zoned.c 58.7 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include <linux/bitops.h>
4 5
#include <linux/slab.h>
#include <linux/blkdev.h>
6
#include <linux/sched/mm.h>
7
#include <linux/atomic.h>
8
#include <linux/vmalloc.h>
9 10 11 12
#include "ctree.h"
#include "volumes.h"
#include "zoned.h"
#include "rcu-string.h"
13
#include "disk-io.h"
14
#include "block-group.h"
15
#include "transaction.h"
16
#include "dev-replace.h"
17
#include "space-info.h"
18 19 20

/* Maximum number of zones to report per blkdev_report_zones() call */
#define BTRFS_REPORT_NR_ZONES   4096
21 22 23 24
/* Invalid allocation pointer value for missing devices */
#define WP_MISSING_DEV ((u64)-1)
/* Pseudo write pointer value for conventional zone */
#define WP_CONVENTIONAL ((u64)-2)
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Location of the first zone of superblock logging zone pairs.
 *
 * - primary superblock:    0B (zone 0)
 * - first copy:          512G (zone starting at that offset)
 * - second copy:           4T (zone starting at that offset)
 */
#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)

#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)

40 41 42
/* Number of superblock log zones */
#define BTRFS_NR_SB_LOG_ZONES 2

43 44 45 46 47 48 49 50 51 52
/*
 * Minimum of active zones we need:
 *
 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
 * - 1 zone for tree-log dedicated block group
 * - 1 zone for relocation
 */
#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)

53
/*
54 55 56 57
 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
 * We do not expect the zone size to become larger than 8GiB or smaller than
 * 4MiB in the near future.
58 59
 */
#define BTRFS_MAX_ZONE_SIZE		SZ_8G
60
#define BTRFS_MIN_ZONE_SIZE		SZ_4M
61

62 63 64 65 66 67 68 69
#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)

static inline bool sb_zone_is_full(const struct blk_zone *zone)
{
	return (zone->cond == BLK_ZONE_COND_FULL) ||
		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
}

70 71 72 73 74 75 76 77 78
static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
{
	struct blk_zone *zones = data;

	memcpy(&zones[idx], zone, sizeof(*zone));

	return 0;
}

79 80 81 82 83 84
static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
			    u64 *wp_ret)
{
	bool empty[BTRFS_NR_SB_LOG_ZONES];
	bool full[BTRFS_NR_SB_LOG_ZONES];
	sector_t sector;
85
	int i;
86

87 88 89 90 91
	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
		full[i] = sb_zone_is_full(&zones[i]);
	}
92 93 94 95 96

	/*
	 * Possible states of log buffer zones
	 *
	 *           Empty[0]  In use[0]  Full[0]
97 98 99
	 * Empty[1]         *          0        1
	 * In use[1]        x          x        1
	 * Full[1]          0          0        C
100 101 102 103 104
	 *
	 * Log position:
	 *   *: Special case, no superblock is written
	 *   0: Use write pointer of zones[0]
	 *   1: Use write pointer of zones[1]
D
David Sterba 已提交
105
	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	 *      one determined by generation
	 *   x: Invalid state
	 */

	if (empty[0] && empty[1]) {
		/* Special case to distinguish no superblock to read */
		*wp_ret = zones[0].start << SECTOR_SHIFT;
		return -ENOENT;
	} else if (full[0] && full[1]) {
		/* Compare two super blocks */
		struct address_space *mapping = bdev->bd_inode->i_mapping;
		struct page *page[BTRFS_NR_SB_LOG_ZONES];
		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
		int i;

		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
			u64 bytenr;

			bytenr = ((zones[i].start + zones[i].len)
				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;

			page[i] = read_cache_page_gfp(mapping,
					bytenr >> PAGE_SHIFT, GFP_NOFS);
			if (IS_ERR(page[i])) {
				if (i == 1)
					btrfs_release_disk_super(super[0]);
				return PTR_ERR(page[i]);
			}
			super[i] = page_address(page[i]);
		}

		if (super[0]->generation > super[1]->generation)
			sector = zones[1].start;
		else
			sector = zones[0].start;

		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
			btrfs_release_disk_super(super[i]);
	} else if (!full[0] && (empty[1] || full[1])) {
		sector = zones[0].wp;
	} else if (full[0]) {
		sector = zones[1].wp;
	} else {
		return -EUCLEAN;
	}
	*wp_ret = sector << SECTOR_SHIFT;
	return 0;
}

/*
156
 * Get the first zone number of the superblock mirror
157 158 159
 */
static inline u32 sb_zone_number(int shift, int mirror)
{
160
	u64 zone;
161

162
	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163
	switch (mirror) {
164 165 166
	case 0: zone = 0; break;
	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167 168
	}

169 170 171
	ASSERT(zone <= U32_MAX);

	return (u32)zone;
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185
static inline sector_t zone_start_sector(u32 zone_number,
					 struct block_device *bdev)
{
	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
}

static inline u64 zone_start_physical(u32 zone_number,
				      struct btrfs_zoned_device_info *zone_info)
{
	return (u64)zone_number << zone_info->zone_size_shift;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 * device into static sized chunks and fake a conventional zone on each of
 * them.
 */
static int emulate_report_zones(struct btrfs_device *device, u64 pos,
				struct blk_zone *zones, unsigned int nr_zones)
{
	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
	sector_t bdev_size = bdev_nr_sectors(device->bdev);
	unsigned int i;

	pos >>= SECTOR_SHIFT;
	for (i = 0; i < nr_zones; i++) {
		zones[i].start = i * zone_sectors + pos;
		zones[i].len = zone_sectors;
		zones[i].capacity = zone_sectors;
		zones[i].wp = zones[i].start + zone_sectors;
		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
		zones[i].cond = BLK_ZONE_COND_NOT_WP;

		if (zones[i].wp >= bdev_size) {
			i++;
			break;
		}
	}

	return i;
}

216 217 218
static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
			       struct blk_zone *zones, unsigned int *nr_zones)
{
219 220
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	u32 zno;
221 222 223 224 225
	int ret;

	if (!*nr_zones)
		return 0;

226 227 228 229 230 231
	if (!bdev_is_zoned(device->bdev)) {
		ret = emulate_report_zones(device, pos, zones, *nr_zones);
		*nr_zones = ret;
		return 0;
	}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	/* Check cache */
	if (zinfo->zone_cache) {
		unsigned int i;

		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
		zno = pos >> zinfo->zone_size_shift;
		/*
		 * We cannot report zones beyond the zone end. So, it is OK to
		 * cap *nr_zones to at the end.
		 */
		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);

		for (i = 0; i < *nr_zones; i++) {
			struct blk_zone *zone_info;

			zone_info = &zinfo->zone_cache[zno + i];
			if (!zone_info->len)
				break;
		}

		if (i == *nr_zones) {
			/* Cache hit on all the zones */
			memcpy(zones, zinfo->zone_cache + zno,
			       sizeof(*zinfo->zone_cache) * *nr_zones);
			return 0;
		}
	}

260 261 262 263 264 265 266 267 268 269 270 271 272
	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
				  copy_zone_info_cb, zones);
	if (ret < 0) {
		btrfs_err_in_rcu(device->fs_info,
				 "zoned: failed to read zone %llu on %s (devid %llu)",
				 pos, rcu_str_deref(device->name),
				 device->devid);
		return ret;
	}
	*nr_zones = ret;
	if (!ret)
		return -EIO;

273 274 275 276 277
	/* Populate cache */
	if (zinfo->zone_cache)
		memcpy(zinfo->zone_cache + zno, zones,
		       sizeof(*zinfo->zone_cache) * *nr_zones);

