
#define CCCR_CMR_MASK		0x3
#define CCCR_CMR_SHIFT		10
#define CCCR_CMR_CANFD		0x1
#define CCCR_CMR_CANFD_BRS	0x2
#define CCCR_CMR_CAN		0x3
#define CCCR_CME_MASK		0x3
#define CCCR_CME_SHIFT		8
#define CCCR_CME_CAN		0
#define CCCR_CME_CANFD		0x1
#define CCCR_CME_CANFD_BRS	0x2
124
#define CCCR_TXP		BIT(14)
125 126
#define CCCR_TEST		BIT(7)
#define CCCR_MON		BIT(5)
127 128 129
#define CCCR_CSR		BIT(4)
#define CCCR_CSA		BIT(3)
#define CCCR_ASM		BIT(2)
130 131 132
#define CCCR_CCE		BIT(1)
#define CCCR_INIT		BIT(0)
#define CCCR_CANFD		0x10
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/* for version >=3.1.x */
#define CCCR_EFBI		BIT(13)
#define CCCR_PXHD		BIT(12)
#define CCCR_BRSE		BIT(9)
#define CCCR_FDOE		BIT(8)
/* only for version >=3.2.x */
#define CCCR_NISO		BIT(15)

/* Nominal Bit Timing & Prescaler Register (NBTP) */
#define NBTP_NSJW_SHIFT		25
#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
#define NBTP_NBRP_SHIFT		16
#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
#define NBTP_NTSEG1_SHIFT	8
#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
#define NBTP_NTSEG2_SHIFT	0
#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Error Counter Register(ECR) */
#define ECR_RP			BIT(15)
#define ECR_REC_SHIFT		8
#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
#define ECR_TEC_SHIFT		0
#define ECR_TEC_MASK		0xff

/* Protocol Status Register(PSR) */
#define PSR_BO		BIT(7)
#define PSR_EW		BIT(6)
#define PSR_EP		BIT(5)
#define PSR_LEC_MASK	0x7

/* Interrupt Register(IR) */
#define IR_ALL_INT	0xffffffff
166 167 168 169 170 171 172

/* Renamed bits for versions > 3.1.x */
#define IR_ARA		BIT(29)
#define IR_PED		BIT(28)
#define IR_PEA		BIT(27)

/* Bits for version 3.0.x */
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define IR_STE		BIT(31)
#define IR_FOE		BIT(30)
#define IR_ACKE		BIT(29)
#define IR_BE		BIT(28)
#define IR_CRCE		BIT(27)
#define IR_WDI		BIT(26)
#define IR_BO		BIT(25)
#define IR_EW		BIT(24)
#define IR_EP		BIT(23)
#define IR_ELO		BIT(22)
#define IR_BEU		BIT(21)
#define IR_BEC		BIT(20)
#define IR_DRX		BIT(19)
#define IR_TOO		BIT(18)
#define IR_MRAF		BIT(17)
#define IR_TSW		BIT(16)
#define IR_TEFL		BIT(15)
#define IR_TEFF		BIT(14)
#define IR_TEFW		BIT(13)
#define IR_TEFN		BIT(12)
#define IR_TFE		BIT(11)
#define IR_TCF		BIT(10)
#define IR_TC		BIT(9)
#define IR_HPM		BIT(8)
#define IR_RF1L		BIT(7)
#define IR_RF1F		BIT(6)
#define IR_RF1W		BIT(5)
#define IR_RF1N		BIT(4)
#define IR_RF0L		BIT(3)
#define IR_RF0F		BIT(2)
#define IR_RF0W		BIT(1)
#define IR_RF0N		BIT(0)
#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
206 207 208 209 210 211 212 213 214 215

/* Interrupts for version 3.0.x */
#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
/* Interrupts for version >= 3.1.x */
#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
216 217
			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
			 IR_RF1L | IR_RF0L)
218
#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
219 220 221 222 223 224 225

/* Interrupt Line Select (ILS) */
#define ILS_ALL_INT0	0x0
#define ILS_ALL_INT1	0xFFFFFFFF

/* Interrupt Line Enable (ILE) */
#define ILE_EINT1	BIT(1)
226
#define ILE_EINT0	BIT(0)
227 228

/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
229
#define RXFC_FWM_SHIFT	24
230
#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
231 232
#define RXFC_FS_SHIFT	16
#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
233 234 235 236

/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
#define RXFS_RFL	BIT(25)
#define RXFS_FF		BIT(24)
237
#define RXFS_FPI_SHIFT	16
238
#define RXFS_FPI_MASK	0x3f0000
239
#define RXFS_FGI_SHIFT	8
240 241 242 243 244
#define RXFS_FGI_MASK	0x3f00
#define RXFS_FFL_MASK	0x7f

/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
#define M_CAN_RXESC_8BYTES	0x0
245
#define M_CAN_RXESC_64BYTES	0x777
246 247

/* Tx Buffer Configuration(TXBC) */
248 249 250 251 252 253 254 255 256 257 258 259 260
#define TXBC_NDTB_SHIFT		16
#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
#define TXBC_TFQS_SHIFT		24
#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)

/* Tx FIFO/Queue Status (TXFQS) */
#define TXFQS_TFQF		BIT(21)
#define TXFQS_TFQPI_SHIFT	16
#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
#define TXFQS_TFGI_SHIFT	8
#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
#define TXFQS_TFFL_SHIFT	0
#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
261 262 263

/* Tx Buffer Element Size Configuration(TXESC) */
#define TXESC_TBDS_8BYTES	0x0
264
#define TXESC_TBDS_64BYTES	0x7
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/* Tx Event FIFO Configuration (TXEFC) */
#define TXEFC_EFS_SHIFT		16
#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)

/* Tx Event FIFO Status (TXEFS) */
#define TXEFS_TEFL		BIT(25)
#define TXEFS_EFF		BIT(24)
#define TXEFS_EFGI_SHIFT	8
#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
#define TXEFS_EFFL_SHIFT	0
#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)

