zoned.c 59.8 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include <linux/bitops.h>
4 5
#include <linux/slab.h>
#include <linux/blkdev.h>
6
#include <linux/sched/mm.h>
7
#include <linux/atomic.h>
8
#include <linux/vmalloc.h>
9 10 11 12
#include "ctree.h"
#include "volumes.h"
#include "zoned.h"
#include "rcu-string.h"
13
#include "disk-io.h"
14
#include "block-group.h"
15
#include "transaction.h"
16
#include "dev-replace.h"
17
#include "space-info.h"
18
#include "fs.h"
19
#include "accessors.h"
20 21 22

/* Maximum number of zones to report per blkdev_report_zones() call */
#define BTRFS_REPORT_NR_ZONES   4096
23 24 25 26
/* Invalid allocation pointer value for missing devices */
#define WP_MISSING_DEV ((u64)-1)
/* Pseudo write pointer value for conventional zone */
#define WP_CONVENTIONAL ((u64)-2)
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * Location of the first zone of superblock logging zone pairs.
 *
 * - primary superblock:    0B (zone 0)
 * - first copy:          512G (zone starting at that offset)
 * - second copy:           4T (zone starting at that offset)
 */
#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)

#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)

42 43 44
/* Number of superblock log zones */
#define BTRFS_NR_SB_LOG_ZONES 2

45 46 47 48 49 50 51 52 53 54
/*
 * Minimum of active zones we need:
 *
 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
 * - 1 zone for tree-log dedicated block group
 * - 1 zone for relocation
 */
#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)

55
/*
56 57 58 59
 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
 * We do not expect the zone size to become larger than 8GiB or smaller than
 * 4MiB in the near future.
60 61
 */
#define BTRFS_MAX_ZONE_SIZE		SZ_8G
62
#define BTRFS_MIN_ZONE_SIZE		SZ_4M
63

64 65 66 67 68 69 70 71
#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)

static inline bool sb_zone_is_full(const struct blk_zone *zone)
{
	return (zone->cond == BLK_ZONE_COND_FULL) ||
		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
}

72 73 74 75 76 77 78 79 80
static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
{
	struct blk_zone *zones = data;

	memcpy(&zones[idx], zone, sizeof(*zone));

	return 0;
}

81 82 83 84 85 86
static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
			    u64 *wp_ret)
{
	bool empty[BTRFS_NR_SB_LOG_ZONES];
	bool full[BTRFS_NR_SB_LOG_ZONES];
	sector_t sector;
87
	int i;
88

89 90 91 92 93
	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
		full[i] = sb_zone_is_full(&zones[i]);
	}
94 95 96 97 98

	/*
	 * Possible states of log buffer zones
	 *
	 *           Empty[0]  In use[0]  Full[0]
99 100 101
	 * Empty[1]         *          0        1
	 * In use[1]        x          x        1
	 * Full[1]          0          0        C
102 103 104 105 106
	 *
	 * Log position:
	 *   *: Special case, no superblock is written
	 *   0: Use write pointer of zones[0]
	 *   1: Use write pointer of zones[1]
D
David Sterba 已提交
107
	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	 *      one determined by generation
	 *   x: Invalid state
	 */

	if (empty[0] && empty[1]) {
		/* Special case to distinguish no superblock to read */
		*wp_ret = zones[0].start << SECTOR_SHIFT;
		return -ENOENT;
	} else if (full[0] && full[1]) {
		/* Compare two super blocks */
		struct address_space *mapping = bdev->bd_inode->i_mapping;
		struct page *page[BTRFS_NR_SB_LOG_ZONES];
		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
		int i;

		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
			u64 bytenr;

			bytenr = ((zones[i].start + zones[i].len)
				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;

			page[i] = read_cache_page_gfp(mapping,
					bytenr >> PAGE_SHIFT, GFP_NOFS);
			if (IS_ERR(page[i])) {
				if (i == 1)
					btrfs_release_disk_super(super[0]);
				return PTR_ERR(page[i]);
			}
			super[i] = page_address(page[i]);
		}

139 140
		if (btrfs_super_generation(super[0]) >
		    btrfs_super_generation(super[1]))
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
			sector = zones[1].start;
		else
			sector = zones[0].start;

		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
			btrfs_release_disk_super(super[i]);
	} else if (!full[0] && (empty[1] || full[1])) {
		sector = zones[0].wp;
	} else if (full[0]) {
		sector = zones[1].wp;
	} else {
		return -EUCLEAN;
	}
	*wp_ret = sector << SECTOR_SHIFT;
	return 0;
}

/*
159
 * Get the first zone number of the superblock mirror
160 161 162
 */
static inline u32 sb_zone_number(int shift, int mirror)
{
163
	u64 zone = U64_MAX;
164

165
	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166
	switch (mirror) {
167 168 169
	case 0: zone = 0; break;
	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 171
	}

172 173 174
	ASSERT(zone <= U32_MAX);

	return (u32)zone;
175 176
}

177 178 179 180 181 182 183 184 185 186 187 188
static inline sector_t zone_start_sector(u32 zone_number,
					 struct block_device *bdev)
{
	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
}

static inline u64 zone_start_physical(u32 zone_number,
				      struct btrfs_zoned_device_info *zone_info)
{
	return (u64)zone_number << zone_info->zone_size_shift;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 * device into static sized chunks and fake a conventional zone on each of
 * them.
 */
static int emulate_report_zones(struct btrfs_device *device, u64 pos,
				struct blk_zone *zones, unsigned int nr_zones)
{
	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
	sector_t bdev_size = bdev_nr_sectors(device->bdev);
	unsigned int i;

	pos >>= SECTOR_SHIFT;
	for (i = 0; i < nr_zones; i++) {
		zones[i].start = i * zone_sectors + pos;
		zones[i].len = zone_sectors;
		zones[i].capacity = zone_sectors;
		zones[i].wp = zones[i].start + zone_sectors;
		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
		zones[i].cond = BLK_ZONE_COND_NOT_WP;

		if (zones[i].wp >= bdev_size) {
			i++;
			break;
		}
	}

	return i;
}

219 220 221
static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
			       struct blk_zone *zones, unsigned int *nr_zones)
{
222 223
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	u32 zno;
224 225 226 227 228
	int ret;

	if (!*nr_zones)
		return 0;

229 230 231 232 233 234
	if (!bdev_is_zoned(device->bdev)) {
		ret = emulate_report_zones(device, pos, zones, *nr_zones);
		*nr_zones = ret;
		return 0;
	}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	/* Check cache */
	if (zinfo->zone_cache) {
		unsigned int i;

		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
		zno = pos >> zinfo->zone_size_shift;
		/*
		 * We cannot report zones beyond the zone end. So, it is OK to
		 * cap *nr_zones to at the end.
		 */
		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);

		for (i = 0; i < *nr_zones; i++) {
			struct blk_zone *zone_info;

			zone_info = &zinfo->zone_cache[zno + i];
			if (!zone_info->len)
				break;
		}

		if (i == *nr_zones) {
			/* Cache hit on all the zones */
			memcpy(zones, zinfo->zone_cache + zno,
			       sizeof(*zinfo->zone_cache) * *nr_zones);
			return 0;
		}
	}

263 264 265 266 267 268 269 270 271 272 273 274 275
	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
				  copy_zone_info_cb, zones);
	if (ret < 0) {
		btrfs_err_in_rcu(device->fs_info,
				 "zoned: failed to read zone %llu on %s (devid %llu)",
				 pos, rcu_str_deref(device->name),
				 device->devid);
		return ret;
	}
	*nr_zones = ret;
	if (!ret)
		return -EIO;

276 277 278 279 280
	/* Populate cache */
	if (zinfo->zone_cache)
		memcpy(zinfo->zone_cache + zno, zones,
		       sizeof(*zinfo->zone_cache) * *nr_zones);