278 279 280
	return 0;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* The emulated zone size is determined from the size of device extent */
static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
	struct extent_buffer *leaf;
	struct btrfs_dev_extent *dext;
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304
		ret = btrfs_next_leaf(root, path);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}

	leaf = path->nodes[0];
	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
	ret = 0;

out:
	btrfs_free_path(path);

	return ret;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	int ret = 0;

	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
	if (!btrfs_fs_incompat(fs_info, ZONED))
		return 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		/* We can skip reading of zone info for missing devices */
		if (!device->bdev)
			continue;

341
		ret = btrfs_get_dev_zone_info(device, true);
342 343 344 345 346 347 348 349
		if (ret)
			break;
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

350
int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351
{
352
	struct btrfs_fs_info *fs_info = device->fs_info;
353 354
	struct btrfs_zoned_device_info *zone_info = NULL;
	struct block_device *bdev = device->bdev;
355 356
	unsigned int max_active_zones;
	unsigned int nactive;
357 358 359 360
	sector_t nr_sectors;
	sector_t sector = 0;
	struct blk_zone *zones = NULL;
	unsigned int i, nreported = 0, nr_zones;
361
	sector_t zone_sectors;
362
	char *model, *emulated;
363 364
	int ret;

365 366 367 368 369
	/*
	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
	 * yet be set.
	 */
	if (!btrfs_fs_incompat(fs_info, ZONED))
370 371 372 373 374 375 376 377 378
		return 0;

	if (device->zone_info)
		return 0;

	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
	if (!zone_info)
		return -ENOMEM;

379 380
	device->zone_info = zone_info;

381 382 383 384 385 386 387 388 389 390 391 392 393
	if (!bdev_is_zoned(bdev)) {
		if (!fs_info->zone_size) {
			ret = calculate_emulated_zone_size(fs_info);
			if (ret)
				goto out;
		}

		ASSERT(fs_info->zone_size);
		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
	} else {
		zone_sectors = bdev_zone_sectors(bdev);
	}

394 395 396
	/* Check if it's power of 2 (see is_power_of_2) */
	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397 398 399 400 401 402 403 404 405

	/* We reject devices with a zone size larger than 8GB */
	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
		btrfs_err_in_rcu(fs_info,
		"zoned: %s: zone size %llu larger than supported maximum %llu",
				 rcu_str_deref(device->name),
				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
		ret = -EINVAL;
		goto out;
406 407 408 409 410 411 412
	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
		btrfs_err_in_rcu(fs_info,
		"zoned: %s: zone size %llu smaller than supported minimum %u",
				 rcu_str_deref(device->name),
				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
		ret = -EINVAL;
		goto out;
413 414 415
	}

	nr_sectors = bdev_nr_sectors(bdev);
416 417
	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418 419 420 421 422 423
	/*
	 * We limit max_zone_append_size also by max_segments *
	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
	 * increase the metadata reservation even if it increases the number of
	 * extents, it is safe to stick with the limit.
424 425 426 427
	 *
	 * With the zoned emulation, we can have non-zoned device on the zoned
	 * mode. In this case, we don't have a valid max zone append size. So,
	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
428
	 */
429 430 431 432 433 434 435 436
	if (bdev_is_zoned(bdev)) {
		zone_info->max_zone_append_size = min_t(u64,
			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
	} else {
		zone_info->max_zone_append_size =
			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
	}
437 438 439
	if (!IS_ALIGNED(nr_sectors, zone_sectors))
		zone_info->nr_zones++;

440
	max_active_zones = bdev_max_active_zones(bdev);
441 442 443 444 445 446 447 448 449 450
	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
		btrfs_err_in_rcu(fs_info,
"zoned: %s: max active zones %u is too small, need at least %u active zones",
				 rcu_str_deref(device->name), max_active_zones,
				 BTRFS_MIN_ACTIVE_ZONES);
		ret = -EINVAL;
		goto out;
	}
	zone_info->max_active_zones = max_active_zones;

451 452 453 454 455 456 457 458 459 460 461 462
	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->seq_zones) {
		ret = -ENOMEM;
		goto out;
	}

	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->empty_zones) {
		ret = -ENOMEM;
		goto out;
	}

463 464 465 466 467 468
	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
	if (!zone_info->active_zones) {
		ret = -ENOMEM;
		goto out;
	}

469 470 471 472 473 474
	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
	if (!zones) {
		ret = -ENOMEM;
		goto out;
	}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	/*
	 * Enable zone cache only for a zoned device. On a non-zoned device, we
	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
	 * use the cache.
	 */
	if (populate_cache && bdev_is_zoned(device->bdev)) {
		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
						zone_info->nr_zones);
		if (!zone_info->zone_cache) {
			btrfs_err_in_rcu(device->fs_info,
				"zoned: failed to allocate zone cache for %s",
				rcu_str_deref(device->name));
			ret = -ENOMEM;
			goto out;
		}
	}

492
	/* Get zones type */
493
	nactive = 0;
494 495 496 497 498 499 500 501 502 503
	while (sector < nr_sectors) {
		nr_zones = BTRFS_REPORT_NR_ZONES;
		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
					  &nr_zones);
		if (ret)
			goto out;

		for (i = 0; i < nr_zones; i++) {
			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
				__set_bit(nreported, zone_info->seq_zones);
504 505
			switch (zones[i].cond) {
			case BLK_ZONE_COND_EMPTY:
506
				__set_bit(nreported, zone_info->empty_zones);
507 508 509 510 511 512 513 514
				break;
			case BLK_ZONE_COND_IMP_OPEN:
			case BLK_ZONE_COND_EXP_OPEN:
			case BLK_ZONE_COND_CLOSED:
				__set_bit(nreported, zone_info->active_zones);
				nactive++;
				break;
			}
515 516 517 518 519 520 521 522 523 524 525 526 527 528
			nreported++;
		}
		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
	}

	if (nreported != zone_info->nr_zones) {
		btrfs_err_in_rcu(device->fs_info,
				 "inconsistent number of zones on %s (%u/%u)",
				 rcu_str_deref(device->name), nreported,
				 zone_info->nr_zones);
		ret = -EIO;
		goto out;
	}

529 530 531 532 533 534 535 536 537 538 539 540 541
	if (max_active_zones) {
		if (nactive > max_active_zones) {
			btrfs_err_in_rcu(device->fs_info,
			"zoned: %u active zones on %s exceeds max_active_zones %u",
					 nactive, rcu_str_deref(device->name),
					 max_active_zones);
			ret = -EIO;
			goto out;
		}
		atomic_set(&zone_info->active_zones_left,
			   max_active_zones - nactive);
	}

542 543 544 545 546 547 548 549 550 551 552
	/* Validate superblock log */
	nr_zones = BTRFS_NR_SB_LOG_ZONES;
	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		u32 sb_zone;
		u64 sb_wp;
		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;

		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
		if (sb_zone + 1 >= zone_info->nr_zones)
			continue;

553 554
		ret = btrfs_get_dev_zones(device,
					  zone_start_physical(sb_zone, zone_info),
555 556 557 558 559 560 561 562 563 564 565 566 567 568
					  &zone_info->sb_zones[sb_pos],
					  &nr_zones);
		if (ret)
			goto out;

		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
			btrfs_err_in_rcu(device->fs_info,
	"zoned: failed to read super block log zone info at devid %llu zone %u",
					 device->devid, sb_zone);
			ret = -EUCLEAN;
			goto out;
		}

		/*
D
David Sterba 已提交
569
		 * If zones[0] is conventional, always use the beginning of the
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		 * zone to record superblock. No need to validate in that case.
		 */
		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
		    BLK_ZONE_TYPE_CONVENTIONAL)
			continue;

		ret = sb_write_pointer(device->bdev,
				       &zone_info->sb_zones[sb_pos], &sb_wp);
		if (ret != -ENOENT && ret) {
			btrfs_err_in_rcu(device->fs_info,
			"zoned: super block log zone corrupted devid %llu zone %u",
					 device->devid, sb_zone);
			ret = -EUCLEAN;
			goto out;
		}
	}


