disk-io.c 147.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

C
Chris Mason 已提交
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
C
Chris Mason 已提交
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
S
Stefan Behrens 已提交
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <asm/unaligned.h>
21
#include <crypto/hash.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "volumes.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "check-integrity.h"
33
#include "rcu-string.h"
34
#include "dev-replace.h"
D
David Woodhouse 已提交
35
#include "raid56.h"
36
#include "sysfs.h"
J
Josef Bacik 已提交
37
#include "qgroup.h"
38
#include "compression.h"
39
#include "tree-checker.h"
J
Josef Bacik 已提交
40
#include "ref-verify.h"
41
#include "block-group.h"
42
#include "discard.h"
43
#include "space-info.h"
N
Naohiro Aota 已提交
44
#include "zoned.h"
45
#include "subpage.h"
46

47 48 49 50
#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
51 52
				 BTRFS_SUPER_FLAG_METADUMP |\
				 BTRFS_SUPER_FLAG_METADUMP_V2)
53

54
static void end_workqueue_fn(struct btrfs_work *work);
55
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
L
liubo 已提交
56
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57
				      struct btrfs_fs_info *fs_info);
58
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
60 61
					struct extent_io_tree *dirty_pages,
					int mark);
62
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
L
liubo 已提交
63
				       struct extent_io_tree *pinned_extents);
64 65
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66

C
Chris Mason 已提交
67
/*
68 69
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
C
Chris Mason 已提交
70 71
 * by writes to insert metadata for new file extents after IO is complete.
 */
72
struct btrfs_end_io_wq {
73 74 75 76
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
77
	blk_status_t status;
78
	enum btrfs_wq_endio_type metadata;
79
	struct btrfs_work work;
80
};
81

82 83 84 85 86 87 88
static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
89
					SLAB_MEM_SPREAD,
90 91 92 93 94 95
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

96
void __cold btrfs_end_io_wq_exit(void)
97
{
98
	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 100
}

101 102 103 104 105 106
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
	if (fs_info->csum_shash)
		crypto_free_shash(fs_info->csum_shash);
}

C
Chris Mason 已提交
107 108 109 110 111
/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
112
struct async_submit_bio {
113
	struct inode *inode;
114
	struct bio *bio;
115
	extent_submit_bio_start_t *submit_bio_start;
116
	int mirror_num;
117 118 119

	/* Optional parameter for submit_bio_start used by direct io */
	u64 dio_file_offset;
120
	struct btrfs_work work;
121
	blk_status_t status;
122 123
};

124 125 126 127 128 129 130 131
/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
132 133
 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 * roots have separate keysets.
134
 *
135 136 137
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
138
 *
139 140 141
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
142
 *
143 144 145
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
146 147 148 149 150
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif
151

152 153 154 155 156 157 158 159 160 161 162 163 164
#define DEFINE_LEVEL(stem, level)					\
	.names[level] = "btrfs-" stem "-0" #level,

#define DEFINE_NAME(stem)						\
	DEFINE_LEVEL(stem, 0)						\
	DEFINE_LEVEL(stem, 1)						\
	DEFINE_LEVEL(stem, 2)						\
	DEFINE_LEVEL(stem, 3)						\
	DEFINE_LEVEL(stem, 4)						\
	DEFINE_LEVEL(stem, 5)						\
	DEFINE_LEVEL(stem, 6)						\
	DEFINE_LEVEL(stem, 7)

165 166
static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
167
	/* Longest entry: btrfs-free-space-00 */
168 169
	char			names[BTRFS_MAX_LEVEL][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170
} btrfs_lockdep_keysets[] = {
171 172 173 174 175 176 177 178 179 180 181 182
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
	{ .id = 0,				DEFINE_NAME("tree")	},
183
};
184

185 186
#undef DEFINE_LEVEL
#undef DEFINE_NAME
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

204 205
#endif

C
Chris Mason 已提交
206
/*
207
 * Compute the csum of a btree block and store the result to provided buffer.
C
Chris Mason 已提交
208
 */
209
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210
{
211
	struct btrfs_fs_info *fs_info = buf->fs_info;
212
	const int num_pages = num_extent_pages(buf);
213
	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215
	char *kaddr;
216
	int i;
217 218 219

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
220
	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222
			    first_page_part - BTRFS_CSUM_SIZE);
223

224 225 226
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(buf->pages[i]);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227
	}
228
	memset(result, 0, BTRFS_CSUM_SIZE);
229
	crypto_shash_final(shash, result);
230 231
}

C
Chris Mason 已提交
232 233 234 235 236 237
/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
238
static int verify_parent_transid(struct extent_io_tree *io_tree,
239 240
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
241
{
242
	struct extent_state *cached_state = NULL;
243 244 245 246 247
	int ret;

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

248 249 250
	if (atomic)
		return -EAGAIN;

251
	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252
			 &cached_state);
253
	if (extent_buffer_uptodate(eb) &&
254 255 256 257
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
258 259 260
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
261
			parent_transid, btrfs_header_generation(eb));
262
	ret = 1;
263
	clear_extent_buffer_uptodate(eb);
C
Chris Mason 已提交
264
out:
265
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266
			     &cached_state);
267 268 269
	return ret;
}

270 271 272 273
static bool btrfs_supported_super_csum(u16 csum_type)
{
	switch (csum_type) {
	case BTRFS_CSUM_TYPE_CRC32:
274
	case BTRFS_CSUM_TYPE_XXHASH:
275
	case BTRFS_CSUM_TYPE_SHA256:
276
	case BTRFS_CSUM_TYPE_BLAKE2:
277 278 279 280 281 282
		return true;
	default:
		return false;
	}
}

D
David Sterba 已提交
283 284 285 286
/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
287 288
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
D
David Sterba 已提交
289 290 291
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
292
	char result[BTRFS_CSUM_SIZE];
293 294 295
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);

	shash->tfm = fs_info->csum_shash;
D
David Sterba 已提交
296

297 298 299 300 301
	/*
	 * The super_block structure does not span the whole
	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
	 * filled with zeros and is included in the checksum.
	 */
302 303
	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
D
David Sterba 已提交
304

305
	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306
		return 1;
D
David Sterba 已提交
307

308
	return 0;
D
David Sterba 已提交
309 310
}

311
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312
			   struct btrfs_key *first_key, u64 parent_transid)
313
{
314
	struct btrfs_fs_info *fs_info = eb->fs_info;
315 316 317 318 319 320
	int found_level;
	struct btrfs_key found_key;
	int ret;

	found_level = btrfs_header_level(eb);
	if (found_level != level) {
321 322
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree level check failed\n");
323 324 325 326 327 328 329 330 331
		btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
			  eb->start, level, found_level);
		return -EIO;
	}

	if (!first_key)
		return 0;

332 333 334 335 336 337 338 339
	/*
	 * For live tree block (new tree blocks in current transaction),
	 * we need proper lock context to avoid race, which is impossible here.
	 * So we only checks tree blocks which is read from disk, whose
	 * generation <= fs_info->last_trans_committed.
	 */
	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
		return 0;
340 341 342 343 344 345 346 347 348 349

	/* We have @first_key, so this @eb must have at least one item */
	if (btrfs_header_nritems(eb) == 0) {
		btrfs_err(fs_info,
		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
			  eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return -EUCLEAN;
	}

350 351 352 353 354 355 356
	if (found_level)
		btrfs_node_key_to_cpu(eb, &found_key, 0);
	else
		btrfs_item_key_to_cpu(eb, &found_key, 0);
	ret = btrfs_comp_cpu_keys(first_key, &found_key);

	if (ret) {
357 358
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree first key check failed\n");
359
		btrfs_err(fs_info,
360 361 362 363 364
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
			  eb->start, parent_transid, first_key->objectid,
			  first_key->type, first_key->offset,
			  found_key.objectid, found_key.type,
			  found_key.offset);
365 366 367 368
	}
	return ret;
}

C
Chris Mason 已提交
369 370 371
/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
372 373 374 375
 *
 * @parent_transid:	expected transid, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key of first slot, skip check if NULL
C
Chris Mason 已提交
376
 */
377 378 379
int btrfs_read_extent_buffer(struct extent_buffer *eb,
			     u64 parent_transid, int level,
			     struct btrfs_key *first_key)
380
{
381
	struct btrfs_fs_info *fs_info = eb->fs_info;
382
	struct extent_io_tree *io_tree;
383
	int failed = 0;
384 385 386
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
387
	int failed_mirror = 0;
388

389
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390
	while (1) {
391
		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392
		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393
		if (!ret) {
394
			if (verify_parent_transid(io_tree, eb,
395
						   parent_transid, 0))
396
				ret = -EIO;
397
			else if (btrfs_verify_level_key(eb, level,
398
						first_key, parent_transid))
399 400 401
				ret = -EUCLEAN;
			else
				break;
402
		}
C
Chris Mason 已提交
403

404
		num_copies = btrfs_num_copies(fs_info,
405
					      eb->start, eb->len);
C
Chris Mason 已提交
406
		if (num_copies == 1)
407
			break;
C
Chris Mason 已提交
408

409 410 411 412 413
		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

414
		mirror_num++;
415 416 417
		if (mirror_num == failed_mirror)
			mirror_num++;

C
Chris Mason 已提交
418
		if (mirror_num > num_copies)
419
			break;
420
	}
421

422
	if (failed && !ret && failed_mirror)
423
		btrfs_repair_eb_io_failure(eb, failed_mirror);
424 425

	return ret;
426
}
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static int csum_one_extent_buffer(struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	u8 result[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
				    offsetof(struct btrfs_header, fsid),
				    BTRFS_FSID_SIZE) == 0);
	csum_tree_block(eb, result);

	if (btrfs_header_level(eb))
		ret = btrfs_check_node(eb);
	else
		ret = btrfs_check_leaf_full(eb);

444 445 446 447 448 449 450 451 452
	if (ret < 0)
		goto error;

	/*
	 * Also check the generation, the eb reached here must be newer than
	 * last committed. Or something seriously wrong happened.
	 */
	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
		ret = -EUCLEAN;
453
		btrfs_err(fs_info,
454 455 456 457
			"block=%llu bad generation, have %llu expect > %llu",
			  eb->start, btrfs_header_generation(eb),
			  fs_info->last_trans_committed);
		goto error;
458 459 460 461
	}
	write_extent_buffer(eb, result, 0, fs_info->csum_size);

	return 0;
462 463 464 465 466 467 468

error:
	btrfs_print_tree(eb, 0);
	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
		  eb->start);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
	return ret;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

/* Checksum all dirty extent buffers in one bio_vec */
static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
				      struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	u64 bvec_start = page_offset(page) + bvec->bv_offset;
	u64 cur;
	int ret = 0;

	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
	     cur += fs_info->nodesize) {
		struct extent_buffer *eb;
		bool uptodate;

		eb = find_extent_buffer(fs_info, cur);
		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
						       fs_info->nodesize);

		/* A dirty eb shouldn't disappear from buffer_radix */
		if (WARN_ON(!eb))
			return -EUCLEAN;

		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}
		if (WARN_ON(!uptodate)) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}

		ret = csum_one_extent_buffer(eb);
		free_extent_buffer(eb);
		if (ret < 0)
			return ret;
	}
	return ret;
}

C
Chris Mason 已提交
510
/*
511 512 513
 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block.
 * For subpage extent buffers we need bvec to also read the offset in the page.
C
Chris Mason 已提交
514
 */
515
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
516
{
517
	struct page *page = bvec->bv_page;
M
Miao Xie 已提交
518
	u64 start = page_offset(page);
519 520
	u64 found_start;
	struct extent_buffer *eb;
521

522
	if (fs_info->nodesize < PAGE_SIZE)
523
		return csum_dirty_subpage_buffers(fs_info, bvec);
524

J
Josef Bacik 已提交
525 526 527
	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;
528

529
	found_start = btrfs_header_bytenr(eb);
530 531 532 533 534 535

	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
		WARN_ON(found_start != 0);
		return 0;
	}

536 537 538 539 540 541 542 543 544
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

545
	return csum_one_extent_buffer(eb);
546 547
}

548
static int check_tree_block_fsid(struct extent_buffer *eb)
Y
Yan Zheng 已提交
549
{
550
	struct btrfs_fs_info *fs_info = eb->fs_info;
551
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
552
	u8 fsid[BTRFS_FSID_SIZE];
553
	u8 *metadata_uuid;
Y
Yan Zheng 已提交
554

555 556
	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	/*
	 * Checking the incompat flag is only valid for the current fs. For
	 * seed devices it's forbidden to have their uuid changed so reading
	 * ->fsid in this case is fine
	 */
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
		metadata_uuid = fs_devices->metadata_uuid;
	else
		metadata_uuid = fs_devices->fsid;

	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
		return 0;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
			return 0;

	return 1;
Y
Yan Zheng 已提交
575 576
}

577 578
/* Do basic extent buffer checks at read time */
static int validate_extent_buffer(struct extent_buffer *eb)
579
{
580
	struct btrfs_fs_info *fs_info = eb->fs_info;
581
	u64 found_start;
582 583
	const u32 csum_size = fs_info->csum_size;
	u8 found_level;
584
	u8 result[BTRFS_CSUM_SIZE];
585
	const u8 *header_csum;
586
	int ret = 0;
587

588
	found_start = btrfs_header_bytenr(eb);
589
	if (found_start != eb->start) {
590 591
		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
			     eb->start, found_start);
592
		ret = -EIO;
593
		goto out;
594
	}
595
	if (check_tree_block_fsid(eb)) {
596 597
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
598
		ret = -EIO;
599
		goto out;
600
	}
601
	found_level = btrfs_header_level(eb);
602
	if (found_level >= BTRFS_MAX_LEVEL) {
603 604
		btrfs_err(fs_info, "bad tree block level %d on %llu",
			  (int)btrfs_header_level(eb), eb->start);
605
		ret = -EIO;
606
		goto out;
607
	}
608

609
	csum_tree_block(eb, result);
610 611
	header_csum = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
612

613
	if (memcmp(result, header_csum, csum_size) != 0) {
614
		btrfs_warn_rl(fs_info,
615 616
	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
			      eb->start,
617
			      CSUM_FMT_VALUE(csum_size, header_csum),
618 619
			      CSUM_FMT_VALUE(csum_size, result),
			      btrfs_header_level(eb));
620
		ret = -EUCLEAN;
621
		goto out;
622 623
	}

624 625 626 627 628
	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
629
	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
630 631 632
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}
633

634
	if (found_level > 0 && btrfs_check_node(eb))
L
Liu Bo 已提交
635 636
		ret = -EIO;

637 638
	if (!ret)
		set_extent_buffer_uptodate(eb);
639 640 641 642
	else
		btrfs_err(fs_info,
			  "block=%llu read time tree block corruption detected",
			  eb->start);
643 644 645 646
out:
	return ret;
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	struct extent_buffer *eb;
	bool reads_done;
	int ret = 0;

	/*
	 * We don't allow bio merge for subpage metadata read, so we should
	 * only get one eb for each endio hook.
	 */
	ASSERT(end == start + fs_info->nodesize - 1);
	ASSERT(PagePrivate(page));

	eb = find_extent_buffer(fs_info, start);
	/*
	 * When we are reading one tree block, eb must have been inserted into
	 * the radix tree. If not, something is wrong.
	 */
	ASSERT(eb);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	/* Subpage read must finish in page read */
	ASSERT(reads_done);

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
	if (ret < 0)
		goto err;

	set_extent_buffer_uptodate(eb);

	free_extent_buffer(eb);
	return ret;
err:
	/*
	 * end_bio_extent_readpage decrements io_pages in case of error,
	 * make sure it has something to decrement.
	 */
	atomic_inc(&eb->io_pages);
	clear_extent_buffer_uptodate(eb);
	free_extent_buffer(eb);
	return ret;
}

697
int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
698 699 700 701 702 703 704 705
				   struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct extent_buffer *eb;
	int ret = 0;
	int reads_done;

	ASSERT(page->private);
706

707
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
708 709
		return validate_subpage_buffer(page, start, end, mirror);

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	eb = (struct extent_buffer *)page->private;

	/*
	 * The pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
	atomic_inc(&eb->refs);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	if (!reads_done)
		goto err;

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
728
err:
D
David Woodhouse 已提交
729 730 731 732 733 734 735
	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
736
		clear_extent_buffer_uptodate(eb);
D
David Woodhouse 已提交
737
	}
738
	free_extent_buffer(eb);
739