/* Tx Event FIFO Acknowledge (TXEFA) */
#define TXEFA_EFAI_SHIFT	0
#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
281 282 283 284

/* Message RAM Configuration (in bytes) */
#define SIDF_ELEMENT_SIZE	4
#define XIDF_ELEMENT_SIZE	8
285 286
#define RXF0_ELEMENT_SIZE	72
#define RXF1_ELEMENT_SIZE	72
287
#define RXB_ELEMENT_SIZE	72
288
#define TXE_ELEMENT_SIZE	8
289
#define TXB_ELEMENT_SIZE	72
290 291 292 293 294 295 296

/* Message RAM Elements */
#define M_CAN_FIFO_ID		0x0
#define M_CAN_FIFO_DLC		0x4
#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))

/* Rx Buffer Element */
297
/* R0 */
298 299 300
#define RX_BUF_ESI		BIT(31)
#define RX_BUF_XTD		BIT(30)
#define RX_BUF_RTR		BIT(29)
301 302
/* R1 */
#define RX_BUF_ANMF		BIT(31)
303
#define RX_BUF_FDF		BIT(21)
304
#define RX_BUF_BRS		BIT(20)
305 306

/* Tx Buffer Element */
307 308
/* T0 */
#define TX_BUF_ESI		BIT(31)
309 310
#define TX_BUF_XTD		BIT(30)
#define TX_BUF_RTR		BIT(29)
311 312 313 314 315 316
/* T1 */
#define TX_BUF_EFC		BIT(23)
#define TX_BUF_FDF		BIT(21)
#define TX_BUF_BRS		BIT(20)
#define TX_BUF_MM_SHIFT		24
#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
317

318 319 320 321 322
/* Tx event FIFO Element */
/* E1 */
#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)

323 324 325 326
static inline u32 m_can_read(struct m_can_priv *priv, enum m_can_reg reg)
{
	return priv->ops->read_reg(priv, reg);
}
327

328 329
static inline void m_can_write(struct m_can_priv *priv, enum m_can_reg reg,
			       u32 val)
330
{
331
	priv->ops->write_reg(priv, reg, val);
332 333
}

334 335
static u32 m_can_fifo_read(struct m_can_priv *priv,
			   u32 fgi, unsigned int offset)
336
{
337 338 339 340
	u32 addr_offset = priv->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
			  offset;

	return priv->ops->read_fifo(priv, addr_offset);
341 342
}

343 344
static void m_can_fifo_write(struct m_can_priv *priv,
			     u32 fpi, unsigned int offset, u32 val)
345
{
346 347 348 349
	u32 addr_offset = priv->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
			  offset;

	priv->ops->write_fifo(priv, addr_offset, val);
350 351
}

352 353
static inline void m_can_fifo_write_no_off(struct m_can_priv *priv,
					   u32 fpi, u32 val)
354
{
355
	priv->ops->write_fifo(priv, fpi, val);
356 357
}

358 359 360 361 362 363
static u32 m_can_txe_fifo_read(struct m_can_priv *priv, u32 fgi, u32 offset)
{
	u32 addr_offset = priv->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
			  offset;

	return priv->ops->read_fifo(priv, addr_offset);
364 365
}

366
static inline bool m_can_tx_fifo_full(struct m_can_priv *priv)
367 368 369 370
{
		return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
}

371
void m_can_config_endisable(struct m_can_priv *priv, bool enable)
372 373 374 375 376
{
	u32 cccr = m_can_read(priv, M_CAN_CCCR);
	u32 timeout = 10;
	u32 val = 0;

377 378 379 380
	/* Clear the Clock stop request if it was set */
	if (cccr & CCCR_CSR)
		cccr &= ~CCCR_CSR;

381
	if (enable) {
382 383 384 385
		/* Clear the Clock stop request if it was set */
		if (cccr & CCCR_CSR)
			cccr &= ~CCCR_CSR;

386 387
		/* enable m_can configuration */
		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
388
		udelay(5);
389 390 391 392 393 394 395 396 397 398 399 400
		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
	} else {
		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
	}

	/* there's a delay for module initialization */
	if (enable)
		val = CCCR_INIT | CCCR_CCE;

	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
		if (timeout == 0) {
401
			netdev_warn(priv->net, "Failed to init module\n");
402 403 404 405 406 407 408
			return;
		}
		timeout--;
		udelay(1);
	}
}

409
static inline void m_can_enable_all_interrupts(struct m_can_priv *priv)
410
{
411 412
	/* Only interrupt line 0 is used in this driver */
	m_can_write(priv, M_CAN_ILE, ILE_EINT0);
413 414
}

415
static inline void m_can_disable_all_interrupts(struct m_can_priv *priv)
416 417 418 419
{
	m_can_write(priv, M_CAN_ILE, 0x0);
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void m_can_clean(struct net_device *net)
{
	struct m_can_priv *priv = netdev_priv(net);

	if (priv->tx_skb) {
		int putidx = 0;

		net->stats.tx_errors++;
		if (priv->version > 30)
			putidx = ((m_can_read(priv, M_CAN_TXFQS) &
				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);

		can_free_echo_skb(priv->net, putidx);
		priv->tx_skb = NULL;
	}
}

437
static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
438
{
439
	struct net_device_stats *stats = &dev->stats;
440
	struct m_can_priv *priv = netdev_priv(dev);
441 442
	struct canfd_frame *cf;
	struct sk_buff *skb;
443
	u32 id, fgi, dlc;
444
	int i;
445 446

	/* calculate the fifo get index for where to read data */
447
	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
448
	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
449
	if (dlc & RX_BUF_FDF)
450 451 452 453 454 455 456 457
		skb = alloc_canfd_skb(dev, &cf);
	else
		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
	if (!skb) {
		stats->rx_dropped++;
		return;
	}