588 589
	kfree(zones);

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	switch (bdev_zoned_model(bdev)) {
	case BLK_ZONED_HM:
		model = "host-managed zoned";
		emulated = "";
		break;
	case BLK_ZONED_HA:
		model = "host-aware zoned";
		emulated = "";
		break;
	case BLK_ZONED_NONE:
		model = "regular";
		emulated = "emulated ";
		break;
	default:
		/* Just in case */
		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
				 bdev_zoned_model(bdev),
				 rcu_str_deref(device->name));
		ret = -EOPNOTSUPP;
		goto out_free_zone_info;
	}

	btrfs_info_in_rcu(fs_info,
		"%s block device %s, %u %szones of %llu bytes",
		model, rcu_str_deref(device->name), zone_info->nr_zones,
		emulated, zone_info->zone_size);
616 617 618 619 620

	return 0;

out:
	kfree(zones);
621
out_free_zone_info:
622
	btrfs_destroy_dev_zone_info(device);
623 624 625 626 627 628 629 630 631 632 633

	return ret;
}

void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;

	if (!zone_info)
		return;

634
	bitmap_free(zone_info->active_zones);
635 636
	bitmap_free(zone_info->seq_zones);
	bitmap_free(zone_info->empty_zones);
637
	vfree(zone_info->zone_cache);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	kfree(zone_info);
	device->zone_info = NULL;
}

int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
		       struct blk_zone *zone)
{
	unsigned int nr_zones = 1;
	int ret;

	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
	if (ret != 0 || !nr_zones)
		return ret ? ret : -EIO;

	return 0;
}
N
Naohiro Aota 已提交
654 655 656 657 658 659 660 661

int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	u64 zoned_devices = 0;
	u64 nr_devices = 0;
	u64 zone_size = 0;
662
	u64 max_zone_append_size = 0;
663
	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
N
Naohiro Aota 已提交
664 665 666 667 668 669 670 671 672 673
	int ret = 0;

	/* Count zoned devices */
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		enum blk_zoned_model model;

		if (!device->bdev)
			continue;

		model = bdev_zoned_model(device->bdev);
674 675 676 677 678 679
		/*
		 * A Host-Managed zoned device must be used as a zoned device.
		 * A Host-Aware zoned device and a non-zoned devices can be
		 * treated as a zoned device, if ZONED flag is enabled in the
		 * superblock.
		 */
N
Naohiro Aota 已提交
680
		if (model == BLK_ZONED_HM ||
681 682
		    (model == BLK_ZONED_HA && incompat_zoned) ||
		    (model == BLK_ZONED_NONE && incompat_zoned)) {
683
			struct btrfs_zoned_device_info *zone_info;
684 685

			zone_info = device->zone_info;
N
Naohiro Aota 已提交
686 687
			zoned_devices++;
			if (!zone_size) {
688 689
				zone_size = zone_info->zone_size;
			} else if (zone_info->zone_size != zone_size) {
N
Naohiro Aota 已提交
690 691 692 693 694 695 696
				btrfs_err(fs_info,
		"zoned: unequal block device zone sizes: have %llu found %llu",
					  device->zone_info->zone_size,
					  zone_size);
				ret = -EINVAL;
				goto out;
			}
697 698 699 700 701
			if (!max_zone_append_size ||
			    (zone_info->max_zone_append_size &&
			     zone_info->max_zone_append_size < max_zone_append_size))
				max_zone_append_size =
					zone_info->max_zone_append_size;
N
Naohiro Aota 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		}
		nr_devices++;
	}

	if (!zoned_devices && !incompat_zoned)
		goto out;

	if (!zoned_devices && incompat_zoned) {
		/* No zoned block device found on ZONED filesystem */
		btrfs_err(fs_info,
			  "zoned: no zoned devices found on a zoned filesystem");
		ret = -EINVAL;
		goto out;
	}

	if (zoned_devices && !incompat_zoned) {
		btrfs_err(fs_info,
			  "zoned: mode not enabled but zoned device found");
		ret = -EINVAL;
		goto out;
	}

	if (zoned_devices != nr_devices) {
		btrfs_err(fs_info,
			  "zoned: cannot mix zoned and regular devices");
		ret = -EINVAL;
		goto out;
	}

	/*
	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
733
	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
N
Naohiro Aota 已提交
734 735 736 737 738 739 740 741 742 743
	 * check the alignment here.
	 */
	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
		btrfs_err(fs_info,
			  "zoned: zone size %llu not aligned to stripe %u",
			  zone_size, BTRFS_STRIPE_LEN);
		ret = -EINVAL;
		goto out;
	}

744 745 746 747 748 749
	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
		btrfs_err(fs_info, "zoned: mixed block groups not supported");
		ret = -EINVAL;
		goto out;
	}

N
Naohiro Aota 已提交
750
	fs_info->zone_size = zone_size;
751 752
	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
						   fs_info->sectorsize);
753
	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
754 755
	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
		fs_info->max_extent_size = fs_info->max_zone_append_size;
N
Naohiro Aota 已提交
756

757 758 759 760 761 762 763 764
	/*
	 * Check mount options here, because we might change fs_info->zoned
	 * from fs_info->zone_size.
	 */
	ret = btrfs_check_mountopts_zoned(fs_info);
	if (ret)
		goto out;

N
Naohiro Aota 已提交
765 766 767 768
	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
out:
	return ret;
}
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
{
	if (!btrfs_is_zoned(info))
		return 0;

	/*
	 * Space cache writing is not COWed. Disable that to avoid write errors
	 * in sequential zones.
	 */
	if (btrfs_test_opt(info, SPACE_CACHE)) {
		btrfs_err(info, "zoned: space cache v1 is not supported");
		return -EINVAL;
	}

784 785 786 787 788
	if (btrfs_test_opt(info, NODATACOW)) {
		btrfs_err(info, "zoned: NODATACOW not supported");
		return -EINVAL;
	}

789 790
	return 0;
}
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
			   int rw, u64 *bytenr_ret)
{
	u64 wp;
	int ret;

	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
		return 0;
	}

	ret = sb_write_pointer(bdev, zones, &wp);
	if (ret != -ENOENT && ret < 0)
		return ret;

	if (rw == WRITE) {
		struct blk_zone *reset = NULL;

		if (wp == zones[0].start << SECTOR_SHIFT)
			reset = &zones[0];
		else if (wp == zones[1].start << SECTOR_SHIFT)
			reset = &zones[1];

		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
816
			ASSERT(sb_zone_is_full(reset));
817 818 819 820 821 822 823 824 825 826 827

			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
					       reset->start, reset->len,
					       GFP_NOFS);
			if (ret)
				return ret;

			reset->cond = BLK_ZONE_COND_EMPTY;
			reset->wp = reset->start;
		}
	} else if (ret != -ENOENT) {
828 829 830 831 832 833
		/*
		 * For READ, we want the previous one. Move write pointer to
		 * the end of a zone, if it is at the head of a zone.
		 */
		u64 zone_end = 0;

834
		if (wp == zones[0].start << SECTOR_SHIFT)
835 836 837 838 839 840 841
			zone_end = zones[1].start + zones[1].capacity;
		else if (wp == zones[1].start << SECTOR_SHIFT)
			zone_end = zones[0].start + zones[0].capacity;
		if (zone_end)
			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
					BTRFS_SUPER_INFO_SIZE);

842 843 844 845 846 847 848 849 850 851 852 853
		wp -= BTRFS_SUPER_INFO_SIZE;
	}

	*bytenr_ret = wp;
	return 0;