740
	return ret;
741 742
}

743
static void end_workqueue_bio(struct bio *bio)
744
{
745
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
746
	struct btrfs_fs_info *fs_info;
747
	struct btrfs_workqueue *wq;
748 749

	fs_info = end_io_wq->info;
750
	end_io_wq->status = bio->bi_status;
751

752
	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
753
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
754
			wq = fs_info->endio_meta_write_workers;
755
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
756
			wq = fs_info->endio_freespace_worker;
757
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
758
			wq = fs_info->endio_raid56_workers;
759
		else
760
			wq = fs_info->endio_write_workers;
761
	} else {
762
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
763
			wq = fs_info->endio_raid56_workers;
764
		else if (end_io_wq->metadata)
765
			wq = fs_info->endio_meta_workers;
766
		else
767
			wq = fs_info->endio_workers;
768
	}
769

770
	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
771
	btrfs_queue_work(wq, &end_io_wq->work);
772 773
}

774
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
775
			enum btrfs_wq_endio_type metadata)
776
{
777
	struct btrfs_end_io_wq *end_io_wq;
778

779
	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
780
	if (!end_io_wq)
781
		return BLK_STS_RESOURCE;
782 783 784

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
785
	end_io_wq->info = info;
786
	end_io_wq->status = 0;
787
	end_io_wq->bio = bio;
788
	end_io_wq->metadata = metadata;
789 790 791

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
792 793 794
	return 0;
}

C
Chris Mason 已提交
795 796 797
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
798
	blk_status_t ret;
C
Chris Mason 已提交
799 800

	async = container_of(work, struct  async_submit_bio, work);
801 802
	ret = async->submit_bio_start(async->inode, async->bio,
				      async->dio_file_offset);
803
	if (ret)
804
		async->status = ret;
C
Chris Mason 已提交
805 806
}

807 808 809 810 811 812 813 814
/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
C
Chris Mason 已提交
815
static void run_one_async_done(struct btrfs_work *work)
816 817
{
	struct async_submit_bio *async;
818 819
	struct inode *inode;
	blk_status_t ret;
820 821

	async = container_of(work, struct  async_submit_bio, work);
822
	inode = async->inode;
823

824
	/* If an error occurred we just want to clean up the bio and move on */
825 826
	if (async->status) {
		async->bio->bi_status = async->status;
827
		bio_endio(async->bio);
828 829 830
		return;
	}

831 832 833 834 835 836
	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
	 * This changes nothing when cgroups aren't in use.
	 */
	async->bio->bi_opf |= REQ_CGROUP_PUNT;
837
	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
838 839 840 841
	if (ret) {
		async->bio->bi_status = ret;
		bio_endio(async->bio);
	}
C
Chris Mason 已提交
842 843 844 845 846 847 848
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
849 850 851
	kfree(async);
}

852
blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
853
				 int mirror_num, unsigned long bio_flags,
854
				 u64 dio_file_offset,
855
				 extent_submit_bio_start_t *submit_bio_start)
856
{
857
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
858 859 860 861
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
862
		return BLK_STS_RESOURCE;
863

864
	async->inode = inode;
865 866
	async->bio = bio;
	async->mirror_num = mirror_num;
C
Chris Mason 已提交
867 868
	async->submit_bio_start = submit_bio_start;

869 870
	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
C
Chris Mason 已提交
871

872
	async->dio_file_offset = dio_file_offset;
873

874
	async->status = 0;
875

876
	if (op_is_sync(bio->bi_opf))
877
		btrfs_set_work_high_priority(&async->work);
878

879
	btrfs_queue_work(fs_info->workers, &async->work);
880 881 882
	return 0;
}

883
static blk_status_t btree_csum_one_bio(struct bio *bio)
884
{
885
	struct bio_vec *bvec;
886
	struct btrfs_root *root;
887
	int ret = 0;
888
	struct bvec_iter_all iter_all;
889

890
	ASSERT(!bio_flagged(bio, BIO_CLONED));
891
	bio_for_each_segment_all(bvec, bio, iter_all) {
892
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
893
		ret = csum_dirty_buffer(root->fs_info, bvec);
894 895
		if (ret)
			break;
896
	}
897

898
	return errno_to_blk_status(ret);
899 900
}

901
static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
902
					   u64 dio_file_offset)
903
{
904 905
	/*
	 * when we're called for a write, we're already in the async
906
	 * submission context.  Just jump into btrfs_map_bio
907
	 */
908
	return btree_csum_one_bio(bio);
C
Chris Mason 已提交
909
}
910

911
static bool should_async_write(struct btrfs_fs_info *fs_info,
912
			     struct btrfs_inode *bi)
913
{
914
	if (btrfs_is_zoned(fs_info))
915
		return false;
916
	if (atomic_read(&bi->sync_writers))
917
		return false;
918
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
919 920
		return false;
	return true;
921 922
}

923 924
blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
				       int mirror_num, unsigned long bio_flags)
925
{
926
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
927
	blk_status_t ret;
928

929
	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
C
Chris Mason 已提交
930 931 932 933
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
934 935
		ret = btrfs_bio_wq_end_io(fs_info, bio,
					  BTRFS_WQ_ENDIO_METADATA);
936
		if (ret)
937
			goto out_w_error;
938
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
939
	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
940 941
		ret = btree_csum_one_bio(bio);
		if (ret)
942
			goto out_w_error;
943
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
944 945 946 947 948
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
949 950
		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
					  0, btree_submit_bio_start);
951
	}
952

953 954 955 956
	if (ret)
		goto out_w_error;
	return 0;

957
out_w_error:
958
	bio->bi_status = ret;
959
	bio_endio(bio);
960
	return ret;
961 962
}

J
Jan Beulich 已提交
963
#ifdef CONFIG_MIGRATION
964
static int btree_migratepage(struct address_space *mapping,
965 966
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
967 968 969 970 971 972 973 974 975 976 977 978 979 980
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
981
	return migrate_page(mapping, newpage, page, mode);
982
}
J
Jan Beulich 已提交
983
#endif
984

985 986 987 988

static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
989 990 991
	struct btrfs_fs_info *fs_info;
	int ret;

992
	if (wbc->sync_mode == WB_SYNC_NONE) {
993 994 995 996

		if (wbc->for_kupdate)
			return 0;

997
		fs_info = BTRFS_I(mapping->host)->root->fs_info;
998
		/* this is a bit racy, but that's ok */
999 1000 1001
		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH,
					     fs_info->dirty_metadata_batch);
1002
		if (ret < 0)
1003 1004
			return 0;
	}
1005
	return btree_write_cache_pages(mapping, wbc);
1006 1007
}

1008
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009
{
1010
	if (PageWriteback(page) || PageDirty(page))
C
Chris Mason 已提交
1011
		return 0;
1012

1013
	return try_release_extent_buffer(page);
1014 1015
}

1016 1017
static void btree_invalidate_folio(struct folio *folio, size_t offset,
				 size_t length)
1018
{
1019
	struct extent_io_tree *tree;
1020 1021 1022 1023 1024 1025 1026 1027
	tree = &BTRFS_I(folio->mapping->host)->io_tree;
	extent_invalidate_folio(tree, folio, offset);
	btree_releasepage(&folio->page, GFP_NOFS);
	if (folio_get_private(folio)) {
		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
			   "folio private not zero on folio %llu",
			   (unsigned long long)folio_pos(folio));
		folio_detach_private(folio);
1028
	}
1029 1030
}

1031
#ifdef DEBUG
1032 1033 1034 1035
static bool btree_dirty_folio(struct address_space *mapping,
		struct folio *folio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1036
	struct btrfs_subpage *subpage;
1037
	struct extent_buffer *eb;
1038
	int cur_bit = 0;
1039
	u64 page_start = folio_pos(folio);
1040 1041

	if (fs_info->sectorsize == PAGE_SIZE) {
1042
		eb = folio_get_private(folio);
1043 1044 1045
		BUG_ON(!eb);
		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		BUG_ON(!atomic_read(&eb->refs));
1046
		btrfs_assert_tree_write_locked(eb);
1047
		return filemap_dirty_folio(mapping, folio);
1048
	}
1049
	subpage = folio_get_private(folio);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	ASSERT(subpage->dirty_bitmap);
	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
		unsigned long flags;
		u64 cur;
		u16 tmp = (1 << cur_bit);

		spin_lock_irqsave(&subpage->lock, flags);
		if (!(tmp & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			cur_bit++;
			continue;
		}
		spin_unlock_irqrestore(&subpage->lock, flags);
		cur = page_start + cur_bit * fs_info->sectorsize;
1065

1066 1067 1068 1069
		eb = find_extent_buffer(fs_info, cur);
		ASSERT(eb);
		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		ASSERT(atomic_read(&eb->refs));
1070
		btrfs_assert_tree_write_locked(eb);
1071 1072 1073 1074
		free_extent_buffer(eb);

		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
	}
1075
	return filemap_dirty_folio(mapping, folio);
1076
}
1077 1078 1079
#else
#define btree_dirty_folio filemap_dirty_folio
#endif
1080

1081
static const struct address_space_operations btree_aops = {
1082
	.writepages	= btree_writepages,
1083
	.releasepage	= btree_releasepage,
1084
	.invalidate_folio = btree_invalidate_folio,
1085
#ifdef CONFIG_MIGRATION
1086
	.migratepage	= btree_migratepage,
1087
#endif
1088
	.dirty_folio = btree_dirty_folio,
1089 1090
};

1091 1092
struct extent_buffer *btrfs_find_create_tree_block(
						struct btrfs_fs_info *fs_info,
1093 1094
						u64 bytenr, u64 owner_root,
						int level)
1095
{
1096 1097
	if (btrfs_is_testing(fs_info))
		return alloc_test_extent_buffer(fs_info, bytenr);
1098
	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1099 1100
}

1101 1102 1103 1104
/*
 * Read tree block at logical address @bytenr and do variant basic but critical
 * verification.
 *
1105
 * @owner_root:		the objectid of the root owner for this block.
1106 1107 1108 1109
 * @parent_transid:	expected transid of this tree block, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key in slot 0, skip check if NULL
 */
1110
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1111 1112
				      u64 owner_root, u64 parent_transid,
				      int level, struct btrfs_key *first_key)
1113 1114 1115 1116
{
	struct extent_buffer *buf = NULL;
	int ret;

1117
	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1118 1119
	if (IS_ERR(buf))
		return buf;
1120

1121
	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
1122
	if (ret) {
1123
		free_extent_buffer_stale(buf);
1124
		return ERR_PTR(ret);
1125
	}
1126 1127 1128 1129
	if (btrfs_check_eb_owner(buf, owner_root)) {
		free_extent_buffer_stale(buf);
		return ERR_PTR(-EUCLEAN);
	}
1130
	return buf;
1131

1132 1133
}

1134
void btrfs_clean_tree_block(struct extent_buffer *buf)
1135
{
1136
	struct btrfs_fs_info *fs_info = buf->fs_info;
1137
	if (btrfs_header_generation(buf) ==
1138
	    fs_info->running_transaction->transid) {
1139
		btrfs_assert_tree_write_locked(buf);
1140

1141
		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142 1143 1144
			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
						 -buf->len,
						 fs_info->dirty_metadata_batch);
1145 1146
			clear_extent_buffer_dirty(buf);
		}
1147
	}
1148 1149
}

1150
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1151
			 u64 objectid)
1152
{
1153
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1154 1155 1156 1157

	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1158
	root->fs_info = fs_info;
1159
	root->root_key.objectid = objectid;
C
Chris Mason 已提交
1160
	root->node = NULL;
1161
	root->commit_root = NULL;
1162
	root->state = 0;
1163
	RB_CLEAR_NODE(&root->rb_node);
1164

1165
	root->last_trans = 0;
1166
	root->free_objectid = 0;
1167
	root->nr_delalloc_inodes = 0;
1168
	root->nr_ordered_extents = 0;
1169
	root->inode_tree = RB_ROOT;
1170
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1171 1172

	btrfs_init_root_block_rsv(root);
1173 1174

	INIT_LIST_HEAD(&root->dirty_list);
1175
	INIT_LIST_HEAD(&root->root_list);
1176 1177
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
1178 1179
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
1180
	INIT_LIST_HEAD(&root->reloc_dirty_list);
1181 1182
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
1183
	spin_lock_init(&root->inode_lock);
1184
	spin_lock_init(&root->delalloc_lock);
1185
	spin_lock_init(&root->ordered_extent_lock);
1186
	spin_lock_init(&root->accounting_lock);
1187 1188
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
1189
	spin_lock_init(&root->qgroup_meta_rsv_lock);
1190
	mutex_init(&root->objectid_mutex);
1191
	mutex_init(&root->log_mutex);
1192
	mutex_init(&root->ordered_extent_mutex);
1193
	mutex_init(&root->delalloc_mutex);
1194
	init_waitqueue_head(&root->qgroup_flush_wait);
Y
Yan Zheng 已提交
1195 1196 1197
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
1198 1199
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
Y
Yan Zheng 已提交
1200 1201 1202
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
M
Miao Xie 已提交
1203
	atomic_set(&root->log_batch, 0);
1204
	refcount_set(&root->refs, 1);
1205
	atomic_set(&root->snapshot_force_cow, 0);
1206
	atomic_set(&root->nr_swapfiles, 0);
Y
Yan Zheng 已提交
1207
	root->log_transid = 0;
1208
	root->log_transid_committed = -1;
1209
	root->last_log_commit = 0;
1210
	root->anon_dev = 0;
1211
	if (!dummy) {
1212 1213
		extent_io_tree_init(fs_info, &root->dirty_log_pages,
				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1214 1215 1216
		extent_io_tree_init(fs_info, &root->log_csum_range,
				    IO_TREE_LOG_CSUM_RANGE, NULL);
	}
C
Chris Mason 已提交
1217

1218
	spin_lock_init(&root->root_item_lock);
1219
	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
J
Josef Bacik 已提交
1220 1221 1222 1223 1224 1225
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&root->leak_list);
	spin_lock(&fs_info->fs_roots_radix_lock);
	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
	spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
1226 1227
}

1228
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1229
					   u64 objectid, gfp_t flags)
A
Al Viro 已提交
1230
{
1231
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
A
Al Viro 已提交
1232
	if (root)
1233
		__setup_root(root, fs_info, objectid);
A
Al Viro 已提交
1234 1235 1236
	return root;
}

1237 1238
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
1239
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1240 1241 1242
{
	struct btrfs_root *root;

1243 1244 1245
	if (!fs_info)
		return ERR_PTR(-EINVAL);

1246
	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1247 1248
	if (!root)
		return ERR_PTR(-ENOMEM);
1249

1250
	/* We don't use the stripesize in selftest, set it as sectorsize */
1251
	root->alloc_bytenr = 0;
1252 1253 1254 1255 1256

	return root;
}
#endif

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
{
	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);

	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
}

static int global_root_key_cmp(const void *k, const struct rb_node *node)
{
	const struct btrfs_key *key = k;
	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);

	return btrfs_comp_cpu_keys(key, &root->root_key);
}

int btrfs_global_root_insert(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct rb_node *tmp;

	write_lock(&fs_info->global_root_lock);
	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
	write_unlock(&fs_info->global_root_lock);
	ASSERT(!tmp);

	return tmp ? -EEXIST : 0;
}

void btrfs_global_root_delete(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	write_lock(&fs_info->global_root_lock);
	rb_erase(&root->rb_node, &fs_info->global_root_tree);
	write_unlock(&fs_info->global_root_lock);
}

struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
				     struct btrfs_key *key)
{
	struct rb_node *node;
	struct btrfs_root *root = NULL;

	read_lock(&fs_info->global_root_lock);
	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
	if (node)
		root = container_of(node, struct btrfs_root, rb_node);
	read_unlock(&fs_info->global_root_lock);

	return root;
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
{
	struct btrfs_block_group *block_group;
	u64 ret;

	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
		return 0;

	if (bytenr)
		block_group = btrfs_lookup_block_group(fs_info, bytenr);
	else
		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
	ASSERT(block_group);
	if (!block_group)
		return 0;
	ret = block_group->global_root_id;
	btrfs_put_block_group(block_group);

	return ret;
}

1331 1332 1333 1334 1335
struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
	struct btrfs_key key = {
		.objectid = BTRFS_CSUM_TREE_OBJECTID,
		.type = BTRFS_ROOT_ITEM_KEY,
1336
		.offset = btrfs_global_root_id(fs_info, bytenr),
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	};

	return btrfs_global_root(fs_info, &key);
}

struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
	struct btrfs_key key = {
		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
		.type = BTRFS_ROOT_ITEM_KEY,
1347
		.offset = btrfs_global_root_id(fs_info, bytenr),
1348 1349 1350 1351 1352
	};

	return btrfs_global_root(fs_info, &key);
}

1353 1354 1355
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     u64 objectid)
{
1356
	struct btrfs_fs_info *fs_info = trans->fs_info;
1357 1358 1359 1360
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
1361
	unsigned int nofs_flag;
1362 1363
	int ret = 0;

