spi-cadence-quadspi.c 43.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com

9 10 11
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
12 13
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
14 15 16 17
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
18
#include <linux/iopoll.h>
19 20 21 22 23 24
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
25
#include <linux/pm_runtime.h>
26
#include <linux/reset.h>
27 28
#include <linux/sched.h>
#include <linux/spi/spi.h>
29
#include <linux/spi/spi-mem.h>
30 31 32 33 34
#include <linux/timer.h>

#define CQSPI_NAME			"cadence-qspi"
#define CQSPI_MAX_CHIPSELECT		16

35 36
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY		BIT(0)
37
#define CQSPI_DISABLE_DAC_MODE		BIT(1)
38

39 40
/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL		BIT(0)
41

42 43 44 45 46 47 48 49 50 51 52 53 54
struct cqspi_st;

struct cqspi_flash_pdata {
	struct cqspi_st	*cqspi;
	u32		clk_rate;
	u32		read_delay;
	u32		tshsl_ns;
	u32		tsd2d_ns;
	u32		tchsh_ns;
	u32		tslch_ns;
	u8		inst_width;
	u8		addr_width;
	u8		data_width;
55
	bool		dtr;
56 57 58 59 60 61 62 63 64 65 66
	u8		cs;
};

struct cqspi_st {
	struct platform_device	*pdev;

	struct clk		*clk;
	unsigned int		sclk;

	void __iomem		*iobase;
	void __iomem		*ahb_base;
67
	resource_size_t		ahb_size;
68 69
	struct completion	transfer_complete;

70 71 72 73
	struct dma_chan		*rx_chan;
	struct completion	rx_dma_complete;
	dma_addr_t		mmap_phys_base;

74 75 76 77 78
	int			current_cs;
	unsigned long		master_ref_clk_hz;
	bool			is_decoded_cs;
	u32			fifo_depth;
	u32			fifo_width;
79
	bool			rclk_en;
80
	u32			trigger_address;
81
	u32			wr_delay;
82
	bool			use_direct_mode;
83 84 85
	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};

86 87 88 89 90
struct cqspi_driver_platdata {
	u32 hwcaps_mask;
	u8 quirks;
};

91 92 93 94 95 96 97 98
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS			500
#define CQSPI_READ_TIMEOUT_MS			10

/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE			0
#define CQSPI_INST_TYPE_DUAL			1
#define CQSPI_INST_TYPE_QUAD			2
99
#define CQSPI_INST_TYPE_OCTAL			3
100 101 102 103 104 105 106 107 108 109

#define CQSPI_DUMMY_CLKS_PER_BYTE		8
#define CQSPI_DUMMY_BYTES_MAX			4
#define CQSPI_DUMMY_CLKS_MAX			31

#define CQSPI_STIG_DATA_LEN_MAX			8

/* Register map */
#define CQSPI_REG_CONFIG			0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
110
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
111 112 113 114
#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB		19
115 116
#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#define CQSPI_REG_CONFIG_IDLE_LSB		31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
#define CQSPI_REG_CONFIG_BAUD_MASK		0xF

#define CQSPI_REG_RD_INSTR			0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F

#define CQSPI_REG_WR_INSTR			0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16

#define CQSPI_REG_DELAY				0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB		0
#define CQSPI_REG_DELAY_TCHSH_LSB		8
#define CQSPI_REG_DELAY_TSD2D_LSB		16
#define CQSPI_REG_DELAY_TSHSL_LSB		24
#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF

#define CQSPI_REG_READCAPTURE			0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF

#define CQSPI_REG_SIZE				0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB		0
#define CQSPI_REG_SIZE_PAGE_LSB			4
#define CQSPI_REG_SIZE_BLOCK_LSB		16
#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F

#define CQSPI_REG_SRAMPARTITION			0x18
#define CQSPI_REG_INDIRECTTRIGGER		0x1C

#define CQSPI_REG_DMA				0x20
#define CQSPI_REG_DMA_SINGLE_LSB		0
#define CQSPI_REG_DMA_BURST_LSB			8
#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
#define CQSPI_REG_DMA_BURST_MASK		0xFF

#define CQSPI_REG_REMAP				0x24
#define CQSPI_REG_MODE_BIT			0x28

#define CQSPI_REG_SDRAMLEVEL			0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF

179 180 181
#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
#define CQSPI_REG_IRQSTATUS			0x40
#define CQSPI_REG_IRQMASK			0x44

#define CQSPI_REG_INDIRECTRD			0x60
#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
#define CQSPI_REG_INDIRECTRDBYTES		0x6C

#define CQSPI_REG_CMDCTRL			0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
197
#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
198 199 200 201 202 203 204 205 206 207
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
208
#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

#define CQSPI_REG_INDIRECTWR			0x70
#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
#define CQSPI_REG_INDIRECTWRBYTES		0x7C

#define CQSPI_REG_CMDADDRESS			0x94
#define CQSPI_REG_CMDREADDATALOWER		0xA0
#define CQSPI_REG_CMDREADDATAUPPER		0xA4
#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC

225 226 227 228 229 230 231 232
#define CQSPI_REG_POLLING_STATUS		0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16

#define CQSPI_REG_OP_EXT_LOWER			0xE0
#define CQSPI_REG_OP_EXT_READ_LSB		24
#define CQSPI_REG_OP_EXT_WRITE_LSB		16
#define CQSPI_REG_OP_EXT_STIG_LSB		0

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)

#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
					 CQSPI_REG_IRQ_IND_COMP)