}

int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
			       u64 *bytenr_ret)
{
	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
854
	sector_t zone_sectors;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	u32 sb_zone;
	int ret;
	u8 zone_sectors_shift;
	sector_t nr_sectors;
	u32 nr_zones;

	if (!bdev_is_zoned(bdev)) {
		*bytenr_ret = btrfs_sb_offset(mirror);
		return 0;
	}

	ASSERT(rw == READ || rw == WRITE);

	zone_sectors = bdev_zone_sectors(bdev);
	if (!is_power_of_2(zone_sectors))
		return -EINVAL;
	zone_sectors_shift = ilog2(zone_sectors);
872
	nr_sectors = bdev_nr_sectors(bdev);
873 874 875 876 877 878
	nr_zones = nr_sectors >> zone_sectors_shift;

	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
	if (sb_zone + 1 >= nr_zones)
		return -ENOENT;

879
	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
				  zones);
	if (ret < 0)
		return ret;
	if (ret != BTRFS_NR_SB_LOG_ZONES)
		return -EIO;

	return sb_log_location(bdev, zones, rw, bytenr_ret);
}

int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
			  u64 *bytenr_ret)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	u32 zone_num;

896 897 898 899 900 901 902
	/*
	 * For a zoned filesystem on a non-zoned block device, use the same
	 * super block locations as regular filesystem. Doing so, the super
	 * block can always be retrieved and the zoned flag of the volume
	 * detected from the super block information.
	 */
	if (!bdev_is_zoned(device->bdev)) {
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
		*bytenr_ret = btrfs_sb_offset(mirror);
		return 0;
	}

	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
	if (zone_num + 1 >= zinfo->nr_zones)
		return -ENOENT;

	return sb_log_location(device->bdev,
			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
			       rw, bytenr_ret);
}

static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
				  int mirror)
{
	u32 zone_num;

	if (!zinfo)
		return false;

	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
	if (zone_num + 1 >= zinfo->nr_zones)
		return false;

	if (!test_bit(zone_num, zinfo->seq_zones))
		return false;

	return true;
}

934
int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
935 936 937
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	struct blk_zone *zone;
938
	int i;
939 940

	if (!is_sb_log_zone(zinfo, mirror))
941
		return 0;
942 943

	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
944 945 946 947 948 949 950
	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
		/* Advance the next zone */
		if (zone->cond == BLK_ZONE_COND_FULL) {
			zone++;
			continue;
		}

951 952 953
		if (zone->cond == BLK_ZONE_COND_EMPTY)
			zone->cond = BLK_ZONE_COND_IMP_OPEN;

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		zone->wp += SUPER_INFO_SECTORS;

		if (sb_zone_is_full(zone)) {
			/*
			 * No room left to write new superblock. Since
			 * superblock is written with REQ_SYNC, it is safe to
			 * finish the zone now.
			 *
			 * If the write pointer is exactly at the capacity,
			 * explicit ZONE_FINISH is not necessary.
			 */
			if (zone->wp != zone->start + zone->capacity) {
				int ret;

				ret = blkdev_zone_mgmt(device->bdev,
						REQ_OP_ZONE_FINISH, zone->start,
						zone->len, GFP_NOFS);
				if (ret)
					return ret;
			}
974

975
			zone->wp = zone->start + zone->len;
976
			zone->cond = BLK_ZONE_COND_FULL;
977 978
		}
		return 0;
979 980
	}

981 982 983
	/* All the zones are FULL. Should not reach here. */
	ASSERT(0);
	return -EIO;
984 985 986 987 988 989 990 991 992 993 994 995
}

int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
{
	sector_t zone_sectors;
	sector_t nr_sectors;
	u8 zone_sectors_shift;
	u32 sb_zone;
	u32 nr_zones;

	zone_sectors = bdev_zone_sectors(bdev);
	zone_sectors_shift = ilog2(zone_sectors);
996
	nr_sectors = bdev_nr_sectors(bdev);
997 998 999 1000 1001 1002 1003
	nr_zones = nr_sectors >> zone_sectors_shift;

	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
	if (sb_zone + 1 >= nr_zones)
		return -ENOENT;

	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1004
				zone_start_sector(sb_zone, bdev),
1005 1006
				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

/**
 * btrfs_find_allocatable_zones - find allocatable zones within a given region
 *
 * @device:	the device to allocate a region on
 * @hole_start: the position of the hole to allocate the region
 * @num_bytes:	size of wanted region
 * @hole_end:	the end of the hole
 * @return:	position of allocatable zones
 *
 * Allocatable region should not contain any superblock locations.
 */
u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
				 u64 hole_end, u64 num_bytes)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	const u8 shift = zinfo->zone_size_shift;
	u64 nzones = num_bytes >> shift;
	u64 pos = hole_start;
	u64 begin, end;
	bool have_sb;
	int i;

	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));

	while (pos < hole_end) {
		begin = pos >> shift;
		end = begin + nzones;

		if (end > zinfo->nr_zones)
			return hole_end;

		/* Check if zones in the region are all empty */
		if (btrfs_dev_is_sequential(device, pos) &&
		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
			pos += zinfo->zone_size;
			continue;
		}

		have_sb = false;
		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
			u32 sb_zone;
			u64 sb_pos;

			sb_zone = sb_zone_number(shift, i);
			if (!(end <= sb_zone ||
			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
				have_sb = true;
1056 1057
				pos = zone_start_physical(
					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
				break;
			}

			/* We also need to exclude regular superblock positions */
			sb_pos = btrfs_sb_offset(i);
			if (!(pos + num_bytes <= sb_pos ||
			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
				have_sb = true;
				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
					    zinfo->zone_size);
				break;
			}
		}
		if (!have_sb)
			break;
	}

	return pos;
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;
	unsigned int zno = (pos >> zone_info->zone_size_shift);

	/* We can use any number of zones */
	if (zone_info->max_active_zones == 0)
		return true;

	if (!test_bit(zno, zone_info->active_zones)) {
		/* Active zone left? */
		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
			return false;
		if (test_and_set_bit(zno, zone_info->active_zones)) {
			/* Someone already set the bit */
			atomic_inc(&zone_info->active_zones_left);
		}
	}

	return true;
}

static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
{
	struct btrfs_zoned_device_info *zone_info = device->zone_info;
	unsigned int zno = (pos >> zone_info->zone_size_shift);

	/* We can use any number of zones */
	if (zone_info->max_active_zones == 0)
		return;

	if (test_and_clear_bit(zno, zone_info->active_zones))
		atomic_inc(&zone_info->active_zones_left);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
			    u64 length, u64 *bytes)
{
	int ret;

	*bytes = 0;
	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
			       GFP_NOFS);
	if (ret)
		return ret;

	*bytes = length;
	while (length) {
		btrfs_dev_set_zone_empty(device, physical);
1128
		btrfs_dev_clear_active_zone(device, physical);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		physical += device->zone_info->zone_size;
		length -= device->zone_info->zone_size;
	}

	return 0;
}

int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
{
	struct btrfs_zoned_device_info *zinfo = device->zone_info;
	const u8 shift = zinfo->zone_size_shift;
	unsigned long begin = start >> shift;
	unsigned long end = (start + size) >> shift;
	u64 pos;
	int ret;

	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
	ASSERT(IS_ALIGNED(size, zinfo->zone_size));

	if (end > zinfo->nr_zones)
		return -ERANGE;

	/* All the zones are conventional */
	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
		return 0;

	/* All the zones are sequential and empty */
	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
		return 0;

	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
		u64 reset_bytes;

		if (!btrfs_dev_is_sequential(device, pos) ||
		    btrfs_dev_is_empty_zone(device, pos))
			continue;

		/* Free regions should be empty */
		btrfs_warn_in_rcu(
			device->fs_info,
		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
			rcu_str_deref(device->name), device->devid, pos >> shift);
		WARN_ON_ONCE(1);