458
	if (dlc & RX_BUF_FDF)
459 460 461 462
		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
	else
		cf->len = get_can_dlc((dlc >> 16) & 0x0F);

463 464 465 466 467 468
	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
	if (id & RX_BUF_XTD)
		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		cf->can_id = (id >> 18) & CAN_SFF_MASK;

469 470 471 472
	if (id & RX_BUF_ESI) {
		cf->flags |= CANFD_ESI;
		netdev_dbg(dev, "ESI Error\n");
	}
473

474
	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
475 476
		cf->can_id |= CAN_RTR_FLAG;
	} else {
477 478 479 480 481 482 483
		if (dlc & RX_BUF_BRS)
			cf->flags |= CANFD_BRS;

		for (i = 0; i < cf->len; i += 4)
			*(u32 *)(cf->data + i) =
				m_can_fifo_read(priv, fgi,
						M_CAN_FIFO_DATA(i / 4));
484 485 486 487
	}

	/* acknowledge rx fifo 0 */
	m_can_write(priv, M_CAN_RXF0A, fgi);
488 489 490 491 492

	stats->rx_packets++;
	stats->rx_bytes += cf->len;

	netif_receive_skb(skb);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
}

static int m_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct m_can_priv *priv = netdev_priv(dev);
	u32 pkts = 0;
	u32 rxfs;

	rxfs = m_can_read(priv, M_CAN_RXF0S);
	if (!(rxfs & RXFS_FFL_MASK)) {
		netdev_dbg(dev, "no messages in fifo0\n");
		return 0;
	}

	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
		if (rxfs & RXFS_RFL)
			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");

511
		m_can_read_fifo(dev, rxfs);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

		quota--;
		pkts++;
		rxfs = m_can_read(priv, M_CAN_RXF0S);
	}

	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

	return pkts;
}

static int m_can_handle_lost_msg(struct net_device *dev)
{
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	netdev_err(dev, "msg lost in rxf0\n");

	stats->rx_errors++;
	stats->rx_over_errors++;

	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return 0;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_lec_err(struct net_device *dev,
				enum m_can_lec_type lec_type)
{
	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	priv->can.can_stats.bus_error++;
	stats->rx_errors++;

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/* check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
579
		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
580 581 582 583 584 585 586 587 588 589 590
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
591
		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
592 593 594 595 596 597 598 599 600 601 602 603
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

604 605 606 607 608 609 610 611
static int __m_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
{
	struct m_can_priv *priv = netdev_priv(dev);
	unsigned int ecr;

	ecr = m_can_read(priv, M_CAN_ECR);
	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
612
	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
613 614 615 616

	return 0;
}

617
static int m_can_clk_start(struct m_can_priv *priv)
618 619 620
{
	int err;

621 622 623 624
	if (priv->pm_clock_support == 0)
		return 0;

	err = pm_runtime_get_sync(priv->dev);
F
Faiz Abbas 已提交
625
	if (err < 0) {
626
		pm_runtime_put_noidle(priv->dev);
F
Faiz Abbas 已提交
627 628
		return err;
	}
629

F
Faiz Abbas 已提交
630
	return 0;
631
}
632

633 634
static void m_can_clk_stop(struct m_can_priv *priv)
{
635 636
	if (priv->pm_clock_support)
		pm_runtime_put_sync(priv->dev);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
}

static int m_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int err;

	err = m_can_clk_start(priv);
	if (err)
		return err;

	__m_can_get_berr_counter(dev, bec);

	m_can_clk_stop(priv);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

	return 0;
}

static int m_can_handle_state_change(struct net_device *dev,
				     enum can_state new_state)
{
	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;
	unsigned int ecr;

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		m_can_disable_all_interrupts(priv);
681
		priv->can.can_stats.bus_off++;
682 683 684 685 686 687 688 689 690 691 692
		can_bus_off(dev);
		break;
	default:
		break;
	}

	/* propagate the error condition to the CAN stack */
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

693
	__m_can_get_berr_counter(dev, &bec);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	switch (new_state) {
	case CAN_STATE_ERROR_ACTIVE:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
		ecr = m_can_read(priv, M_CAN_ECR);
		if (ecr & ECR_RP)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case CAN_STATE_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
	netif_receive_skb(skb);

	return 1;
}

static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done = 0;

736
	if (psr & PSR_EW && priv->can.state != CAN_STATE_ERROR_WARNING) {
737 738 739 740 741
		netdev_dbg(dev, "entered error warning state\n");
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_WARNING);
	}

742
	if (psr & PSR_EP && priv->can.state != CAN_STATE_ERROR_PASSIVE) {
743
		netdev_dbg(dev, "entered error passive state\n");
744 745 746 747
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_ERROR_PASSIVE);
	}

748
	if (psr & PSR_BO && priv->can.state != CAN_STATE_BUS_OFF) {
749
		netdev_dbg(dev, "entered error bus off state\n");
750 751 752 753 754 755 756 757 758 759 760
		work_done += m_can_handle_state_change(dev,
						       CAN_STATE_BUS_OFF);
	}

	return work_done;
}

static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
{
	if (irqstatus & IR_WDI)
		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
761
	if (irqstatus & IR_ELO)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		netdev_err(dev, "Error Logging Overflow\n");
	if (irqstatus & IR_BEU)
		netdev_err(dev, "Bit Error Uncorrected\n");
	if (irqstatus & IR_BEC)
		netdev_err(dev, "Bit Error Corrected\n");
	if (irqstatus & IR_TOO)
		netdev_err(dev, "Timeout reached\n");
	if (irqstatus & IR_MRAF)
		netdev_err(dev, "Message RAM access failure occurred\n");
}

static inline bool is_lec_err(u32 psr)
{
	psr &= LEC_UNUSED;

	return psr && (psr != LEC_UNUSED);
}

static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
				   u32 psr)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done = 0;

	if (irqstatus & IR_RF0L)
		work_done += m_can_handle_lost_msg(dev);

