spi-cadence-quadspi.c 38.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com

9 10 11
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
12 13
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
14 15 16 17
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
18
#include <linux/iopoll.h>
19 20 21 22 23 24
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/reset.h>
27 28
#include <linux/sched.h>
#include <linux/spi/spi.h>
29
#include <linux/spi/spi-mem.h>
30 31 32 33 34
#include <linux/timer.h>

#define CQSPI_NAME			"cadence-qspi"
#define CQSPI_MAX_CHIPSELECT		16

35 36
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY		BIT(0)
37
#define CQSPI_DISABLE_DAC_MODE		BIT(1)
38

39 40
/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL		BIT(0)
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
struct cqspi_st;

struct cqspi_flash_pdata {
	struct cqspi_st	*cqspi;
	u32		clk_rate;
	u32		read_delay;
	u32		tshsl_ns;
	u32		tsd2d_ns;
	u32		tchsh_ns;
	u32		tslch_ns;
	u8		inst_width;
	u8		addr_width;
	u8		data_width;
	u8		cs;
};

struct cqspi_st {
	struct platform_device	*pdev;

	struct clk		*clk;
	unsigned int		sclk;

	void __iomem		*iobase;
	void __iomem		*ahb_base;
66
	resource_size_t		ahb_size;
67 68
	struct completion	transfer_complete;

69 70 71 72
	struct dma_chan		*rx_chan;
	struct completion	rx_dma_complete;
	dma_addr_t		mmap_phys_base;

73 74 75 76 77
	int			current_cs;
	unsigned long		master_ref_clk_hz;
	bool			is_decoded_cs;
	u32			fifo_depth;
	u32			fifo_width;
78
	bool			rclk_en;
79
	u32			trigger_address;
80
	u32			wr_delay;
81
	bool			use_direct_mode;
82 83 84
	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};

85 86 87 88 89
struct cqspi_driver_platdata {
	u32 hwcaps_mask;
	u8 quirks;
};

90 91 92 93 94 95 96 97
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS			500
#define CQSPI_READ_TIMEOUT_MS			10

/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE			0
#define CQSPI_INST_TYPE_DUAL			1
#define CQSPI_INST_TYPE_QUAD			2
98
#define CQSPI_INST_TYPE_OCTAL			3
99 100 101 102 103 104 105 106 107 108

#define CQSPI_DUMMY_CLKS_PER_BYTE		8
#define CQSPI_DUMMY_BYTES_MAX			4
#define CQSPI_DUMMY_CLKS_MAX			31

#define CQSPI_STIG_DATA_LEN_MAX			8

/* Register map */
#define CQSPI_REG_CONFIG			0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
109
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB		19
#define CQSPI_REG_CONFIG_IDLE_LSB		31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
#define CQSPI_REG_CONFIG_BAUD_MASK		0xF

#define CQSPI_REG_RD_INSTR			0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F

#define CQSPI_REG_WR_INSTR			0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16

#define CQSPI_REG_DELAY				0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB		0
#define CQSPI_REG_DELAY_TCHSH_LSB		8
#define CQSPI_REG_DELAY_TSD2D_LSB		16
#define CQSPI_REG_DELAY_TSHSL_LSB		24
#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF

#define CQSPI_REG_READCAPTURE			0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF

#define CQSPI_REG_SIZE				0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB		0
#define CQSPI_REG_SIZE_PAGE_LSB			4
#define CQSPI_REG_SIZE_BLOCK_LSB		16
#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F

#define CQSPI_REG_SRAMPARTITION			0x18
#define CQSPI_REG_INDIRECTTRIGGER		0x1C

#define CQSPI_REG_DMA				0x20
#define CQSPI_REG_DMA_SINGLE_LSB		0
#define CQSPI_REG_DMA_BURST_LSB			8
#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
#define CQSPI_REG_DMA_BURST_MASK		0xFF

#define CQSPI_REG_REMAP				0x24
#define CQSPI_REG_MODE_BIT			0x28

#define CQSPI_REG_SDRAMLEVEL			0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF

#define CQSPI_REG_IRQSTATUS			0x40
#define CQSPI_REG_IRQMASK			0x44

#define CQSPI_REG_INDIRECTRD			0x60
#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
#define CQSPI_REG_INDIRECTRDBYTES		0x6C