		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
					      &reset_bytes);
		if (ret)
			return ret;
	}

	return 0;
}
1182

1183 1184 1185 1186 1187 1188 1189
/*
 * Calculate an allocation pointer from the extent allocation information
 * for a block group consist of conventional zones. It is pointed to the
 * end of the highest addressed extent in the block group as an allocation
 * offset.
 */
static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1190
				   u64 *offset_ret, bool new)
1191 1192
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
1193
	struct btrfs_root *root;
1194 1195 1196 1197 1198 1199
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	u64 length;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * Avoid  tree lookups for a new block group, there's no use for it.
	 * It must always be 0.
	 *
	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
	 * For new a block group, this function is called from
	 * btrfs_make_block_group() which is already taking the chunk mutex.
	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
	 * buffer locks to avoid deadlock.
	 */
	if (new) {
		*offset_ret = 0;
		return 0;
	}

1215 1216 1217 1218 1219 1220 1221 1222
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = cache->start + cache->length;
	key.type = 0;
	key.offset = 0;

1223
	root = btrfs_extent_root(fs_info, key.objectid);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	/* We should not find the exact match */
	if (!ret)
		ret = -EUCLEAN;
	if (ret < 0)
		goto out;

	ret = btrfs_previous_extent_item(root, path, cache->start);
	if (ret) {
		if (ret == 1) {
			ret = 0;
			*offset_ret = 0;
		}
		goto out;
	}

	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);

	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
		length = found_key.offset;
	else
		length = fs_info->nodesize;

	if (!(found_key.objectid >= cache->start &&
	       found_key.objectid + length <= cache->start + cache->length)) {
		ret = -EUCLEAN;
		goto out;
	}
	*offset_ret = found_key.objectid + length - cache->start;
	ret = 0;

out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_device *device;
	u64 logical = cache->start;
	u64 length = cache->length;
	int ret;
	int i;
	unsigned int nofs_flag;
	u64 *alloc_offsets = NULL;
1273
	u64 *caps = NULL;
1274
	u64 *physical = NULL;
1275
	unsigned long *active = NULL;
1276
	u64 last_alloc = 0;
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	u32 num_sequential = 0, num_conventional = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	/* Sanity check */
	if (!IS_ALIGNED(length, fs_info->zone_size)) {
		btrfs_err(fs_info,
		"zoned: block group %llu len %llu unaligned to zone size %llu",
			  logical, length, fs_info->zone_size);
		return -EIO;
	}

	/* Get the chunk mapping */
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em)
		return -EINVAL;

	map = em->map_lookup;

1300
	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1301 1302 1303 1304 1305
	if (!cache->physical_map) {
		ret = -ENOMEM;
		goto out;
	}

1306 1307
	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
	if (!alloc_offsets) {
1308 1309
		ret = -ENOMEM;
		goto out;
1310 1311
	}

1312 1313 1314 1315 1316 1317
	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
	if (!caps) {
		ret = -ENOMEM;
		goto out;
	}

1318 1319 1320 1321 1322 1323
	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
	if (!physical) {
		ret = -ENOMEM;
		goto out;
	}

1324 1325 1326 1327 1328 1329
	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
	if (!active) {
		ret = -ENOMEM;
		goto out;
	}

1330 1331 1332
	for (i = 0; i < map->num_stripes; i++) {
		bool is_sequential;
		struct blk_zone zone;
1333 1334
		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
		int dev_replace_is_ongoing = 0;
1335 1336

		device = map->stripes[i].dev;
1337
		physical[i] = map->stripes[i].physical;
1338 1339 1340 1341 1342 1343

		if (device->bdev == NULL) {
			alloc_offsets[i] = WP_MISSING_DEV;
			continue;
		}

1344
		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1345 1346 1347 1348 1349
		if (is_sequential)
			num_sequential++;
		else
			num_conventional++;

1350 1351 1352 1353 1354 1355 1356
		/*
		 * Consider a zone as active if we can allow any number of
		 * active zones.
		 */
		if (!device->zone_info->max_active_zones)
			__set_bit(i, active);

1357 1358 1359 1360 1361 1362 1363 1364 1365
		if (!is_sequential) {
			alloc_offsets[i] = WP_CONVENTIONAL;
			continue;
		}

		/*
		 * This zone will be used for allocation, so mark this zone
		 * non-empty.
		 */
1366
		btrfs_dev_clear_zone_empty(device, physical[i]);
1367

1368 1369 1370
		down_read(&dev_replace->rwsem);
		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1371
			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1372 1373
		up_read(&dev_replace->rwsem);

1374 1375 1376 1377
		/*
		 * The group is mapped to a sequential zone. Get the zone write
		 * pointer to determine the allocation offset within the zone.
		 */
1378
		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1379
		nofs_flag = memalloc_nofs_save();
1380
		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1381 1382 1383 1384 1385 1386 1387 1388 1389
		memalloc_nofs_restore(nofs_flag);
		if (ret == -EIO || ret == -EOPNOTSUPP) {
			ret = 0;
			alloc_offsets[i] = WP_MISSING_DEV;
			continue;
		} else if (ret) {
			goto out;
		}

1390
		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1391 1392 1393 1394
			btrfs_err_in_rcu(fs_info,
	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
				zone.start << SECTOR_SHIFT,
				rcu_str_deref(device->name), device->devid);
1395 1396 1397 1398
			ret = -EIO;
			goto out;
		}

1399 1400
		caps[i] = (zone.capacity << SECTOR_SHIFT);

1401 1402 1403 1404 1405
		switch (zone.cond) {
		case BLK_ZONE_COND_OFFLINE:
		case BLK_ZONE_COND_READONLY:
			btrfs_err(fs_info,
		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1406
				  physical[i] >> device->zone_info->zone_size_shift,
1407 1408 1409 1410 1411 1412 1413
				  rcu_str_deref(device->name), device->devid);
			alloc_offsets[i] = WP_MISSING_DEV;
			break;
		case BLK_ZONE_COND_EMPTY:
			alloc_offsets[i] = 0;
			break;
		case BLK_ZONE_COND_FULL:
1414
			alloc_offsets[i] = caps[i];
1415 1416 1417 1418 1419
			break;
		default:
			/* Partially used zone */
			alloc_offsets[i] =
					((zone.wp - zone.start) << SECTOR_SHIFT);
1420
			__set_bit(i, active);
1421 1422 1423 1424
			break;
		}
	}

1425 1426 1427
	if (num_sequential > 0)
		cache->seq_zone = true;

1428
	if (num_conventional > 0) {
1429 1430
		/* Zone capacity is always zone size in emulation */
		cache->zone_capacity = cache->length;
1431 1432 1433
		ret = calculate_alloc_pointer(cache, &last_alloc, new);
		if (ret) {
			btrfs_err(fs_info,
1434
			"zoned: failed to determine allocation offset of bg %llu",
1435 1436 1437 1438 1439
				  cache->start);
			goto out;
		} else if (map->num_stripes == num_conventional) {
			cache->alloc_offset = last_alloc;
			cache->zone_is_active = 1;
1440 1441
			goto out;
		}
1442 1443 1444 1445
	}

