spi-cadence-quadspi.c 42.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com

9 10 11
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
12 13
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
14 15 16 17
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
18
#include <linux/iopoll.h>
19 20 21 22 23 24
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/reset.h>
27 28
#include <linux/sched.h>
#include <linux/spi/spi.h>
29
#include <linux/spi/spi-mem.h>
30 31 32 33 34
#include <linux/timer.h>

#define CQSPI_NAME			"cadence-qspi"
#define CQSPI_MAX_CHIPSELECT		16

35 36
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY		BIT(0)
37
#define CQSPI_DISABLE_DAC_MODE		BIT(1)
38

39 40
/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL		BIT(0)
41

42 43 44 45 46 47 48 49 50 51 52 53 54
struct cqspi_st;

struct cqspi_flash_pdata {
	struct cqspi_st	*cqspi;
	u32		clk_rate;
	u32		read_delay;
	u32		tshsl_ns;
	u32		tsd2d_ns;
	u32		tchsh_ns;
	u32		tslch_ns;
	u8		inst_width;
	u8		addr_width;
	u8		data_width;
55
	bool		dtr;
56 57 58 59 60 61 62 63 64 65 66
	u8		cs;
};

struct cqspi_st {
	struct platform_device	*pdev;

	struct clk		*clk;
	unsigned int		sclk;

	void __iomem		*iobase;
	void __iomem		*ahb_base;
67
	resource_size_t		ahb_size;
68 69
	struct completion	transfer_complete;

70 71 72 73
	struct dma_chan		*rx_chan;
	struct completion	rx_dma_complete;
	dma_addr_t		mmap_phys_base;

74 75 76 77 78
	int			current_cs;
	unsigned long		master_ref_clk_hz;
	bool			is_decoded_cs;
	u32			fifo_depth;
	u32			fifo_width;
79
	u32			num_chipselect;
80
	bool			rclk_en;
81
	u32			trigger_address;
82
	u32			wr_delay;
83
	bool			use_direct_mode;
84 85 86
	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};

87 88 89 90 91
struct cqspi_driver_platdata {
	u32 hwcaps_mask;
	u8 quirks;
};

92 93 94 95 96 97 98 99
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS			500
#define CQSPI_READ_TIMEOUT_MS			10

/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE			0
#define CQSPI_INST_TYPE_DUAL			1
#define CQSPI_INST_TYPE_QUAD			2
100
#define CQSPI_INST_TYPE_OCTAL			3
101 102 103 104 105 106 107 108 109 110

#define CQSPI_DUMMY_CLKS_PER_BYTE		8
#define CQSPI_DUMMY_BYTES_MAX			4
#define CQSPI_DUMMY_CLKS_MAX			31

#define CQSPI_STIG_DATA_LEN_MAX			8

/* Register map */
#define CQSPI_REG_CONFIG			0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
111
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
112 113 114 115
#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB		19
116 117
#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
#define CQSPI_REG_CONFIG_IDLE_LSB		31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
#define CQSPI_REG_CONFIG_BAUD_MASK		0xF

#define CQSPI_REG_RD_INSTR			0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F

#define CQSPI_REG_WR_INSTR			0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16

#define CQSPI_REG_DELAY				0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB		0
#define CQSPI_REG_DELAY_TCHSH_LSB		8
#define CQSPI_REG_DELAY_TSD2D_LSB		16
#define CQSPI_REG_DELAY_TSHSL_LSB		24
#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF

#define CQSPI_REG_READCAPTURE			0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF

#define CQSPI_REG_SIZE				0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB		0
#define CQSPI_REG_SIZE_PAGE_LSB			4
#define CQSPI_REG_SIZE_BLOCK_LSB		16
#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F

#define CQSPI_REG_SRAMPARTITION			0x18
#define CQSPI_REG_INDIRECTTRIGGER		0x1C

#define CQSPI_REG_DMA				0x20
#define CQSPI_REG_DMA_SINGLE_LSB		0
#define CQSPI_REG_DMA_BURST_LSB			8
#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
#define CQSPI_REG_DMA_BURST_MASK		0xFF

#define CQSPI_REG_REMAP				0x24
#define CQSPI_REG_MODE_BIT			0x28

#define CQSPI_REG_SDRAMLEVEL			0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF

180 181 182
#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define CQSPI_REG_IRQSTATUS			0x40
#define CQSPI_REG_IRQMASK			0x44

#define CQSPI_REG_INDIRECTRD			0x60
#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
#define CQSPI_REG_INDIRECTRDBYTES		0x6C

#define CQSPI_REG_CMDCTRL			0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
198
#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
199 200 201 202 203 204 205 206 207 208
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
209
#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