281 282 283
	return 0;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/* The emulated zone size is determined from the size of device extent */
static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
	struct extent_buffer *leaf;
	struct btrfs_dev_extent *dext;
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
307
		ret = btrfs_next_leaf(root, path);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}

	leaf = path->nodes[0];
	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
	ret = 0;

out:
	btrfs_free_path(path);

	return ret;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	int ret = 0;

	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
	if (!btrfs_fs_incompat(fs_info, ZONED))
		return 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		/* We can skip reading of zone info for missing devices */
		if (!device->bdev)
			continue;

344
		ret = btrfs_get_dev_zone_info(device, true);
345 346 347 348 349 350 351 352
		if (ret)
			break;
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

353
int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
354
{
355
	struct btrfs_fs_info *fs_info = device->fs_info;
356 357
	struct btrfs_zoned_device_info *zone_info = NULL;
	struct block_device *bdev = device->bdev;
358 359
	unsigned int max_active_zones;
	unsigned int nactive;
360 361 362 363
	sector_t nr_sectors;
	sector_t sector = 0;
	struct blk_zone *zones = NULL;
	unsigned int i, nreported = 0, nr_zones;
364
	sector_t zone_sectors;
365
	char *model, *emulated;
366 367
	int ret;

368 369 370 371 372
	/*
	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
	 * yet be set.
	 */
	if (!btrfs_fs_incompat(fs_info, ZONED))
373 374 375 376 377 378 379 380 381
		return 0;

	if (device->zone_info)
		return 0;

	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
	if (!zone_info)
		return -ENOMEM;

382 383
	device->zone_info = zone_info;

384 385 386 387 388 389 390 391 392 393 394 395 396
	if (!bdev_is_zoned(bdev)) {
		if (!fs_info->zone_size) {
			ret = calculate_emulated_zone_size(fs_info);
			if (ret)
				goto out;
		}

		ASSERT(fs_info->zone_size);
		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
	} else {
		zone_sectors = bdev_zone_sectors(bdev);
	}

397
	ASSERT(is_power_of_two_u64(zone_sectors));
398
	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
399 400 401 402 403 404 405 406 407

	/* We reject devices with a zone size larger than 8GB */
	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
		btrfs_err_in_rcu(fs_info,
		"zoned: %s: zone size %llu larger than supported maximum %llu",
				 rcu_str_deref(device->name),
				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
		ret = -EINVAL;
		goto out;
408 409 410 411 412 413 414
	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
		btrfs_err_in_rcu(fs_info,
		"zoned: %s: zone size %llu smaller than supported minimum %u",
				 rcu_str_deref(device->name),
				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
		ret = -EINVAL;
		goto out;
415 416 417
	}

	nr_sectors = bdev_nr_sectors(bdev);
418 419
	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
420 421 422 423 424 425
	/*
	 * We limit max_zone_append_size also by max_segments *
	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
	 * increase the metadata reservation even if it increases the number of
	 * extents, it is safe to stick with the limit.
426 427 428 429
	 *
	 * With the zoned emulation, we can have non-zoned device on the zoned
	 * mode. In this case, we don't have a valid max zone append size. So,
	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
430
	 */
431 432 433 434 435 436 437 438
	if (bdev_is_zoned(bdev)) {
		zone_info->max_zone_append_size = min_t(u64,
			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
	} else {
		zone_info->max_zone_append_size =
			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
	}
439 440 441
	if (!IS_ALIGNED(nr_sectors, zone_sectors))
		zone_info->nr_zones++;

442
	max_active_zones = bdev_max_active_zones(bdev);
443 444 445 446 447 448 449 450 451 452
	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
		btrfs_err_in_rcu(fs_info,
"zoned: %s: max active zones %u is too small, need at least %u active zones",
				 rcu_str_deref(device->name), max_active_zones,
				 BTRFS_MIN_ACTIVE_ZONES);
		ret = -EINVAL;
		goto out;
	}
	zone_info->max_active_zones = max_active_zones;

453 454 455 456 457 458 459 460 461 462 463 464
	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->seq_zones) {
		ret = -ENOMEM;
		goto out;
	}

	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->empty_zones) {
		ret = -ENOMEM;
		goto out;
	}

465 466 467 468 469 470
	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->active_zones) {
		ret = -ENOMEM;
		goto out;
	}

471
	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
472 473 474 475 476
	if (!zones) {
		ret = -ENOMEM;
		goto out;
	}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	/*
	 * Enable zone cache only for a zoned device. On a non-zoned device, we
	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
	 * use the cache.
	 */
	if (populate_cache && bdev_is_zoned(device->bdev)) {
		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
						zone_info->nr_zones);
		if (!zone_info->zone_cache) {
			btrfs_err_in_rcu(device->fs_info,
				"zoned: failed to allocate zone cache for %s",
				rcu_str_deref(device->name));
			ret = -ENOMEM;
			goto out;
		}
	}

494
	/* Get zones type */
495
	nactive = 0;
496 497 498 499 500 501 502 503 504 505
	while (sector < nr_sectors) {
		nr_zones = BTRFS_REPORT_NR_ZONES;
		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
					  &nr_zones);
		if (ret)
			goto out;

		for (i = 0; i < nr_zones; i++) {
			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
				__set_bit(nreported, zone_info->seq_zones);
506 507
			switch (zones[i].cond) {
			case BLK_ZONE_COND_EMPTY:
508
				__set_bit(nreported, zone_info->empty_zones);
509 510 511 512 513 514 515 516
				break;
			case BLK_ZONE_COND_IMP_OPEN:
			case BLK_ZONE_COND_EXP_OPEN:
			case BLK_ZONE_COND_CLOSED:
				__set_bit(nreported, zone_info->active_zones);
				nactive++;
				break;
			}
517 518 519 520 521 522 523 524 525 526 527 528 529 530
			nreported++;
		}
		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
	}

	if (nreported != zone_info->nr_zones) {
		btrfs_err_in_rcu(device->fs_info,
				 "inconsistent number of zones on %s (%u/%u)",
				 rcu_str_deref(device->name), nreported,
				 zone_info->nr_zones);
		ret = -EIO;
		goto out;
	}

531 532 533 534 535 536 537 538 539 540 541
	if (max_active_zones) {
		if (nactive > max_active_zones) {
			btrfs_err_in_rcu(device->fs_info,
			"zoned: %u active zones on %s exceeds max_active_zones %u",
					 nactive, rcu_str_deref(device->name),
					 max_active_zones);
			ret = -EIO;
			goto out;
		}
		atomic_set(&zone_info->active_zones_left,
			   max_active_zones - nactive);
542 543
		/* Overcommit does not work well with active zone tacking. */
		set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags);
544 545
	}

546 547 548 549 550 551 552 553 554 555 556
	/* Validate superblock log */
	nr_zones = BTRFS_NR_SB_LOG_ZONES;
	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		u32 sb_zone;
		u64 sb_wp;
		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;

		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
		if (sb_zone + 1 >= zone_info->nr_zones)
			continue;

557 558
		ret = btrfs_get_dev_zones(device,
					  zone_start_physical(sb_zone, zone_info),
559 560 561 562 563 564 565 566 567 568 569 570 571 572
					  &zone_info->sb_zones[sb_pos],
					  &nr_zones);
		if (ret)
			goto out;

		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
			btrfs_err_in_rcu(device->fs_info,
	"zoned: failed to read super block log zone info at devid %llu zone %u",
					 device->devid, sb_zone);
			ret = -EUCLEAN;
			goto out;
		}