	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
	case 0: /* single */
1446 1447 1448
		if (alloc_offsets[0] == WP_MISSING_DEV) {
			btrfs_err(fs_info,
			"zoned: cannot recover write pointer for zone %llu",
1449
				physical[0]);
1450 1451 1452
			ret = -EIO;
			goto out;
		}
1453
		cache->alloc_offset = alloc_offsets[0];
1454
		cache->zone_capacity = caps[0];
1455
		cache->zone_is_active = test_bit(0, active);
1456 1457
		break;
	case BTRFS_BLOCK_GROUP_DUP:
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
			ret = -EINVAL;
			goto out;
		}
		if (alloc_offsets[0] == WP_MISSING_DEV) {
			btrfs_err(fs_info,
			"zoned: cannot recover write pointer for zone %llu",
				physical[0]);
			ret = -EIO;
			goto out;
		}
		if (alloc_offsets[1] == WP_MISSING_DEV) {
			btrfs_err(fs_info,
			"zoned: cannot recover write pointer for zone %llu",
				physical[1]);
			ret = -EIO;
			goto out;
		}
		if (alloc_offsets[0] != alloc_offsets[1]) {
			btrfs_err(fs_info,
			"zoned: write pointer offset mismatch of zones in DUP profile");
			ret = -EIO;
			goto out;
		}
		if (test_bit(0, active) != test_bit(1, active)) {
			if (!btrfs_zone_activate(cache)) {
				ret = -EIO;
				goto out;
			}
		} else {
			cache->zone_is_active = test_bit(0, active);
		}
		cache->alloc_offset = alloc_offsets[0];
		cache->zone_capacity = min(caps[0], caps[1]);
		break;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	case BTRFS_BLOCK_GROUP_RAID1:
	case BTRFS_BLOCK_GROUP_RAID0:
	case BTRFS_BLOCK_GROUP_RAID10:
	case BTRFS_BLOCK_GROUP_RAID5:
	case BTRFS_BLOCK_GROUP_RAID6:
		/* non-single profiles are not supported yet */
	default:
		btrfs_err(fs_info, "zoned: profile %s not yet supported",
			  btrfs_bg_type_to_raid_name(map->type));
		ret = -EINVAL;
		goto out;
	}

out:
1508 1509 1510 1511 1512 1513 1514
	if (cache->alloc_offset > fs_info->zone_size) {
		btrfs_err(fs_info,
			"zoned: invalid write pointer %llu in block group %llu",
			cache->alloc_offset, cache->start);
		ret = -EIO;
	}

1515 1516 1517 1518 1519 1520 1521 1522
	if (cache->alloc_offset > cache->zone_capacity) {
		btrfs_err(fs_info,
"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
			  cache->alloc_offset, cache->zone_capacity,
			  cache->start);
		ret = -EIO;
	}

1523 1524 1525 1526 1527 1528 1529 1530
	/* An extent is allocated after the write pointer */
	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
		btrfs_err(fs_info,
			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
			  logical, last_alloc, cache->alloc_offset);
		ret = -EIO;
	}

1531
	if (!ret) {
1532
		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1533 1534 1535 1536 1537 1538 1539 1540
		if (cache->zone_is_active) {
			btrfs_get_block_group(cache);
			spin_lock(&fs_info->zone_active_bgs_lock);
			list_add_tail(&cache->active_bg_list,
				      &fs_info->zone_active_bgs);
			spin_unlock(&fs_info->zone_active_bgs_lock);
		}
	} else {
1541 1542 1543
		kfree(cache->physical_map);
		cache->physical_map = NULL;
	}
1544
	bitmap_free(active);
1545
	kfree(physical);
1546
	kfree(caps);
1547 1548 1549 1550 1551
	kfree(alloc_offsets);
	free_extent_map(em);

	return ret;
}
1552 1553 1554 1555 1556 1557 1558 1559 1560

void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
{
	u64 unusable, free;

	if (!btrfs_is_zoned(cache->fs_info))
		return;

	WARN_ON(cache->bytes_super != 0);
1561 1562 1563
	unusable = (cache->alloc_offset - cache->used) +
		   (cache->length - cache->zone_capacity);
	free = cache->zone_capacity - cache->alloc_offset;
1564 1565 1566 1567 1568 1569 1570

	/* We only need ->free_space in ALLOC_SEQ block groups */
	cache->last_byte_to_unpin = (u64)-1;
	cache->cached = BTRFS_CACHE_FINISHED;
	cache->free_space_ctl->free_space = free;
	cache->zone_unusable = unusable;
}
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

void btrfs_redirty_list_add(struct btrfs_transaction *trans,
			    struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

	if (!btrfs_is_zoned(fs_info) ||
	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
	    !list_empty(&eb->release_list))
		return;

	set_extent_buffer_dirty(eb);
	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
			       eb->start + eb->len - 1, EXTENT_DIRTY);
	memzero_extent_buffer(eb, 0, eb->len);
	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);

	spin_lock(&trans->releasing_ebs_lock);
	list_add_tail(&eb->release_list, &trans->releasing_ebs);
	spin_unlock(&trans->releasing_ebs_lock);
	atomic_inc(&eb->refs);
}

void btrfs_free_redirty_list(struct btrfs_transaction *trans)
{
	spin_lock(&trans->releasing_ebs_lock);
	while (!list_empty(&trans->releasing_ebs)) {
		struct extent_buffer *eb;

		eb = list_first_entry(&trans->releasing_ebs,
				      struct extent_buffer, release_list);
		list_del_init(&eb->release_list);
		free_extent_buffer(eb);
	}
	spin_unlock(&trans->releasing_ebs_lock);
}
1607

1608
bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_block_group *cache;
	bool ret = false;

	if (!btrfs_is_zoned(fs_info))
		return false;

	if (!is_data_inode(&inode->vfs_inode))
		return false;

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
	 * extent layout the relocation code has.
	 * Furthermore we have set aside own block-group from which only the
	 * relocation "process" can allocate and make sure only one process at a
	 * time can add pages to an extent that gets relocated, so it's safe to
	 * use regular REQ_OP_WRITE for this special case.
	 */
	if (btrfs_is_data_reloc_root(inode->root))
		return false;

1631
	cache = btrfs_lookup_block_group(fs_info, start);
1632 1633 1634 1635 1636 1637 1638 1639 1640
	ASSERT(cache);
	if (!cache)
		return false;

	ret = cache->seq_zone;
	btrfs_put_block_group(cache);

	return ret;
}
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
				 struct bio *bio)
{
	struct btrfs_ordered_extent *ordered;
	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;

	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
		return;

	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
	if (WARN_ON(!ordered))
		return;

	ordered->physical = physical;
1656
	ordered->bdev = bio->bi_bdev;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	btrfs_put_ordered_extent(ordered);
}

void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
{
	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_ordered_sum *sum;
	u64 orig_logical = ordered->disk_bytenr;
	u64 *logical = NULL;
	int nr, stripe_len;

	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1673 1674
	ASSERT(!bdev_is_partition(ordered->bdev));
	if (WARN_ON(!ordered->bdev))
1675 1676
		return;

1677
	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
				     ordered->physical, &logical, &nr,
				     &stripe_len)))
		goto out;

	WARN_ON(nr != 1);

	if (orig_logical == *logical)
		goto out;

	ordered->disk_bytenr = *logical;

	em_tree = &inode->extent_tree;
	write_lock(&em_tree->lock);
	em = search_extent_mapping(em_tree, ordered->file_offset,
				   ordered->num_bytes);
	em->block_start = *logical;
	free_extent_map(em);
	write_unlock(&em_tree->lock);

	list_for_each_entry(sum, &ordered->list, list) {
		if (*logical < orig_logical)
			sum->bytenr -= orig_logical - *logical;
		else
			sum->bytenr += *logical - orig_logical;
	}

out:
	kfree(logical);
}
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb,
				    struct btrfs_block_group **cache_ret)
{
	struct btrfs_block_group *cache;
	bool ret = true;

	if (!btrfs_is_zoned(fs_info))
		return true;

1718 1719 1720
	cache = btrfs_lookup_block_group(fs_info, eb->start);
	if (!cache)
		return true;
1721

1722
	if (cache->meta_write_pointer != eb->start) {
1723 1724
		btrfs_put_block_group(cache);
		cache = NULL;
1725 1726 1727
		ret = false;
	} else {
		cache->meta_write_pointer = eb->start + eb->len;
1728 1729
	}