1364 1365 1366 1367 1368
	/*
	 * We're holding a transaction handle, so use a NOFS memory allocation
	 * context to avoid deadlock if reclaim happens.
	 */
	nofs_flag = memalloc_nofs_save();
1369
	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1370
	memalloc_nofs_restore(nofs_flag);
1371 1372 1373 1374 1375 1376 1377
	if (!root)
		return ERR_PTR(-ENOMEM);

	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

1378 1379
	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
				      BTRFS_NESTING_NORMAL);
1380 1381
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
1382
		leaf = NULL;
1383
		goto fail_unlock;
1384 1385 1386 1387 1388 1389
	}

	root->node = leaf;
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
1390
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1391

1392 1393
	btrfs_set_root_flags(&root->root_item, 0);
	btrfs_set_root_limit(&root->root_item, 0);
1394 1395 1396 1397 1398 1399 1400
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
1401
	if (is_fstree(objectid))
1402 1403 1404
		generate_random_guid(root->root_item.uuid);
	else
		export_guid(root->root_item.uuid, &guid_null);
1405
	btrfs_set_root_drop_level(&root->root_item, 0);
1406

1407 1408
	btrfs_tree_unlock(leaf);

1409 1410 1411 1412 1413 1414 1415
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

1416 1417
	return root;

1418
fail_unlock:
1419
	if (leaf)
1420
		btrfs_tree_unlock(leaf);
1421
fail:
1422
	btrfs_put_root(root);
1423

1424
	return ERR_PTR(ret);
1425 1426
}

Y
Yan Zheng 已提交
1427 1428
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
1429 1430
{
	struct btrfs_root *root;
1431

1432
	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1433
	if (!root)
Y
Yan Zheng 已提交
1434
		return ERR_PTR(-ENOMEM);
1435 1436 1437 1438

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1439

N
Naohiro Aota 已提交
1440 1441 1442 1443 1444 1445 1446 1447
	return root;
}

int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root)
{
	struct extent_buffer *leaf;

Y
Yan Zheng 已提交
1448
	/*
1449
	 * DON'T set SHAREABLE bit for log trees.
1450
	 *
1451 1452 1453 1454 1455
	 * Log trees are not exposed to user space thus can't be snapshotted,
	 * and they go away before a real commit is actually done.
	 *
	 * They do store pointers to file data extents, and those reference
	 * counts still get updated (along with back refs to the log tree).
Y
Yan Zheng 已提交
1456
	 */
1457

1458
	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1459
			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
N
Naohiro Aota 已提交
1460 1461
	if (IS_ERR(leaf))
		return PTR_ERR(leaf);
1462

Y
Yan Zheng 已提交
1463
	root->node = leaf;
1464 1465 1466

	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
N
Naohiro Aota 已提交
1467 1468

	return 0;
Y
Yan Zheng 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
N
Naohiro Aota 已提交
1479

1480 1481 1482 1483 1484 1485 1486
	if (!btrfs_is_zoned(fs_info)) {
		int ret = btrfs_alloc_log_tree_node(trans, log_root);

		if (ret) {
			btrfs_put_root(log_root);
			return ret;
		}
N
Naohiro Aota 已提交
1487 1488
	}

Y
Yan Zheng 已提交
1489 1490 1491 1492 1493 1494 1495 1496
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
1497
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan Zheng 已提交
1498 1499
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;
N
Naohiro Aota 已提交
1500
	int ret;
Y
Yan Zheng 已提交
1501

1502
	log_root = alloc_log_tree(trans, fs_info);
Y
Yan Zheng 已提交
1503 1504 1505
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

N
Naohiro Aota 已提交
1506 1507 1508 1509 1510 1511
	ret = btrfs_alloc_log_tree_node(trans, log_root);
	if (ret) {
		btrfs_put_root(log_root);
		return ret;
	}

Y
Yan Zheng 已提交
1512 1513 1514 1515
	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
1516 1517 1518
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
1519
	btrfs_set_stack_inode_nbytes(inode_item,
1520
				     fs_info->nodesize);
1521
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
Y
Yan Zheng 已提交
1522

1523
	btrfs_set_root_node(&log_root->root_item, log_root->node);
Y
Yan Zheng 已提交
1524 1525 1526 1527

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
1528
	root->log_transid_committed = -1;
1529
	root->last_log_commit = 0;
1530 1531 1532
	return 0;
}

1533 1534 1535
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
					      struct btrfs_path *path,
					      struct btrfs_key *key)
1536 1537 1538
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1539
	u64 generation;
1540
	int ret;
1541
	int level;
1542

1543
	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1544 1545
	if (!root)
		return ERR_PTR(-ENOMEM);
1546

1547 1548
	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
1549
	if (ret) {
1550 1551
		if (ret > 0)
			ret = -ENOENT;
1552
		goto fail;
1553
	}
1554

1555
	generation = btrfs_root_generation(&root->root_item);
1556
	level = btrfs_root_level(&root->root_item);
1557 1558
	root->node = read_tree_block(fs_info,
				     btrfs_root_bytenr(&root->root_item),
1559
				     key->objectid, generation, level, NULL);
1560 1561
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
1562
		root->node = NULL;
1563
		goto fail;
1564 1565
	}
	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1566
		ret = -EIO;
1567
		goto fail;
1568
	}
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

	/*
	 * For real fs, and not log/reloc trees, root owner must
	 * match its root node owner
	 */
	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
	    root->root_key.objectid != btrfs_header_owner(root->node)) {
		btrfs_crit(fs_info,
"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
			   root->root_key.objectid, root->node->start,
			   btrfs_header_owner(root->node),
			   root->root_key.objectid);
		ret = -EUCLEAN;
		goto fail;
	}
1586
	root->commit_root = btrfs_root_node(root);
1587
	return root;
1588
fail:
1589
	btrfs_put_root(root);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	return ERR_PTR(ret);
}

struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					struct btrfs_key *key)
{
	struct btrfs_root *root;
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return ERR_PTR(-ENOMEM);
	root = read_tree_root_path(tree_root, path, key);
	btrfs_free_path(path);

	return root;
1606 1607
}

1608 1609 1610 1611 1612 1613
/*
 * Initialize subvolume root in-memory structure
 *
 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
 */
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1614 1615
{
	int ret;
1616
	unsigned int nofs_flag;
1617

1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * We might be called under a transaction (e.g. indirect backref
	 * resolution) which could deadlock if it triggers memory reclaim
	 */
	nofs_flag = memalloc_nofs_save();
	ret = btrfs_drew_lock_init(&root->snapshot_lock);
	memalloc_nofs_restore(nofs_flag);
	if (ret)
1626 1627
		goto fail;

1628
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1629
	    !btrfs_is_data_reloc_root(root)) {
1630
		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1631 1632 1633
		btrfs_check_and_init_root_item(&root->root_item);
	}

1634 1635 1636 1637 1638 1639
	/*
	 * Don't assign anonymous block device to roots that are not exposed to
	 * userspace, the id pool is limited to 1M
	 */
	if (is_fstree(root->root_key.objectid) &&
	    btrfs_root_refs(&root->root_item) > 0) {
1640 1641 1642 1643 1644 1645 1646
		if (!anon_dev) {
			ret = get_anon_bdev(&root->anon_dev);
			if (ret)
				goto fail;
		} else {
			root->anon_dev = anon_dev;
		}
1647
	}
1648 1649

	mutex_lock(&root->objectid_mutex);
1650
	ret = btrfs_init_root_free_objectid(root);
1651 1652
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
L
Liu Bo 已提交
1653
		goto fail;
1654 1655
	}

1656
	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1657 1658 1659

	mutex_unlock(&root->objectid_mutex);

1660 1661
	return 0;
fail:
D
David Sterba 已提交
1662
	/* The caller is responsible to call btrfs_free_fs_root */
1663 1664 1665
	return ret;
}

1666 1667
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					       u64 root_id)
1668 1669 1670 1671 1672 1673
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
1674
	if (root)
1675
		root = btrfs_grab_root(root);
1676 1677 1678 1679
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

1680 1681 1682
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
						u64 objectid)
{
1683 1684 1685 1686 1687 1688
	struct btrfs_key key = {
		.objectid = objectid,
		.type = BTRFS_ROOT_ITEM_KEY,
		.offset = 0,
	};

1689 1690 1691
	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->tree_root);
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1692
		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1693 1694 1695 1696 1697
	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->chunk_root);
	if (objectid == BTRFS_DEV_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->dev_root);
	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1698
		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1699 1700 1701 1702 1703 1704
	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->quota_root) ?
			fs_info->quota_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_UUID_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->uuid_root) ?
			fs_info->uuid_root : ERR_PTR(-ENOENT);
1705 1706 1707 1708 1709
	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
		struct btrfs_root *root = btrfs_global_root(fs_info, &key);

		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
	}
1710 1711 1712
	return NULL;
}

1713 1714 1715 1716 1717
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

1718
	ret = radix_tree_preload(GFP_NOFS);
1719 1720 1721 1722 1723 1724 1725
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
1726
	if (ret == 0) {
1727
		btrfs_grab_root(root);
1728
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1729
	}
1730 1731 1732 1733 1734 1735
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

J
Josef Bacik 已提交
1736 1737 1738 1739 1740 1741
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
	struct btrfs_root *root;

	while (!list_empty(&fs_info->allocated_roots)) {
J
Josef Bacik 已提交
1742 1743
		char buf[BTRFS_ROOT_NAME_BUF_LEN];

J
Josef Bacik 已提交
1744 1745
		root = list_first_entry(&fs_info->allocated_roots,
					struct btrfs_root, leak_list);
J
Josef Bacik 已提交
1746
		btrfs_err(fs_info, "leaked root %s refcount %d",
1747
			  btrfs_root_name(&root->root_key, buf),
J
Josef Bacik 已提交
1748 1749
			  refcount_read(&root->refs));
		while (refcount_read(&root->refs) > 1)
1750 1751
			btrfs_put_root(root);
		btrfs_put_root(root);
J
Josef Bacik 已提交
1752 1753 1754 1755
	}
#endif
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static void free_global_roots(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct rb_node *node;

	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
		root = rb_entry(node, struct btrfs_root, rb_node);
		rb_erase(&root->rb_node, &fs_info->global_root_tree);
		btrfs_put_root(root);
	}
}

1768 1769
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
1770 1771
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
1772
	percpu_counter_destroy(&fs_info->ordered_bytes);
1773 1774 1775 1776
	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
	btrfs_free_csum_hash(fs_info);
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_free_ref_cache(fs_info);
1777 1778
	kfree(fs_info->balance_ctl);
	kfree(fs_info->delayed_root);
1779
	free_global_roots(fs_info);
1780 1781 1782 1783 1784 1785
	btrfs_put_root(fs_info->tree_root);
	btrfs_put_root(fs_info->chunk_root);
	btrfs_put_root(fs_info->dev_root);
	btrfs_put_root(fs_info->quota_root);
	btrfs_put_root(fs_info->uuid_root);
	btrfs_put_root(fs_info->fs_root);
1786
	btrfs_put_root(fs_info->data_reloc_root);
1787
	btrfs_put_root(fs_info->block_group_root);
J
Josef Bacik 已提交
1788
	btrfs_check_leaked_roots(fs_info);
1789
	btrfs_extent_buffer_leak_debug_check(fs_info);
1790 1791
	kfree(fs_info->super_copy);
	kfree(fs_info->super_for_commit);
1792
	kfree(fs_info->subpage_info);
1793 1794 1795 1796
	kvfree(fs_info);
}


1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/*
 * Get an in-memory reference of a root structure.
 *
 * For essential trees like root/extent tree, we grab it from fs_info directly.
 * For subvolume trees, we check the cached filesystem roots first. If not
 * found, then read it from disk and add it to cached fs roots.
 *
 * Caller should release the root by calling btrfs_put_root() after the usage.
 *
 * NOTE: Reloc and log trees can't be read by this function as they share the
 *	 same root objectid.
 *
 * @objectid:	root id
 * @anon_dev:	preallocated anonymous block device number for new roots,
 * 		pass 0 for new allocation.
 * @check_ref:	whether to check root item references, If true, return -ENOENT
 *		for orphan roots
 */
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
					     u64 objectid, dev_t anon_dev,
					     bool check_ref)
1818 1819
{
	struct btrfs_root *root;
1820
	struct btrfs_path *path;
1821
	struct btrfs_key key;
1822 1823
	int ret;

1824 1825 1826
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;
1827
again:
D
David Sterba 已提交
1828
	root = btrfs_lookup_fs_root(fs_info, objectid);
1829
	if (root) {
1830 1831
		/* Shouldn't get preallocated anon_dev for cached roots */
		ASSERT(!anon_dev);
1832
		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1833
			btrfs_put_root(root);
1834
			return ERR_PTR(-ENOENT);
1835
		}
1836
		return root;
1837
	}
1838

D
David Sterba 已提交
1839 1840 1841 1842
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1843 1844
	if (IS_ERR(root))
		return root;
1845

1846
	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1847
		ret = -ENOENT;
1848
		goto fail;
1849
	}
1850

1851
	ret = btrfs_init_fs_root(root, anon_dev);
1852 1853
	if (ret)
		goto fail;
1854

1855 1856 1857 1858 1859
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
1860 1861
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
D
David Sterba 已提交
1862
	key.offset = objectid;
1863 1864

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1865
	btrfs_free_path(path);
1866 1867 1868
	if (ret < 0)
		goto fail;
	if (ret == 0)
1869
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1870

1871
	ret = btrfs_insert_fs_root(fs_info, root);
1872
	if (ret) {
1873 1874
		if (ret == -EEXIST) {
			btrfs_put_root(root);
1875
			goto again;
1876
		}
1877
		goto fail;
1878
	}
1879
	return root;
1880
fail:
1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * If our caller provided us an anonymous device, then it's his
	 * responsability to free it in case we fail. So we have to set our
	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
	 * and once again by our caller.
	 */
	if (anon_dev)
		root->anon_dev = 0;
1889
	btrfs_put_root(root);
1890
	return ERR_PTR(ret);
1891 1892
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
/*
 * Get in-memory reference of a root structure
 *
 * @objectid:	tree objectid
 * @check_ref:	if set, verify that the tree exists and the item has at least
 *		one reference
 */
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     u64 objectid, bool check_ref)
{
	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
}

/*
 * Get in-memory reference of a root structure, created as new, optionally pass
 * the anonymous block device id
 *
 * @objectid:	tree objectid
 * @anon_dev:	if zero, allocate a new anonymous block device or use the
 *		parameter value
 */
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
					 u64 objectid, dev_t anon_dev)
{
	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
/*
 * btrfs_get_fs_root_commit_root - return a root for the given objectid
 * @fs_info:	the fs_info
 * @objectid:	the objectid we need to lookup
 *
 * This is exclusively used for backref walking, and exists specifically because
 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
 * creation time, which means we may have to read the tree_root in order to look
 * up a fs root that is not in memory.  If the root is not in memory we will
 * read the tree root commit root and look up the fs root from there.  This is a
 * temporary root, it will not be inserted into the radix tree as it doesn't
 * have the most uptodate information, it'll simply be discarded once the
 * backref code is finished using the root.
 */
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
						 struct btrfs_path *path,
						 u64 objectid)
{
	struct btrfs_root *root;
	struct btrfs_key key;

	ASSERT(path->search_commit_root && path->skip_locking);

	/*
	 * This can return -ENOENT if we ask for a root that doesn't exist, but
	 * since this is called via the backref walking code we won't be looking
	 * up a root that doesn't exist, unless there's corruption.  So if root
	 * != NULL just return it.
	 */
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;

	root = btrfs_lookup_fs_root(fs_info, objectid);
	if (root)
		return root;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = read_tree_root_path(fs_info->tree_root, path, &key);
	btrfs_release_path(path);

	return root;
}

1966 1967 1968 1969 1970
/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
1971 1972
{
	struct bio *bio;
1973
	struct btrfs_end_io_wq *end_io_wq;
1974

1975
	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1976
	bio = end_io_wq->bio;
1977

1978
	bio->bi_status = end_io_wq->status;
1979 1980
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
1981
	bio_endio(bio);
1982
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1983 1984
}

1985 1986
static int cleaner_kthread(void *arg)
{
Y
Yu Zhe 已提交
1987
	struct btrfs_fs_info *fs_info = arg;
1988
	int again;
1989

1990
	while (1) {
1991
		again = 0;
1992

1993 1994
		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);

1995
		/* Make the cleaner go to sleep early. */
1996
		if (btrfs_need_cleaner_sleep(fs_info))
1997 1998
			goto sleep;

1999 2000 2001 2002
		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
2003
		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
2004 2005
			goto sleep;

2006
		if (!mutex_trylock(&fs_info->cleaner_mutex))
2007 2008
			goto sleep;