	/* handle lec errors on the bus */
	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
	    is_lec_err(psr))
		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);

	/* other unproccessed error interrupts */
	m_can_handle_other_err(dev, irqstatus);

	return work_done;
}

800
static int m_can_rx_handler(struct net_device *dev, int quota)
801 802 803 804 805 806 807 808 809
{
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done = 0;
	u32 irqstatus, psr;

	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
	if (!irqstatus)
		goto end;

810 811 812 813 814 815 816 817 818 819
	/* Errata workaround for issue "Needless activation of MRAF irq"
	 * During frame reception while the MCAN is in Error Passive state
	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
	 * it may happen that MCAN_IR.MRAF is set although there was no
	 * Message RAM access failure.
	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
	 * The Message RAM Access Failure interrupt routine needs to check
	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
	 * In this case, reset MCAN_IR.MRAF. No further action is required.
	 */
820 821
	if (priv->version <= 31 && irqstatus & IR_MRAF &&
	    m_can_read(priv, M_CAN_ECR) & ECR_RP) {
822 823 824 825 826 827 828 829 830
		struct can_berr_counter bec;

		__m_can_get_berr_counter(dev, &bec);
		if (bec.rxerr == 127) {
			m_can_write(priv, M_CAN_IR, IR_MRAF);
			irqstatus &= ~IR_MRAF;
		}
	}

831 832 833 834
	psr = m_can_read(priv, M_CAN_PSR);
	if (irqstatus & IR_ERR_STATE)
		work_done += m_can_handle_state_errors(dev, psr);

835
	if (irqstatus & IR_ERR_BUS_30X)
836 837 838 839
		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);

	if (irqstatus & IR_RF0N)
		work_done += m_can_do_rx_poll(dev, (quota - work_done));
840 841 842
end:
	return work_done;
}
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static int m_can_rx_peripheral(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	m_can_rx_handler(dev, 1);

	m_can_enable_all_interrupts(priv);

	return 0;
}

static int m_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct m_can_priv *priv = netdev_priv(dev);
	int work_done;

	work_done = m_can_rx_handler(dev, quota);
862
	if (work_done < quota) {
863
		napi_complete_done(napi, work_done);
864 865 866 867 868 869
		m_can_enable_all_interrupts(priv);
	}

	return work_done;
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
static void m_can_echo_tx_event(struct net_device *dev)
{
	u32 txe_count = 0;
	u32 m_can_txefs;
	u32 fgi = 0;
	int i = 0;
	unsigned int msg_mark;

	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;

	/* read tx event fifo status */
	m_can_txefs = m_can_read(priv, M_CAN_TXEFS);

	/* Get Tx Event fifo element count */
	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
			>> TXEFS_EFFL_SHIFT;

	/* Get and process all sent elements */
	for (i = 0; i < txe_count; i++) {
		/* retrieve get index */
		fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
			>> TXEFS_EFGI_SHIFT;

		/* get message marker */
		msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;

		/* ack txe element */
		m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
						(fgi << TXEFA_EFAI_SHIFT)));

		/* update stats */
		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
		stats->tx_packets++;
	}
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static irqreturn_t m_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct m_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	u32 ir;

	ir = m_can_read(priv, M_CAN_IR);
	if (!ir)
		return IRQ_NONE;

	/* ACK all irqs */
	if (ir & IR_ALL_INT)
		m_can_write(priv, M_CAN_IR, ir);

923 924 925
	if (priv->ops->clear_interrupts)
		priv->ops->clear_interrupts(priv);

926 927 928 929 930
	/* schedule NAPI in case of
	 * - rx IRQ
	 * - state change IRQ
	 * - bus error IRQ and bus error reporting
	 */
931
	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
932 933
		priv->irqstatus = ir;
		m_can_disable_all_interrupts(priv);
934 935 936 937
		if (!priv->is_peripheral)
			napi_schedule(&priv->napi);
		else
			m_can_rx_peripheral(dev);
938 939
	}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (priv->version == 30) {
		if (ir & IR_TC) {
			/* Transmission Complete Interrupt*/
			stats->tx_bytes += can_get_echo_skb(dev, 0);
			stats->tx_packets++;
			can_led_event(dev, CAN_LED_EVENT_TX);
			netif_wake_queue(dev);
		}
	} else  {
		if (ir & IR_TEFN) {
			/* New TX FIFO Element arrived */
			m_can_echo_tx_event(dev);
			can_led_event(dev, CAN_LED_EVENT_TX);
			if (netif_queue_stopped(dev) &&
			    !m_can_tx_fifo_full(priv))
				netif_wake_queue(dev);
		}
957 958 959 960 961
	}

	return IRQ_HANDLED;
}

962
static const struct can_bittiming_const m_can_bittiming_const_30X = {
963 964 965 966 967 968 969 970 971 972 973
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 64,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 1024,
	.brp_inc = 1,
};

974
static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
975 976 977 978 979 980 981 982 983 984 985
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static const struct can_bittiming_const m_can_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 256,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 128,
	.sjw_max = 128,
	.brp_min = 1,
	.brp_max = 512,
	.brp_inc = 1,
};

static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
	.name = KBUILD_MODNAME,
	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 32,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 32,
	.brp_inc = 1,
};

1010 1011 1012 1013
static int m_can_set_bittiming(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
1014
	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1015 1016 1017 1018 1019 1020 1021
	u16 brp, sjw, tseg1, tseg2;
	u32 reg_btp;

	brp = bt->brp - 1;
	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
1022 1023 1024
	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
	m_can_write(priv, M_CAN_NBTP, reg_btp);
1025 1026