1730
	*cache_ret = cache;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

	return ret;
}

void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
				     struct extent_buffer *eb)
{
	if (!btrfs_is_zoned(eb->fs_info) || !cache)
		return;

	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
	cache->meta_write_pointer = eb->start;
}
1744 1745 1746 1747 1748 1749 1750 1751 1752

int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
{
	if (!btrfs_dev_is_sequential(device, physical))
		return -EOPNOTSUPP;

	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
}
1753 1754 1755 1756

static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
			  struct blk_zone *zone)
{
1757
	struct btrfs_io_context *bioc = NULL;
1758 1759 1760 1761 1762 1763
	u64 mapped_length = PAGE_SIZE;
	unsigned int nofs_flag;
	int nmirrors;
	int i, ret;

	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1764 1765
			       &mapped_length, &bioc);
	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1766 1767
		ret = -EIO;
		goto out_put_bioc;
1768 1769
	}

1770 1771 1772 1773
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EINVAL;
		goto out_put_bioc;
	}
1774 1775

	nofs_flag = memalloc_nofs_save();
1776
	nmirrors = (int)bioc->num_stripes;
1777
	for (i = 0; i < nmirrors; i++) {
1778 1779
		u64 physical = bioc->stripes[i].physical;
		struct btrfs_device *dev = bioc->stripes[i].dev;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

		/* Missing device */
		if (!dev->bdev)
			continue;

		ret = btrfs_get_dev_zone(dev, physical, zone);
		/* Failing device */
		if (ret == -EIO || ret == -EOPNOTSUPP)
			continue;
		break;
	}
	memalloc_nofs_restore(nofs_flag);
1792 1793
out_put_bioc:
	btrfs_put_bioc(bioc);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	return ret;
}

/*
 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
 * filling zeros between @physical_pos to a write pointer of dev-replace
 * source device.
 */
int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
				    u64 physical_start, u64 physical_pos)
{
	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
	struct blk_zone zone;
	u64 length;
	u64 wp;
	int ret;

	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
		return 0;

	ret = read_zone_info(fs_info, logical, &zone);
	if (ret)
		return ret;

	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);

	if (physical_pos == wp)
		return 0;

	if (physical_pos > wp)
		return -EUCLEAN;

	length = wp - physical_pos;
	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
}
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
					    u64 logical, u64 length)
{
	struct btrfs_device *device;
	struct extent_map *em;
	struct map_lookup *map;

	em = btrfs_get_chunk_map(fs_info, logical, length);
	if (IS_ERR(em))
		return ERR_CAST(em);

	map = em->map_lookup;
	/* We only support single profile for now */
	device = map->stripes[0].dev;

	free_extent_map(em);

	return device;
}
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

/**
 * Activate block group and underlying device zones
 *
 * @block_group: the block group to activate
 *
 * Return: true on success, false otherwise
 */
bool btrfs_zone_activate(struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
1860
	struct btrfs_space_info *space_info = block_group->space_info;
1861 1862 1863 1864
	struct map_lookup *map;
	struct btrfs_device *device;
	u64 physical;
	bool ret;
1865
	int i;
1866 1867 1868 1869 1870 1871

	if (!btrfs_is_zoned(block_group->fs_info))
		return true;

	map = block_group->physical_map;

1872
	spin_lock(&space_info->lock);
1873 1874 1875 1876 1877 1878
	spin_lock(&block_group->lock);
	if (block_group->zone_is_active) {
		ret = true;
		goto out_unlock;
	}

1879
	/* No space left */
1880
	if (btrfs_zoned_bg_is_full(block_group)) {
1881 1882 1883 1884
		ret = false;
		goto out_unlock;
	}

1885 1886 1887
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		physical = map->stripes[i].physical;
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897
		if (device->zone_info->max_active_zones == 0)
			continue;

		if (!btrfs_dev_set_active_zone(device, physical)) {
			/* Cannot activate the zone */
			ret = false;
			goto out_unlock;
		}
	}
1898 1899 1900

	/* Successfully activated all the zones */
	block_group->zone_is_active = 1;
1901
	space_info->active_total_bytes += block_group->length;
1902
	spin_unlock(&block_group->lock);
1903 1904
	btrfs_try_granting_tickets(fs_info, space_info);
	spin_unlock(&space_info->lock);
1905

1906 1907
	/* For the active block group list */
	btrfs_get_block_group(block_group);
1908

1909 1910 1911
	spin_lock(&fs_info->zone_active_bgs_lock);
	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
	spin_unlock(&fs_info->zone_active_bgs_lock);
1912 1913 1914 1915 1916

	return true;

out_unlock:
	spin_unlock(&block_group->lock);
1917
	spin_unlock(&space_info->lock);
1918 1919 1920
	return ret;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static void wait_eb_writebacks(struct btrfs_block_group *block_group)
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	const u64 end = block_group->start + block_group->length;
	struct radix_tree_iter iter;
	struct extent_buffer *eb;
	void __rcu **slot;

	rcu_read_lock();
	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
				 block_group->start >> fs_info->sectorsize_bits) {
		eb = radix_tree_deref_slot(slot);
		if (!eb)
			continue;
		if (radix_tree_deref_retry(eb)) {
			slot = radix_tree_iter_retry(&iter);
			continue;
		}

		if (eb->start < block_group->start)
			continue;
		if (eb->start >= end)
			break;

		slot = radix_tree_iter_resume(slot, &iter);
		rcu_read_unlock();
		wait_on_extent_buffer_writeback(eb);
		rcu_read_lock();
	}
	rcu_read_unlock();
}

1953
static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1954 1955 1956
{
	struct btrfs_fs_info *fs_info = block_group->fs_info;
	struct map_lookup *map;
1957 1958
	const bool is_metadata = (block_group->flags &
			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1959
	int ret = 0;
1960
	int i;
1961 1962 1963 1964 1965 1966 1967 1968

	spin_lock(&block_group->lock);
	if (!block_group->zone_is_active) {
		spin_unlock(&block_group->lock);
		return 0;
	}

	/* Check if we have unwritten allocated space */
1969
	if (is_metadata &&
1970
	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1971 1972 1973 1974 1975
		spin_unlock(&block_group->lock);
		return -EAGAIN;
	}

	/*
1976 1977 1978 1979 1980
	 * If we are sure that the block group is full (= no more room left for
	 * new allocation) and the IO for the last usable block is completed, we
	 * don't need to wait for the other IOs. This holds because we ensure
	 * the sequential IO submissions using the ZONE_APPEND command for data
	 * and block_group->meta_write_pointer for metadata.
1981
	 */
1982
	if (!fully_written) {
1983 1984
		spin_unlock(&block_group->lock);

1985 1986 1987 1988 1989 1990 1991 1992 1993
		ret = btrfs_inc_block_group_ro(block_group, false);
		if (ret)
			return ret;

		/* Ensure all writes in this block group finish */
		btrfs_wait_block_group_reservations(block_group);
		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
					 block_group->length);
1994 1995 1996
		/* Wait for extent buffers to be written. */
		if (is_metadata)
			wait_eb_writebacks(block_group);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

		spin_lock(&block_group->lock);

		/*
		 * Bail out if someone already deactivated the block group, or
		 * allocated space is left in the block group.
		 */
		if (!block_group->zone_is_active) {
			spin_unlock(&block_group->lock);
			btrfs_dec_block_group_ro(block_group);
			return 0;
		}

		if (block_group->reserved) {
			spin_unlock(&block_group->lock);
			btrfs_dec_block_group_ro(block_group);
			return -EAGAIN;
		}
2015 2016 2017 2018 2019 2020
	}

	block_group->zone_is_active = 0;
	block_group->alloc_offset = block_group->zone_capacity;
	block_group->free_space_ctl->free_space = 0;
	btrfs_clear_treelog_bg(block_group);
2021
	btrfs_clear_data_reloc_bg(block_group);
2022 2023
	spin_unlock(&block_group->lock);