2009 2010 2011 2012
		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
2013
		if (btrfs_need_cleaner_sleep(fs_info)) {
2014
			mutex_unlock(&fs_info->cleaner_mutex);
2015
			goto sleep;
2016
		}
2017

2018
		btrfs_run_delayed_iputs(fs_info);
2019

2020
		again = btrfs_clean_one_deleted_snapshot(fs_info);
2021
		mutex_unlock(&fs_info->cleaner_mutex);
2022 2023

		/*
2024 2025
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
2026
		 */
2027
		btrfs_run_defrag_inodes(fs_info);
2028 2029

		/*
2030
		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
2031 2032
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
2033
		 * after acquiring fs_info->reclaim_bgs_lock. So we
2034 2035 2036
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
2037
		btrfs_delete_unused_bgs(fs_info);
2038 2039 2040 2041 2042 2043 2044

		/*
		 * Reclaim block groups in the reclaim_bgs list after we deleted
		 * all unused block_groups. This possibly gives us some more free
		 * space.
		 */
		btrfs_reclaim_bgs(fs_info);
2045
sleep:
2046
		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
2047 2048 2049 2050
		if (kthread_should_park())
			kthread_parkme();
		if (kthread_should_stop())
			return 0;
2051
		if (!again) {
2052
			set_current_state(TASK_INTERRUPTIBLE);
2053
			schedule();
2054 2055
			__set_current_state(TASK_RUNNING);
		}
2056
	}
2057 2058 2059 2060 2061
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
2062
	struct btrfs_fs_info *fs_info = root->fs_info;
2063 2064
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
2065
	u64 transid;
2066
	time64_t delta;
2067
	unsigned long delay;
2068
	bool cannot_commit;
2069 2070

	do {
2071
		cannot_commit = false;
2072
		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
2073
		mutex_lock(&fs_info->transaction_kthread_mutex);
2074

2075 2076
		spin_lock(&fs_info->trans_lock);
		cur = fs_info->running_transaction;
2077
		if (!cur) {
2078
			spin_unlock(&fs_info->trans_lock);
2079 2080
			goto sleep;
		}
Y
Yan Zheng 已提交
2081

2082
		delta = ktime_get_seconds() - cur->start_time;
2083 2084
		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
		    cur->state < TRANS_STATE_COMMIT_START &&
2085
		    delta < fs_info->commit_interval) {
2086
			spin_unlock(&fs_info->trans_lock);
2087 2088 2089
			delay -= msecs_to_jiffies((delta - 1) * 1000);
			delay = min(delay,
				    msecs_to_jiffies(fs_info->commit_interval * 1000));
2090 2091
			goto sleep;
		}
2092
		transid = cur->transid;
2093
		spin_unlock(&fs_info->trans_lock);
2094

2095
		/* If the file system is aborted, this will always fail. */
2096
		trans = btrfs_attach_transaction(root);
2097
		if (IS_ERR(trans)) {
2098 2099
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
2100
			goto sleep;
2101
		}
2102
		if (transid == trans->transid) {
2103
			btrfs_commit_transaction(trans);
2104
		} else {
2105
			btrfs_end_transaction(trans);
2106
		}
2107
sleep:
2108 2109
		wake_up_process(fs_info->cleaner_kthread);
		mutex_unlock(&fs_info->transaction_kthread_mutex);
2110

J
Josef Bacik 已提交
2111
		if (BTRFS_FS_ERROR(fs_info))
2112
			btrfs_cleanup_transaction(fs_info);
2113
		if (!kthread_should_stop() &&
2114
				(!btrfs_transaction_blocked(fs_info) ||
2115
				 cannot_commit))
2116
			schedule_timeout_interruptible(delay);
2117 2118 2119 2120
	} while (!kthread_should_stop());
	return 0;
}

C
Chris Mason 已提交
2121
/*
2122 2123 2124
 * This will find the highest generation in the array of root backups.  The
 * index of the highest array is returned, or -EINVAL if we can't find
 * anything.
C
Chris Mason 已提交
2125 2126 2127 2128 2129
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
2130
static int find_newest_super_backup(struct btrfs_fs_info *info)
C
Chris Mason 已提交
2131
{
2132
	const u64 newest_gen = btrfs_super_generation(info->super_copy);
C
Chris Mason 已提交
2133 2134 2135 2136 2137 2138 2139 2140
	u64 cur;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
2141
			return i;
C
Chris Mason 已提交
2142 2143
	}

2144
	return -EINVAL;
C
Chris Mason 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
2154
	const int next_backup = info->backup_root_index;
C
Chris Mason 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	struct btrfs_root_backup *root_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

2180 2181 2182 2183 2184 2185 2186 2187 2188
	if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
		btrfs_set_backup_block_group_root(root_backup,
					info->block_group_root->node->start);
		btrfs_set_backup_block_group_root_gen(root_backup,
			btrfs_header_generation(info->block_group_root->node));
		btrfs_set_backup_block_group_root_level(root_backup,
			btrfs_header_level(info->block_group_root->node));
	} else {
		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2189
		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2190 2191 2192 2193 2194 2195 2196

		btrfs_set_backup_extent_root(root_backup,
					     extent_root->node->start);
		btrfs_set_backup_extent_root_gen(root_backup,
				btrfs_header_generation(extent_root->node));
		btrfs_set_backup_extent_root_level(root_backup,
					btrfs_header_level(extent_root->node));
2197 2198 2199 2200 2201 2202

		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
		btrfs_set_backup_csum_root_gen(root_backup,
					       btrfs_header_generation(csum_root->node));
		btrfs_set_backup_csum_root_level(root_backup,
						 btrfs_header_level(csum_root->node));
2203
	}
C
Chris Mason 已提交
2204

2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
C
Chris Mason 已提交
2213
			       btrfs_header_generation(info->fs_root->node));
2214
		btrfs_set_backup_fs_root_level(root_backup,
C
Chris Mason 已提交
2215
			       btrfs_header_level(info->fs_root->node));
2216
	}
C
Chris Mason 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

N
Nikolay Borisov 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/*
 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 *
 * fs_info - filesystem whose backup roots need to be read
 * priority - priority of backup root required
 *
 * Returns backup root index on success and -EINVAL otherwise.
 */
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
	int backup_index = find_newest_super_backup(fs_info);
	struct btrfs_super_block *super = fs_info->super_copy;
	struct btrfs_root_backup *root_backup;

	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
		if (priority == 0)
			return backup_index;

		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
	} else {
		return -EINVAL;
	}

	root_backup = super->super_roots + backup_index;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * Fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));

	return backup_index;
}

L
Liu Bo 已提交
2284 2285 2286
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
2287
	btrfs_destroy_workqueue(fs_info->fixup_workers);
2288
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2289
	btrfs_destroy_workqueue(fs_info->workers);
2290 2291
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2292
	btrfs_destroy_workqueue(fs_info->rmw_workers);
2293 2294
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2295
	btrfs_destroy_workqueue(fs_info->delayed_workers);
2296
	btrfs_destroy_workqueue(fs_info->caching_workers);
2297
	btrfs_destroy_workqueue(fs_info->flush_workers);
2298
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2299 2300
	if (fs_info->discard_ctl.discard_workers)
		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2301 2302 2303 2304 2305 2306 2307
	/*
	 * Now that all other work queues are destroyed, we can safely destroy
	 * the queues used for metadata I/O, since tasks from those other work
	 * queues can do metadata I/O operations.
	 */
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
L
Liu Bo 已提交
2308 2309
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root, *tmp;

	rbtree_postorder_for_each_entry_safe(root, tmp,
					     &fs_info->global_root_tree,
					     rb_node)
		free_root_extent_buffers(root);
}

C
Chris Mason 已提交
2330
/* helper to cleanup tree roots */
2331
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
C
Chris Mason 已提交
2332
{
2333
	free_root_extent_buffers(info->tree_root);
2334

2335
	free_global_root_pointers(info);
2336 2337 2338
	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
2339
	free_root_extent_buffers(info->fs_root);
2340
	free_root_extent_buffers(info->data_reloc_root);
2341
	free_root_extent_buffers(info->block_group_root);
2342
	if (free_chunk_root)
2343
		free_root_extent_buffers(info->chunk_root);
C
Chris Mason 已提交
2344 2345
}

2346 2347 2348 2349 2350 2351 2352
void btrfs_put_root(struct btrfs_root *root)
{
	if (!root)
		return;

	if (refcount_dec_and_test(&root->refs)) {
		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2353
		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2354 2355 2356
		if (root->anon_dev)
			free_anon_bdev(root->anon_dev);
		btrfs_drew_lock_destroy(&root->snapshot_lock);
2357
		free_root_extent_buffers(root);
2358 2359 2360 2361 2362 2363 2364 2365 2366
#ifdef CONFIG_BTRFS_DEBUG
		spin_lock(&root->fs_info->fs_roots_radix_lock);
		list_del_init(&root->leak_list);
		spin_unlock(&root->fs_info->fs_roots_radix_lock);
#endif
		kfree(root);
	}
}

2367
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

2378
		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2379
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2380
		btrfs_put_root(gang[0]);
2381 2382 2383 2384 2385 2386 2387 2388 2389
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
2390
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2391 2392
	}
}
C
Chris Mason 已提交
2393

2394 2395 2396 2397 2398 2399 2400 2401
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
2402
	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
2413
	atomic_set(&fs_info->reloc_cancel_req, 0);
2414 2415
}

2416
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2417
{
2418 2419 2420 2421
	struct inode *inode = fs_info->btree_inode;

	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(inode, 1);
2422 2423 2424 2425 2426
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
2427 2428
	inode->i_size = OFFSET_MAX;
	inode->i_mapping->a_ops = &btree_aops;
2429

2430
	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2431
	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2432
			    IO_TREE_BTREE_INODE_IO, inode);
2433
	BTRFS_I(inode)->io_tree.track_uptodate = false;
2434
	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2435

2436
	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2437 2438 2439
	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
	btrfs_insert_inode_hash(inode);
2440 2441
}

2442 2443 2444
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2445
	init_rwsem(&fs_info->dev_replace.rwsem);
2446
	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
2457
	fs_info->qgroup_rescan_running = false;
2458 2459 2460
	mutex_init(&fs_info->qgroup_rescan_lock);
}

2461
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2462
{
2463
	u32 max_active = fs_info->thread_pool_size;
2464
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2465 2466

	fs_info->workers =
2467 2468
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);
2469 2470

	fs_info->delalloc_workers =
2471 2472
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);
2473 2474

	fs_info->flush_workers =
2475 2476
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);
2477 2478

	fs_info->caching_workers =
2479
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2480 2481

	fs_info->fixup_workers =
2482
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2483 2484 2485 2486 2487 2488

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
2489
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2490
	fs_info->endio_meta_workers =
2491 2492
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
2493
	fs_info->endio_meta_write_workers =
2494 2495
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
2496
	fs_info->endio_raid56_workers =
2497 2498
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
2499
	fs_info->rmw_workers =
2500
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2501
	fs_info->endio_write_workers =
2502 2503
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
2504
	fs_info->endio_freespace_worker =
2505 2506
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
2507
	fs_info->delayed_workers =
2508 2509
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
2510
	fs_info->qgroup_rescan_workers =
2511
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2512 2513
	fs_info->discard_ctl.discard_workers =
		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2514 2515

	if (!(fs_info->workers && fs_info->delalloc_workers &&
2516
	      fs_info->flush_workers &&
2517 2518 2519 2520
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
Q
Qu Wenruo 已提交
2521 2522
	      fs_info->caching_workers && fs_info->fixup_workers &&
	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2523
	      fs_info->discard_ctl.discard_workers)) {
2524 2525 2526 2527 2528 2529
		return -ENOMEM;
	}

	return 0;
}

2530 2531 2532
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
	struct crypto_shash *csum_shash;
2533
	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2534

2535
	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2536 2537 2538

	if (IS_ERR(csum_shash)) {
		btrfs_err(fs_info, "error allocating %s hash for checksum",
2539
			  csum_driver);
2540 2541 2542 2543 2544 2545 2546 2547
		return PTR_ERR(csum_shash);
	}

	fs_info->csum_shash = csum_shash;

	return 0;
}

2548 2549 2550 2551 2552 2553 2554
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);
2555
	int level = btrfs_super_log_root_level(disk_super);
2556 2557

	if (fs_devices->rw_devices == 0) {
2558
		btrfs_warn(fs_info, "log replay required on RO media");
2559 2560 2561
		return -EIO;
	}

2562 2563
	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
					 GFP_KERNEL);
2564 2565 2566
	if (!log_tree_root)
		return -ENOMEM;

2567
	log_tree_root->node = read_tree_block(fs_info, bytenr,
2568 2569 2570
					      BTRFS_TREE_LOG_OBJECTID,
					      fs_info->generation + 1, level,
					      NULL);
2571
	if (IS_ERR(log_tree_root->node)) {
2572
		btrfs_warn(fs_info, "failed to read log tree");
2573
		ret = PTR_ERR(log_tree_root->node);
2574
		log_tree_root->node = NULL;
2575
		btrfs_put_root(log_tree_root);
2576
		return ret;
2577 2578
	}
	if (!extent_buffer_uptodate(log_tree_root->node)) {
2579
		btrfs_err(fs_info, "failed to read log tree");
2580
		btrfs_put_root(log_tree_root);
2581 2582
		return -EIO;
	}
2583

2584 2585 2586
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
2587 2588
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to recover log tree");
2589
		btrfs_put_root(log_tree_root);
2590 2591 2592
		return ret;
	}

2593
	if (sb_rdonly(fs_info->sb)) {
2594
		ret = btrfs_commit_super(fs_info);
2595 2596 2597 2598 2599 2600 2601
		if (ret)
			return ret;
	}

	return 0;
}

2602 2603 2604 2605 2606 2607
static int load_global_roots_objectid(struct btrfs_root *tree_root,
				      struct btrfs_path *path, u64 objectid,
				      const char *name)
{
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
	struct btrfs_root *root;
2608
	u64 max_global_id = 0;
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	int ret;
	struct btrfs_key key = {
		.objectid = objectid,
		.type = BTRFS_ROOT_ITEM_KEY,
		.offset = 0,
	};
	bool found = false;

	/* If we have IGNOREDATACSUMS skip loading these roots. */
	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
		return 0;
	}

	while (1) {
		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
		if (ret < 0)
			break;

		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(tree_root, path);
			if (ret) {
				if (ret > 0)
					ret = 0;
				break;
			}
		}
		ret = 0;

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != objectid)
			break;
		btrfs_release_path(path);

2644 2645 2646 2647 2648 2649 2650
		/*
		 * Just worry about this for extent tree, it'll be the same for
		 * everybody.
		 */
		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
			max_global_id = max(max_global_id, key.offset);

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		found = true;
		root = read_tree_root_path(tree_root, path, &key);
		if (IS_ERR(root)) {
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
				ret = PTR_ERR(root);
			break;
		}
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		ret = btrfs_global_root_insert(root);
		if (ret) {
			btrfs_put_root(root);
			break;
		}
		key.offset++;
	}
	btrfs_release_path(path);

2668 2669 2670
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
		fs_info->nr_global_roots = max_global_id + 1;

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	if (!found || ret) {
		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);

		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
			ret = ret ? ret : -ENOENT;
		else
			ret = 0;
		btrfs_err(fs_info, "failed to load root %s", name);
	}
	return ret;
}

static int load_global_roots(struct btrfs_root *tree_root)
{
	struct btrfs_path *path;
	int ret = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = load_global_roots_objectid(tree_root, path,
					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
	if (ret)
		goto out;
	ret = load_global_roots_objectid(tree_root, path,
					 BTRFS_CSUM_TREE_OBJECTID, "csum");
	if (ret)
		goto out;
	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
		goto out;
	ret = load_global_roots_objectid(tree_root, path,
					 BTRFS_FREE_SPACE_TREE_OBJECTID,
					 "free space");
out:
	btrfs_free_path(path);
	return ret;
}

2711
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2712
{
2713
	struct btrfs_root *tree_root = fs_info->tree_root;
2714
	struct btrfs_root *root;
2715 2716 2717
	struct btrfs_key location;
	int ret;

2718 2719
	BUG_ON(!fs_info->tree_root);

2720 2721 2722 2723 2724
	ret = load_global_roots(tree_root);
	if (ret)
		return ret;

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2725 2726 2727
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

2728
	root = btrfs_read_tree_root(tree_root, &location);
2729
	if (IS_ERR(root)) {
2730 2731 2732 2733 2734 2735 2736
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->dev_root = root;
2737
	}
2738 2739
	/* Initialize fs_info for all devices in any case */
	btrfs_init_devices_late(fs_info);
2740