#define CQSPI_REG_CMDCTRL			0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
191
#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
192 193 194 195 196 197 198 199 200 201
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
202
#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

#define CQSPI_REG_INDIRECTWR			0x70
#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
#define CQSPI_REG_INDIRECTWRBYTES		0x7C

#define CQSPI_REG_CMDADDRESS			0x94
#define CQSPI_REG_CMDREADDATALOWER		0xA0
#define CQSPI_REG_CMDREADDATAUPPER		0xA4
#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC

/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)

#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
					 CQSPI_REG_IRQ_IND_COMP)

#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
					 CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_UNDERFLOW)

#define CQSPI_IRQ_STATUS_MASK		0x1FFFF

239
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
240 241 242
{
	u32 val;

243 244 245
	return readl_relaxed_poll_timeout(reg, val,
					  (((clr ? ~val : val) & mask) == mask),
					  10, CQSPI_TIMEOUT_MS * 1000);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);

	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
}

static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);

	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}

static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
	struct cqspi_st *cqspi = dev;
	unsigned int irq_status;

	/* Read interrupt status */
	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);

	/* Clear interrupt */
	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);

	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;

	if (irq_status)
		complete(&cqspi->transfer_complete);

	return IRQ_HANDLED;
}

282
static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
283 284 285 286 287 288 289 290 291 292
{
	u32 rdreg = 0;

	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;

	return rdreg;
}

293 294 295 296
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
{
	unsigned int dummy_clk;

297
	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
298 299 300 301

	return dummy_clk;
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
	const unsigned int poll_idle_retry = 3;
	unsigned int count = 0;
	unsigned long timeout;

	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
	while (1) {
		/*
		 * Read few times in succession to ensure the controller
		 * is indeed idle, that is, the bit does not transition
		 * low again.
		 */
		if (cqspi_is_idle(cqspi))
			count++;
		else
			count = 0;

		if (count >= poll_idle_retry)
			return 0;

		if (time_after(jiffies, timeout)) {
			/* Timeout, in busy mode. */
			dev_err(&cqspi->pdev->dev,
				"QSPI is still busy after %dms timeout.\n",
				CQSPI_TIMEOUT_MS);
			return -ETIMEDOUT;
		}

		cpu_relax();
	}
}

static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
	void __iomem *reg_base = cqspi->iobase;
	int ret;

	/* Write the CMDCTRL without start execution. */
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
	/* Start execute */
	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);

	/* Polling for completion. */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
	if (ret) {
		dev_err(&cqspi->pdev->dev,
			"Flash command execution timed out.\n");
		return ret;
	}

	/* Polling QSPI idle status. */
	return cqspi_wait_idle(cqspi);
}

359 360
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
361 362 363
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
364 365 366
	u8 *rxbuf = op->data.buf.in;
	u8 opcode = op->cmd.opcode;
	size_t n_rx = op->data.nbytes;
367 368
	unsigned int rdreg;
	unsigned int reg;
369
	unsigned int dummy_clk;
370
	size_t read_len;
371 372 373
	int status;

	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
374
		dev_err(&cqspi->pdev->dev,
375
			"Invalid input argument, len %zu rxbuf 0x%p\n",
376 377 378 379
			n_rx, rxbuf);
		return -EINVAL;
	}

380
	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
381

382
	rdreg = cqspi_calc_rdreg(f_pdata);
383 384
	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);

385 386 387 388 389 390 391 392
	dummy_clk = cqspi_calc_dummy(op);
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
		return -EOPNOTSUPP;

	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);

	/* 0 means 1 byte. */
	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
	status = cqspi_exec_flash_cmd(cqspi, reg);
	if (status)
		return status;

	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);

	/* Put the read value into rx_buf */
	read_len = (n_rx > 4) ? 4 : n_rx;
	memcpy(rxbuf, &reg, read_len);
	rxbuf += read_len;

	if (n_rx > 4) {
		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);

		read_len = n_rx - read_len;
		memcpy(rxbuf, &reg, read_len);
	}

	return 0;
}

419 420
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
			       const struct spi_mem_op *op)
421 422 423
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
424 425 426
	const u8 opcode = op->cmd.opcode;
	const u8 *txbuf = op->data.buf.out;
	size_t n_tx = op->data.nbytes;
427 428
	unsigned int reg;
	unsigned int data;
429
	size_t write_len;
430