2024
	map = block_group->physical_map;
2025
	for (i = 0; i < map->num_stripes; i++) {
2026 2027
		struct btrfs_device *device = map->stripes[i].dev;
		const u64 physical = map->stripes[i].physical;
2028

2029 2030
		if (device->zone_info->max_active_zones == 0)
			continue;
2031

2032 2033 2034 2035
		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
				       physical >> SECTOR_SHIFT,
				       device->zone_info->zone_size >> SECTOR_SHIFT,
				       GFP_NOFS);
2036

2037 2038
		if (ret)
			return ret;
2039

2040
		btrfs_dev_clear_active_zone(device, physical);
2041
	}
2042 2043 2044

	if (!fully_written)
		btrfs_dec_block_group_ro(block_group);
2045

2046 2047 2048 2049 2050 2051 2052 2053
	spin_lock(&fs_info->zone_active_bgs_lock);
	ASSERT(!list_empty(&block_group->active_bg_list));
	list_del_init(&block_group->active_bg_list);
	spin_unlock(&fs_info->zone_active_bgs_lock);

	/* For active_bg_list */
	btrfs_put_block_group(block_group);

2054
	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2055

2056
	return 0;
2057
}
2058

2059 2060 2061 2062 2063 2064 2065 2066
int btrfs_zone_finish(struct btrfs_block_group *block_group)
{
	if (!btrfs_is_zoned(block_group->fs_info))
		return 0;

	return do_zone_finish(block_group, false);
}

2067
bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2068
{
2069
	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2070 2071 2072
	struct btrfs_device *device;
	bool ret = false;

2073
	if (!btrfs_is_zoned(fs_info))
2074 2075 2076
		return true;

	/* Check if there is a device with active zones left */
2077 2078
	mutex_lock(&fs_info->chunk_mutex);
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		struct btrfs_zoned_device_info *zinfo = device->zone_info;

		if (!device->bdev)
			continue;

		if (!zinfo->max_active_zones ||
		    atomic_read(&zinfo->active_zones_left)) {
			ret = true;
			break;
		}
	}
2090
	mutex_unlock(&fs_info->chunk_mutex);
2091

2092 2093 2094
	if (!ret)
		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);

2095 2096
	return ret;
}
2097 2098 2099 2100

void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
{
	struct btrfs_block_group *block_group;
2101
	u64 min_alloc_bytes;
2102 2103 2104 2105 2106 2107 2108

	if (!btrfs_is_zoned(fs_info))
		return;

	block_group = btrfs_lookup_block_group(fs_info, logical);
	ASSERT(block_group);

2109 2110 2111 2112 2113
	/* No MIXED_BG on zoned btrfs. */
	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
		min_alloc_bytes = fs_info->sectorsize;
	else
		min_alloc_bytes = fs_info->nodesize;
2114

2115 2116 2117
	/* Bail out if we can allocate more data from this block group. */
	if (logical + length + min_alloc_bytes <=
	    block_group->start + block_group->zone_capacity)
2118 2119
		goto out;

2120
	do_zone_finish(block_group, true);
2121 2122 2123 2124 2125

out:
	btrfs_put_block_group(block_group);
}

2126 2127 2128 2129
static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
{
	struct btrfs_block_group *bg =
		container_of(work, struct btrfs_block_group, zone_finish_work);
2130

2131 2132 2133 2134 2135
	wait_on_extent_buffer_writeback(bg->last_eb);
	free_extent_buffer(bg->last_eb);
	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
	btrfs_put_block_group(bg);
}
2136

2137 2138 2139 2140 2141
void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
				   struct extent_buffer *eb)
{
	if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
		return;
2142

2143 2144 2145 2146 2147
	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
			  bg->start);
		return;
	}
2148

2149 2150 2151 2152 2153 2154
	/* For the work */
	btrfs_get_block_group(bg);
	atomic_inc(&eb->refs);
	bg->last_eb = eb;
	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
	queue_work(system_unbound_wq, &bg->zone_finish_work);
2155
}
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
{
	struct btrfs_fs_info *fs_info = bg->fs_info;

	spin_lock(&fs_info->relocation_bg_lock);
	if (fs_info->data_reloc_bg == bg->start)
		fs_info->data_reloc_bg = 0;
	spin_unlock(&fs_info->relocation_bg_lock);
}
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;

	if (!btrfs_is_zoned(fs_info))
		return;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		if (device->zone_info) {
			vfree(device->zone_info->zone_cache);
			device->zone_info->zone_cache = NULL;
		}
	}
	mutex_unlock(&fs_devices->device_list_mutex);
}
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
	u64 used = 0;
	u64 total = 0;
	u64 factor;

	ASSERT(btrfs_is_zoned(fs_info));

	if (fs_info->bg_reclaim_threshold == 0)
		return false;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		if (!device->bdev)
			continue;

		total += device->disk_total_bytes;
		used += device->bytes_used;
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	factor = div64_u64(used * 100, total);
	return factor >= fs_info->bg_reclaim_threshold;
}
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
				       u64 length)
{
	struct btrfs_block_group *block_group;

	if (!btrfs_is_zoned(fs_info))
		return;

	block_group = btrfs_lookup_block_group(fs_info, logical);
	/* It should be called on a previous data relocation block group. */
	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));

	spin_lock(&block_group->lock);
	if (!block_group->zoned_data_reloc_ongoing)
		goto out;

	/* All relocation extents are written. */
	if (block_group->start + block_group->alloc_offset == logical + length) {
		/* Now, release this block group for further allocations. */
		block_group->zoned_data_reloc_ongoing = 0;
	}

out:
	spin_unlock(&block_group->lock);
	btrfs_put_block_group(block_group);
}
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
{
	struct btrfs_block_group *block_group;
	struct btrfs_block_group *min_bg = NULL;
	u64 min_avail = U64_MAX;
	int ret;

	spin_lock(&fs_info->zone_active_bgs_lock);
	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
			    active_bg_list) {
		u64 avail;

		spin_lock(&block_group->lock);
		if (block_group->reserved ||
		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
			spin_unlock(&block_group->lock);
			continue;
		}

		avail = block_group->zone_capacity - block_group->alloc_offset;
		if (min_avail > avail) {
			if (min_bg)
				btrfs_put_block_group(min_bg);
			min_bg = block_group;
			min_avail = avail;
			btrfs_get_block_group(min_bg);
		}
		spin_unlock(&block_group->lock);
	}
	spin_unlock(&fs_info->zone_active_bgs_lock);

	if (!min_bg)
		return 0;

	ret = btrfs_zone_finish(min_bg);
	btrfs_put_block_group(min_bg);

	return ret < 0 ? ret : 1;
}
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
				struct btrfs_space_info *space_info,
				bool do_finish)
{
	struct btrfs_block_group *bg;
	int index;

	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
		return 0;

	/* No more block groups to activate */
	if (space_info->active_total_bytes == space_info->total_bytes)
		return 0;

	for (;;) {
		int ret;
		bool need_finish = false;

		down_read(&space_info->groups_sem);
		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
			list_for_each_entry(bg, &space_info->block_groups[index],
					    list) {
				if (!spin_trylock(&bg->lock))
					continue;
				if (btrfs_zoned_bg_is_full(bg) || bg->zone_is_active) {
					spin_unlock(&bg->lock);
					continue;
				}
				spin_unlock(&bg->lock);

				if (btrfs_zone_activate(bg)) {
					up_read(&space_info->groups_sem);
					return 1;
				}

				need_finish = true;
			}
		}
		up_read(&space_info->groups_sem);

		if (!do_finish || !need_finish)
			break;

		ret = btrfs_zone_finish_one_bg(fs_info);
		if (ret == 0)
			break;
		if (ret < 0)
			return ret;
	}

	return 0;
}