2741 2742 2743 2744
	/*
	 * This tree can share blocks with some other fs tree during relocation
	 * and we need a proper setup by btrfs_get_fs_root
	 */
D
David Sterba 已提交
2745 2746
	root = btrfs_get_fs_root(tree_root->fs_info,
				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2747
	if (IS_ERR(root)) {
2748 2749 2750 2751 2752 2753 2754
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->data_reloc_root = root;
2755 2756
	}

2757
	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2758 2759 2760
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2761
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2762
		fs_info->quota_root = root;
2763 2764 2765
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2766 2767
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
2768 2769 2770 2771 2772
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			if (ret != -ENOENT)
				goto out;
		}
2773
	} else {
2774 2775
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
2776 2777 2778
	}

	return 0;
2779 2780 2781 2782
out:
	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
		   location.objectid, ret);
	return ret;
2783 2784
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Real super block validation
 * NOTE: super csum type and incompat features will not be checked here.
 *
 * @sb:		super block to check
 * @mirror_num:	the super block number to check its bytenr:
 * 		0	the primary (1st) sb
 * 		1, 2	2nd and 3rd backup copy
 * 	       -1	skip bytenr check
 */
static int validate_super(struct btrfs_fs_info *fs_info,
			    struct btrfs_super_block *sb, int mirror_num)
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
{
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
		ret = -EINVAL;
	}
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
2836 2837

	/*
2838 2839 2840 2841 2842 2843
	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
	 *
	 * We can support 16K sectorsize with 64K page size without problem,
	 * but such sectorsize/pagesize combination doesn't make much sense.
	 * 4K will be our future standard, PAGE_SIZE is supported from the very
	 * beginning.
2844
	 */
2845
	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2846
		btrfs_err(fs_info,
2847
			"sectorsize %llu not yet supported for page size %lu",
2848 2849 2850
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
2851

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
		   BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
		ret = -EINVAL;
	}

	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
	    memcmp(fs_info->fs_devices->metadata_uuid,
		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
			fs_info->super_copy->metadata_uuid,
			fs_info->fs_devices->metadata_uuid);
		ret = -EINVAL;
	}

2898
	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2899
		   BTRFS_FSID_SIZE) != 0) {
2900
		btrfs_err(fs_info,
2901
			"dev_item UUID does not match metadata fsid: %pU != %pU",
2902
			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

2928 2929
	if (mirror_num >= 0 &&
	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/*
 * Validation of super block at mount time.
 * Some checks already done early at mount time, like csum type and incompat
 * flags will be skipped.
 */
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
	return validate_super(fs_info, fs_info->super_copy, 0);
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * Validation of super block at write time.
 * Some checks like bytenr check will be skipped as their values will be
 * overwritten soon.
 * Extra checks like csum type and incompat flags will be done here.
 */
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
				      struct btrfs_super_block *sb)
{
	int ret;

	ret = validate_super(fs_info, sb, -1);
	if (ret < 0)
		goto out;
2997
	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
		ret = -EUCLEAN;
		btrfs_err(fs_info, "invalid csum type, has %u want %u",
			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
		goto out;
	}
	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
		ret = -EUCLEAN;
		btrfs_err(fs_info,
		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
			  btrfs_super_incompat_flags(sb),
			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
		goto out;
	}
out:
	if (ret < 0)
		btrfs_err(fs_info,
		"super block corruption detected before writing it to disk");
	return ret;
}

3018 3019 3020 3021 3022 3023 3024 3025 3026
static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
{
	int ret = 0;

	root->node = read_tree_block(root->fs_info, bytenr,
				     root->root_key.objectid, gen, level, NULL);
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
		root->node = NULL;
3027 3028 3029
		return ret;
	}
	if (!extent_buffer_uptodate(root->node)) {
3030 3031
		free_extent_buffer(root->node);
		root->node = NULL;
3032
		return -EIO;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	}

	btrfs_set_root_node(&root->root_item, root->node);
	root->commit_root = btrfs_root_node(root);
	btrfs_set_root_refs(&root->root_item, 1);
	return ret;
}

static int load_important_roots(struct btrfs_fs_info *fs_info)
{
	struct btrfs_super_block *sb = fs_info->super_copy;
	u64 gen, bytenr;
	int level, ret;

	bytenr = btrfs_super_root(sb);
	gen = btrfs_super_generation(sb);
	level = btrfs_super_root_level(sb);
	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
3051
	if (ret) {
3052
		btrfs_warn(fs_info, "couldn't read tree root");
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		return ret;
	}

	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
		return 0;

	bytenr = btrfs_super_block_group_root(sb);
	gen = btrfs_super_block_group_root_generation(sb);
	level = btrfs_super_block_group_root_level(sb);
	ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
	if (ret)
		btrfs_warn(fs_info, "couldn't read block group root");
3065 3066 3067
	return ret;
}

3068
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
3069
{
3070
	int backup_index = find_newest_super_backup(fs_info);
3071 3072 3073 3074 3075 3076
	struct btrfs_super_block *sb = fs_info->super_copy;
	struct btrfs_root *tree_root = fs_info->tree_root;
	bool handle_error = false;
	int ret = 0;
	int i;

3077 3078 3079 3080 3081 3082 3083 3084 3085
	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
		struct btrfs_root *root;

		root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
					GFP_KERNEL);
		if (!root)
			return -ENOMEM;
		fs_info->block_group_root = root;
	}
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		if (handle_error) {
			if (!IS_ERR(tree_root->node))
				free_extent_buffer(tree_root->node);
			tree_root->node = NULL;

			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
				break;

			free_root_pointers(fs_info, 0);

			/*
			 * Don't use the log in recovery mode, it won't be
			 * valid
			 */
			btrfs_set_super_log_root(sb, 0);

			/* We can't trust the free space cache either */
			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

			ret = read_backup_root(fs_info, i);
3108
			backup_index = ret;
3109 3110 3111 3112
			if (ret < 0)
				return ret;
		}

3113 3114
		ret = load_important_roots(fs_info);
		if (ret) {
3115
			handle_error = true;
3116 3117 3118
			continue;
		}

3119 3120 3121 3122
		/*
		 * No need to hold btrfs_root::objectid_mutex since the fs
		 * hasn't been fully initialised and we are the only user
		 */
3123
		ret = btrfs_init_root_free_objectid(tree_root);
3124 3125 3126 3127 3128
		if (ret < 0) {
			handle_error = true;
			continue;
		}

3129
		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3130 3131 3132 3133 3134 3135 3136 3137

		ret = btrfs_read_roots(fs_info);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		/* All successful */
3138 3139
		fs_info->generation = btrfs_header_generation(tree_root->node);
		fs_info->last_trans_committed = fs_info->generation;
3140
		fs_info->last_reloc_trans = 0;
3141 3142 3143 3144 3145 3146 3147 3148

		/* Always begin writing backup roots after the one being used */
		if (backup_index < 0) {
			fs_info->backup_root_index = 0;
		} else {
			fs_info->backup_root_index = backup_index + 1;
			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
		}
3149 3150 3151 3152 3153 3154
		break;
	}

	return ret;
}

3155
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3156
{
3157
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3158
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
C
Chris Mason 已提交
3159
	INIT_LIST_HEAD(&fs_info->trans_list);
3160
	INIT_LIST_HEAD(&fs_info->dead_roots);
Y
Yan, Zheng 已提交
3161
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3162
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3163
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3164
	spin_lock_init(&fs_info->delalloc_root_lock);
J
Josef Bacik 已提交
3165
	spin_lock_init(&fs_info->trans_lock);
3166
	spin_lock_init(&fs_info->fs_roots_radix_lock);
Y
Yan, Zheng 已提交
3167
	spin_lock_init(&fs_info->delayed_iput_lock);
C
Chris Mason 已提交
3168
	spin_lock_init(&fs_info->defrag_inodes_lock);
3169
	spin_lock_init(&fs_info->super_lock);
3170
	spin_lock_init(&fs_info->buffer_lock);
3171
	spin_lock_init(&fs_info->unused_bgs_lock);
3172
	spin_lock_init(&fs_info->treelog_bg_lock);
3173
	spin_lock_init(&fs_info->zone_active_bgs_lock);
3174
	spin_lock_init(&fs_info->relocation_bg_lock);
J
Jan Schmidt 已提交
3175
	rwlock_init(&fs_info->tree_mod_log_lock);
3176
	rwlock_init(&fs_info->global_root_lock);
3177
	mutex_init(&fs_info->unused_bg_unpin_mutex);
3178
	mutex_init(&fs_info->reclaim_bgs_lock);
C
Chris Mason 已提交
3179
	mutex_init(&fs_info->reloc_mutex);
3180
	mutex_init(&fs_info->delalloc_root_mutex);
3181
	mutex_init(&fs_info->zoned_meta_io_lock);
3182
	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3183
	seqlock_init(&fs_info->profiles_lock);
3184

3185
	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3186
	INIT_LIST_HEAD(&fs_info->space_info);
J
Jan Schmidt 已提交
3187
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3188
	INIT_LIST_HEAD(&fs_info->unused_bgs);
3189
	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3190
	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
J
Josef Bacik 已提交
3191 3192
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&fs_info->allocated_roots);
3193 3194
	INIT_LIST_HEAD(&fs_info->allocated_ebs);
	spin_lock_init(&fs_info->eb_leak_lock);
J
Josef Bacik 已提交
3195
#endif
3196
	extent_map_tree_init(&fs_info->mapping_tree);
3197 3198 3199 3200 3201 3202 3203
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
J
Josef Bacik 已提交
3204 3205 3206
	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
			     BTRFS_BLOCK_RSV_DELREFS);

3207
	atomic_set(&fs_info->async_delalloc_pages, 0);
C
Chris Mason 已提交
3208
	atomic_set(&fs_info->defrag_running, 0);
3209
	atomic_set(&fs_info->nr_delayed_iputs, 0);
3210
	atomic64_set(&fs_info->tree_mod_seq, 0);
3211
	fs_info->global_root_tree = RB_ROOT;
3212
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
J
Josef Bacik 已提交
3213
	fs_info->metadata_ratio = 0;
C
Chris Mason 已提交
3214
	fs_info->defrag_inodes = RB_ROOT;
3215
	atomic64_set(&fs_info->free_chunk_space, 0);
J
Jan Schmidt 已提交
3216
	fs_info->tree_mod_log = RB_ROOT;
3217
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3218
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
J
Josef Bacik 已提交
3219
	btrfs_init_ref_verify(fs_info);
C
Chris Mason 已提交
3220

3221 3222
	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);
3223

3224 3225
	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
3226

3227
	btrfs_init_scrub(fs_info);
3228 3229 3230
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
3231
	btrfs_init_balance(fs_info);
3232
	btrfs_init_async_reclaim_work(fs_info);
A
Arne Jansen 已提交
3233

J
Josef Bacik 已提交
3234
	spin_lock_init(&fs_info->block_group_cache_lock);
3235
	fs_info->block_group_cache_tree = RB_ROOT;
3236
	fs_info->first_logical_byte = (u64)-1;
J
Josef Bacik 已提交
3237

3238 3239
	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
C
Chris Mason 已提交
3240

3241
	mutex_init(&fs_info->ordered_operations_mutex);
3242
	mutex_init(&fs_info->tree_log_mutex);
3243
	mutex_init(&fs_info->chunk_mutex);
3244 3245
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
3246
	mutex_init(&fs_info->ro_block_group_mutex);
3247
	init_rwsem(&fs_info->commit_root_sem);
3248
	init_rwsem(&fs_info->cleanup_work_sem);
3249
	init_rwsem(&fs_info->subvol_sem);
S
Stefan Behrens 已提交
3250
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3251

3252
	btrfs_init_dev_replace_locks(fs_info);
3253
	btrfs_init_qgroup(fs_info);
3254
	btrfs_discard_init(fs_info);
3255

3256 3257 3258
	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

3259
	init_waitqueue_head(&fs_info->transaction_throttle);
3260
	init_waitqueue_head(&fs_info->transaction_wait);
S
Sage Weil 已提交
3261
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3262
	init_waitqueue_head(&fs_info->async_submit_wait);
3263
	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3264

3265 3266 3267
	/* Usable values until the real ones are cached from the superblock */
	fs_info->nodesize = 4096;
	fs_info->sectorsize = 4096;
3268
	fs_info->sectorsize_bits = ilog2(4096);
3269 3270
	fs_info->stripesize = 4096;

3271 3272 3273
	spin_lock_init(&fs_info->swapfile_pins_lock);
	fs_info->swapfile_pins = RB_ROOT;

3274 3275
	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3276 3277 3278 3279 3280 3281 3282 3283 3284
}

static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
	int ret;

	fs_info->sb = sb;
	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3285

3286
	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3287
	if (ret)
J
Josef Bacik 已提交
3288
		return ret;
3289 3290 3291

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3292
		return ret;
3293 3294 3295 3296 3297 3298

	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3299
		return ret;
3300 3301 3302 3303

	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
			GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3304
		return ret;
3305 3306 3307

	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
J
Josef Bacik 已提交
3308 3309
	if (!fs_info->delayed_root)
		return -ENOMEM;
3310 3311
	btrfs_init_delayed_root(fs_info->delayed_root);

3312 3313 3314
	if (sb_rdonly(sb))
		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);

J
Josef Bacik 已提交
3315
	return btrfs_alloc_stripe_hash_table(fs_info);
3316 3317
}

3318 3319
static int btrfs_uuid_rescan_kthread(void *data)
{
Y
Yu Zhe 已提交
3320
	struct btrfs_fs_info *fs_info = data;
3321 3322 3323 3324 3325 3326 3327 3328 3329
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info);
	if (ret < 0) {
3330 3331 3332
		if (ret != -EINTR)
			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
				   ret);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

3355 3356 3357 3358 3359 3360 3361 3362
/*
 * Some options only have meaning at mount time and shouldn't persist across
 * remounts, or be displayed. Clear these at the end of mount and remount
 * code paths.
 */
void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
{
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3363
	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3364 3365
}

3366 3367 3368 3369 3370 3371 3372
/*
 * Mounting logic specific to read-write file systems. Shared by open_ctree
 * and btrfs_remount when remounting from read-only to read-write.
 */
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
	int ret;
3373
	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	bool clear_free_space_tree = false;

	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		clear_free_space_tree = true;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = true;
	}

	if (clear_free_space_tree) {
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
			goto out;
		}
	}
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	/*
	 * btrfs_find_orphan_roots() is responsible for finding all the dead
	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
	 * them into the fs_info->fs_roots_radix tree. This must be done before
	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
	 * item before the root's tree is deleted - this means that if we unmount
	 * or crash before the deletion completes, on the next mount we will not
	 * delete what remains of the tree because the orphan item does not
	 * exists anymore, which is what tells us we have a pending deletion.
	 */
	ret = btrfs_find_orphan_roots(fs_info);
	if (ret)
		goto out;

3410 3411 3412 3413
	ret = btrfs_cleanup_fs_roots(fs_info);
	if (ret)
		goto out;

3414 3415 3416 3417 3418 3419 3420 3421
	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
		up_read(&fs_info->cleanup_work_sem);
		goto out;
	}
	up_read(&fs_info->cleanup_work_sem);

3422
	mutex_lock(&fs_info->cleaner_mutex);
3423
	ret = btrfs_recover_relocation(fs_info);
3424 3425 3426 3427 3428 3429
	mutex_unlock(&fs_info->cleaner_mutex);
	if (ret < 0) {
		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
		goto out;
	}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		btrfs_info(fs_info, "creating free space tree");
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
			goto out;
		}
	}

3441 3442 3443 3444 3445 3446
	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
		if (ret)
			goto out;
	}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	ret = btrfs_resume_balance_async(fs_info);
	if (ret)
		goto out;

	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume dev_replace");
		goto out;
	}

	btrfs_qgroup_rescan_resume(fs_info);

	if (!fs_info->uuid_root) {
		btrfs_info(fs_info, "creating UUID tree");
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to create the UUID tree %d", ret);
			goto out;
		}
	}

out:
	return ret;
}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
		      char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	u16 csum_type;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int level;

3490
	ret = init_mount_fs_info(fs_info, sb);
D
David Woodhouse 已提交
3491
	if (ret) {
3492
		err = ret;
3493
		goto fail;
D
David Woodhouse 已提交
3494 3495
	}

3496 3497 3498 3499 3500 3501 3502 3503 3504
	/* These need to be init'ed before we start creating inodes and such. */
	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
				     GFP_KERNEL);
	fs_info->tree_root = tree_root;
	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
				      GFP_KERNEL);
	fs_info->chunk_root = chunk_root;
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3505
		goto fail;
3506 3507 3508 3509 3510
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3511
		goto fail;
3512 3513 3514 3515
	}
	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
	btrfs_init_btree_inode(fs_info);

3516
	invalidate_bdev(fs_devices->latest_dev->bdev);
D
David Sterba 已提交
3517 3518 3519 3520