431
	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
432
		dev_err(&cqspi->pdev->dev,
433
			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
434 435 436 437 438
			n_tx, txbuf);
		return -EINVAL;
	}

	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
439 440 441 442 443 444 445 446 447 448

	if (op->addr.nbytes) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
		reg |= ((op->addr.nbytes - 1) &
			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;

		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
	}

449 450 451 452 453
	if (n_tx) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
		data = 0;
454 455 456
		write_len = (n_tx > 4) ? 4 : n_tx;
		memcpy(&data, txbuf, write_len);
		txbuf += write_len;
457 458
		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);

459 460 461 462 463 464 465
		if (n_tx > 4) {
			data = 0;
			write_len = n_tx - 4;
			memcpy(&data, txbuf, write_len);
			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
		}
	}
466 467 468 469

	return cqspi_exec_flash_cmd(cqspi, reg);
}

470 471
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op)
472 473 474 475 476 477
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int dummy_clk = 0;
	unsigned int reg;

478 479
	reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
	reg |= cqspi_calc_rdreg(f_pdata);
480 481

	/* Setup dummy clock cycles */
482 483
	dummy_clk = cqspi_calc_dummy(op);

484
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
485
		return -EOPNOTSUPP;
486

487 488 489
	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
490 491 492 493 494 495

	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	/* Set address width */
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
496
	reg |= (op->addr.nbytes - 1);
497 498 499 500
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

501 502 503
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
				       u8 *rxbuf, loff_t from_addr,
				       const size_t n_rx)
504 505
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
506
	struct device *dev = &cqspi->pdev->dev;
507 508 509
	void __iomem *reg_base = cqspi->iobase;
	void __iomem *ahb_base = cqspi->ahb_base;
	unsigned int remaining = n_rx;
510
	unsigned int mod_bytes = n_rx % 4;
511
	unsigned int bytes_to_read = 0;
512
	u8 *rxbuf_end = rxbuf + n_rx;
513 514
	int ret = 0;

515
	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
516 517 518 519 520 521 522 523 524 525 526 527
	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTRD_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	while (remaining > 0) {
528
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
529
						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
530
			ret = -ETIMEDOUT;
531 532 533

		bytes_to_read = cqspi_get_rd_sram_level(cqspi);

534
		if (ret && bytes_to_read == 0) {
535
			dev_err(dev, "Indirect read timeout, no bytes\n");
536 537 538 539
			goto failrd;
		}

		while (bytes_to_read != 0) {
540 541
			unsigned int word_remain = round_down(remaining, 4);

542 543 544
			bytes_to_read *= cqspi->fifo_width;
			bytes_to_read = bytes_to_read > remaining ?
					remaining : bytes_to_read;
545 546 547 548 549 550 551 552 553 554 555 556 557
			bytes_to_read = round_down(bytes_to_read, 4);
			/* Read 4 byte word chunks then single bytes */
			if (bytes_to_read) {
				ioread32_rep(ahb_base, rxbuf,
					     (bytes_to_read / 4));
			} else if (!word_remain && mod_bytes) {
				unsigned int temp = ioread32(ahb_base);

				bytes_to_read = mod_bytes;
				memcpy(rxbuf, &temp, min((unsigned int)
							 (rxbuf_end - rxbuf),
							 bytes_to_read));
			}
558 559 560 561 562 563 564 565 566 567 568 569 570
			rxbuf += bytes_to_read;
			remaining -= bytes_to_read;
			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
		}

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
	if (ret) {
571
		dev_err(dev, "Indirect read completion error (%i)\n", ret);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
		goto failrd;
	}

	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);

	return 0;

failrd:
	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);
	return ret;
}

593 594
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
			     const struct spi_mem_op *op)
595 596 597 598 599 600
{
	unsigned int reg;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;

	/* Set opcode. */
601
	reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
602
	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
603
	reg = cqspi_calc_rdreg(f_pdata);
604 605 606 607
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
608
	reg |= (op->addr.nbytes - 1);
609 610 611 612
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