		/*
D
David Sterba 已提交
573
		 * If zones[0] is conventional, always use the beginning of the
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		 * zone to record superblock. No need to validate in that case.
		 */
		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
		    BLK_ZONE_TYPE_CONVENTIONAL)
			continue;

		ret = sb_write_pointer(device->bdev,
				       &zone_info->sb_zones[sb_pos], &sb_wp);
		if (ret != -ENOENT && ret) {
			btrfs_err_in_rcu(device->fs_info,
			"zoned: super block log zone corrupted devid %llu zone %u",
					 device->devid, sb_zone);
			ret = -EUCLEAN;
			goto out;
		}
	}


592
	kvfree(zones);
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	switch (bdev_zoned_model(bdev)) {
	case BLK_ZONED_HM:
		model = "host-managed zoned";
		emulated = "";
		break;
	case BLK_ZONED_HA:
		model = "host-aware zoned";
		emulated = "";
		break;
	case BLK_ZONED_NONE:
		model = "regular";
		emulated = "emulated ";
		break;
	default:
		/* Just in case */
		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
				 bdev_zoned_model(bdev),
				 rcu_str_deref(device->name));
		ret = -EOPNOTSUPP;
		goto out_free_zone_info;
	}

	btrfs_info_in_rcu(fs_info,
		"%s block device %s, %u %szones of %llu bytes",
		model, rcu_str_deref(device->name), zone_info->nr_zones,
		emulated, zone_info->zone_size);
620 621 622 623

	return 0;

out:
624
	kvfree(zones);
625
out_free_zone_info:
626
	btrfs_destroy_dev_zone_info(device);
627 628 629 630 631 632 633 634 635 636 637

	return ret;
}

void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;

	if (!zone_info)
		return;

638
	bitmap_free(zone_info->active_zones);
639 640
	bitmap_free(zone_info->seq_zones);
	bitmap_free(zone_info->empty_zones);
641
	vfree(zone_info->zone_cache);
642 643 644 645
	kfree(zone_info);
	device->zone_info = NULL;
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
{
	struct btrfs_zoned_device_info *zone_info;

	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
	if (!zone_info)
		return NULL;

	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->seq_zones)
		goto out;

	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
		    zone_info->nr_zones);

	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->empty_zones)
		goto out;

	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
		    zone_info->nr_zones);

	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->active_zones)
		goto out;

	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
		    zone_info->nr_zones);
	zone_info->zone_cache = NULL;

	return zone_info;

out:
	bitmap_free(zone_info->seq_zones);
	bitmap_free(zone_info->empty_zones);
	bitmap_free(zone_info->active_zones);
	kfree(zone_info);
	return NULL;
}

686 687 688 689 690 691 692 693 694 695 696 697
int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
		       struct blk_zone *zone)
{
	unsigned int nr_zones = 1;
	int ret;

	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
	if (ret != 0 || !nr_zones)
		return ret ? ret : -EIO;

	return 0;
}
N
Naohiro Aota 已提交
698

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
{
	struct btrfs_device *device;

	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
		if (device->bdev &&
		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
			btrfs_err(fs_info,
				"zoned: mode not enabled but zoned device found: %pg",
				device->bdev);
			return -EINVAL;
		}
	}

	return 0;
}

N
Naohiro Aota 已提交
716 717 718 719
int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
{
	struct btrfs_device *device;
	u64 zone_size = 0;
720
	u64 max_zone_append_size = 0;
721
	int ret;
N
Naohiro Aota 已提交
722

723 724 725 726 727 728 729 730 731
	/*
	 * Host-Managed devices can't be used without the ZONED flag.  With the
	 * ZONED all devices can be used, using zone emulation if required.
	 */
	if (!btrfs_fs_incompat(fs_info, ZONED))
		return btrfs_check_for_zoned_device(fs_info);

	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
		struct btrfs_zoned_device_info *zone_info = device->zone_info;
N
Naohiro Aota 已提交
732 733 734 735

		if (!device->bdev)
			continue;

736 737 738 739
		if (!zone_size) {
			zone_size = zone_info->zone_size;
		} else if (zone_info->zone_size != zone_size) {
			btrfs_err(fs_info,
N
Naohiro Aota 已提交
740
		"zoned: unequal block device zone sizes: have %llu found %llu",
741 742
				  zone_info->zone_size, zone_size);
			return -EINVAL;
N
Naohiro Aota 已提交
743
		}
744 745 746 747
		if (!max_zone_append_size ||
		    (zone_info->max_zone_append_size &&
		     zone_info->max_zone_append_size < max_zone_append_size))
			max_zone_append_size = zone_info->max_zone_append_size;
N
Naohiro Aota 已提交
748 749 750 751
	}

	/*
	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
752
	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
N
Naohiro Aota 已提交
753 754 755 756 757 758
	 * check the alignment here.
	 */
	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
		btrfs_err(fs_info,
			  "zoned: zone size %llu not aligned to stripe %u",
			  zone_size, BTRFS_STRIPE_LEN);
759
		return -EINVAL;
N
Naohiro Aota 已提交
760 761
	}

762 763
	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
		btrfs_err(fs_info, "zoned: mixed block groups not supported");
764
		return -EINVAL;
765 766
	}

N
Naohiro Aota 已提交
767
	fs_info->zone_size = zone_size;
768 769
	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
						   fs_info->sectorsize);
770
	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
771 772
	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
		fs_info->max_extent_size = fs_info->max_zone_append_size;
N
Naohiro Aota 已提交
773

774 775 776 777 778 779
	/*
	 * Check mount options here, because we might change fs_info->zoned
	 * from fs_info->zone_size.
	 */
	ret = btrfs_check_mountopts_zoned(fs_info);
	if (ret)
780
		return ret;
781

N
Naohiro Aota 已提交
782
	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
783
	return 0;
N
Naohiro Aota 已提交
784
}
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
{
	if (!btrfs_is_zoned(info))
		return 0;

	/*
	 * Space cache writing is not COWed. Disable that to avoid write errors
	 * in sequential zones.
	 */
	if (btrfs_test_opt(info, SPACE_CACHE)) {
		btrfs_err(info, "zoned: space cache v1 is not supported");
		return -EINVAL;
	}

800 801 802 803 804
	if (btrfs_test_opt(info, NODATACOW)) {
		btrfs_err(info, "zoned: NODATACOW not supported");
		return -EINVAL;
	}

805 806
	return 0;
}
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
			   int rw, u64 *bytenr_ret)
{
	u64 wp;
	int ret;

	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
		return 0;
	}

	ret = sb_write_pointer(bdev, zones, &wp);
	if (ret != -ENOENT && ret < 0)
		return ret;

	if (rw == WRITE) {
		struct blk_zone *reset = NULL;

		if (wp == zones[0].start << SECTOR_SHIFT)
			reset = &zones[0];
		else if (wp == zones[1].start << SECTOR_SHIFT)
			reset = &zones[1];

		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
832
			ASSERT(sb_zone_is_full(reset));
833 834 835 836 837 838 839 840 841 842 843

			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
					       reset->start, reset->len,
					       GFP_NOFS);
			if (ret)
				return ret;

			reset->cond = BLK_ZONE_COND_EMPTY;
			reset->wp = reset->start;
		}
	} else if (ret != -ENOENT) {
844 845 846 847 848 849
		/*
		 * For READ, we want the previous one. Move write pointer to
		 * the end of a zone, if it is at the head of a zone.
		 */
		u64 zone_end = 0;

850
		if (wp == zones[0].start << SECTOR_SHIFT)
851 852 853 854 855 856 857
			zone_end = zones[1].start + zones[1].capacity;
		else if (wp == zones[1].start << SECTOR_SHIFT)
			zone_end = zones[0].start + zones[0].capacity;
		if (zone_end)
			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
					BTRFS_SUPER_INFO_SIZE);

858 859 860 861 862 863 864 865 866 867 868 869
		wp -= BTRFS_SUPER_INFO_SIZE;
	}

	*bytenr_ret = wp;
	return 0;