	/*
	 * Read super block and check the signature bytes only
	 */
3521
	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3522 3523
	if (IS_ERR(disk_super)) {
		err = PTR_ERR(disk_super);
3524
		goto fail_alloc;
3525
	}
C
Chris Mason 已提交
3526

3527
	/*
3528
	 * Verify the type first, if that or the checksum value are
3529 3530
	 * corrupted, we'll find out
	 */
3531
	csum_type = btrfs_super_csum_type(disk_super);
3532
	if (!btrfs_supported_super_csum(csum_type)) {
3533
		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3534
			  csum_type);
3535
		err = -EINVAL;
3536
		btrfs_release_disk_super(disk_super);
3537 3538 3539
		goto fail_alloc;
	}

3540 3541
	fs_info->csum_size = btrfs_super_csum_size(disk_super);

3542 3543 3544
	ret = btrfs_init_csum_hash(fs_info, csum_type);
	if (ret) {
		err = ret;
3545
		btrfs_release_disk_super(disk_super);
3546 3547 3548
		goto fail_alloc;
	}

D
David Sterba 已提交
3549 3550 3551 3552
	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
3553
	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3554
		btrfs_err(fs_info, "superblock checksum mismatch");
D
David Sterba 已提交
3555
		err = -EINVAL;
3556
		btrfs_release_disk_super(disk_super);
3557
		goto fail_alloc;
D
David Sterba 已提交
3558 3559 3560 3561 3562 3563 3564
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
3565 3566
	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
	btrfs_release_disk_super(disk_super);
3567

3568 3569
	disk_super = fs_info->super_copy;

3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	features = btrfs_super_flags(disk_super);
	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
		btrfs_set_super_flags(disk_super, features);
		btrfs_info(fs_info,
			"found metadata UUID change in progress flag, clearing");
	}

	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
3581

3582
	ret = btrfs_validate_mount_super(fs_info);
D
David Sterba 已提交
3583
	if (ret) {
3584
		btrfs_err(fs_info, "superblock contains fatal errors");
D
David Sterba 已提交
3585
		err = -EINVAL;
3586
		goto fail_alloc;
D
David Sterba 已提交
3587 3588
	}

3589
	if (!btrfs_super_root(disk_super))
3590
		goto fail_alloc;
3591

L
liubo 已提交
3592
	/* check FS state, whether FS is broken. */
3593 3594
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
L
liubo 已提交
3595

3596 3597 3598 3599 3600 3601
	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	/*
	 * Flag our filesystem as having big metadata blocks if they are bigger
	 * than the page size.
	 */
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

	/* Set up fs_info before parsing mount options */
	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
	stripesize = sectorsize;
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));

	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;
	fs_info->sectorsize_bits = ilog2(sectorsize);
	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
	fs_info->stripesize = stripesize;

3626
	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
Y
Yan Zheng 已提交
3627 3628
	if (ret) {
		err = ret;
3629
		goto fail_alloc;
Y
Yan Zheng 已提交
3630
	}
3631

3632 3633 3634
	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
3635 3636 3637
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
3638
		err = -EINVAL;
3639
		goto fail_alloc;
3640 3641
	}

3642
	features = btrfs_super_incompat_flags(disk_super);
L
Li Zefan 已提交
3643
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3644
	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
L
Li Zefan 已提交
3645
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
N
Nick Terrell 已提交
3646 3647
	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3648

3649
	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3650
		btrfs_info(fs_info, "has skinny extents");
3651

3652 3653 3654 3655 3656
	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3657
	    (sectorsize != nodesize)) {
3658 3659 3660
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
3661
		goto fail_alloc;
3662 3663
	}

3664 3665 3666 3667
	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
L
Li Zefan 已提交
3668
	btrfs_set_super_incompat_flags(disk_super, features);
3669

3670 3671
	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3672
	if (!sb_rdonly(sb) && features) {
3673 3674
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
3675
		       features);
3676
		err = -EINVAL;
3677
		goto fail_alloc;
3678
	}
3679

3680 3681 3682
	if (sectorsize < PAGE_SIZE) {
		struct btrfs_subpage_info *subpage_info;

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
		/*
		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
		 * going to be deprecated.
		 *
		 * Force to use v2 cache for subpage case.
		 */
		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
			"forcing free space tree for sector size %u with page size %lu",
			sectorsize, PAGE_SIZE);

3694 3695 3696
		btrfs_warn(fs_info,
		"read-write for sector size %u with page size %lu is experimental",
			   sectorsize, PAGE_SIZE);
3697 3698 3699 3700 3701 3702 3703 3704
		if (btrfs_super_incompat_flags(fs_info->super_copy) &
			BTRFS_FEATURE_INCOMPAT_RAID56) {
			btrfs_err(fs_info,
		"RAID56 is not yet supported for sector size %u with page size %lu",
				sectorsize, PAGE_SIZE);
			err = -EINVAL;
			goto fail_alloc;
		}
3705 3706 3707 3708 3709
		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
		if (!subpage_info)
			goto fail_alloc;
		btrfs_init_subpage_info(subpage_info, sectorsize);
		fs_info->subpage_info = subpage_info;
3710
	}
3711

3712
	ret = btrfs_init_workqueues(fs_info);
3713 3714
	if (ret) {
		err = ret;
3715 3716
		goto fail_sb_buffer;
	}
3717

3718 3719
	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3720

3721 3722
	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);
3723
	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3724

3725
	mutex_lock(&fs_info->chunk_mutex);
3726
	ret = btrfs_read_sys_array(fs_info);
3727
	mutex_unlock(&fs_info->chunk_mutex);
3728
	if (ret) {
3729
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3730
		goto fail_sb_buffer;
3731
	}
3732

3733
	generation = btrfs_super_chunk_root_generation(disk_super);
3734
	level = btrfs_super_chunk_root_level(disk_super);
3735 3736 3737
	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
			      generation, level);
	if (ret) {
3738
		btrfs_err(fs_info, "failed to read chunk root");
C
Chris Mason 已提交
3739
		goto fail_tree_roots;
3740
	}
3741

3742
	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3743 3744
			   offsetof(struct btrfs_header, chunk_tree_uuid),
			   BTRFS_UUID_SIZE);
3745

3746
	ret = btrfs_read_chunk_tree(fs_info);
Y
Yan Zheng 已提交
3747
	if (ret) {
3748
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
C
Chris Mason 已提交
3749
		goto fail_tree_roots;
Y
Yan Zheng 已提交
3750
	}
3751

3752
	/*
3753 3754 3755
	 * At this point we know all the devices that make this filesystem,
	 * including the seed devices but we don't know yet if the replace
	 * target is required. So free devices that are not part of this
D
David Sterba 已提交
3756
	 * filesystem but skip the replace target device which is checked
3757
	 * below in btrfs_init_dev_replace().
3758
	 */
3759
	btrfs_free_extra_devids(fs_devices);
3760
	if (!fs_devices->latest_dev->bdev) {
3761
		btrfs_err(fs_info, "failed to read devices");
3762 3763 3764
		goto fail_tree_roots;
	}

3765
	ret = init_tree_roots(fs_info);
3766
	if (ret)
3767
		goto fail_tree_roots;
3768

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	/*
	 * Get zone type information of zoned block devices. This will also
	 * handle emulation of a zoned filesystem if a regular device has the
	 * zoned incompat feature flag set.
	 */
	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "zoned: failed to read device zone info: %d",
			  ret);
		goto fail_block_groups;
	}

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	/*
	 * If we have a uuid root and we're not being told to rescan we need to
	 * check the generation here so we can set the
	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
	 * transaction during a balance or the log replay without updating the
	 * uuid generation, and then if we crash we would rescan the uuid tree,
	 * even though it was perfectly fine.
	 */
	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);

3794 3795 3796 3797 3798 3799 3800
	ret = btrfs_verify_dev_extents(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "failed to verify dev extents against chunks: %d",
			  ret);
		goto fail_block_groups;
	}
3801 3802
	ret = btrfs_recover_balance(fs_info);
	if (ret) {
3803
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3804 3805 3806
		goto fail_block_groups;
	}

3807 3808
	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
3809
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3810 3811 3812
		goto fail_block_groups;
	}

3813 3814
	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
3815
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3816 3817 3818
		goto fail_block_groups;
	}

N
Naohiro Aota 已提交
3819 3820 3821 3822 3823 3824 3825
	ret = btrfs_check_zoned_mode(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
			  ret);
		goto fail_block_groups;
	}

3826
	ret = btrfs_sysfs_add_fsid(fs_devices);
3827
	if (ret) {
3828 3829
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
3830 3831 3832
		goto fail_block_groups;
	}

3833
	ret = btrfs_sysfs_add_mounted(fs_info);
3834
	if (ret) {
3835
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3836
		goto fail_fsdev_sysfs;
3837 3838 3839 3840
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
3841
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3842
		goto fail_sysfs;
3843 3844
	}

3845
	ret = btrfs_read_block_groups(fs_info);
3846
	if (ret) {
3847
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3848
		goto fail_sysfs;
3849
	}
3850

3851 3852
	btrfs_free_zone_cache(fs_info);

3853 3854
	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3855
		btrfs_warn(fs_info,
3856
		"writable mount is not allowed due to too many missing devices");
3857
		goto fail_sysfs;
3858
	}
C
Chris Mason 已提交
3859

3860
	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3861
					       "btrfs-cleaner");
3862
	if (IS_ERR(fs_info->cleaner_kthread))
3863
		goto fail_sysfs;
3864 3865 3866 3867

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
3868
	if (IS_ERR(fs_info->transaction_kthread))
3869
		goto fail_cleaner;
3870

3871
	if (!btrfs_test_opt(fs_info, NOSSD) &&
C
Chris Mason 已提交
3872
	    !fs_info->fs_devices->rotating) {
3873
		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
C
Chris Mason 已提交
3874 3875
	}

3876
	/*
3877
	 * Mount does not set all options immediately, we can do it now and do
3878 3879 3880
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);
3881

3882
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3883
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3884
		ret = btrfsic_mount(fs_info, fs_devices,
3885
				    btrfs_test_opt(fs_info,
3886
					CHECK_INTEGRITY_DATA) ? 1 : 0,
3887 3888
				    fs_info->check_integrity_print_mask);
		if (ret)
3889 3890 3891
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
3892 3893
	}
#endif
3894 3895 3896
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;
3897

J
Josef Bacik 已提交
3898 3899 3900
	if (btrfs_build_ref_tree(fs_info))
		btrfs_err(fs_info, "couldn't build ref tree");

3901 3902
	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
3903
	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3904
		btrfs_info(fs_info, "start tree-log replay");
3905
		ret = btrfs_replay_log(fs_info, fs_devices);
3906
		if (ret) {
3907
			err = ret;
3908
			goto fail_qgroup;
3909
		}
3910
	}
Z
Zheng Yan 已提交
3911

D
David Sterba 已提交
3912
	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3913 3914
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
3915
		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3916
		fs_info->fs_root = NULL;
3917
		goto fail_qgroup;
3918
	}
C
Chris Mason 已提交
3919

3920
	if (sb_rdonly(sb))
3921
		goto clear_oneshot;
I
Ilya Dryomov 已提交
3922

3923
	ret = btrfs_start_pre_rw_mount(fs_info);
3924
	if (ret) {
3925
		close_ctree(fs_info);
3926
		return ret;
3927
	}
3928
	btrfs_discard_resume(fs_info);
3929

3930 3931 3932
	if (fs_info->uuid_root &&
	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3933
		btrfs_info(fs_info, "checking UUID tree");
3934 3935
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
3936 3937
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
3938
			close_ctree(fs_info);
3939 3940
			return ret;
		}
3941
	}
3942

3943
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3944

3945 3946 3947 3948
	/* Kick the cleaner thread so it'll start deleting snapshots. */
	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
		wake_up_process(fs_info->cleaner_kthread);

3949 3950
clear_oneshot:
	btrfs_clear_oneshot_options(fs_info);
A
Al Viro 已提交
3951
	return 0;
C
Chris Mason 已提交
3952

3953 3954
fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
3955 3956
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
3957
	btrfs_cleanup_transaction(fs_info);
3958
	btrfs_free_fs_roots(fs_info);
3959
fail_cleaner:
3960
	kthread_stop(fs_info->cleaner_kthread);
3961 3962 3963 3964 3965 3966 3967

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

3968
fail_sysfs:
3969
	btrfs_sysfs_remove_mounted(fs_info);
3970

3971 3972 3973
fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

3974
fail_block_groups:
J
Josef Bacik 已提交
3975
	btrfs_put_block_group_cache(fs_info);
C
Chris Mason 已提交
3976 3977

fail_tree_roots:
3978 3979
	if (fs_info->data_reloc_root)
		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3980
	free_root_pointers(fs_info, true);
3981
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
C
Chris Mason 已提交
3982

C
Chris Mason 已提交
3983
fail_sb_buffer:
L
Liu Bo 已提交
3984
	btrfs_stop_all_workers(fs_info);
3985
	btrfs_free_block_groups(fs_info);
3986
fail_alloc:
3987 3988
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

3989
	iput(fs_info->btree_inode);
3990
fail:
3991
	btrfs_close_devices(fs_info->fs_devices);
A
Al Viro 已提交
3992
	return err;
3993
}
3994
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3995

3996
static void btrfs_end_super_write(struct bio *bio)
3997
{
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	struct btrfs_device *device = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;
	struct page *page;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		page = bvec->bv_page;

		if (bio->bi_status) {
			btrfs_warn_rl_in_rcu(device->fs_info,
				"lost page write due to IO error on %s (%d)",
				rcu_str_deref(device->name),
				blk_status_to_errno(bio->bi_status));
			ClearPageUptodate(page);
			SetPageError(page);
			btrfs_dev_stat_inc_and_print(device,
						     BTRFS_DEV_STAT_WRITE_ERRS);
		} else {
			SetPageUptodate(page);
		}

		put_page(page);
		unlock_page(page);
4021
	}
4022 4023

	bio_put(bio);
4024 4025
}

4026 4027
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
						   int copy_num)
4028 4029
{
	struct btrfs_super_block *super;
4030
	struct page *page;
4031
	u64 bytenr, bytenr_orig;
4032
	struct address_space *mapping = bdev->bd_inode->i_mapping;
4033 4034 4035 4036 4037 4038 4039 4040
	int ret;

	bytenr_orig = btrfs_sb_offset(copy_num);
	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
	if (ret == -ENOENT)
		return ERR_PTR(-EINVAL);
	else if (ret)
		return ERR_PTR(ret);
4041

4042
	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4043
		return ERR_PTR(-EINVAL);
4044

4045 4046 4047
	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
	if (IS_ERR(page))
		return ERR_CAST(page);
4048

4049
	super = page_address(page);
4050 4051 4052 4053 4054
	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
		btrfs_release_disk_super(super);
		return ERR_PTR(-ENODATA);
	}

4055
	if (btrfs_super_bytenr(super) != bytenr_orig) {
4056 4057
		btrfs_release_disk_super(super);
		return ERR_PTR(-EINVAL);
4058 4059
	}

4060
	return super;
4061 4062 4063
}


4064
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Y
Yan Zheng 已提交
4065
{
4066
	struct btrfs_super_block *super, *latest = NULL;
Y
Yan Zheng 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075
	int i;
	u64 transid = 0;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
4076 4077
		super = btrfs_read_dev_one_super(bdev, i);
		if (IS_ERR(super))
Y
Yan Zheng 已提交
4078 4079 4080
			continue;

		if (!latest || btrfs_super_generation(super) > transid) {
4081 4082 4083 4084
			if (latest)
				btrfs_release_disk_super(super);

			latest = super;
Y
Yan Zheng 已提交
4085 4086 4087
			transid = btrfs_super_generation(super);
		}
	}
4088

4089
	return super;
Y
Yan Zheng 已提交
4090 4091
}

4092
/*
4093
 * Write superblock @sb to the @device. Do not wait for completion, all the
4094
 * pages we use for writing are locked.
4095
 *
4096 4097 4098
 * Write @max_mirrors copies of the superblock, where 0 means default that fit
 * the expected device size at commit time. Note that max_mirrors must be
 * same for write and wait phases.
4099
 *
4100
 * Return number of errors when page is not found or submission fails.
4101
 */
Y
Yan Zheng 已提交
4102
static int write_dev_supers(struct btrfs_device *device,
4103
			    struct btrfs_super_block *sb, int max_mirrors)
Y
Yan Zheng 已提交
4104
{
4105
	struct btrfs_fs_info *fs_info = device->fs_info;
4106
	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4107
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Y
Yan Zheng 已提交
4108 4109
	int i;
	int errors = 0;
4110 4111
	int ret;
	u64 bytenr, bytenr_orig;
Y
Yan Zheng 已提交
4112 4113 4114 4115