613 614 615
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
					loff_t to_addr, const u8 *txbuf,
					const size_t n_tx)
616 617
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
618
	struct device *dev = &cqspi->pdev->dev;
619 620 621 622 623
	void __iomem *reg_base = cqspi->iobase;
	unsigned int remaining = n_tx;
	unsigned int write_bytes;
	int ret;

624
	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
625 626 627 628 629 630 631 632 633 634
	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTWR_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
635 636 637 638 639 640 641 642 643
	/*
	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
	 * Controller programming sequence, couple of cycles of
	 * QSPI_REF_CLK delay is required for the above bit to
	 * be internally synchronized by the QSPI module. Provide 5
	 * cycles of delay.
	 */
	if (cqspi->wr_delay)
		ndelay(cqspi->wr_delay);
644 645

	while (remaining > 0) {
646 647
		size_t write_words, mod_bytes;

648
		write_bytes = remaining;
649 650 651 652 653 654 655 656 657 658 659 660 661 662
		write_words = write_bytes / 4;
		mod_bytes = write_bytes % 4;
		/* Write 4 bytes at a time then single bytes. */
		if (write_words) {
			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
			txbuf += (write_words * 4);
		}
		if (mod_bytes) {
			unsigned int temp = 0xFFFFFFFF;

			memcpy(&temp, txbuf, mod_bytes);
			iowrite32(temp, cqspi->ahb_base);
			txbuf += mod_bytes;
		}
663

664
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
665 666
						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
			dev_err(dev, "Indirect write timeout\n");
667 668 669 670 671 672 673 674 675 676 677 678 679 680
			ret = -ETIMEDOUT;
			goto failwr;
		}

		remaining -= write_bytes;

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
	if (ret) {
681
		dev_err(dev, "Indirect write completion error (%i)\n", ret);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
		goto failwr;
	}

	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);

	cqspi_wait_idle(cqspi);

	return 0;

failwr:
	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect write */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
	return ret;
}

705
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int chip_select = f_pdata->cs;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	if (cqspi->is_decoded_cs) {
		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;

		/* Convert CS if without decoder.
		 * CS0 to 4b'1110
		 * CS1 to 4b'1101
		 * CS2 to 4b'1011
		 * CS3 to 4b'0111
		 */
		chip_select = 0xF & ~(1 << chip_select);
	}

	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
					   const unsigned int ns_val)
{
	unsigned int ticks;

	ticks = ref_clk_hz / 1000;	/* kHz */
	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);

	return ticks;
}

745
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *iobase = cqspi->iobase;
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	unsigned int tshsl, tchsh, tslch, tsd2d;
	unsigned int reg;
	unsigned int tsclk;

	/* calculate the number of ref ticks for one sclk tick */
	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);

	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
	/* this particular value must be at least one sclk */
	if (tshsl < tsclk)
		tshsl = tsclk;

	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);

	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
	       << CQSPI_REG_DELAY_TSHSL_LSB;
	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
		<< CQSPI_REG_DELAY_TCHSH_LSB;
	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
		<< CQSPI_REG_DELAY_TSLCH_LSB;
	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
		<< CQSPI_REG_DELAY_TSD2D_LSB;
	writel(reg, iobase + CQSPI_REG_DELAY);
}

static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	void __iomem *reg_base = cqspi->iobase;
	u32 reg, div;

	/* Recalculate the baudrate divisor based on QSPI specification. */
	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_readdata_capture(struct cqspi_st *cqspi,
793
				   const bool bypass,
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
				   const unsigned int delay)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_READCAPTURE);

	if (bypass)
		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
	else
		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);

	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
		 << CQSPI_REG_READCAPTURE_DELAY_LSB);

	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
		<< CQSPI_REG_READCAPTURE_DELAY_LSB;

	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}

static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	if (enable)
		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
	else
		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;

	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

830 831
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
			    unsigned long sclk)
832 833 834 835 836 837 838 839 840 841 842
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	int switch_cs = (cqspi->current_cs != f_pdata->cs);
	int switch_ck = (cqspi->sclk != sclk);

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 0);

	/* Switch chip select. */
	if (switch_cs) {
		cqspi->current_cs = f_pdata->cs;
843
		cqspi_chipselect(f_pdata);
844 845 846 847 848 849
	}