#define CQSPI_REG_INDIRECTWR			0x70
#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
#define CQSPI_REG_INDIRECTWRBYTES		0x7C

#define CQSPI_REG_CMDADDRESS			0x94
#define CQSPI_REG_CMDREADDATALOWER		0xA0
#define CQSPI_REG_CMDREADDATAUPPER		0xA4
#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC

226 227 228 229 230 231 232 233
#define CQSPI_REG_POLLING_STATUS		0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16

#define CQSPI_REG_OP_EXT_LOWER			0xE0
#define CQSPI_REG_OP_EXT_READ_LSB		24
#define CQSPI_REG_OP_EXT_WRITE_LSB		16
#define CQSPI_REG_OP_EXT_STIG_LSB		0

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)

#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
					 CQSPI_REG_IRQ_IND_COMP)

#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
					 CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_UNDERFLOW)

#define CQSPI_IRQ_STATUS_MASK		0x1FFFF

254
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
255 256 257
{
	u32 val;

258 259 260
	return readl_relaxed_poll_timeout(reg, val,
					  (((clr ? ~val : val) & mask) == mask),
					  10, CQSPI_TIMEOUT_MS * 1000);
261 262 263 264 265 266
}

static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);

267
	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);

	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}

static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
	struct cqspi_st *cqspi = dev;
	unsigned int irq_status;

	/* Read interrupt status */
	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);

	/* Clear interrupt */
	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);

	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;

	if (irq_status)
		complete(&cqspi->transfer_complete);

	return IRQ_HANDLED;
}

297
static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
298 299 300 301 302 303 304 305 306 307
{
	u32 rdreg = 0;

	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;

	return rdreg;
}

308
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
309
{
310
	unsigned int dummy_clk;
311

312 313 314
	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
	if (dtr)
		dummy_clk /= 2;
315 316 317 318

	return dummy_clk;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
{
	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;

	switch (op->data.buswidth) {
	case 0:
		break;
	case 1:
		f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
		break;
	case 2:
		f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
		break;
	case 4:
		f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
		break;
	case 8:
		f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
		break;
	default:
		return -EINVAL;
	}

	/* Right now we only support 8-8-8 DTR mode. */
	if (f_pdata->dtr) {
		switch (op->cmd.buswidth) {
		case 0:
			break;
		case 8:
			f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
			break;
		default:
			return -EINVAL;
		}

		switch (op->addr.buswidth) {
		case 0:
			break;
		case 8:
			f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
			break;
		default:
			return -EINVAL;
		}

		switch (op->data.buswidth) {
		case 0:
			break;
		case 8:
			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
			break;
		default:
			return -EINVAL;
		}
	}

	return 0;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
	const unsigned int poll_idle_retry = 3;
	unsigned int count = 0;
	unsigned long timeout;

	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
	while (1) {
		/*
		 * Read few times in succession to ensure the controller
		 * is indeed idle, that is, the bit does not transition
		 * low again.
		 */
		if (cqspi_is_idle(cqspi))
			count++;
		else
			count = 0;

		if (count >= poll_idle_retry)
			return 0;

		if (time_after(jiffies, timeout)) {
			/* Timeout, in busy mode. */
			dev_err(&cqspi->pdev->dev,
				"QSPI is still busy after %dms timeout.\n",
				CQSPI_TIMEOUT_MS);
			return -ETIMEDOUT;
		}

		cpu_relax();
	}
}

static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
	void __iomem *reg_base = cqspi->iobase;
	int ret;

	/* Write the CMDCTRL without start execution. */
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
	/* Start execute */
	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);

	/* Polling for completion. */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
	if (ret) {
		dev_err(&cqspi->pdev->dev,
			"Flash command execution timed out.\n");
		return ret;
	}

	/* Polling QSPI idle status. */
	return cqspi_wait_idle(cqspi);
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
				  const struct spi_mem_op *op,
				  unsigned int shift)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	u8 ext;

	if (op->cmd.nbytes != 2)
		return -EINVAL;

	/* Opcode extension is the LSB. */
	ext = op->cmd.opcode & 0xff;

	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
	reg &= ~(0xff << shift);
	reg |= ext << shift;
	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);

	return 0;
}

static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op, unsigned int shift,
			    bool enable)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	int ret;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	/*
	 * We enable dual byte opcode here. The callers have to set up the
	 * extension opcode based on which type of operation it is.
	 */
	if (enable) {
		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;