}

int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
			       u64 *bytenr_ret)
{
	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
870
	sector_t zone_sectors;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	u32 sb_zone;
	int ret;
	u8 zone_sectors_shift;
	sector_t nr_sectors;
	u32 nr_zones;

	if (!bdev_is_zoned(bdev)) {
		*bytenr_ret = btrfs_sb_offset(mirror);
		return 0;
	}

	ASSERT(rw == READ || rw == WRITE);

	zone_sectors = bdev_zone_sectors(bdev);
	if (!is_power_of_2(zone_sectors))
		return -EINVAL;
	zone_sectors_shift = ilog2(zone_sectors);
888
	nr_sectors = bdev_nr_sectors(bdev);
889 890 891 892 893 894
	nr_zones = nr_sectors >> zone_sectors_shift;

	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
	if (sb_zone + 1 >= nr_zones)
		return -ENOENT;

895
	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
				  zones);
	if (ret < 0)
		return ret;
	if (ret != BTRFS_NR_SB_LOG_ZONES)
		return -EIO;

	return sb_log_location(bdev, zones, rw, bytenr_ret);
}

int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
			  u64 *bytenr_ret)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	u32 zone_num;

912 913 914 915 916 917 918
	/*
	 * For a zoned filesystem on a non-zoned block device, use the same
	 * super block locations as regular filesystem. Doing so, the super
	 * block can always be retrieved and the zoned flag of the volume
	 * detected from the super block information.
	 */
	if (!bdev_is_zoned(device->bdev)) {
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
		*bytenr_ret = btrfs_sb_offset(mirror);
		return 0;
	}

	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
	if (zone_num + 1 >= zinfo->nr_zones)
		return -ENOENT;

	return sb_log_location(device->bdev,
			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
			       rw, bytenr_ret);
}

static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
				  int mirror)
{
	u32 zone_num;

	if (!zinfo)
		return false;

	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
	if (zone_num + 1 >= zinfo->nr_zones)
		return false;

	if (!test_bit(zone_num, zinfo->seq_zones))
		return false;

	return true;
}

950
int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
951 952 953
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	struct blk_zone *zone;
954
	int i;
955 956

	if (!is_sb_log_zone(zinfo, mirror))
957
		return 0;
958 959

	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
960 961 962 963 964 965 966
	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
		/* Advance the next zone */
		if (zone->cond == BLK_ZONE_COND_FULL) {
			zone++;
			continue;
		}

967 968 969
		if (zone->cond == BLK_ZONE_COND_EMPTY)
			zone->cond = BLK_ZONE_COND_IMP_OPEN;

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		zone->wp += SUPER_INFO_SECTORS;

		if (sb_zone_is_full(zone)) {
			/*
			 * No room left to write new superblock. Since
			 * superblock is written with REQ_SYNC, it is safe to
			 * finish the zone now.
			 *
			 * If the write pointer is exactly at the capacity,
			 * explicit ZONE_FINISH is not necessary.
			 */
			if (zone->wp != zone->start + zone->capacity) {
				int ret;

				ret = blkdev_zone_mgmt(device->bdev,
						REQ_OP_ZONE_FINISH, zone->start,
						zone->len, GFP_NOFS);
				if (ret)
					return ret;
			}
990

991
			zone->wp = zone->start + zone->len;
992
			zone->cond = BLK_ZONE_COND_FULL;
993 994
		}
		return 0;
995 996
	}

997 998 999
	/* All the zones are FULL. Should not reach here. */
	ASSERT(0);
	return -EIO;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
}

int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
{
	sector_t zone_sectors;
	sector_t nr_sectors;
	u8 zone_sectors_shift;
	u32 sb_zone;
	u32 nr_zones;

	zone_sectors = bdev_zone_sectors(bdev);
	zone_sectors_shift = ilog2(zone_sectors);
1012
	nr_sectors = bdev_nr_sectors(bdev);
1013 1014 1015 1016 1017 1018 1019
	nr_zones = nr_sectors >> zone_sectors_shift;

	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
	if (sb_zone + 1 >= nr_zones)
		return -ENOENT;

	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1020
				zone_start_sector(sb_zone, bdev),
1021 1022
				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
}
1023

D
David Sterba 已提交
1024 1025
/*
 * Find allocatable zones within a given region.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
 *
 * @device:	the device to allocate a region on
 * @hole_start: the position of the hole to allocate the region
 * @num_bytes:	size of wanted region
 * @hole_end:	the end of the hole
 * @return:	position of allocatable zones
 *
 * Allocatable region should not contain any superblock locations.
 */
u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
				 u64 hole_end, u64 num_bytes)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	const u8 shift = zinfo->zone_size_shift;
	u64 nzones = num_bytes >> shift;
	u64 pos = hole_start;
	u64 begin, end;
	bool have_sb;
	int i;

	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));

	while (pos < hole_end) {
		begin = pos >> shift;
		end = begin + nzones;

		if (end > zinfo->nr_zones)
			return hole_end;

		/* Check if zones in the region are all empty */
		if (btrfs_dev_is_sequential(device, pos) &&
		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
			pos += zinfo->zone_size;
			continue;
		}

		have_sb = false;
		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
			u32 sb_zone;
			u64 sb_pos;

			sb_zone = sb_zone_number(shift, i);
			if (!(end <= sb_zone ||
			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
				have_sb = true;
1072 1073
				pos = zone_start_physical(
					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
				break;
			}

			/* We also need to exclude regular superblock positions */
			sb_pos = btrfs_sb_offset(i);
			if (!(pos + num_bytes <= sb_pos ||
			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
				have_sb = true;
				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
					    zinfo->zone_size);
				break;
			}
		}
		if (!have_sb)
			break;
	}

	return pos;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;
	unsigned int zno = (pos >> zone_info->zone_size_shift);

	/* We can use any number of zones */
	if (zone_info->max_active_zones == 0)
		return true;

	if (!test_bit(zno, zone_info->active_zones)) {
		/* Active zone left? */
		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
			return false;
		if (test_and_set_bit(zno, zone_info->active_zones)) {
			/* Someone already set the bit */
			atomic_inc(&zone_info->active_zones_left);
		}
	}

	return true;
}

static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;
	unsigned int zno = (pos >> zone_info->zone_size_shift);

	/* We can use any number of zones */
	if (zone_info->max_active_zones == 0)
		return;

	if (test_and_clear_bit(zno, zone_info->active_zones))
		atomic_inc(&zone_info->active_zones_left);
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
			    u64 length, u64 *bytes)
{
	int ret;

	*bytes = 0;
	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
			       GFP_NOFS);
	if (ret)
		return ret;

	*bytes = length;
	while (length) {
		btrfs_dev_set_zone_empty(device, physical);
1144
		btrfs_dev_clear_active_zone(device, physical);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		physical += device->zone_info->zone_size;
		length -= device->zone_info->zone_size;
	}

	return 0;
}

int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	const u8 shift = zinfo->zone_size_shift;
	unsigned long begin = start >> shift;
	unsigned long end = (start + size) >> shift;
	u64 pos;
	int ret;

	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
	ASSERT(IS_ALIGNED(size, zinfo->zone_size));

	if (end > zinfo->nr_zones)
		return -ERANGE;

	/* All the zones are conventional */
	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
		return 0;

	/* All the zones are sequential and empty */
	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
		return 0;

	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
		u64 reset_bytes;

		if (!btrfs_dev_is_sequential(device, pos) ||
		    btrfs_dev_is_empty_zone(device, pos))
			continue;

		/* Free regions should be empty */
		btrfs_warn_in_rcu(
			device->fs_info,
		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
			rcu_str_deref(device->name), device->devid, pos >> shift);
		WARN_ON_ONCE(1);