	/* Setup baudrate divisor and delays */
	if (switch_ck) {
		cqspi->sclk = sclk;
		cqspi_config_baudrate_div(cqspi);
850
		cqspi_delay(f_pdata);
851 852
		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
				       f_pdata->read_delay);
853 854 855 856 857 858
	}

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 1);
}

859 860
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
861 862 863 864 865
{
	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;

866 867 868
	if (op->data.dir == SPI_MEM_DATA_IN) {
		switch (op->data.buswidth) {
		case 1:
869 870
			f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
			break;
871
		case 2:
872 873
			f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
			break;
874
		case 4:
875 876
			f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
			break;
877
		case 8:
878 879
			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
			break;
880 881 882 883 884 885 886 887
		default:
			return -EINVAL;
		}
	}

	return 0;
}

888 889
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
			   const struct spi_mem_op *op)
890
{
891
	struct cqspi_st *cqspi = f_pdata->cqspi;
892 893 894
	loff_t to = op->addr.val;
	size_t len = op->data.nbytes;
	const u_char *buf = op->data.buf.out;
895 896
	int ret;

897
	ret = cqspi_set_protocol(f_pdata, op);
898 899 900
	if (ret)
		return ret;

901
	ret = cqspi_write_setup(f_pdata, op);
902 903 904
	if (ret)
		return ret;

905
	if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
906
		memcpy_toio(cqspi->ahb_base + to, buf, len);
907
		return cqspi_wait_idle(cqspi);
908
	}
909

910
	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
911 912
}

913 914 915 916 917 918 919
static void cqspi_rx_dma_callback(void *param)
{
	struct cqspi_st *cqspi = param;

	complete(&cqspi->rx_dma_complete);
}

920 921
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
				     u_char *buf, loff_t from, size_t len)
922 923
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
924
	struct device *dev = &cqspi->pdev->dev;
925 926 927 928 929 930
	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
	int ret = 0;
	struct dma_async_tx_descriptor *tx;
	dma_cookie_t cookie;
	dma_addr_t dma_dst;
931
	struct device *ddev;
932 933 934 935 936 937

	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
		memcpy_fromio(buf, cqspi->ahb_base + from, len);
		return 0;
	}

938 939 940
	ddev = cqspi->rx_chan->device->dev;
	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
	if (dma_mapping_error(ddev, dma_dst)) {
941
		dev_err(dev, "dma mapping failed\n");
942 943 944 945 946
		return -ENOMEM;
	}
	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
				       len, flags);
	if (!tx) {
947
		dev_err(dev, "device_prep_dma_memcpy error\n");
948 949 950 951 952 953 954 955 956 957 958
		ret = -EIO;
		goto err_unmap;
	}

	tx->callback = cqspi_rx_dma_callback;
	tx->callback_param = cqspi;
	cookie = tx->tx_submit(tx);
	reinit_completion(&cqspi->rx_dma_complete);

	ret = dma_submit_error(cookie);
	if (ret) {
959
		dev_err(dev, "dma_submit_error %d\n", cookie);
960 961 962 963 964
		ret = -EIO;
		goto err_unmap;
	}

	dma_async_issue_pending(cqspi->rx_chan);
965
	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
966
					 msecs_to_jiffies(max(len, 500UL)))) {
967
		dmaengine_terminate_sync(cqspi->rx_chan);
968
		dev_err(dev, "DMA wait_for_completion_timeout\n");
969 970 971 972 973
		ret = -ETIMEDOUT;
		goto err_unmap;
	}

err_unmap:
974
	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
975

976
	return ret;
977 978
}

979 980
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
			  const struct spi_mem_op *op)
981
{
982 983 984 985
	struct cqspi_st *cqspi = f_pdata->cqspi;
	loff_t from = op->addr.val;
	size_t len = op->data.nbytes;
	u_char *buf = op->data.buf.in;
986 987
	int ret;

988
	ret = cqspi_set_protocol(f_pdata, op);
989 990 991
	if (ret)
		return ret;

992
	ret = cqspi_read_setup(f_pdata, op);
993 994 995
	if (ret)
		return ret;

996 997
	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
		return cqspi_direct_read_execute(f_pdata, buf, from, len);
998

999
	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1000 1001
}

1002
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1003
{
1004 1005
	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
	struct cqspi_flash_pdata *f_pdata;
1006