	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1027
		reg_btp = 0;
1028 1029 1030 1031
		brp = dbt->brp - 1;
		sjw = dbt->sjw - 1;
		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
		tseg2 = dbt->phase_seg2 - 1;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
		 * This is mentioned in the "Bit Time Requirements for CAN FD"
		 * paper presented at the International CAN Conference 2013
		 */
		if (dbt->bitrate > 2500000) {
			u32 tdco, ssp;

			/* Use the same value of secondary sampling point
			 * as the data sampling point
			 */
			ssp = dbt->sample_point;

			/* Equation based on Bosch's M_CAN User Manual's
			 * Transmitter Delay Compensation Section
			 */
			tdco = (priv->can.clock.freq / 1000) *
			       ssp / dbt->bitrate;

			/* Max valid TDCO value is 127 */
			if (tdco > 127) {
				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
					    tdco);
				tdco = 127;
			}

			reg_btp |= DBTP_TDC;
			m_can_write(priv, M_CAN_TDCR,
				    tdco << TDCR_TDCO_SHIFT);
		}

		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
			   (sjw << DBTP_DSJW_SHIFT) |
			   (tseg1 << DBTP_DTSEG1_SHIFT) |
			   (tseg2 << DBTP_DTSEG2_SHIFT);

1068
		m_can_write(priv, M_CAN_DBTP, reg_btp);
1069
	}
1070 1071 1072 1073 1074 1075 1076 1077 1078

	return 0;
}

/* Configure M_CAN chip:
 * - set rx buffer/fifo element size
 * - configure rx fifo
 * - accept non-matching frame into fifo 0
 * - configure tx buffer
1079
 *		- >= v3.1.x: TX FIFO is used
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
 * - configure mode
 * - setup bittiming
 */
static void m_can_chip_config(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	u32 cccr, test;

	m_can_config_endisable(priv, true);

1090 1091
	/* RX Buffer/FIFO Element Size 64 bytes data field */
	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1092 1093 1094 1095

	/* Accept Non-matching Frames Into FIFO 0 */
	m_can_write(priv, M_CAN_GFC, 0x0);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	if (priv->version == 30) {
		/* only support one Tx Buffer currently */
		m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
				priv->mcfg[MRAM_TXB].off);
	} else {
		/* TX FIFO is used for newer IP Core versions */
		m_can_write(priv, M_CAN_TXBC,
			    (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
			    (priv->mcfg[MRAM_TXB].off));
	}
1106

1107 1108
	/* support 64 bytes payload */
	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	/* TX Event FIFO */
	if (priv->version == 30) {
		m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
				priv->mcfg[MRAM_TXE].off);
	} else {
		/* Full TX Event FIFO is used */
		m_can_write(priv, M_CAN_TXEFC,
			    ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
			     & TXEFC_EFS_MASK) |
			    priv->mcfg[MRAM_TXE].off);
	}
1121 1122 1123

	/* rx fifo configuration, blocking mode, fifo size 1 */
	m_can_write(priv, M_CAN_RXF0C,
1124
		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1125
		     priv->mcfg[MRAM_RXF0].off);
1126 1127

	m_can_write(priv, M_CAN_RXF1C,
1128
		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1129
		     priv->mcfg[MRAM_RXF1].off);
1130 1131 1132 1133

	cccr = m_can_read(priv, M_CAN_CCCR);
	test = m_can_read(priv, M_CAN_TEST);
	test &= ~TEST_LBCK;
1134 1135
	if (priv->version == 30) {
	/* Version 3.0.x */
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145
		cccr &= ~(CCCR_TEST | CCCR_MON |
			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
			(CCCR_CME_MASK << CCCR_CME_SHIFT));

		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;

	} else {
	/* Version 3.1.x or 3.2.x */
1146 1147
		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
			  CCCR_NISO);
1148 1149 1150 1151 1152 1153 1154 1155

		/* Only 3.2.x has NISO Bit implemented */
		if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
			cccr |= CCCR_NISO;

		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
			cccr |= (CCCR_BRSE | CCCR_FDOE);
	}
1156

1157
	/* Loopback Mode */
1158
	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1159
		cccr |= CCCR_TEST | CCCR_MON;
1160 1161 1162
		test |= TEST_LBCK;
	}

1163 1164 1165
	/* Enable Monitoring (all versions) */
	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
		cccr |= CCCR_MON;
1166

1167
	/* Write config */
1168 1169 1170
	m_can_write(priv, M_CAN_CCCR, cccr);
	m_can_write(priv, M_CAN_TEST, test);

1171
	/* Enable interrupts */
1172 1173
	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1174 1175 1176 1177 1178 1179
		if (priv->version == 30)
			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
				    ~(IR_ERR_LEC_30X));
		else
			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
				    ~(IR_ERR_LEC_31X));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	else
		m_can_write(priv, M_CAN_IE, IR_ALL_INT);

	/* route all interrupts to INT0 */
	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);

	/* set bittiming params */
	m_can_set_bittiming(dev);

	m_can_config_endisable(priv, false);
1190 1191 1192

	if (priv->ops->init)
		priv->ops->init(priv);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
}

static void m_can_start(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	/* basic m_can configuration */
	m_can_chip_config(dev);

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	m_can_enable_all_interrupts(priv);
}

static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
1211
		m_can_clean(dev);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		m_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

1222 1223 1224 1225 1226
/* Checks core release number of M_CAN
 * returns 0 if an unsupported device is detected
 * else it returns the release and step coded as:
 * return value = 10 * <release> + 1 * <step>
 */
1227
static int m_can_check_core_release(struct m_can_priv *priv)
1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	u32 crel_reg;
	u8 rel;
	u8 step;
	int res;