		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
					      &reset_bytes);
		if (ret)
			return ret;
	}

	return 0;
}
1198

1199 1200 1201 1202 1203 1204 1205
/*
 * Calculate an allocation pointer from the extent allocation information
 * for a block group consist of conventional zones. It is pointed to the
 * end of the highest addressed extent in the block group as an allocation
 * offset.
 */
static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206
				   u64 *offset_ret, bool new)
1207 1208
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
1209
	struct btrfs_root *root;
1210 1211 1212 1213 1214 1215
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	u64 length;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * Avoid  tree lookups for a new block group, there's no use for it.
	 * It must always be 0.
	 *
	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
	 * For new a block group, this function is called from
	 * btrfs_make_block_group() which is already taking the chunk mutex.
	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
	 * buffer locks to avoid deadlock.
	 */
	if (new) {
		*offset_ret = 0;
		return 0;
	}

1231 1232 1233 1234 1235 1236 1237 1238
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = cache->start + cache->length;
	key.type = 0;
	key.offset = 0;

1239
	root = btrfs_extent_root(fs_info, key.objectid);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	/* We should not find the exact match */
	if (!ret)
		ret = -EUCLEAN;
	if (ret < 0)
		goto out;

	ret = btrfs_previous_extent_item(root, path, cache->start);
	if (ret) {
		if (ret == 1) {
			ret = 0;
			*offset_ret = 0;
		}
		goto out;
	}

	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);

	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
		length = found_key.offset;
	else
		length = fs_info->nodesize;

	if (!(found_key.objectid >= cache->start &&
	       found_key.objectid + length <= cache->start + cache->length)) {
		ret = -EUCLEAN;
		goto out;
	}
	*offset_ret = found_key.objectid + length - cache->start;
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_device *device;
	u64 logical = cache->start;
	u64 length = cache->length;
	int ret;
	int i;
	unsigned int nofs_flag;
	u64 *alloc_offsets = NULL;
1289
	u64 *caps = NULL;
1290
	u64 *physical = NULL;
1291
	unsigned long *active = NULL;
1292
	u64 last_alloc = 0;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	u32 num_sequential = 0, num_conventional = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	/* Sanity check */
	if (!IS_ALIGNED(length, fs_info->zone_size)) {
		btrfs_err(fs_info,
		"zoned: block group %llu len %llu unaligned to zone size %llu",
			  logical, length, fs_info->zone_size);
		return -EIO;
	}

	/* Get the chunk mapping */
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em)
		return -EINVAL;

	map = em->map_lookup;

1316
	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1317 1318 1319 1320 1321
	if (!cache->physical_map) {
		ret = -ENOMEM;
		goto out;
	}

1322 1323
	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
	if (!alloc_offsets) {
1324 1325
		ret = -ENOMEM;
		goto out;
1326 1327
	}

1328 1329 1330 1331 1332 1333
	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
	if (!caps) {
		ret = -ENOMEM;
		goto out;
	}

1334 1335 1336 1337 1338 1339
	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
	if (!physical) {
		ret = -ENOMEM;
		goto out;
	}

1340 1341 1342 1343 1344 1345
	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
	if (!active) {
		ret = -ENOMEM;
		goto out;
	}

1346 1347 1348
	for (i = 0; i < map->num_stripes; i++) {
		bool is_sequential;
		struct blk_zone zone;
1349 1350
		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
		int dev_replace_is_ongoing = 0;
1351 1352

		device = map->stripes[i].dev;
1353
		physical[i] = map->stripes[i].physical;
1354 1355 1356 1357 1358 1359

		if (device->bdev == NULL) {
			alloc_offsets[i] = WP_MISSING_DEV;
			continue;
		}

1360
		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1361 1362 1363 1364 1365
		if (is_sequential)
			num_sequential++;
		else
			num_conventional++;

1366 1367 1368 1369 1370 1371 1372
		/*
		 * Consider a zone as active if we can allow any number of
		 * active zones.
		 */
		if (!device->zone_info->max_active_zones)
			__set_bit(i, active);

1373 1374 1375 1376 1377 1378 1379 1380 1381
		if (!is_sequential) {
			alloc_offsets[i] = WP_CONVENTIONAL;
			continue;
		}

		/*
		 * This zone will be used for allocation, so mark this zone
		 * non-empty.
		 */
1382
		btrfs_dev_clear_zone_empty(device, physical[i]);
1383

1384 1385 1386
		down_read(&dev_replace->rwsem);
		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1387
			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1388 1389
		up_read(&dev_replace->rwsem);

1390 1391 1392 1393
		/*
		 * The group is mapped to a sequential zone. Get the zone write
		 * pointer to determine the allocation offset within the zone.
		 */
1394
		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1395
		nofs_flag = memalloc_nofs_save();
1396
		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1397 1398 1399 1400 1401 1402 1403 1404 1405
		memalloc_nofs_restore(nofs_flag);
		if (ret == -EIO || ret == -EOPNOTSUPP) {
			ret = 0;
			alloc_offsets[i] = WP_MISSING_DEV;
			continue;
		} else if (ret) {
			goto out;
		}

1406
		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1407 1408 1409 1410
			btrfs_err_in_rcu(fs_info,
	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
				zone.start << SECTOR_SHIFT,
				rcu_str_deref(device->name), device->devid);
1411 1412 1413 1414
			ret = -EIO;
			goto out;
		}

1415 1416
		caps[i] = (zone.capacity << SECTOR_SHIFT);

1417 1418 1419 1420 1421
		switch (zone.cond) {
		case BLK_ZONE_COND_OFFLINE:
		case BLK_ZONE_COND_READONLY:
			btrfs_err(fs_info,
		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1422
				  physical[i] >> device->zone_info->zone_size_shift,
1423 1424 1425 1426 1427 1428 1429
				  rcu_str_deref(device->name), device->devid);
			alloc_offsets[i] = WP_MISSING_DEV;
			break;
		case BLK_ZONE_COND_EMPTY:
			alloc_offsets[i] = 0;
			break;
		case BLK_ZONE_COND_FULL:
1430
			alloc_offsets[i] = caps[i];
1431 1432 1433 1434 1435
			break;
		default:
			/* Partially used zone */
			alloc_offsets[i] =
					((zone.wp - zone.start) << SECTOR_SHIFT);
1436
			__set_bit(i, active);
1437 1438 1439 1440
			break;
		}
	}

1441
	if (num_sequential > 0)
1442
		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1443

1444
	if (num_conventional > 0) {
1445 1446
		/* Zone capacity is always zone size in emulation */
		cache->zone_capacity = cache->length;
1447 1448 1449
		ret = calculate_alloc_pointer(cache, &last_alloc, new);
		if (ret) {
			btrfs_err(fs_info,
1450
			"zoned: failed to determine allocation offset of bg %llu",
1451 1452 1453 1454
				  cache->start);
			goto out;
		} else if (map->num_stripes == num_conventional) {
			cache->alloc_offset = last_alloc;
1455
			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1456 1457
			goto out;
		}
1458 1459 1460 1461
	}