1007 1008
	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1009

1010 1011 1012
	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
		if (!op->addr.nbytes)
			return cqspi_command_read(f_pdata, op);
1013

1014 1015
		return cqspi_read(f_pdata, op);
	}
1016

1017 1018
	if (!op->addr.nbytes || !op->data.buf.out)
		return cqspi_command_write(f_pdata, op);
1019

1020
	return cqspi_write(f_pdata, op);
1021 1022
}

1023
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1024 1025 1026
{
	int ret;

1027 1028 1029
	ret = cqspi_mem_process(mem, op);
	if (ret)
		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1030 1031 1032 1033

	return ret;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static int cqspi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
{
	u32 mode = mem->spi->mode;

	switch (buswidth) {
	case 1:
		return 0;

	case 2:
		if ((tx &&
		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
		    (!tx &&
		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
			return 0;

		break;

	case 4:
		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
			return 0;

		break;

	case 8:
		if ((tx && (mode & SPI_TX_OCTAL)) ||
		    (!tx && (mode & SPI_RX_OCTAL)))
			return 0;

		break;

	default:
		break;
	}

	return -EOPNOTSUPP;
}

static bool cqspi_supports_mem_op(struct spi_mem *mem,
				  const struct spi_mem_op *op)
{
	if (cqspi_check_buswidth_req(mem, op->cmd.buswidth, true))
		return false;

	if (op->addr.nbytes &&
	    cqspi_check_buswidth_req(mem, op->addr.buswidth, true))
		return false;

	if (op->dummy.nbytes &&
	    cqspi_check_buswidth_req(mem, op->dummy.buswidth, true))
		return false;

	if (op->data.nbytes &&
	    cqspi_check_buswidth_req(mem, op->data.buswidth,
				     op->data.dir == SPI_MEM_DATA_OUT))
		return false;

	return true;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
				    struct cqspi_flash_pdata *f_pdata,
				    struct device_node *np)
{
	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
		dev_err(&pdev->dev, "couldn't determine read-delay\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
		return -ENXIO;
	}

	return 0;
}

1131
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1132
{
1133 1134
	struct device *dev = &cqspi->pdev->dev;
	struct device_node *np = dev->of_node;
1135 1136 1137 1138

	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");

	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1139
		dev_err(dev, "couldn't determine fifo-depth\n");
1140 1141 1142 1143
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1144
		dev_err(dev, "couldn't determine fifo-width\n");
1145 1146 1147 1148 1149
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,trigger-address",
				 &cqspi->trigger_address)) {
1150
		dev_err(dev, "couldn't determine trigger-address\n");
1151 1152 1153
		return -ENXIO;
	}

1154 1155
	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");

1156 1157 1158 1159 1160
	return 0;
}

static void cqspi_controller_init(struct cqspi_st *cqspi)
{
1161 1162
	u32 reg;

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	cqspi_controller_enable(cqspi, 0);

	/* Configure the remap address register, no remap */
	writel(0, cqspi->iobase + CQSPI_REG_REMAP);

	/* Disable all interrupts. */
	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);

	/* Configure the SRAM split to 1:1 . */
	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);

	/* Load indirect trigger address. */
	writel(cqspi->trigger_address,
	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);

	/* Program read watermark -- 1/2 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
	/* Program write watermark -- 1/8 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);

1185 1186 1187 1188 1189
	/* Enable Direct Access Controller */
	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
	reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);

1190 1191 1192
	cqspi_controller_enable(cqspi, 1);
}

1193
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1194 1195 1196 1197 1198 1199 1200 1201
{
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_MEMCPY, mask);

	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
	if (IS_ERR(cqspi->rx_chan)) {
1202
		int ret = PTR_ERR(cqspi->rx_chan);
1203
		cqspi->rx_chan = NULL;
1204
		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1205 1206
	}
	init_completion(&cqspi->rx_dma_complete);
1207 1208

	return 0;
1209 1210
}

1211 1212 1213 1214 1215 1216 1217 1218
static const char *cqspi_get_name(struct spi_mem *mem)
{
	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
	struct device *dev = &cqspi->pdev->dev;

	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}

1219 1220
static const struct spi_controller_mem_ops cqspi_mem_ops = {
	.exec_op = cqspi_exec_mem_op,
1221
	.get_name = cqspi_get_name,
1222
	.supports_op = cqspi_supports_mem_op,
1223 1224
};