		/* Set up command opcode extension. */
		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
		if (ret)
			return ret;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
	}

	writel(reg, reg_base + CQSPI_REG_CONFIG);

	return cqspi_wait_idle(cqspi);
}

495 496
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
497 498 499
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
500
	u8 *rxbuf = op->data.buf.in;
501
	u8 opcode;
502
	size_t n_rx = op->data.nbytes;
503 504
	unsigned int rdreg;
	unsigned int reg;
505
	unsigned int dummy_clk;
506
	size_t read_len;
507 508
	int status;

509 510 511 512 513 514 515 516 517
	status = cqspi_set_protocol(f_pdata, op);
	if (status)
		return status;

	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
				  f_pdata->dtr);
	if (status)
		return status;

518
	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
519
		dev_err(&cqspi->pdev->dev,
520
			"Invalid input argument, len %zu rxbuf 0x%p\n",
521 522 523 524
			n_rx, rxbuf);
		return -EINVAL;
	}

525 526 527 528 529
	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

530
	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
531

532
	rdreg = cqspi_calc_rdreg(f_pdata);
533 534
	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);

535
	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
536 537 538 539 540 541 542
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
		return -EOPNOTSUPP;

	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);

	/* 0 means 1 byte. */
	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
	status = cqspi_exec_flash_cmd(cqspi, reg);
	if (status)
		return status;

	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);

	/* Put the read value into rx_buf */
	read_len = (n_rx > 4) ? 4 : n_rx;
	memcpy(rxbuf, &reg, read_len);
	rxbuf += read_len;

	if (n_rx > 4) {
		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);

		read_len = n_rx - read_len;
		memcpy(rxbuf, &reg, read_len);
	}

	return 0;
}

569 570
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
			       const struct spi_mem_op *op)
571 572 573
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
574
	u8 opcode;
575 576
	const u8 *txbuf = op->data.buf.out;
	size_t n_tx = op->data.nbytes;
577 578
	unsigned int reg;
	unsigned int data;
579
	size_t write_len;
580 581 582 583 584 585 586 587 588 589
	int ret;

	ret = cqspi_set_protocol(f_pdata, op);
	if (ret)
		return ret;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
			       f_pdata->dtr);
	if (ret)
		return ret;
590

591
	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
592
		dev_err(&cqspi->pdev->dev,
593
			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
594 595 596 597
			n_tx, txbuf);
		return -EINVAL;
	}

598 599 600 601 602 603 604 605
	reg = cqspi_calc_rdreg(f_pdata);
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

606
	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
607 608 609 610 611 612 613 614 615 616

	if (op->addr.nbytes) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
		reg |= ((op->addr.nbytes - 1) &
			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;

		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
	}

617 618 619 620 621
	if (n_tx) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
		data = 0;
622 623 624
		write_len = (n_tx > 4) ? 4 : n_tx;
		memcpy(&data, txbuf, write_len);
		txbuf += write_len;
625 626
		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);

627 628 629 630 631 632 633
		if (n_tx > 4) {
			data = 0;
			write_len = n_tx - 4;
			memcpy(&data, txbuf, write_len);
			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
		}
	}
634 635 636 637

	return cqspi_exec_flash_cmd(cqspi, reg);
}

638 639
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op)
640 641 642 643 644
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int dummy_clk = 0;
	unsigned int reg;
645 646
	int ret;
	u8 opcode;
647

648 649 650 651 652 653 654 655 656 657 658
	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
			       f_pdata->dtr);
	if (ret)
		return ret;

	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
659
	reg |= cqspi_calc_rdreg(f_pdata);
660 661

	/* Setup dummy clock cycles */
662
	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
663

664
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
665
		return -EOPNOTSUPP;
666

667 668 669
	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
670 671 672 673 674 675

	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	/* Set address width */
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
676
	reg |= (op->addr.nbytes - 1);
677 678 679 680
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

681 682 683
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
				       u8 *rxbuf, loff_t from_addr,
				       const size_t n_rx)
684 685
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
686
	struct device *dev = &cqspi->pdev->dev;
687 688 689
	void __iomem *reg_base = cqspi->iobase;
	void __iomem *ahb_base = cqspi->ahb_base;
	unsigned int remaining = n_rx;
690
	unsigned int mod_bytes = n_rx % 4;
691
	unsigned int bytes_to_read = 0;
692
	u8 *rxbuf_end = rxbuf + n_rx;
693 694
	int ret = 0;

695
	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
696 697 698 699 700 701 702 703 704 705 706 707
	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTRD_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	while (remaining > 0) {
708
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
709
						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
710
			ret = -ETIMEDOUT;
711 712 713

		bytes_to_read = cqspi_get_rd_sram_level(cqspi);

714
		if (ret && bytes_to_read == 0) {
715
			dev_err(dev, "Indirect read timeout, no bytes\n");
716 717 718 719
			goto failrd;
		}

		while (bytes_to_read != 0) {
720 721
			unsigned int word_remain = round_down(remaining, 4);