	/* Read Core Release Version and split into version number
	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
	 */
1237
	crel_reg = m_can_read(priv, M_CAN_CREL);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);

	if (rel == 3) {
		/* M_CAN v3.x.y: create return value */
		res = 30 + step;
	} else {
		/* Unsupported M_CAN version */
		res = 0;
	}

	return res;
}

/* Selectable Non ISO support only in version 3.2.x
 * This function checks if the bit is writable.
 */
1255
static bool m_can_niso_supported(struct m_can_priv *priv)
1256
{
1257 1258 1259
	u32 cccr_reg, cccr_poll = 0;
	int niso_timeout = -ETIMEDOUT;
	int i;
1260 1261 1262 1263 1264 1265

	m_can_config_endisable(priv, true);
	cccr_reg = m_can_read(priv, M_CAN_CCCR);
	cccr_reg |= CCCR_NISO;
	m_can_write(priv, M_CAN_CCCR, cccr_reg);

1266 1267 1268 1269 1270 1271 1272 1273 1274
	for (i = 0; i <= 10; i++) {
		cccr_poll = m_can_read(priv, M_CAN_CCCR);
		if (cccr_poll == cccr_reg) {
			niso_timeout = 0;
			break;
		}

		usleep_range(1, 5);
	}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	/* Clear NISO */
	cccr_reg &= ~(CCCR_NISO);
	m_can_write(priv, M_CAN_CCCR, cccr_reg);

	m_can_config_endisable(priv, false);

	/* return false if time out (-ETIMEDOUT), else return true */
	return !niso_timeout;
}

1286
static int m_can_dev_setup(struct m_can_priv *m_can_dev)
1287
{
1288
	struct net_device *dev = m_can_dev->net;
1289 1290
	int m_can_version;

1291
	m_can_version = m_can_check_core_release(m_can_dev);
1292 1293
	/* return if unsupported version */
	if (!m_can_version) {
1294
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1295 1296
			m_can_version);
		return -EINVAL;
1297
	}
1298

1299 1300 1301
	if (!m_can_dev->is_peripheral)
		netif_napi_add(dev, &m_can_dev->napi,
			       m_can_poll, M_CAN_NAPI_WEIGHT);
1302

1303
	/* Shared properties of all M_CAN versions */
1304 1305 1306
	m_can_dev->version = m_can_version;
	m_can_dev->can.do_set_mode = m_can_set_mode;
	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1307

1308
	/* Set M_CAN supported operations */
1309
	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1310
					CAN_CTRLMODE_LISTENONLY |
1311 1312
					CAN_CTRLMODE_BERR_REPORTING |
					CAN_CTRLMODE_FD;
1313

1314
	/* Set properties depending on M_CAN version */
1315
	switch (m_can_dev->version) {
1316 1317 1318
	case 30:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1319 1320 1321 1322 1323 1324
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_30X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_30X;
1325 1326 1327 1328
		break;
	case 31:
		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1329 1330 1331 1332 1333 1334
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;
1335 1336
		break;
	case 32:
1337 1338 1339 1340 1341 1342 1343 1344 1345
		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
			m_can_dev->bit_timing : &m_can_bittiming_const_31X;

		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
						m_can_dev->data_timing :
						&m_can_data_bittiming_const_31X;

		m_can_dev->can.ctrlmode_supported |=
						(m_can_niso_supported(m_can_dev)
1346 1347 1348 1349
						? CAN_CTRLMODE_FD_NON_ISO
						: 0);
		break;
	default:
1350 1351
		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
			m_can_dev->version);
1352
		return -EINVAL;
1353 1354
	}

1355 1356
	if (m_can_dev->ops->init)
		m_can_dev->ops->init(m_can_dev);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	return 0;
}

static void m_can_stop(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	m_can_disable_all_interrupts(priv);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int m_can_close(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
1377 1378
	if (!priv->is_peripheral)
		napi_disable(&priv->napi);
1379
	m_can_stop(dev);
1380
	m_can_clk_stop(priv);
1381
	free_irq(dev->irq, dev);
1382 1383 1384 1385 1386 1387 1388

	if (priv->is_peripheral) {
		priv->tx_skb = NULL;
		destroy_workqueue(priv->tx_wq);
		priv->tx_wq = NULL;
	}

1389 1390 1391 1392 1393 1394
	close_candev(dev);
	can_led_event(dev, CAN_LED_EVENT_STOP);

	return 0;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
{
	struct m_can_priv *priv = netdev_priv(dev);
	/*get wrap around for loopback skb index */
	unsigned int wrap = priv->can.echo_skb_max;
	int next_idx;

	/* calculate next index */
	next_idx = (++putidx >= wrap ? 0 : putidx);

	/* check if occupied */
	return !!priv->can.echo_skb[next_idx];
}

1409
static netdev_tx_t m_can_tx_handler(struct m_can_priv *priv)
1410
{
1411 1412 1413
	struct canfd_frame *cf = (struct canfd_frame *)priv->tx_skb->data;
	struct net_device *dev = priv->net;
	struct sk_buff *skb = priv->tx_skb;
1414
	u32 id, cccr, fdflags;
1415
	int i;
1416
	int putidx;
1417

1418 1419
	/* Generate ID field for TX buffer Element */
	/* Common to all supported M_CAN versions */
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (cf->can_id & CAN_EFF_FLAG) {
		id = cf->can_id & CAN_EFF_MASK;
		id |= TX_BUF_XTD;
	} else {
		id = ((cf->can_id & CAN_SFF_MASK) << 18);
	}

	if (cf->can_id & CAN_RTR_FLAG)
		id |= TX_BUF_RTR;

1430 1431 1432 1433 1434 1435 1436
	if (priv->version == 30) {
		netif_stop_queue(dev);