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

4116 4117
	shash->tfm = fs_info->csum_shash;

Y
Yan Zheng 已提交
4118
	for (i = 0; i < max_mirrors; i++) {
4119 4120 4121 4122
		struct page *page;
		struct bio *bio;
		struct btrfs_super_block *disk_super;

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		bytenr_orig = btrfs_sb_offset(i);
		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
		if (ret == -ENOENT) {
			continue;
		} else if (ret < 0) {
			btrfs_err(device->fs_info,
				"couldn't get super block location for mirror %d",
				i);
			errors++;
			continue;
		}
4134 4135
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
Y
Yan Zheng 已提交
4136 4137
			break;

4138
		btrfs_set_super_bytenr(sb, bytenr_orig);
4139

4140 4141 4142
		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
				    sb->csum);
4143

4144 4145 4146
		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
					   GFP_NOFS);
		if (!page) {
4147
			btrfs_err(device->fs_info,
4148
			    "couldn't get super block page for bytenr %llu",
4149 4150
			    bytenr);
			errors++;
4151
			continue;
4152
		}
4153

4154 4155
		/* Bump the refcount for wait_dev_supers() */
		get_page(page);
Y
Yan Zheng 已提交
4156

4157 4158
		disk_super = page_address(page);
		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4159

4160 4161 4162 4163 4164
		/*
		 * Directly use bios here instead of relying on the page cache
		 * to do I/O, so we don't lose the ability to do integrity
		 * checking.
		 */
4165 4166 4167
		bio = bio_alloc(device->bdev, 1,
				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
				GFP_NOFS);
4168 4169 4170 4171 4172
		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
		bio->bi_private = device;
		bio->bi_end_io = btrfs_end_super_write;
		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
			       offset_in_page(bytenr));
Y
Yan Zheng 已提交
4173

C
Chris Mason 已提交
4174
		/*
4175 4176 4177
		 * We FUA only the first super block.  The others we allow to
		 * go down lazy and there's a short window where the on-disk
		 * copies might still contain the older version.
C
Chris Mason 已提交
4178
		 */
4179
		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4180 4181 4182
			bio->bi_opf |= REQ_FUA;

		btrfsic_submit_bio(bio);
4183 4184 4185

		if (btrfs_advance_sb_log(device, i))
			errors++;
Y
Yan Zheng 已提交
4186 4187 4188 4189
	}
	return errors < i ? 0 : -1;
}

4190 4191 4192 4193
/*
 * Wait for write completion of superblocks done by write_dev_supers,
 * @max_mirrors same for write and wait phases.
 *
4194
 * Return number of errors when page is not found or not marked up to
4195 4196 4197 4198 4199 4200
 * date.
 */
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
	int i;
	int errors = 0;
4201
	bool primary_failed = false;
4202
	int ret;
4203 4204 4205 4206 4207 4208
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
4209 4210
		struct page *page;

4211 4212 4213 4214 4215 4216 4217 4218 4219
		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
		if (ret == -ENOENT) {
			break;
		} else if (ret < 0) {
			errors++;
			if (i == 0)
				primary_failed = true;
			continue;
		}
4220 4221 4222 4223
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

4224 4225 4226
		page = find_get_page(device->bdev->bd_inode->i_mapping,
				     bytenr >> PAGE_SHIFT);
		if (!page) {
4227
			errors++;
4228 4229
			if (i == 0)
				primary_failed = true;
4230 4231
			continue;
		}
4232 4233 4234
		/* Page is submitted locked and unlocked once the IO completes */
		wait_on_page_locked(page);
		if (PageError(page)) {
4235
			errors++;
4236 4237 4238
			if (i == 0)
				primary_failed = true;
		}
4239

4240 4241
		/* Drop our reference */
		put_page(page);
4242

4243 4244
		/* Drop the reference from the writing run */
		put_page(page);
4245 4246
	}

4247 4248 4249 4250 4251 4252 4253
	/* log error, force error return */
	if (primary_failed) {
		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
			  device->devid);
		return -1;
	}

4254 4255 4256
	return errors < i ? 0 : -1;
}

C
Chris Mason 已提交
4257 4258 4259 4260
/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
4261
static void btrfs_end_empty_barrier(struct bio *bio)
C
Chris Mason 已提交
4262
{
4263
	complete(bio->bi_private);
C
Chris Mason 已提交
4264 4265 4266
}

/*
4267 4268
 * Submit a flush request to the device if it supports it. Error handling is
 * done in the waiting counterpart.
C
Chris Mason 已提交
4269
 */
4270
static void write_dev_flush(struct btrfs_device *device)
C
Chris Mason 已提交
4271
{
4272
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	/*
	 * When a disk has write caching disabled, we skip submission of a bio
	 * with flush and sync requests before writing the superblock, since
	 * it's not needed. However when the integrity checker is enabled, this
	 * results in reports that there are metadata blocks referred by a
	 * superblock that were not properly flushed. So don't skip the bio
	 * submission only when the integrity checker is enabled for the sake
	 * of simplicity, since this is a debug tool and not meant for use in
	 * non-debug builds.
	 */
	struct request_queue *q = bdev_get_queue(device->bdev);
4286
	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4287
		return;
4288
#endif
C
Chris Mason 已提交
4289

4290
	bio_reset(bio, device->bdev, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
C
Chris Mason 已提交
4291 4292 4293 4294
	bio->bi_end_io = btrfs_end_empty_barrier;
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;

4295
	btrfsic_submit_bio(bio);
4296
	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4297
}
C
Chris Mason 已提交
4298

4299 4300 4301
/*
 * If the flush bio has been submitted by write_dev_flush, wait for it.
 */
4302
static blk_status_t wait_dev_flush(struct btrfs_device *device)
4303 4304
{
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
4305

4306
	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4307
		return BLK_STS_OK;
C
Chris Mason 已提交
4308

4309
	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4310
	wait_for_completion_io(&device->flush_wait);
C
Chris Mason 已提交
4311

4312
	return bio->bi_status;
C
Chris Mason 已提交
4313 4314
}

4315
static int check_barrier_error(struct btrfs_fs_info *fs_info)
4316
{
4317
	if (!btrfs_check_rw_degradable(fs_info, NULL))
4318
		return -EIO;
C
Chris Mason 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
4330
	int errors_wait = 0;
4331
	blk_status_t ret;
C
Chris Mason 已提交
4332

4333
	lockdep_assert_held(&info->fs_devices->device_list_mutex);
C
Chris Mason 已提交
4334 4335
	/* send down all the barriers */
	head = &info->fs_devices->devices;
4336
	list_for_each_entry(dev, head, dev_list) {
4337
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4338
			continue;
4339
		if (!dev->bdev)
C
Chris Mason 已提交
4340
			continue;
4341
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4342
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4343 4344
			continue;

4345
		write_dev_flush(dev);
4346
		dev->last_flush_error = BLK_STS_OK;
C
Chris Mason 已提交
4347 4348 4349
	}

	/* wait for all the barriers */
4350
	list_for_each_entry(dev, head, dev_list) {
4351
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4352
			continue;
C
Chris Mason 已提交
4353
		if (!dev->bdev) {
4354
			errors_wait++;
C
Chris Mason 已提交
4355 4356
			continue;
		}
4357
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4358
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4359 4360
			continue;

4361
		ret = wait_dev_flush(dev);
4362 4363
		if (ret) {
			dev->last_flush_error = ret;
4364 4365
			btrfs_dev_stat_inc_and_print(dev,
					BTRFS_DEV_STAT_FLUSH_ERRS);
4366
			errors_wait++;
4367 4368 4369
		}
	}

4370
	if (errors_wait) {
4371 4372 4373 4374 4375
		/*
		 * At some point we need the status of all disks
		 * to arrive at the volume status. So error checking
		 * is being pushed to a separate loop.
		 */
4376
		return check_barrier_error(info);
C
Chris Mason 已提交
4377 4378 4379 4380
	}
	return 0;
}

4381 4382
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
4383 4384
	int raid_type;
	int min_tolerated = INT_MAX;
4385

4386 4387
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4388
		min_tolerated = min_t(int, min_tolerated,
4389 4390
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);
4391

4392 4393 4394
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
4395
		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4396
			continue;
4397
		min_tolerated = min_t(int, min_tolerated,
4398 4399 4400
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}
4401

4402
	if (min_tolerated == INT_MAX) {
4403
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4404 4405 4406 4407
		min_tolerated = 0;
	}

	return min_tolerated;
4408 4409
}

4410
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4411
{
4412
	struct list_head *head;
4413
	struct btrfs_device *dev;
4414
	struct btrfs_super_block *sb;
4415 4416 4417
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
4418 4419
	int max_errors;
	int total_errors = 0;
4420
	u64 flags;
4421

4422
	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4423 4424 4425 4426 4427 4428 4429 4430

	/*
	 * max_mirrors == 0 indicates we're from commit_transaction,
	 * not from fsync where the tree roots in fs_info have not
	 * been consistent on disk.
	 */
	if (max_mirrors == 0)
		backup_super_roots(fs_info);
4431

4432
	sb = fs_info->super_for_commit;
4433
	dev_item = &sb->dev_item;
4434

4435 4436 4437
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	head = &fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
C
Chris Mason 已提交
4438

4439
	if (do_barriers) {
4440
		ret = barrier_all_devices(fs_info);
4441 4442
		if (ret) {
			mutex_unlock(
4443 4444 4445
				&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, ret,
					      "errors while submitting device barriers.");
4446 4447 4448
			return ret;
		}
	}
C
Chris Mason 已提交
4449

4450
	list_for_each_entry(dev, head, dev_list) {
4451 4452 4453 4454
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
4455
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4456
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4457 4458
			continue;

Y
Yan Zheng 已提交
4459
		btrfs_set_stack_device_generation(dev_item, 0);
4460 4461
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
4462
		btrfs_set_stack_device_total_bytes(dev_item,
4463
						   dev->commit_total_bytes);
4464 4465
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
4466 4467 4468 4469
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4470 4471
		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
		       BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
4472

4473 4474 4475
		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

4476 4477 4478 4479 4480 4481 4482 4483
		ret = btrfs_validate_write_super(fs_info, sb);
		if (ret < 0) {
			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, -EUCLEAN,
				"unexpected superblock corruption detected");
			return -EUCLEAN;
		}

4484
		ret = write_dev_supers(dev, sb, max_mirrors);
4485 4486
		if (ret)
			total_errors++;
4487
	}
4488
	if (total_errors > max_errors) {
4489 4490 4491
		btrfs_err(fs_info, "%d errors while writing supers",
			  total_errors);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4492

4493
		/* FUA is masked off if unsupported and can't be the reason */
4494 4495 4496
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4497
		return -EIO;
4498
	}
4499

Y
Yan Zheng 已提交
4500
	total_errors = 0;
4501
	list_for_each_entry(dev, head, dev_list) {
4502 4503
		if (!dev->bdev)
			continue;
4504
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4505
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4506 4507
			continue;

4508
		ret = wait_dev_supers(dev, max_mirrors);
Y
Yan Zheng 已提交
4509 4510
		if (ret)
			total_errors++;
4511
	}
4512
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4513
	if (total_errors > max_errors) {
4514 4515 4516
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4517
		return -EIO;
4518
	}
4519 4520 4521
	return 0;
}

4522 4523 4524
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
C
Chris Mason 已提交
4525
{
4526 4527
	bool drop_ref = false;

4528
	spin_lock(&fs_info->fs_roots_radix_lock);
C
Chris Mason 已提交
4529 4530
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
4531
	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4532
		drop_ref = true;
4533
	spin_unlock(&fs_info->fs_roots_radix_lock);
4534

J
Josef Bacik 已提交
4535
	if (BTRFS_FS_ERROR(fs_info)) {
4536
		ASSERT(root->log_root == NULL);
L
Liu Bo 已提交
4537
		if (root->reloc_root) {
4538
			btrfs_put_root(root->reloc_root);
L
Liu Bo 已提交
4539 4540 4541
			root->reloc_root = NULL;
		}
	}
L
Liu Bo 已提交
4542

4543 4544
	if (drop_ref)
		btrfs_put_root(root);
C
Chris Mason 已提交
4545 4546
}

Y
Yan Zheng 已提交
4547
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4548
{
Y
Yan Zheng 已提交
4549 4550
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
4551 4552 4553
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
4554

Y
Yan Zheng 已提交
4555
	while (1) {
4556
		spin_lock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4557 4558 4559
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
4560
		if (!ret) {
4561
			spin_unlock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4562
			break;
4563
		}
4564
		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4565

Y
Yan Zheng 已提交
4566
		for (i = 0; i < ret; i++) {
4567 4568 4569 4570 4571 4572
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
4573
			gang[i] = btrfs_grab_root(gang[i]);
4574
		}
4575
		spin_unlock(&fs_info->fs_roots_radix_lock);
4576

4577 4578 4579
		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
Y
Yan Zheng 已提交
4580
			root_objectid = gang[i]->root_key.objectid;
4581 4582
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
4583
				break;
4584
			btrfs_put_root(gang[i]);
Y
Yan Zheng 已提交
4585 4586 4587
		}
		root_objectid++;
	}
4588 4589 4590 4591

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
4592
			btrfs_put_root(gang[i]);
4593 4594
	}
	return err;
Y
Yan Zheng 已提交
4595
}
4596

4597
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4598
{
4599
	struct btrfs_root *root = fs_info->tree_root;
Y
Yan Zheng 已提交
4600
	struct btrfs_trans_handle *trans;
4601

4602
	mutex_lock(&fs_info->cleaner_mutex);
4603
	btrfs_run_delayed_iputs(fs_info);
4604 4605
	mutex_unlock(&fs_info->cleaner_mutex);
	wake_up_process(fs_info->cleaner_kthread);
4606 4607

	/* wait until ongoing cleanup work done */
4608 4609
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
4610

4611
	trans = btrfs_join_transaction(root);
4612 4613
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4614
	return btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
4615 4616
}

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
{
	struct btrfs_transaction *trans;
	struct btrfs_transaction *tmp;
	bool found = false;

	if (list_empty(&fs_info->trans_list))
		return;

	/*
	 * This function is only called at the very end of close_ctree(),
	 * thus no other running transaction, no need to take trans_lock.
	 */
	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
		struct extent_state *cached = NULL;
		u64 dirty_bytes = 0;
		u64 cur = 0;
		u64 found_start;
		u64 found_end;

		found = true;
		while (!find_first_extent_bit(&trans->dirty_pages, cur,
			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
			dirty_bytes += found_end + 1 - found_start;
			cur = found_end + 1;
		}
		btrfs_warn(fs_info,
	"transaction %llu (with %llu dirty metadata bytes) is not committed",
			   trans->transid, dirty_bytes);
		btrfs_cleanup_one_transaction(trans, fs_info);

		if (trans == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
		list_del_init(&trans->list);

		btrfs_put_transaction(trans);
		trace_btrfs_transaction_commit(fs_info);
	}
	ASSERT(!found);
}

4659
void __cold close_ctree(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4660 4661 4662
{
	int ret;

4663
	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4664 4665 4666 4667 4668 4669 4670
	/*
	 * We don't want the cleaner to start new transactions, add more delayed
	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
	 * because that frees the task_struct, and the transaction kthread might
	 * still try to wake up the cleaner.
	 */
	kthread_park(fs_info->cleaner_kthread);
Y
Yan Zheng 已提交
4671

4672 4673 4674 4675 4676 4677
	/*
	 * If we had UNFINISHED_DROPS we could still be processing them, so
	 * clear that bit and wake up relocation so it can stop.
	 */
	btrfs_wake_unfinished_drop(fs_info);

4678
	/* wait for the qgroup rescan worker to stop */
4679
	btrfs_qgroup_wait_for_completion(fs_info, false);
4680

S
Stefan Behrens 已提交
4681 4682 4683 4684 4685
	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

4686
	/* pause restriper - we want to resume on mount */
4687
	btrfs_pause_balance(fs_info);
4688

4689 4690
	btrfs_dev_replace_suspend_for_unmount(fs_info);

4691
	btrfs_scrub_cancel(fs_info);
C
Chris Mason 已提交
4692 4693 4694 4695 4696 4697

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
4698
	btrfs_cleanup_defrag_inodes(fs_info);
C
Chris Mason 已提交
4699

4700
	cancel_work_sync(&fs_info->async_reclaim_work);
4701
	cancel_work_sync(&fs_info->async_data_reclaim_work);
4702
	cancel_work_sync(&fs_info->preempt_reclaim_work);
4703

4704 4705
	cancel_work_sync(&fs_info->reclaim_bgs_work);

4706 4707 4708
	/* Cancel or finish ongoing discard work */
	btrfs_discard_cleanup(fs_info);