722 723 724
			bytes_to_read *= cqspi->fifo_width;
			bytes_to_read = bytes_to_read > remaining ?
					remaining : bytes_to_read;
725 726 727 728 729 730 731 732 733 734 735 736 737
			bytes_to_read = round_down(bytes_to_read, 4);
			/* Read 4 byte word chunks then single bytes */
			if (bytes_to_read) {
				ioread32_rep(ahb_base, rxbuf,
					     (bytes_to_read / 4));
			} else if (!word_remain && mod_bytes) {
				unsigned int temp = ioread32(ahb_base);

				bytes_to_read = mod_bytes;
				memcpy(rxbuf, &temp, min((unsigned int)
							 (rxbuf_end - rxbuf),
							 bytes_to_read));
			}
738 739 740 741 742 743 744 745 746 747 748 749 750
			rxbuf += bytes_to_read;
			remaining -= bytes_to_read;
			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
		}

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
	if (ret) {
751
		dev_err(dev, "Indirect read completion error (%i)\n", ret);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		goto failrd;
	}

	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);

	return 0;

failrd:
	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);
	return ret;
}

773 774
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
			     const struct spi_mem_op *op)
775 776
{
	unsigned int reg;
777
	int ret;
778 779
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
780 781 782 783 784 785 786 787 788 789 790
	u8 opcode;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
			       f_pdata->dtr);
	if (ret)
		return ret;

	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;
791 792

	/* Set opcode. */
793 794 795
	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
796
	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
797
	reg = cqspi_calc_rdreg(f_pdata);
798 799
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

800 801 802 803 804 805 806 807 808 809 810 811 812 813
	if (f_pdata->dtr) {
		/*
		 * Some flashes like the cypress Semper flash expect a 4-byte
		 * dummy address with the Read SR command in DTR mode, but this
		 * controller does not support sending address with the Read SR
		 * command. So, disable write completion polling on the
		 * controller's side. spi-nor will take care of polling the
		 * status register.
		 */
		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
	}

814 815
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
816
	reg |= (op->addr.nbytes - 1);
817 818 819 820
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

821 822 823
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
					loff_t to_addr, const u8 *txbuf,
					const size_t n_tx)
824 825
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
826
	struct device *dev = &cqspi->pdev->dev;
827 828 829 830 831
	void __iomem *reg_base = cqspi->iobase;
	unsigned int remaining = n_tx;
	unsigned int write_bytes;
	int ret;

832
	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
833 834 835 836 837 838 839 840 841 842
	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTWR_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
843 844 845 846 847 848 849 850 851
	/*
	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
	 * Controller programming sequence, couple of cycles of
	 * QSPI_REF_CLK delay is required for the above bit to
	 * be internally synchronized by the QSPI module. Provide 5
	 * cycles of delay.
	 */
	if (cqspi->wr_delay)
		ndelay(cqspi->wr_delay);
852 853

	while (remaining > 0) {
854 855
		size_t write_words, mod_bytes;

856
		write_bytes = remaining;
857 858 859 860 861 862 863 864 865 866 867 868 869 870
		write_words = write_bytes / 4;
		mod_bytes = write_bytes % 4;
		/* Write 4 bytes at a time then single bytes. */
		if (write_words) {
			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
			txbuf += (write_words * 4);
		}
		if (mod_bytes) {
			unsigned int temp = 0xFFFFFFFF;

			memcpy(&temp, txbuf, mod_bytes);
			iowrite32(temp, cqspi->ahb_base);
			txbuf += mod_bytes;
		}
871

872
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
873 874
						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
			dev_err(dev, "Indirect write timeout\n");
875 876 877 878 879 880 881 882 883 884 885 886 887 888
			ret = -ETIMEDOUT;
			goto failwr;
		}

		remaining -= write_bytes;

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
	if (ret) {
889
		dev_err(dev, "Indirect write completion error (%i)\n", ret);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		goto failwr;
	}

	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);

	cqspi_wait_idle(cqspi);

	return 0;

failwr:
	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect write */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
	return ret;
}

913
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int chip_select = f_pdata->cs;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	if (cqspi->is_decoded_cs) {
		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;

		/* Convert CS if without decoder.
		 * CS0 to 4b'1110
		 * CS1 to 4b'1101
		 * CS2 to 4b'1011
		 * CS3 to 4b'0111
		 */
		chip_select = 0xF & ~(1 << chip_select);
	}

	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
					   const unsigned int ns_val)
{
	unsigned int ticks;

	ticks = ref_clk_hz / 1000;	/* kHz */
	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);

	return ticks;
}

953
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *iobase = cqspi->iobase;
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	unsigned int tshsl, tchsh, tslch, tsd2d;
	unsigned int reg;
	unsigned int tsclk;