		/* message ram configuration */
		m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
		m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
				 can_len2dlc(cf->len) << 16);
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		for (i = 0; i < cf->len; i += 4)
			m_can_fifo_write(priv, 0,
					 M_CAN_FIFO_DATA(i / 4),
					 *(u32 *)(cf->data + i));

		can_put_echo_skb(skb, dev, 0);

		if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
			cccr = m_can_read(priv, M_CAN_CCCR);
			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
			if (can_is_canfd_skb(skb)) {
				if (cf->flags & CANFD_BRS)
					cccr |= CCCR_CMR_CANFD_BRS <<
						CCCR_CMR_SHIFT;
				else
					cccr |= CCCR_CMR_CANFD <<
						CCCR_CMR_SHIFT;
			} else {
				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
			}
			m_can_write(priv, M_CAN_CCCR, cccr);
		}
		m_can_write(priv, M_CAN_TXBTIE, 0x1);
		m_can_write(priv, M_CAN_TXBAR, 0x1);
		/* End of xmit function for version 3.0.x */
	} else {
		/* Transmit routine for version >= v3.1.x */

		/* Check if FIFO full */
		if (m_can_tx_fifo_full(priv)) {
			/* This shouldn't happen */
			netif_stop_queue(dev);
			netdev_warn(dev,
				    "TX queue active although FIFO is full.");
1472 1473 1474 1475 1476 1477 1478
			if (priv->is_peripheral) {
				kfree_skb(skb);
				dev->stats.tx_dropped++;
				return NETDEV_TX_OK;
			} else {
				return NETDEV_TX_BUSY;
			}
1479
		}
1480

1481 1482 1483 1484 1485
		/* get put index for frame */
		putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
				  >> TXFQS_TFQPI_SHIFT);
		/* Write ID Field to FIFO Element */
		m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1486

1487 1488
		/* get CAN FD configuration of frame */
		fdflags = 0;
1489
		if (can_is_canfd_skb(skb)) {
1490
			fdflags |= TX_BUF_FDF;
1491
			if (cf->flags & CANFD_BRS)
1492
				fdflags |= TX_BUF_BRS;
1493 1494
		}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		/* Construct DLC Field. Also contains CAN-FD configuration
		 * use put index of fifo as message marker
		 * it is used in TX interrupt for
		 * sending the correct echo frame
		 */
		m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
				 ((putidx << TX_BUF_MM_SHIFT) &
				  TX_BUF_MM_MASK) |
				 (can_len2dlc(cf->len) << 16) |
				 fdflags | TX_BUF_EFC);

		for (i = 0; i < cf->len; i += 4)
			m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
					 *(u32 *)(cf->data + i));

		/* Push loopback echo.
		 * Will be looped back on TX interrupt based on message marker
		 */
		can_put_echo_skb(skb, dev, putidx);

		/* Enable TX FIFO element to start transfer  */
		m_can_write(priv, M_CAN_TXBAR, (1 << putidx));

		/* stop network queue if fifo full */
1519 1520 1521
		if (m_can_tx_fifo_full(priv) ||
		    m_can_next_echo_skb_occupied(dev, putidx))
			netif_stop_queue(dev);
1522
	}
1523 1524 1525 1526

	return NETDEV_TX_OK;
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static void m_can_tx_work_queue(struct work_struct *ws)
{
	struct m_can_priv *priv = container_of(ws, struct m_can_priv,
						tx_work);
	m_can_tx_handler(priv);
	priv->tx_skb = NULL;
}

static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

	if (priv->is_peripheral) {
		if (priv->tx_skb) {
			netdev_err(dev, "hard_xmit called while tx busy\n");
			return NETDEV_TX_BUSY;
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			m_can_clean(dev);
		} else {
			/* Need to stop the queue to avoid numerous requests
			 * from being sent.  Suggested improvement is to create
			 * a queueing mechanism that will queue the skbs and
			 * process them in order.
			 */
			priv->tx_skb = skb;
			netif_stop_queue(priv->net);
			queue_work(priv->tx_wq, &priv->tx_work);
		}
	} else {
		priv->tx_skb = skb;
		return m_can_tx_handler(priv);
	}

	return NETDEV_TX_OK;
}

static int m_can_open(struct net_device *dev)
{
	struct m_can_priv *priv = netdev_priv(dev);
	int err;

	err = m_can_clk_start(priv);
	if (err)
		return err;

	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
		goto exit_disable_clks;
	}

	/* register interrupt handler */
	if (priv->is_peripheral) {
		priv->tx_skb = NULL;
		priv->tx_wq = alloc_workqueue("mcan_wq",
					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
		if (!priv->tx_wq) {
			err = -ENOMEM;
			goto out_wq_fail;
		}

		INIT_WORK(&priv->tx_work, m_can_tx_work_queue);

		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
					   dev->name, dev);
	} else {
		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
				  dev);
	}

	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

	/* start the m_can controller */
	m_can_start(dev);

	can_led_event(dev, CAN_LED_EVENT_OPEN);

	if (!priv->is_peripheral)
		napi_enable(&priv->napi);

	netif_start_queue(dev);

	return 0;

exit_irq_fail:
	if (priv->is_peripheral)
		destroy_workqueue(priv->tx_wq);
out_wq_fail:
	close_candev(dev);
exit_disable_clks:
	m_can_clk_stop(priv);
	return err;
}

1632 1633 1634 1635
static const struct net_device_ops m_can_netdev_ops = {
	.ndo_open = m_can_open,
	.ndo_stop = m_can_close,
	.ndo_start_xmit = m_can_start_xmit,
1636
	.ndo_change_mtu = can_change_mtu,
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
};

static int register_m_can_dev(struct net_device *dev)
{
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &m_can_netdev_ops;

	return register_candev(dev);
}

1647 1648
static void m_can_of_parse_mram(struct m_can_priv *priv,
				const u32 *mram_config_vals)
1649
{
1650 1651
	priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
	priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1652 1653
	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1654
	priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1655 1656
	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1657
	priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1658
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1659 1660
	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1661
	priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1662
			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1663 1664
	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1665
	priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1666 1667
	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1668
	priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1669 1670
	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1671
	priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1672
			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1673

1674 1675
	dev_dbg(priv->dev,
		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1676 1677 1678 1679 1680 1681 1682 1683 1684
		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
}