1225
static int cqspi_setup_flash(struct cqspi_st *cqspi)
1226 1227 1228
{
	struct platform_device *pdev = cqspi->pdev;
	struct device *dev = &pdev->dev;
1229
	struct device_node *np = dev->of_node;
1230 1231
	struct cqspi_flash_pdata *f_pdata;
	unsigned int cs;
1232
	int ret;
1233

1234 1235
	/* Get flash device data */
	for_each_available_child_of_node(dev->of_node, np) {
1236 1237
		ret = of_property_read_u32(np, "reg", &cs);
		if (ret) {
1238
			dev_err(dev, "Couldn't determine chip select.\n");
1239
			return ret;
1240 1241
		}

1242
		if (cs >= CQSPI_MAX_CHIPSELECT) {
1243
			dev_err(dev, "Chip select %d out of range.\n", cs);
1244
			return -EINVAL;
1245 1246 1247 1248 1249 1250 1251 1252
		}

		f_pdata = &cqspi->f_pdata[cs];
		f_pdata->cqspi = cqspi;
		f_pdata->cs = cs;

		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
		if (ret)
1253
			return ret;
1254 1255 1256 1257 1258 1259 1260
	}

	return 0;
}

static int cqspi_probe(struct platform_device *pdev)
{
1261 1262
	const struct cqspi_driver_platdata *ddata;
	struct reset_control *rstc, *rstc_ocp;
1263
	struct device *dev = &pdev->dev;
1264 1265
	struct spi_master *master;
	struct resource *res_ahb;
1266 1267 1268 1269 1270
	struct cqspi_st *cqspi;
	struct resource *res;
	int ret;
	int irq;

1271 1272 1273
	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
	if (!master) {
		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1274
		return -ENOMEM;
1275 1276 1277 1278 1279 1280
	}
	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
	master->mem_ops = &cqspi_mem_ops;
	master->dev.of_node = pdev->dev.of_node;

	cqspi = spi_master_get_devdata(master);
1281 1282 1283 1284

	cqspi->pdev = pdev;

	/* Obtain configuration from OF. */
1285
	ret = cqspi_of_get_pdata(cqspi);
1286 1287
	if (ret) {
		dev_err(dev, "Cannot get mandatory OF data.\n");
1288 1289
		ret = -ENODEV;
		goto probe_master_put;
1290 1291 1292 1293 1294 1295
	}

	/* Obtain QSPI clock. */
	cqspi->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(cqspi->clk)) {
		dev_err(dev, "Cannot claim QSPI clock.\n");
1296 1297
		ret = PTR_ERR(cqspi->clk);
		goto probe_master_put;
1298 1299 1300 1301 1302 1303 1304
	}

	/* Obtain and remap controller address. */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cqspi->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(cqspi->iobase)) {
		dev_err(dev, "Cannot remap controller address.\n");
1305 1306
		ret = PTR_ERR(cqspi->iobase);
		goto probe_master_put;
1307 1308 1309 1310 1311 1312 1313
	}

	/* Obtain and remap AHB address. */
	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
	if (IS_ERR(cqspi->ahb_base)) {
		dev_err(dev, "Cannot remap AHB address.\n");
1314 1315
		ret = PTR_ERR(cqspi->ahb_base);
		goto probe_master_put;
1316
	}
1317
	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1318
	cqspi->ahb_size = resource_size(res_ahb);
1319 1320 1321 1322 1323

	init_completion(&cqspi->transfer_complete);

	/* Obtain IRQ line. */
	irq = platform_get_irq(pdev, 0);
1324 1325 1326 1327
	if (irq < 0) {
		ret = -ENXIO;
		goto probe_master_put;
	}
1328

1329 1330 1331 1332
	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		pm_runtime_put_noidle(dev);
1333
		goto probe_master_put;
1334 1335
	}

1336 1337 1338
	ret = clk_prepare_enable(cqspi->clk);
	if (ret) {
		dev_err(dev, "Cannot enable QSPI clock.\n");
1339
		goto probe_clk_failed;
1340 1341
	}

1342 1343 1344
	/* Obtain QSPI reset control */
	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
	if (IS_ERR(rstc)) {
1345
		ret = PTR_ERR(rstc);
1346
		dev_err(dev, "Cannot get QSPI reset.\n");
1347
		goto probe_reset_failed;
1348 1349 1350 1351
	}