	/* calculate the number of ref ticks for one sclk tick */
	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);

	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
	/* this particular value must be at least one sclk */
	if (tshsl < tsclk)
		tshsl = tsclk;

	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);

	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
	       << CQSPI_REG_DELAY_TSHSL_LSB;
	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
		<< CQSPI_REG_DELAY_TCHSH_LSB;
	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
		<< CQSPI_REG_DELAY_TSLCH_LSB;
	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
		<< CQSPI_REG_DELAY_TSD2D_LSB;
	writel(reg, iobase + CQSPI_REG_DELAY);
}

static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	void __iomem *reg_base = cqspi->iobase;
	u32 reg, div;

	/* Recalculate the baudrate divisor based on QSPI specification. */
	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1001
				   const bool bypass,
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
				   const unsigned int delay)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_READCAPTURE);

	if (bypass)
		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
	else
		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);

	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
		 << CQSPI_REG_READCAPTURE_DELAY_LSB);

	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
		<< CQSPI_REG_READCAPTURE_DELAY_LSB;

	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}

static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	if (enable)
		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
	else
		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;

	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

1038 1039
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
			    unsigned long sclk)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	int switch_cs = (cqspi->current_cs != f_pdata->cs);
	int switch_ck = (cqspi->sclk != sclk);

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 0);

	/* Switch chip select. */
	if (switch_cs) {
		cqspi->current_cs = f_pdata->cs;
1051
		cqspi_chipselect(f_pdata);
1052 1053 1054 1055 1056 1057
	}

	/* Setup baudrate divisor and delays */
	if (switch_ck) {
		cqspi->sclk = sclk;
		cqspi_config_baudrate_div(cqspi);
1058
		cqspi_delay(f_pdata);
1059 1060
		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
				       f_pdata->read_delay);
1061 1062 1063 1064 1065 1066
	}

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 1);
}

1067 1068
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
			   const struct spi_mem_op *op)
1069
{
1070
	struct cqspi_st *cqspi = f_pdata->cqspi;
1071 1072 1073
	loff_t to = op->addr.val;
	size_t len = op->data.nbytes;
	const u_char *buf = op->data.buf.out;
1074 1075
	int ret;

1076
	ret = cqspi_set_protocol(f_pdata, op);
1077 1078 1079
	if (ret)
		return ret;

1080
	ret = cqspi_write_setup(f_pdata, op);
1081 1082 1083
	if (ret)
		return ret;

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	/*
	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
	 * address (all 0s) with the read status register command in DTR mode.
	 * But this controller does not support sending dummy address bytes to
	 * the flash when it is polling the write completion register in DTR
	 * mode. So, we can not use direct mode when in DTR mode for writing
	 * data.
	 */
	if (!f_pdata->dtr && cqspi->use_direct_mode &&
	    ((to + len) <= cqspi->ahb_size)) {
1094
		memcpy_toio(cqspi->ahb_base + to, buf, len);
1095
		return cqspi_wait_idle(cqspi);
1096
	}
1097

1098
	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1099 1100
}

1101 1102 1103 1104 1105 1106 1107
static void cqspi_rx_dma_callback(void *param)
{
	struct cqspi_st *cqspi = param;

	complete(&cqspi->rx_dma_complete);
}

1108 1109
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
				     u_char *buf, loff_t from, size_t len)
1110 1111
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
1112
	struct device *dev = &cqspi->pdev->dev;
1113 1114 1115 1116 1117 1118
	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
	int ret = 0;
	struct dma_async_tx_descriptor *tx;
	dma_cookie_t cookie;
	dma_addr_t dma_dst;
1119
	struct device *ddev;
1120 1121 1122 1123 1124 1125

	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
		memcpy_fromio(buf, cqspi->ahb_base + from, len);
		return 0;
	}

1126 1127 1128
	ddev = cqspi->rx_chan->device->dev;
	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
	if (dma_mapping_error(ddev, dma_dst)) {
1129
		dev_err(dev, "dma mapping failed\n");
1130 1131 1132 1133 1134
		return -ENOMEM;
	}
	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
				       len, flags);
	if (!tx) {
1135
		dev_err(dev, "device_prep_dma_memcpy error\n");
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		ret = -EIO;
		goto err_unmap;
	}

	tx->callback = cqspi_rx_dma_callback;
	tx->callback_param = cqspi;
	cookie = tx->tx_submit(tx);
	reinit_completion(&cqspi->rx_dma_complete);