	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
	case 0: /* single */
1462 1463 1464
		if (alloc_offsets[0] == WP_MISSING_DEV) {
			btrfs_err(fs_info,
			"zoned: cannot recover write pointer for zone %llu",
1465
				physical[0]);
1466 1467 1468
			ret = -EIO;
			goto out;
		}
1469
		cache->alloc_offset = alloc_offsets[0];
1470
		cache->zone_capacity = caps[0];
1471 1472
		if (test_bit(0, active))
			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1473 1474
		break;
	case BTRFS_BLOCK_GROUP_DUP:
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
			ret = -EINVAL;
			goto out;
		}
		if (alloc_offsets[0] == WP_MISSING_DEV) {
			btrfs_err(fs_info,
			"zoned: cannot recover write pointer for zone %llu",
				physical[0]);
			ret = -EIO;
			goto out;
		}
		if (alloc_offsets[1] == WP_MISSING_DEV) {
			btrfs_err(fs_info,
			"zoned: cannot recover write pointer for zone %llu",
				physical[1]);
			ret = -EIO;
			goto out;
		}
		if (alloc_offsets[0] != alloc_offsets[1]) {
			btrfs_err(fs_info,
			"zoned: write pointer offset mismatch of zones in DUP profile");
			ret = -EIO;
			goto out;
		}
		if (test_bit(0, active) != test_bit(1, active)) {
			if (!btrfs_zone_activate(cache)) {
				ret = -EIO;
				goto out;
			}
		} else {
1506 1507 1508
			if (test_bit(0, active))
				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
					&cache->runtime_flags);
1509 1510 1511 1512
		}
		cache->alloc_offset = alloc_offsets[0];
		cache->zone_capacity = min(caps[0], caps[1]);
		break;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	case BTRFS_BLOCK_GROUP_RAID1:
	case BTRFS_BLOCK_GROUP_RAID0:
	case BTRFS_BLOCK_GROUP_RAID10:
	case BTRFS_BLOCK_GROUP_RAID5:
	case BTRFS_BLOCK_GROUP_RAID6:
		/* non-single profiles are not supported yet */
	default:
		btrfs_err(fs_info, "zoned: profile %s not yet supported",
			  btrfs_bg_type_to_raid_name(map->type));
		ret = -EINVAL;
		goto out;
	}

out:
1527 1528 1529 1530 1531 1532 1533
	if (cache->alloc_offset > fs_info->zone_size) {
		btrfs_err(fs_info,
			"zoned: invalid write pointer %llu in block group %llu",
			cache->alloc_offset, cache->start);
		ret = -EIO;
	}

1534 1535 1536 1537 1538 1539 1540 1541
	if (cache->alloc_offset > cache->zone_capacity) {
		btrfs_err(fs_info,
"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
			  cache->alloc_offset, cache->zone_capacity,
			  cache->start);
		ret = -EIO;
	}

1542 1543 1544 1545 1546 1547 1548 1549
	/* An extent is allocated after the write pointer */
	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
		btrfs_err(fs_info,
			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
			  logical, last_alloc, cache->alloc_offset);
		ret = -EIO;
	}

1550
	if (!ret) {
1551
		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1552
		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1553 1554 1555 1556 1557 1558 1559
			btrfs_get_block_group(cache);
			spin_lock(&fs_info->zone_active_bgs_lock);
			list_add_tail(&cache->active_bg_list,
				      &fs_info->zone_active_bgs);
			spin_unlock(&fs_info->zone_active_bgs_lock);
		}
	} else {
1560 1561 1562
		kfree(cache->physical_map);
		cache->physical_map = NULL;
	}
1563
	bitmap_free(active);
1564
	kfree(physical);
1565
	kfree(caps);
1566 1567 1568 1569 1570
	kfree(alloc_offsets);
	free_extent_map(em);

	return ret;
}
1571 1572 1573 1574 1575 1576 1577 1578 1579

void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
{
	u64 unusable, free;

	if (!btrfs_is_zoned(cache->fs_info))
		return;

	WARN_ON(cache->bytes_super != 0);
1580 1581 1582
	unusable = (cache->alloc_offset - cache->used) +
		   (cache->length - cache->zone_capacity);
	free = cache->zone_capacity - cache->alloc_offset;
1583 1584 1585 1586 1587 1588

	/* We only need ->free_space in ALLOC_SEQ block groups */
	cache->cached = BTRFS_CACHE_FINISHED;
	cache->free_space_ctl->free_space = free;
	cache->zone_unusable = unusable;
}
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

void btrfs_redirty_list_add(struct btrfs_transaction *trans,
			    struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (!btrfs_is_zoned(fs_info) ||
	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
	    !list_empty(&eb->release_list))
		return;

	set_extent_buffer_dirty(eb);
	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
			       eb->start + eb->len - 1, EXTENT_DIRTY);
	memzero_extent_buffer(eb, 0, eb->len);
	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);

	spin_lock(&trans->releasing_ebs_lock);
	list_add_tail(&eb->release_list, &trans->releasing_ebs);
	spin_unlock(&trans->releasing_ebs_lock);
	atomic_inc(&eb->refs);
}

void btrfs_free_redirty_list(struct btrfs_transaction *trans)
{
	spin_lock(&trans->releasing_ebs_lock);
	while (!list_empty(&trans->releasing_ebs)) {
		struct extent_buffer *eb;

		eb = list_first_entry(&trans->releasing_ebs,
				      struct extent_buffer, release_list);
		list_del_init(&eb->release_list);
		free_extent_buffer(eb);
	}
	spin_unlock(&trans->releasing_ebs_lock);
}
1625

1626
bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_block_group *cache;
	bool ret = false;

	if (!btrfs_is_zoned(fs_info))
		return false;

	if (!is_data_inode(&inode->vfs_inode))
		return false;

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
	 * extent layout the relocation code has.
	 * Furthermore we have set aside own block-group from which only the
	 * relocation "process" can allocate and make sure only one process at a
	 * time can add pages to an extent that gets relocated, so it's safe to
	 * use regular REQ_OP_WRITE for this special case.
	 */
	if (btrfs_is_data_reloc_root(inode->root))
		return false;

1649
	cache = btrfs_lookup_block_group(fs_info, start);
1650 1651 1652 1653
	ASSERT(cache);
	if (!cache)
		return false;

1654
	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1655 1656 1657 1658
	btrfs_put_block_group(cache);

	return ret;
}
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
				 struct bio *bio)
{
	struct btrfs_ordered_extent *ordered;
	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;

	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
		return;

	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
	if (WARN_ON(!ordered))
		return;

	ordered->physical = physical;
1674
	ordered->bdev = bio->bi_bdev;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	btrfs_put_ordered_extent(ordered);
}

void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
{
	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_ordered_sum *sum;
	u64 orig_logical = ordered->disk_bytenr;
	u64 *logical = NULL;
	int nr, stripe_len;

	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1691 1692
	ASSERT(!bdev_is_partition(ordered->bdev));
	if (WARN_ON(!ordered->bdev))
1693 1694
		return;

1695
	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
				     ordered->physical, &logical, &nr,
				     &stripe_len)))
		goto out;

	WARN_ON(nr != 1);

	if (orig_logical == *logical)
		goto out;

	ordered->disk_bytenr = *logical;

	em_tree = &inode->extent_tree;
	write_lock(&em_tree->lock);
	em = search_extent_mapping(em_tree, ordered->file_offset,
				   ordered->num_bytes);
	em->block_start = *logical;
	free_extent_map(em);
	write_unlock(&em_tree->lock);

	list_for_each_entry(sum, &ordered->list, list) {
		if (*logical < orig_logical)
			sum->bytenr -= orig_logical - *logical;
		else
			sum->bytenr += *logical - orig_logical;
	}

out:
	kfree(logical);
}
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb,
				    struct btrfs_block_group **cache_ret)
{
	struct btrfs_block_group *cache;
	bool ret = true;

	if (!btrfs_is_zoned(fs_info))
		return true;

1736 1737 1738
	cache = btrfs_lookup_block_group(fs_info, eb->start);
	if (!cache)
		return true;
1739

1740
	if (cache->meta_write_pointer != eb->start) {
1741 1742
		btrfs_put_block_group(cache);
		cache = NULL;
1743 1744 1745
		ret = false;
	} else {
		cache->meta_write_pointer = eb->start + eb->len;
1746 1747
	}

1748
	*cache_ret = cache;
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	return ret;
}

void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
				     struct extent_buffer *eb)
{
	if (!btrfs_is_zoned(eb->fs_info) || !cache)
		return;