1685
void m_can_init_ram(struct m_can_priv *priv)
1686
{
1687
	int end, i, start;
1688

1689 1690 1691 1692 1693 1694
	/* initialize the entire Message RAM in use to avoid possible
	 * ECC/parity checksum errors when reading an uninitialized buffer
	 */
	start = priv->mcfg[MRAM_SIDF].off;
	end = priv->mcfg[MRAM_TXB].off +
		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1695

1696 1697 1698 1699
	for (i = start; i < end; i += 4)
		m_can_fifo_write_no_off(priv, i, 0x0);
}
EXPORT_SYMBOL_GPL(m_can_init_ram);
1700

1701 1702 1703
int m_can_class_get_clocks(struct m_can_priv *m_can_dev)
{
	int ret = 0;
1704

1705 1706
	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1707

1708 1709
	if (IS_ERR(m_can_dev->cclk)) {
		dev_err(m_can_dev->dev, "no clock found\n");
1710 1711 1712
		ret = -ENODEV;
	}

1713 1714 1715
	return ret;
}
EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
struct m_can_priv *m_can_class_allocate_dev(struct device *dev)
{
	struct m_can_priv *class_dev = NULL;
	u32 mram_config_vals[MRAM_CFG_LEN];
	struct net_device *net_dev;
	u32 tx_fifo_size;
	int ret;

	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
					     "bosch,mram-cfg",
					     mram_config_vals,
					     sizeof(mram_config_vals) / 4);
1729
	if (ret) {
1730 1731
		dev_err(dev, "Could not get Message RAM configuration.");
		goto out;
1732 1733 1734 1735 1736 1737 1738 1739
	}

	/* Get TX FIFO size
	 * Defines the total amount of echo buffers for loopback
	 */
	tx_fifo_size = mram_config_vals[7];

	/* allocate the m_can device */
1740 1741 1742 1743
	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
	if (!net_dev) {
		dev_err(dev, "Failed to allocate CAN device");
		goto out;
1744
	}
1745

1746 1747 1748 1749 1750
	class_dev = netdev_priv(net_dev);
	if (!class_dev) {
		dev_err(dev, "Failed to init netdev private");
		goto out;
	}
1751

1752 1753 1754
	class_dev->net = net_dev;
	class_dev->dev = dev;
	SET_NETDEV_DEV(net_dev, dev);
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764
	m_can_of_parse_mram(class_dev, mram_config_vals);
out:
	return class_dev;
}
EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);

int m_can_class_register(struct m_can_priv *m_can_dev)
{
	int ret;
F
Faiz Abbas 已提交
1765

1766 1767 1768 1769 1770 1771 1772 1773
	if (m_can_dev->pm_clock_support) {
		pm_runtime_enable(m_can_dev->dev);
		ret = m_can_clk_start(m_can_dev);
		if (ret)
			goto pm_runtime_fail;
	}

	ret = m_can_dev_setup(m_can_dev);
F
Faiz Abbas 已提交
1774 1775 1776
	if (ret)
		goto clk_disable;

1777
	ret = register_m_can_dev(m_can_dev->net);
1778
	if (ret) {
1779 1780
		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
			m_can_dev->net->name, ret);
F
Faiz Abbas 已提交
1781
		goto clk_disable;
1782 1783
	}

1784
	devm_can_led_init(m_can_dev->net);
1785

1786
	of_can_transceiver(m_can_dev->net);
1787

1788 1789
	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1790

1791 1792 1793
	/* Probe finished
	 * Stop clocks. They will be reactivated once the M_CAN device is opened
	 */
F
Faiz Abbas 已提交
1794
clk_disable:
1795
	m_can_clk_stop(m_can_dev);
F
Faiz Abbas 已提交
1796 1797
pm_runtime_fail:
	if (ret) {
1798 1799 1800
		if (m_can_dev->pm_clock_support)
			pm_runtime_disable(m_can_dev->dev);
		free_candev(m_can_dev->net);
F
Faiz Abbas 已提交
1801
	}
1802

1803 1804
	return ret;
}
1805
EXPORT_SYMBOL_GPL(m_can_class_register);
1806

1807
int m_can_class_suspend(struct device *dev)
1808 1809 1810 1811 1812 1813 1814
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct m_can_priv *priv = netdev_priv(ndev);

	if (netif_running(ndev)) {
		netif_stop_queue(ndev);
		netif_device_detach(ndev);
1815 1816
		m_can_stop(ndev);
		m_can_clk_stop(priv);
1817 1818
	}

1819 1820
	pinctrl_pm_select_sleep_state(dev);

1821 1822 1823 1824
	priv->can.state = CAN_STATE_SLEEPING;

	return 0;
}
1825
EXPORT_SYMBOL_GPL(m_can_class_suspend);
1826

1827
int m_can_class_resume(struct device *dev)
1828 1829 1830 1831
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct m_can_priv *priv = netdev_priv(ndev);

1832 1833
	pinctrl_pm_select_default_state(dev);

1834 1835 1836
	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	if (netif_running(ndev)) {
1837 1838 1839 1840 1841 1842
		int ret;

		ret = m_can_clk_start(priv);
		if (ret)
			return ret;

1843
		m_can_init_ram(priv);
1844
		m_can_start(ndev);
1845 1846 1847 1848 1849 1850
		netif_device_attach(ndev);
		netif_start_queue(ndev);
	}

	return 0;
}
1851
EXPORT_SYMBOL_GPL(m_can_class_resume);
1852

1853
void m_can_class_unregister(struct m_can_priv *m_can_dev)
1854
{
1855
	unregister_candev(m_can_dev->net);
1856

1857
	m_can_clk_stop(m_can_dev);
1858

1859
	free_candev(m_can_dev->net);
F
Faiz Abbas 已提交
1860
}
1861
EXPORT_SYMBOL_GPL(m_can_class_unregister);
1862 1863

MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1864
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1865 1866
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");