	ret = dma_submit_error(cookie);
	if (ret) {
1147
		dev_err(dev, "dma_submit_error %d\n", cookie);
1148 1149 1150 1151 1152
		ret = -EIO;
		goto err_unmap;
	}

	dma_async_issue_pending(cqspi->rx_chan);
1153
	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1154
					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1155
		dmaengine_terminate_sync(cqspi->rx_chan);
1156
		dev_err(dev, "DMA wait_for_completion_timeout\n");
1157 1158 1159 1160 1161
		ret = -ETIMEDOUT;
		goto err_unmap;
	}

err_unmap:
1162
	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1163

1164
	return ret;
1165 1166
}

1167 1168
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
			  const struct spi_mem_op *op)
1169
{
1170 1171 1172 1173
	struct cqspi_st *cqspi = f_pdata->cqspi;
	loff_t from = op->addr.val;
	size_t len = op->data.nbytes;
	u_char *buf = op->data.buf.in;
1174 1175
	int ret;

1176
	ret = cqspi_set_protocol(f_pdata, op);
1177 1178 1179
	if (ret)
		return ret;

1180
	ret = cqspi_read_setup(f_pdata, op);
1181 1182 1183
	if (ret)
		return ret;

1184 1185
	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1186

1187
	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1188 1189
}

1190
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1191
{
1192 1193
	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
	struct cqspi_flash_pdata *f_pdata;
1194

1195 1196
	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1197

1198 1199 1200
	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
		if (!op->addr.nbytes)
			return cqspi_command_read(f_pdata, op);
1201

1202 1203
		return cqspi_read(f_pdata, op);
	}
1204

1205 1206
	if (!op->addr.nbytes || !op->data.buf.out)
		return cqspi_command_write(f_pdata, op);
1207

1208
	return cqspi_write(f_pdata, op);
1209 1210
}

1211
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1212 1213 1214
{
	int ret;

1215 1216 1217
	ret = cqspi_mem_process(mem, op);
	if (ret)
		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1218 1219 1220 1221

	return ret;
}

1222 1223 1224
static bool cqspi_supports_mem_op(struct spi_mem *mem,
				  const struct spi_mem_op *op)
{
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	bool all_true, all_false;

	all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
		   op->data.dtr;
	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
		    !op->data.dtr;

	/* Mixed DTR modes not supported. */
	if (!(all_true || all_false))
		return false;

1236 1237 1238 1239
	if (all_true)
		return spi_mem_dtr_supports_op(mem, op);
	else
		return spi_mem_default_supports_op(mem, op);
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
				    struct cqspi_flash_pdata *f_pdata,
				    struct device_node *np)
{
	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
		dev_err(&pdev->dev, "couldn't determine read-delay\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
		return -ENXIO;
	}

	return 0;
}

1279
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1280
{
1281 1282
	struct device *dev = &cqspi->pdev->dev;
	struct device_node *np = dev->of_node;
1283 1284 1285 1286

	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");

	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1287
		dev_err(dev, "couldn't determine fifo-depth\n");
1288 1289 1290 1291
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1292
		dev_err(dev, "couldn't determine fifo-width\n");
1293 1294 1295 1296 1297
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,trigger-address",
				 &cqspi->trigger_address)) {
1298
		dev_err(dev, "couldn't determine trigger-address\n");
1299 1300 1301
		return -ENXIO;
	}

1302 1303 1304
	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;

1305 1306
	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");

1307 1308 1309 1310 1311
	return 0;
}

static void cqspi_controller_init(struct cqspi_st *cqspi)
{
1312 1313
	u32 reg;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	cqspi_controller_enable(cqspi, 0);

	/* Configure the remap address register, no remap */
	writel(0, cqspi->iobase + CQSPI_REG_REMAP);

	/* Disable all interrupts. */
	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);

	/* Configure the SRAM split to 1:1 . */
	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);

	/* Load indirect trigger address. */
	writel(cqspi->trigger_address,
	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);

	/* Program read watermark -- 1/2 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
	/* Program write watermark -- 1/8 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);

1336 1337 1338 1339 1340 1341
	/* Disable direct access controller */
	if (!cqspi->use_direct_mode) {
		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
	}
1342

1343 1344 1345
	cqspi_controller_enable(cqspi, 1);
}

1346
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1347 1348 1349 1350 1351 1352 1353 1354
{
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_MEMCPY, mask);

	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
	if (IS_ERR(cqspi->rx_chan)) {
1355
		int ret = PTR_ERR(cqspi->rx_chan);
1356
		cqspi->rx_chan = NULL;
1357
		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1358 1359
	}
	init_completion(&cqspi->rx_dma_complete);
1360 1361

	return 0;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371
static const char *cqspi_get_name(struct spi_mem *mem)
{
	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
	struct device *dev = &cqspi->pdev->dev;