	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
	cache->meta_write_pointer = eb->start;
}
1762 1763 1764 1765 1766 1767 1768 1769 1770

int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
{
	if (!btrfs_dev_is_sequential(device, physical))
		return -EOPNOTSUPP;

	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
}
1771 1772 1773 1774

static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
			  struct blk_zone *zone)
{
1775
	struct btrfs_io_context *bioc = NULL;
1776 1777 1778 1779 1780 1781
	u64 mapped_length = PAGE_SIZE;
	unsigned int nofs_flag;
	int nmirrors;
	int i, ret;

	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1782 1783
			       &mapped_length, &bioc);
	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1784 1785
		ret = -EIO;
		goto out_put_bioc;
1786 1787
	}

1788 1789 1790 1791
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EINVAL;
		goto out_put_bioc;
	}
1792 1793

	nofs_flag = memalloc_nofs_save();
1794
	nmirrors = (int)bioc->num_stripes;
1795
	for (i = 0; i < nmirrors; i++) {
1796 1797
		u64 physical = bioc->stripes[i].physical;
		struct btrfs_device *dev = bioc->stripes[i].dev;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

		/* Missing device */
		if (!dev->bdev)
			continue;

		ret = btrfs_get_dev_zone(dev, physical, zone);
		/* Failing device */
		if (ret == -EIO || ret == -EOPNOTSUPP)
			continue;
		break;
	}
	memalloc_nofs_restore(nofs_flag);
1810 1811
out_put_bioc:
	btrfs_put_bioc(bioc);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	return ret;
}

/*
 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
 * filling zeros between @physical_pos to a write pointer of dev-replace
 * source device.
 */
int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
				    u64 physical_start, u64 physical_pos)
{
	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
	struct blk_zone zone;
	u64 length;
	u64 wp;
	int ret;

	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
		return 0;

	ret = read_zone_info(fs_info, logical, &zone);
	if (ret)
		return ret;

	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);

	if (physical_pos == wp)
		return 0;

	if (physical_pos > wp)
		return -EUCLEAN;

	length = wp - physical_pos;
	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
}
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
					    u64 logical, u64 length)
{
	struct btrfs_device *device;
	struct extent_map *em;
	struct map_lookup *map;

	em = btrfs_get_chunk_map(fs_info, logical, length);
	if (IS_ERR(em))
		return ERR_CAST(em);

	map = em->map_lookup;
	/* We only support single profile for now */
	device = map->stripes[0].dev;

	free_extent_map(em);

	return device;
}
1867

D
David Sterba 已提交
1868
/*
1869 1870 1871 1872 1873 1874 1875 1876 1877
 * Activate block group and underlying device zones
 *
 * @block_group: the block group to activate
 *
 * Return: true on success, false otherwise
 */
bool btrfs_zone_activate(struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
1878
	struct btrfs_space_info *space_info = block_group->space_info;
1879 1880 1881 1882
	struct map_lookup *map;
	struct btrfs_device *device;
	u64 physical;
	bool ret;
1883
	int i;
1884 1885 1886 1887 1888 1889

	if (!btrfs_is_zoned(block_group->fs_info))
		return true;

	map = block_group->physical_map;

1890
	spin_lock(&space_info->lock);
1891
	spin_lock(&block_group->lock);
1892
	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1893 1894 1895 1896
		ret = true;
		goto out_unlock;
	}

1897
	/* No space left */
1898
	if (btrfs_zoned_bg_is_full(block_group)) {
1899 1900 1901 1902
		ret = false;
		goto out_unlock;
	}

1903 1904 1905
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		physical = map->stripes[i].physical;
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915
		if (device->zone_info->max_active_zones == 0)
			continue;

		if (!btrfs_dev_set_active_zone(device, physical)) {
			/* Cannot activate the zone */
			ret = false;
			goto out_unlock;
		}
	}
1916 1917

	/* Successfully activated all the zones */
1918
	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1919
	space_info->active_total_bytes += block_group->length;
1920
	spin_unlock(&block_group->lock);
1921 1922
	btrfs_try_granting_tickets(fs_info, space_info);
	spin_unlock(&space_info->lock);
1923

1924 1925
	/* For the active block group list */
	btrfs_get_block_group(block_group);
1926

1927 1928 1929
	spin_lock(&fs_info->zone_active_bgs_lock);
	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
	spin_unlock(&fs_info->zone_active_bgs_lock);
1930 1931 1932 1933 1934

	return true;

out_unlock:
	spin_unlock(&block_group->lock);
1935
	spin_unlock(&space_info->lock);
1936 1937 1938
	return ret;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static void wait_eb_writebacks(struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	const u64 end = block_group->start + block_group->length;
	struct radix_tree_iter iter;
	struct extent_buffer *eb;
	void __rcu **slot;

	rcu_read_lock();
	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
				 block_group->start >> fs_info->sectorsize_bits) {
		eb = radix_tree_deref_slot(slot);
		if (!eb)
			continue;
		if (radix_tree_deref_retry(eb)) {
			slot = radix_tree_iter_retry(&iter);
			continue;
		}

		if (eb->start < block_group->start)
			continue;
		if (eb->start >= end)
			break;

		slot = radix_tree_iter_resume(slot, &iter);
		rcu_read_unlock();
		wait_on_extent_buffer_writeback(eb);
		rcu_read_lock();
	}
	rcu_read_unlock();
}

1971
static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1972 1973 1974
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	struct map_lookup *map;
1975 1976
	const bool is_metadata = (block_group->flags &
			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1977
	int ret = 0;
1978
	int i;
1979 1980

	spin_lock(&block_group->lock);
1981
	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1982 1983 1984 1985 1986
		spin_unlock(&block_group->lock);
		return 0;
	}

	/* Check if we have unwritten allocated space */
1987
	if (is_metadata &&
1988
	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1989 1990 1991 1992 1993
		spin_unlock(&block_group->lock);
		return -EAGAIN;
	}

	/*
1994 1995 1996 1997 1998
	 * If we are sure that the block group is full (= no more room left for
	 * new allocation) and the IO for the last usable block is completed, we
	 * don't need to wait for the other IOs. This holds because we ensure
	 * the sequential IO submissions using the ZONE_APPEND command for data
	 * and block_group->meta_write_pointer for metadata.
1999
	 */
2000
	if (!fully_written) {
2001 2002
		spin_unlock(&block_group->lock);

2003 2004 2005 2006 2007 2008 2009 2010 2011
		ret = btrfs_inc_block_group_ro(block_group, false);
		if (ret)
			return ret;

		/* Ensure all writes in this block group finish */
		btrfs_wait_block_group_reservations(block_group);
		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
					 block_group->length);
2012 2013 2014
		/* Wait for extent buffers to be written. */
		if (is_metadata)
			wait_eb_writebacks(block_group);
2015 2016 2017 2018 2019 2020 2021

		spin_lock(&block_group->lock);

		/*
		 * Bail out if someone already deactivated the block group, or
		 * allocated space is left in the block group.
		 */
2022 2023
		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
			      &block_group->runtime_flags)) {
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
			spin_unlock(&block_group->lock);
			btrfs_dec_block_group_ro(block_group);
			return 0;
		}

		if (block_group->reserved) {
			spin_unlock(&block_group->lock);
			btrfs_dec_block_group_ro(block_group);
			return -EAGAIN;
		}
2034 2035
	}

2036
	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2037 2038 2039
	block_group->alloc_offset = block_group->zone_capacity;
	block_group->free_space_ctl->free_space = 0;
	btrfs_clear_treelog_bg(block_group);
2040
	btrfs_clear_data_reloc_bg(block_group);
2041 2042
	spin_unlock(&block_group->lock);