	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
	if (IS_ERR(rstc_ocp)) {
1352
		ret = PTR_ERR(rstc_ocp);
1353
		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1354
		goto probe_reset_failed;
1355 1356 1357 1358 1359 1360 1361 1362
	}

	reset_control_assert(rstc);
	reset_control_deassert(rstc);

	reset_control_assert(rstc_ocp);
	reset_control_deassert(rstc_ocp);

1363
	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1364
	master->max_speed_hz = cqspi->master_ref_clk_hz;
1365
	ddata  = of_device_get_match_data(dev);
1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (ddata) {
		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
			cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
						cqspi->master_ref_clk_hz);
		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
			master->mode_bits |= SPI_RX_OCTAL;
		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
			cqspi->use_direct_mode = true;
	}
1375 1376 1377 1378 1379

	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
			       pdev->name, cqspi);
	if (ret) {
		dev_err(dev, "Cannot request IRQ.\n");
1380
		goto probe_reset_failed;
1381 1382 1383 1384 1385 1386 1387
	}

	cqspi_wait_idle(cqspi);
	cqspi_controller_init(cqspi);
	cqspi->current_cs = -1;
	cqspi->sclk = 0;

1388
	ret = cqspi_setup_flash(cqspi);
1389
	if (ret) {
1390
		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1391 1392 1393
		goto probe_setup_failed;
	}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (cqspi->use_direct_mode) {
		ret = cqspi_request_mmap_dma(cqspi);
		if (ret == -EPROBE_DEFER)
			goto probe_setup_failed;
	}

	ret = devm_spi_register_master(dev, master);
	if (ret) {
		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
		goto probe_setup_failed;
	}

	return 0;
1407
probe_setup_failed:
1408
	cqspi_controller_enable(cqspi, 0);
1409
probe_reset_failed:
1410
	clk_disable_unprepare(cqspi->clk);
1411 1412 1413
probe_clk_failed:
	pm_runtime_put_sync(dev);
	pm_runtime_disable(dev);
1414 1415
probe_master_put:
	spi_master_put(master);
1416 1417 1418 1419 1420 1421 1422 1423 1424
	return ret;
}

static int cqspi_remove(struct platform_device *pdev)
{
	struct cqspi_st *cqspi = platform_get_drvdata(pdev);

	cqspi_controller_enable(cqspi, 0);

1425 1426 1427
	if (cqspi->rx_chan)
		dma_release_channel(cqspi->rx_chan);

1428 1429
	clk_disable_unprepare(cqspi->clk);

1430 1431 1432
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 0);
	return 0;
}

static int cqspi_resume(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 1);
	return 0;
}

static const struct dev_pm_ops cqspi__dev_pm_ops = {
	.suspend = cqspi_suspend,
	.resume = cqspi_resume,
};

#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS	NULL
#endif

1463
static const struct cqspi_driver_platdata cdns_qspi = {
1464
	.quirks = CQSPI_DISABLE_DAC_MODE,
1465 1466 1467 1468 1469 1470 1471
};

static const struct cqspi_driver_platdata k2g_qspi = {
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

static const struct cqspi_driver_platdata am654_ospi = {
1472
	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1473 1474 1475
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

1476
static const struct of_device_id cqspi_dt_ids[] = {
1477 1478
	{
		.compatible = "cdns,qspi-nor",
1479
		.data = &cdns_qspi,
1480 1481 1482
	},
	{
		.compatible = "ti,k2g-qspi",
1483 1484 1485 1486 1487
		.data = &k2g_qspi,
	},
	{
		.compatible = "ti,am654-ospi",
		.data = &am654_ospi,
1488
	},
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	{ /* end of table */ }
};

MODULE_DEVICE_TABLE(of, cqspi_dt_ids);

static struct platform_driver cqspi_platform_driver = {
	.probe = cqspi_probe,
	.remove = cqspi_remove,
	.driver = {
		.name = CQSPI_NAME,
		.pm = CQSPI_DEV_PM_OPS,
		.of_match_table = cqspi_dt_ids,
	},
};

module_platform_driver(cqspi_platform_driver);

MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1511 1512
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");