	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}

1372 1373
static const struct spi_controller_mem_ops cqspi_mem_ops = {
	.exec_op = cqspi_exec_mem_op,
1374
	.get_name = cqspi_get_name,
1375
	.supports_op = cqspi_supports_mem_op,
1376 1377
};

1378
static int cqspi_setup_flash(struct cqspi_st *cqspi)
1379 1380 1381
{
	struct platform_device *pdev = cqspi->pdev;
	struct device *dev = &pdev->dev;
1382
	struct device_node *np = dev->of_node;
1383 1384
	struct cqspi_flash_pdata *f_pdata;
	unsigned int cs;
1385
	int ret;
1386

1387 1388
	/* Get flash device data */
	for_each_available_child_of_node(dev->of_node, np) {
1389 1390
		ret = of_property_read_u32(np, "reg", &cs);
		if (ret) {
1391
			dev_err(dev, "Couldn't determine chip select.\n");
1392
			of_node_put(np);
1393
			return ret;
1394 1395
		}

1396
		if (cs >= CQSPI_MAX_CHIPSELECT) {
1397
			dev_err(dev, "Chip select %d out of range.\n", cs);
1398
			of_node_put(np);
1399
			return -EINVAL;
1400 1401 1402 1403 1404 1405 1406
		}

		f_pdata = &cqspi->f_pdata[cs];
		f_pdata->cqspi = cqspi;
		f_pdata->cs = cs;

		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1407 1408
		if (ret) {
			of_node_put(np);
1409
			return ret;
1410
		}
1411 1412 1413 1414 1415 1416 1417
	}

	return 0;
}

static int cqspi_probe(struct platform_device *pdev)
{
1418 1419
	const struct cqspi_driver_platdata *ddata;
	struct reset_control *rstc, *rstc_ocp;
1420
	struct device *dev = &pdev->dev;
1421 1422
	struct spi_master *master;
	struct resource *res_ahb;
1423 1424 1425 1426 1427
	struct cqspi_st *cqspi;
	struct resource *res;
	int ret;
	int irq;

1428 1429 1430
	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
	if (!master) {
		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1431
		return -ENOMEM;
1432 1433 1434 1435 1436 1437
	}
	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
	master->mem_ops = &cqspi_mem_ops;
	master->dev.of_node = pdev->dev.of_node;

	cqspi = spi_master_get_devdata(master);
1438 1439

	cqspi->pdev = pdev;
1440
	platform_set_drvdata(pdev, cqspi);
1441 1442

	/* Obtain configuration from OF. */
1443
	ret = cqspi_of_get_pdata(cqspi);
1444 1445
	if (ret) {
		dev_err(dev, "Cannot get mandatory OF data.\n");
1446 1447
		ret = -ENODEV;
		goto probe_master_put;
1448 1449 1450 1451 1452 1453
	}

	/* Obtain QSPI clock. */
	cqspi->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(cqspi->clk)) {
		dev_err(dev, "Cannot claim QSPI clock.\n");
1454 1455
		ret = PTR_ERR(cqspi->clk);
		goto probe_master_put;
1456 1457 1458 1459 1460 1461 1462
	}

	/* Obtain and remap controller address. */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cqspi->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(cqspi->iobase)) {
		dev_err(dev, "Cannot remap controller address.\n");
1463 1464
		ret = PTR_ERR(cqspi->iobase);
		goto probe_master_put;
1465 1466 1467 1468 1469 1470 1471
	}

	/* Obtain and remap AHB address. */
	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
	if (IS_ERR(cqspi->ahb_base)) {
		dev_err(dev, "Cannot remap AHB address.\n");
1472 1473
		ret = PTR_ERR(cqspi->ahb_base);
		goto probe_master_put;
1474
	}
1475
	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1476
	cqspi->ahb_size = resource_size(res_ahb);
1477 1478 1479 1480 1481

	init_completion(&cqspi->transfer_complete);

	/* Obtain IRQ line. */
	irq = platform_get_irq(pdev, 0);
1482 1483 1484 1485
	if (irq < 0) {
		ret = -ENXIO;
		goto probe_master_put;
	}
1486

1487 1488 1489 1490
	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		pm_runtime_put_noidle(dev);
1491
		goto probe_master_put;
1492 1493
	}

1494 1495 1496
	ret = clk_prepare_enable(cqspi->clk);
	if (ret) {
		dev_err(dev, "Cannot enable QSPI clock.\n");
1497
		goto probe_clk_failed;
1498 1499
	}