4709
	if (!sb_rdonly(fs_info->sb)) {
4710
		/*
4711 4712
		 * The cleaner kthread is stopped, so do one final pass over
		 * unused block groups.
4713
		 */
4714
		btrfs_delete_unused_bgs(fs_info);
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
		/*
		 * There might be existing delayed inode workers still running
		 * and holding an empty delayed inode item. We must wait for
		 * them to complete first because they can create a transaction.
		 * This happens when someone calls btrfs_balance_delayed_items()
		 * and then a transaction commit runs the same delayed nodes
		 * before any delayed worker has done something with the nodes.
		 * We must wait for any worker here and not at transaction
		 * commit time since that could cause a deadlock.
		 * This is a very rare case.
		 */
		btrfs_flush_workqueue(fs_info->delayed_workers);

4729
		ret = btrfs_commit_super(fs_info);
L
liubo 已提交
4730
		if (ret)
4731
			btrfs_err(fs_info, "commit super ret %d", ret);
L
liubo 已提交
4732 4733
	}

J
Josef Bacik 已提交
4734
	if (BTRFS_FS_ERROR(fs_info))
4735
		btrfs_error_commit_super(fs_info);
4736

A
Al Viro 已提交
4737 4738
	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);
4739

4740
	ASSERT(list_empty(&fs_info->delayed_iputs));
4741
	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4742

4743 4744 4745 4746 4747
	if (btrfs_check_quota_leak(fs_info)) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		btrfs_err(fs_info, "qgroup reserved space leaked");
	}

4748
	btrfs_free_qgroup_config(fs_info);
4749
	ASSERT(list_empty(&fs_info->delalloc_roots));
4750

4751
	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4752
		btrfs_info(fs_info, "at unmount delalloc count %lld",
4753
		       percpu_counter_sum(&fs_info->delalloc_bytes));
C
Chris Mason 已提交
4754
	}
4755

4756
	if (percpu_counter_sum(&fs_info->ordered_bytes))
J
Josef Bacik 已提交
4757
		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4758
			   percpu_counter_sum(&fs_info->ordered_bytes));
J
Josef Bacik 已提交
4759

4760
	btrfs_sysfs_remove_mounted(fs_info);
4761
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4762

4763 4764
	btrfs_put_block_group_cache(fs_info);

4765 4766 4767 4768 4769
	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4770 4771
	btrfs_stop_all_workers(fs_info);

4772
	/* We shouldn't have any transaction open at this point */
4773
	warn_about_uncommitted_trans(fs_info);
4774

4775
	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4776
	free_root_pointers(fs_info, true);
4777
	btrfs_free_fs_roots(fs_info);
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787
	/*
	 * We must free the block groups after dropping the fs_roots as we could
	 * have had an IO error and have left over tree log blocks that aren't
	 * cleaned up until the fs roots are freed.  This makes the block group
	 * accounting appear to be wrong because there's pending reserved bytes,
	 * so make sure we do the block group cleanup afterwards.
	 */
	btrfs_free_block_groups(fs_info);

4788
	iput(fs_info->btree_inode);
4789

4790
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4791
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4792
		btrfsic_unmount(fs_info->fs_devices);
4793 4794
#endif

4795
	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4796
	btrfs_close_devices(fs_info->fs_devices);
4797 4798
}

4799 4800
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
4801
{
4802
	int ret;
4803
	struct inode *btree_inode = buf->pages[0]->mapping->host;
4804

4805
	ret = extent_buffer_uptodate(buf);
4806 4807 4808 4809
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4810 4811 4812
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
4813
	return !ret;
4814 4815 4816 4817
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
4818
	struct btrfs_fs_info *fs_info = buf->fs_info;
4819
	u64 transid = btrfs_header_generation(buf);
4820
	int was_dirty;
4821

4822 4823 4824
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
4825
	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4826 4827
	 * outside of the sanity tests.
	 */
4828
	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4829 4830
		return;
#endif
4831
	btrfs_assert_tree_write_locked(buf);
4832
	if (transid != fs_info->generation)
J
Jeff Mahoney 已提交
4833
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4834
			buf->start, transid, fs_info->generation);
4835
	was_dirty = set_extent_buffer_dirty(buf);
4836
	if (!was_dirty)
4837 4838 4839
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 buf->len,
					 fs_info->dirty_metadata_batch);
4840
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4841 4842 4843 4844 4845 4846
	/*
	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
	 * but item data not updated.
	 * So here we should only check item pointers, not item data.
	 */
	if (btrfs_header_level(buf) == 0 &&
4847
	    btrfs_check_leaf_relaxed(buf)) {
4848
		btrfs_print_leaf(buf);
4849 4850 4851
		ASSERT(0);
	}
#endif
4852 4853
}

4854
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4855
					int flush_delayed)
4856 4857 4858 4859 4860
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
4861
	int ret;
4862 4863 4864 4865

	if (current->flags & PF_MEMALLOC)
		return;

4866
	if (flush_delayed)
4867
		btrfs_balance_delayed_items(fs_info);
4868

4869 4870 4871
	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH,
				     fs_info->dirty_metadata_batch);
4872
	if (ret > 0) {
4873
		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4874 4875 4876
	}
}

4877
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4878
{
4879
	__btrfs_btree_balance_dirty(fs_info, 1);
4880
}
4881

4882
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4883
{
4884
	__btrfs_btree_balance_dirty(fs_info, 0);
C
Chris Mason 已提交
4885
}
4886

4887
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4888
{
4889 4890 4891
	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(fs_info);

4892
	mutex_lock(&fs_info->cleaner_mutex);
4893
	btrfs_run_delayed_iputs(fs_info);
4894
	mutex_unlock(&fs_info->cleaner_mutex);
L
liubo 已提交
4895

4896 4897
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
L
liubo 已提交
4898 4899
}

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *gang[8];
	u64 root_objectid = 0;
	int ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang))) != 0) {
		int i;

		for (i = 0; i < ret; i++)
			gang[i] = btrfs_grab_root(gang[i]);
		spin_unlock(&fs_info->fs_roots_radix_lock);

		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
			root_objectid = gang[i]->root_key.objectid;
			btrfs_free_log(NULL, gang[i]);
			btrfs_put_root(gang[i]);
		}
		root_objectid++;
		spin_lock(&fs_info->fs_roots_radix_lock);
	}
	spin_unlock(&fs_info->fs_roots_radix_lock);
	btrfs_free_log_root_tree(NULL, fs_info);
}

4930
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
L
liubo 已提交
4931 4932 4933
{
	struct btrfs_ordered_extent *ordered;

4934
	spin_lock(&root->ordered_extent_lock);
4935 4936 4937 4938
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
4939
	list_for_each_entry(ordered, &root->ordered_extents,
4940 4941
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
4957 4958
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
4959

4960
		spin_unlock(&fs_info->ordered_root_lock);
4961 4962
		btrfs_destroy_ordered_extents(root);

4963 4964
		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
4965 4966
	}
	spin_unlock(&fs_info->ordered_root_lock);
4967 4968 4969 4970 4971 4972 4973 4974

	/*
	 * We need this here because if we've been flipped read-only we won't
	 * get sync() from the umount, so we need to make sure any ordered
	 * extents that haven't had their dirty pages IO start writeout yet
	 * actually get run and error out properly.
	 */
	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
L
liubo 已提交
4975 4976
}

4977
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4978
				      struct btrfs_fs_info *fs_info)
L
liubo 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
4988
	if (atomic_read(&delayed_refs->num_entries) == 0) {
4989
		spin_unlock(&delayed_refs->lock);
4990
		btrfs_debug(fs_info, "delayed_refs has NO entry");
L
liubo 已提交
4991 4992 4993
		return ret;
	}

4994
	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4995
		struct btrfs_delayed_ref_head *head;
4996
		struct rb_node *n;
4997
		bool pin_bytes = false;
L
liubo 已提交
4998

4999 5000
		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
5001
		if (btrfs_delayed_ref_lock(delayed_refs, head))
5002
			continue;
5003

5004
		spin_lock(&head->lock);
5005
		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5006 5007
			ref = rb_entry(n, struct btrfs_delayed_ref_node,
				       ref_node);
5008
			ref->in_tree = 0;
5009
			rb_erase_cached(&ref->ref_node, &head->ref_tree);
5010
			RB_CLEAR_NODE(&ref->ref_node);
5011 5012
			if (!list_empty(&ref->add_list))
				list_del(&ref->add_list);
5013 5014
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
5015
		}
5016 5017 5018
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
5019
		btrfs_delete_ref_head(delayed_refs, head);
5020 5021 5022
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);
L
liubo 已提交
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
		if (pin_bytes) {
			struct btrfs_block_group *cache;

			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
			BUG_ON(!cache);

			spin_lock(&cache->space_info->lock);
			spin_lock(&cache->lock);
			cache->pinned += head->num_bytes;
			btrfs_space_info_update_bytes_pinned(fs_info,
				cache->space_info, head->num_bytes);
			cache->reserved -= head->num_bytes;
			cache->space_info->bytes_reserved -= head->num_bytes;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);

			btrfs_put_block_group(cache);

			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
				head->bytenr + head->num_bytes - 1);
		}
5045
		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5046
		btrfs_put_delayed_ref_head(head);
L
liubo 已提交
5047 5048 5049
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}
5050
	btrfs_qgroup_destroy_extent_records(trans);
L
liubo 已提交
5051 5052 5053 5054 5055 5056

	spin_unlock(&delayed_refs->lock);

	return ret;
}

5057
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
L
liubo 已提交
5058 5059 5060 5061 5062 5063
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

5064 5065
	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);
L
liubo 已提交
5066 5067

	while (!list_empty(&splice)) {
5068
		struct inode *inode = NULL;
5069 5070
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);
5071
		__btrfs_del_delalloc_inode(root, btrfs_inode);
5072
		spin_unlock(&root->delalloc_lock);
L
liubo 已提交
5073

5074 5075 5076 5077 5078 5079 5080 5081 5082
		/*
		 * Make sure we get a live inode and that it'll not disappear
		 * meanwhile.
		 */
		inode = igrab(&btrfs_inode->vfs_inode);
		if (inode) {
			invalidate_inode_pages2(inode->i_mapping);
			iput(inode);
		}
5083
		spin_lock(&root->delalloc_lock);
L
liubo 已提交
5084
	}
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
5100
		root = btrfs_grab_root(root);
5101 5102 5103 5104
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
5105
		btrfs_put_root(root);
5106 5107 5108 5109

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
L
liubo 已提交
5110 5111
}

5112
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5123
					    mark, NULL);
L
liubo 已提交
5124 5125 5126
		if (ret)
			break;

5127
		clear_extent_bits(dirty_pages, start, end, mark);
L
liubo 已提交
5128
		while (start <= end) {
5129 5130
			eb = find_extent_buffer(fs_info, start);
			start += fs_info->nodesize;
5131
			if (!eb)
L
liubo 已提交
5132
				continue;
5133
			wait_on_extent_buffer_writeback(eb);
L
liubo 已提交
5134

5135 5136 5137 5138
			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
L
liubo 已提交
5139 5140 5141 5142 5143 5144
		}
	}

	return ret;
}

5145
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5146
				       struct extent_io_tree *unpin)
L
liubo 已提交
5147 5148 5149 5150 5151 5152
{
	u64 start;
	u64 end;
	int ret;

	while (1) {
5153 5154
		struct extent_state *cached_state = NULL;

5155 5156 5157 5158 5159 5160 5161
		/*
		 * The btrfs_finish_extent_commit() may get the same range as
		 * ours between find_first_extent_bit and clear_extent_dirty.
		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
		 * the same extent range.
		 */
		mutex_lock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
5162
		ret = find_first_extent_bit(unpin, 0, &start, &end,
5163
					    EXTENT_DIRTY, &cached_state);
5164 5165
		if (ret) {
			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
5166
			break;
5167
		}
L
liubo 已提交
5168

5169 5170
		clear_extent_dirty(unpin, start, end, &cached_state);
		free_extent_state(cached_state);
5171
		btrfs_error_unpin_extent_range(fs_info, start, end);
5172
		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
5173 5174 5175 5176 5177 5178
		cond_resched();
	}

	return 0;
}

5179
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
5190
	ASSERT(cache->io_ctl.pages == NULL);
5191 5192 5193 5194
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5195
			     struct btrfs_fs_info *fs_info)
5196
{
5197
	struct btrfs_block_group *cache;
5198 5199 5200 5201

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
5202
					 struct btrfs_block_group,
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
					 dirty_list);

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
J
Josef Bacik 已提交
5219
		btrfs_delayed_refs_rsv_release(fs_info, 1);
5220 5221 5222 5223
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

5224 5225 5226 5227
	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
5228 5229
	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
5230
					 struct btrfs_block_group,
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
					 io_list);

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

5241
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5242
				   struct btrfs_fs_info *fs_info)
5243
{
5244 5245
	struct btrfs_device *dev, *tmp;

5246
	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5247 5248 5249
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

5250 5251 5252 5253 5254
	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&dev->post_commit_list);
	}

5255
	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5256

5257
	cur_trans->state = TRANS_STATE_COMMIT_START;
5258
	wake_up(&fs_info->transaction_blocked_wait);
5259

5260
	cur_trans->state = TRANS_STATE_UNBLOCKED;
5261
	wake_up(&fs_info->transaction_wait);
5262

5263
	btrfs_destroy_delayed_inodes(fs_info);
5264

5265
	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5266
				     EXTENT_DIRTY);
5267
	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5268

5269 5270
	btrfs_free_redirty_list(cur_trans);

5271 5272
	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);
5273 5274
}

5275
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
L
liubo 已提交
5276 5277 5278
{
	struct btrfs_transaction *t;

5279
	mutex_lock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
5280

5281 5282 5283
	spin_lock(&fs_info->trans_lock);
	while (!list_empty(&fs_info->trans_list)) {
		t = list_first_entry(&fs_info->trans_list,
5284 5285
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
5286
			refcount_inc(&t->use_count);
5287
			spin_unlock(&fs_info->trans_lock);
5288
			btrfs_wait_for_commit(fs_info, t->transid);
5289
			btrfs_put_transaction(t);
5290
			spin_lock(&fs_info->trans_lock);
5291 5292
			continue;
		}
5293
		if (t == fs_info->running_transaction) {
5294
			t->state = TRANS_STATE_COMMIT_DOING;
5295
			spin_unlock(&fs_info->trans_lock);
5296 5297 5298 5299 5300 5301 5302
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
5303
			spin_unlock(&fs_info->trans_lock);
5304
		}
5305
		btrfs_cleanup_one_transaction(t, fs_info);
5306

5307 5308 5309
		spin_lock(&fs_info->trans_lock);
		if (t == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
L
liubo 已提交
5310
		list_del_init(&t->list);
5311
		spin_unlock(&fs_info->trans_lock);
L
liubo 已提交
5312

5313
		btrfs_put_transaction(t);
5314
		trace_btrfs_transaction_commit(fs_info);
5315
		spin_lock(&fs_info->trans_lock);
5316
	}
5317 5318
	spin_unlock(&fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(fs_info);
5319 5320
	btrfs_destroy_delayed_inodes(fs_info);
	btrfs_assert_delayed_root_empty(fs_info);
5321
	btrfs_destroy_all_delalloc_inodes(fs_info);
5322
	btrfs_drop_all_logs(fs_info);
5323
	mutex_unlock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
5324 5325 5326

	return 0;
}
5327

5328
int btrfs_init_root_free_objectid(struct btrfs_root *root)
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
{
	struct btrfs_path *path;
	int ret;
	struct extent_buffer *l;
	struct btrfs_key search_key;
	struct btrfs_key found_key;
	int slot;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
	search_key.type = -1;
	search_key.offset = (u64)-1;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto error;
	BUG_ON(ret == 0); /* Corruption */
	if (path->slots[0] > 0) {
		slot = path->slots[0] - 1;
		l = path->nodes[0];
		btrfs_item_key_to_cpu(l, &found_key, slot);
5352 5353
		root->free_objectid = max_t(u64, found_key.objectid + 1,
					    BTRFS_FIRST_FREE_OBJECTID);
5354
	} else {
5355
		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5356 5357 5358 5359 5360 5361 5362
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

5363
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5364 5365 5366 5367
{
	int ret;
	mutex_lock(&root->objectid_mutex);

5368
	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5369 5370 5371 5372 5373 5374 5375
		btrfs_warn(root->fs_info,
			   "the objectid of root %llu reaches its highest value",
			   root->root_key.objectid);
		ret = -ENOSPC;
		goto out;
	}

5376
	*objectid = root->free_objectid++;
5377 5378 5379 5380 5381
	ret = 0;
out:
	mutex_unlock(&root->objectid_mutex);
	return ret;
}