2043
	map = block_group->physical_map;
2044
	for (i = 0; i < map->num_stripes; i++) {
2045 2046
		struct btrfs_device *device = map->stripes[i].dev;
		const u64 physical = map->stripes[i].physical;
2047

2048 2049
		if (device->zone_info->max_active_zones == 0)
			continue;
2050

2051 2052 2053 2054
		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
				       physical >> SECTOR_SHIFT,
				       device->zone_info->zone_size >> SECTOR_SHIFT,
				       GFP_NOFS);
2055

2056 2057
		if (ret)
			return ret;
2058

2059
		btrfs_dev_clear_active_zone(device, physical);
2060
	}
2061 2062 2063

	if (!fully_written)
		btrfs_dec_block_group_ro(block_group);
2064

2065 2066 2067 2068 2069 2070 2071 2072
	spin_lock(&fs_info->zone_active_bgs_lock);
	ASSERT(!list_empty(&block_group->active_bg_list));
	list_del_init(&block_group->active_bg_list);
	spin_unlock(&fs_info->zone_active_bgs_lock);

	/* For active_bg_list */
	btrfs_put_block_group(block_group);

2073
	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2074

2075
	return 0;
2076
}
2077

2078 2079 2080 2081 2082 2083 2084 2085
int btrfs_zone_finish(struct btrfs_block_group *block_group)
{
	if (!btrfs_is_zoned(block_group->fs_info))
		return 0;

	return do_zone_finish(block_group, false);
}

2086
bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2087
{
2088
	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2089 2090 2091
	struct btrfs_device *device;
	bool ret = false;

2092
	if (!btrfs_is_zoned(fs_info))
2093 2094 2095
		return true;

	/* Check if there is a device with active zones left */
2096 2097
	mutex_lock(&fs_info->chunk_mutex);
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		struct btrfs_zoned_device_info *zinfo = device->zone_info;

		if (!device->bdev)
			continue;

		if (!zinfo->max_active_zones ||
		    atomic_read(&zinfo->active_zones_left)) {
			ret = true;
			break;
		}
	}
2109
	mutex_unlock(&fs_info->chunk_mutex);
2110

2111 2112 2113
	if (!ret)
		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);

2114 2115
	return ret;
}
2116 2117 2118 2119

void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
{
	struct btrfs_block_group *block_group;
2120
	u64 min_alloc_bytes;
2121 2122 2123 2124 2125 2126 2127

	if (!btrfs_is_zoned(fs_info))
		return;

	block_group = btrfs_lookup_block_group(fs_info, logical);
	ASSERT(block_group);

2128 2129 2130 2131 2132
	/* No MIXED_BG on zoned btrfs. */
	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
		min_alloc_bytes = fs_info->sectorsize;
	else
		min_alloc_bytes = fs_info->nodesize;
2133

2134 2135 2136
	/* Bail out if we can allocate more data from this block group. */
	if (logical + length + min_alloc_bytes <=
	    block_group->start + block_group->zone_capacity)
2137 2138
		goto out;

2139
	do_zone_finish(block_group, true);
2140 2141 2142 2143 2144

out:
	btrfs_put_block_group(block_group);
}

2145 2146 2147 2148
static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
{
	struct btrfs_block_group *bg =
		container_of(work, struct btrfs_block_group, zone_finish_work);
2149

2150 2151 2152 2153 2154
	wait_on_extent_buffer_writeback(bg->last_eb);
	free_extent_buffer(bg->last_eb);
	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
	btrfs_put_block_group(bg);
}
2155

2156 2157 2158
void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
				   struct extent_buffer *eb)
{
2159 2160
	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2161
		return;
2162

2163 2164 2165 2166 2167
	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
			  bg->start);
		return;
	}
2168

2169 2170 2171 2172 2173 2174
	/* For the work */
	btrfs_get_block_group(bg);
	atomic_inc(&eb->refs);
	bg->last_eb = eb;
	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
	queue_work(system_unbound_wq, &bg->zone_finish_work);
2175
}
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
{
	struct btrfs_fs_info *fs_info = bg->fs_info;

	spin_lock(&fs_info->relocation_bg_lock);
	if (fs_info->data_reloc_bg == bg->start)
		fs_info->data_reloc_bg = 0;
	spin_unlock(&fs_info->relocation_bg_lock);
}
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;

	if (!btrfs_is_zoned(fs_info))
		return;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		if (device->zone_info) {
			vfree(device->zone_info->zone_cache);
			device->zone_info->zone_cache = NULL;
		}
	}
	mutex_unlock(&fs_devices->device_list_mutex);
}
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	u64 used = 0;
	u64 total = 0;
	u64 factor;

	ASSERT(btrfs_is_zoned(fs_info));

	if (fs_info->bg_reclaim_threshold == 0)
		return false;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		if (!device->bdev)
			continue;

		total += device->disk_total_bytes;
		used += device->bytes_used;
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	factor = div64_u64(used * 100, total);
	return factor >= fs_info->bg_reclaim_threshold;
}
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
				       u64 length)
{
	struct btrfs_block_group *block_group;

	if (!btrfs_is_zoned(fs_info))
		return;

	block_group = btrfs_lookup_block_group(fs_info, logical);
	/* It should be called on a previous data relocation block group. */
	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));

	spin_lock(&block_group->lock);
2245
	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2246 2247 2248 2249 2250
		goto out;

	/* All relocation extents are written. */
	if (block_group->start + block_group->alloc_offset == logical + length) {
		/* Now, release this block group for further allocations. */
2251 2252
		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
			  &block_group->runtime_flags);
2253 2254 2255 2256 2257 2258
	}

out:
	spin_unlock(&block_group->lock);
	btrfs_put_block_group(block_group);
}
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
{
	struct btrfs_block_group *block_group;
	struct btrfs_block_group *min_bg = NULL;
	u64 min_avail = U64_MAX;
	int ret;

	spin_lock(&fs_info->zone_active_bgs_lock);
	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
			    active_bg_list) {
		u64 avail;

		spin_lock(&block_group->lock);
		if (block_group->reserved ||
		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
			spin_unlock(&block_group->lock);
			continue;
		}

		avail = block_group->zone_capacity - block_group->alloc_offset;
		if (min_avail > avail) {
			if (min_bg)
				btrfs_put_block_group(min_bg);
			min_bg = block_group;
			min_avail = avail;
			btrfs_get_block_group(min_bg);
		}
		spin_unlock(&block_group->lock);
	}
	spin_unlock(&fs_info->zone_active_bgs_lock);

	if (!min_bg)
		return 0;

	ret = btrfs_zone_finish(min_bg);
	btrfs_put_block_group(min_bg);

	return ret < 0 ? ret : 1;
}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
				struct btrfs_space_info *space_info,
				bool do_finish)
{
	struct btrfs_block_group *bg;
	int index;

	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	/* No more block groups to activate */
	if (space_info->active_total_bytes == space_info->total_bytes)
		return 0;

	for (;;) {
		int ret;
		bool need_finish = false;

		down_read(&space_info->groups_sem);
		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
			list_for_each_entry(bg, &space_info->block_groups[index],
					    list) {
				if (!spin_trylock(&bg->lock))
					continue;
2324 2325 2326
				if (btrfs_zoned_bg_is_full(bg) ||
				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
					     &bg->runtime_flags)) {
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
					spin_unlock(&bg->lock);
					continue;
				}
				spin_unlock(&bg->lock);

				if (btrfs_zone_activate(bg)) {
					up_read(&space_info->groups_sem);
					return 1;
				}

				need_finish = true;
			}
		}
		up_read(&space_info->groups_sem);

		if (!do_finish || !need_finish)
			break;

		ret = btrfs_zone_finish_one_bg(fs_info);
		if (ret == 0)
			break;
		if (ret < 0)
			return ret;
	}

	return 0;
}