1500 1501 1502
	/* Obtain QSPI reset control */
	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
	if (IS_ERR(rstc)) {
1503
		ret = PTR_ERR(rstc);
1504
		dev_err(dev, "Cannot get QSPI reset.\n");
1505
		goto probe_reset_failed;
1506 1507 1508 1509
	}

	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
	if (IS_ERR(rstc_ocp)) {
1510
		ret = PTR_ERR(rstc_ocp);
1511
		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1512
		goto probe_reset_failed;
1513 1514 1515 1516 1517 1518 1519 1520
	}

	reset_control_assert(rstc);
	reset_control_deassert(rstc);

	reset_control_assert(rstc_ocp);
	reset_control_deassert(rstc_ocp);

1521
	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1522
	master->max_speed_hz = cqspi->master_ref_clk_hz;
1523
	ddata  = of_device_get_match_data(dev);
1524 1525
	if (ddata) {
		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1526
			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1527 1528
						cqspi->master_ref_clk_hz);
		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1529
			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1530 1531 1532
		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
			cqspi->use_direct_mode = true;
	}
1533 1534 1535 1536 1537

	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
			       pdev->name, cqspi);
	if (ret) {
		dev_err(dev, "Cannot request IRQ.\n");
1538
		goto probe_reset_failed;
1539 1540 1541 1542 1543 1544 1545
	}

	cqspi_wait_idle(cqspi);
	cqspi_controller_init(cqspi);
	cqspi->current_cs = -1;
	cqspi->sclk = 0;

1546 1547
	master->num_chipselect = cqspi->num_chipselect;

1548
	ret = cqspi_setup_flash(cqspi);
1549
	if (ret) {
1550
		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1551 1552 1553
		goto probe_setup_failed;
	}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (cqspi->use_direct_mode) {
		ret = cqspi_request_mmap_dma(cqspi);
		if (ret == -EPROBE_DEFER)
			goto probe_setup_failed;
	}

	ret = devm_spi_register_master(dev, master);
	if (ret) {
		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
		goto probe_setup_failed;
	}

	return 0;
1567
probe_setup_failed:
1568
	cqspi_controller_enable(cqspi, 0);
1569
probe_reset_failed:
1570
	clk_disable_unprepare(cqspi->clk);
1571 1572 1573
probe_clk_failed:
	pm_runtime_put_sync(dev);
	pm_runtime_disable(dev);
1574 1575
probe_master_put:
	spi_master_put(master);
1576 1577 1578 1579 1580 1581 1582 1583 1584
	return ret;
}

static int cqspi_remove(struct platform_device *pdev)
{
	struct cqspi_st *cqspi = platform_get_drvdata(pdev);

	cqspi_controller_enable(cqspi, 0);

1585 1586 1587
	if (cqspi->rx_chan)
		dma_release_channel(cqspi->rx_chan);

1588 1589
	clk_disable_unprepare(cqspi->clk);

1590 1591 1592
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 0);
	return 0;
}

static int cqspi_resume(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 1);
	return 0;
}

static const struct dev_pm_ops cqspi__dev_pm_ops = {
	.suspend = cqspi_suspend,
	.resume = cqspi_resume,
};

#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS	NULL
#endif

1623
static const struct cqspi_driver_platdata cdns_qspi = {
1624
	.quirks = CQSPI_DISABLE_DAC_MODE,
1625 1626 1627 1628 1629 1630 1631
};

static const struct cqspi_driver_platdata k2g_qspi = {
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

static const struct cqspi_driver_platdata am654_ospi = {
1632
	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1633 1634 1635
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

1636 1637 1638 1639
static const struct cqspi_driver_platdata intel_lgm_qspi = {
	.quirks = CQSPI_DISABLE_DAC_MODE,
};

1640
static const struct of_device_id cqspi_dt_ids[] = {
1641 1642
	{
		.compatible = "cdns,qspi-nor",
1643
		.data = &cdns_qspi,
1644 1645 1646
	},
	{
		.compatible = "ti,k2g-qspi",
1647 1648 1649 1650 1651
		.data = &k2g_qspi,
	},
	{
		.compatible = "ti,am654-ospi",
		.data = &am654_ospi,
1652
	},
1653 1654
	{
		.compatible = "intel,lgm-qspi",
1655
		.data = &intel_lgm_qspi,
1656
	},
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	{ /* end of table */ }
};

MODULE_DEVICE_TABLE(of, cqspi_dt_ids);

static struct platform_driver cqspi_platform_driver = {
	.probe = cqspi_probe,
	.remove = cqspi_remove,
	.driver = {
		.name = CQSPI_NAME,
		.pm = CQSPI_DEV_PM_OPS,
		.of_match_table = cqspi_dt_ids,
	},
};

module_platform_driver(cqspi_platform_driver);

MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1679 1680
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1681
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");