#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
					 CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_UNDERFLOW)

#define CQSPI_IRQ_STATUS_MASK		0x1FFFF

253
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
254 255 256
{
	u32 val;

257 258 259
	return readl_relaxed_poll_timeout(reg, val,
					  (((clr ? ~val : val) & mask) == mask),
					  10, CQSPI_TIMEOUT_MS * 1000);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);

	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
}

static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);

	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}

static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
	struct cqspi_st *cqspi = dev;
	unsigned int irq_status;

	/* Read interrupt status */
	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);

	/* Clear interrupt */
	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);

	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;

	if (irq_status)
		complete(&cqspi->transfer_complete);

	return IRQ_HANDLED;
}

296
static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
297 298 299 300 301 302 303 304 305 306
{
	u32 rdreg = 0;

	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;

	return rdreg;
}

307
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
308 309 310
{
	unsigned int dummy_clk;

311
	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
312 313
	if (dtr)
		dummy_clk /= 2;
314 315 316 317

	return dummy_clk;
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
{
	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;

	switch (op->data.buswidth) {
	case 0:
		break;
	case 1:
		f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
		break;
	case 2:
		f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
		break;
	case 4:
		f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
		break;
	case 8:
		f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
		break;
	default:
		return -EINVAL;
	}

	/* Right now we only support 8-8-8 DTR mode. */
	if (f_pdata->dtr) {
		switch (op->cmd.buswidth) {
		case 0:
			break;
		case 8:
			f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
			break;
		default:
			return -EINVAL;
		}

		switch (op->addr.buswidth) {
		case 0:
			break;
		case 8:
			f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
			break;
		default:
			return -EINVAL;
		}

		switch (op->data.buswidth) {
		case 0:
			break;
		case 8:
			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
			break;
		default:
			return -EINVAL;
		}
	}

	return 0;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
	const unsigned int poll_idle_retry = 3;
	unsigned int count = 0;
	unsigned long timeout;

	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
	while (1) {
		/*
		 * Read few times in succession to ensure the controller
		 * is indeed idle, that is, the bit does not transition
		 * low again.
		 */
		if (cqspi_is_idle(cqspi))
			count++;
		else
			count = 0;

		if (count >= poll_idle_retry)
			return 0;

		if (time_after(jiffies, timeout)) {
			/* Timeout, in busy mode. */
			dev_err(&cqspi->pdev->dev,
				"QSPI is still busy after %dms timeout.\n",
				CQSPI_TIMEOUT_MS);
			return -ETIMEDOUT;
		}

		cpu_relax();
	}
}

static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
	void __iomem *reg_base = cqspi->iobase;
	int ret;

	/* Write the CMDCTRL without start execution. */
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
	/* Start execute */
	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);

	/* Polling for completion. */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
	if (ret) {
		dev_err(&cqspi->pdev->dev,
			"Flash command execution timed out.\n");
		return ret;
	}

	/* Polling QSPI idle status. */
	return cqspi_wait_idle(cqspi);
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
				  const struct spi_mem_op *op,
				  unsigned int shift)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	u8 ext;

	if (op->cmd.nbytes != 2)
		return -EINVAL;

	/* Opcode extension is the LSB. */
	ext = op->cmd.opcode & 0xff;

	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
	reg &= ~(0xff << shift);
	reg |= ext << shift;
	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);

	return 0;
}

static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op, unsigned int shift,
			    bool enable)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	int ret;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	/*
	 * We enable dual byte opcode here. The callers have to set up the
	 * extension opcode based on which type of operation it is.
	 */
	if (enable) {
		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;

		/* Set up command opcode extension. */
		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
		if (ret)
			return ret;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
	}

	writel(reg, reg_base + CQSPI_REG_CONFIG);

	return cqspi_wait_idle(cqspi);
}

494 495
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
496 497 498
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
499
	u8 *rxbuf = op->data.buf.in;
500
	u8 opcode;
501
	size_t n_rx = op->data.nbytes;
502 503
	unsigned int rdreg;
	unsigned int reg;
504
	unsigned int dummy_clk;
505
	size_t read_len;
506 507
	int status;

508 509 510 511 512 513 514 515 516
	status = cqspi_set_protocol(f_pdata, op);
	if (status)
		return status;

	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
				  f_pdata->dtr);
	if (status)
		return status;

517
	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
518
		dev_err(&cqspi->pdev->dev,
519
			"Invalid input argument, len %zu rxbuf 0x%p\n",
520 521 522 523
			n_rx, rxbuf);
		return -EINVAL;
	}

524 525 526 527 528
	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

529
	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
530

531
	rdreg = cqspi_calc_rdreg(f_pdata);
532 533
	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);

534
	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
535 536 537 538 539 540 541
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
		return -EOPNOTSUPP;

	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);

	/* 0 means 1 byte. */
	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
	status = cqspi_exec_flash_cmd(cqspi, reg);
	if (status)
		return status;

	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);

	/* Put the read value into rx_buf */
	read_len = (n_rx > 4) ? 4 : n_rx;
	memcpy(rxbuf, &reg, read_len);
	rxbuf += read_len;

	if (n_rx > 4) {
		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);

		read_len = n_rx - read_len;
		memcpy(rxbuf, &reg, read_len);
	}

	return 0;
}

568 569
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
			       const struct spi_mem_op *op)
570 571 572
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
573
	u8 opcode;
574 575
	const u8 *txbuf = op->data.buf.out;
	size_t n_tx = op->data.nbytes;
576 577
	unsigned int reg;
	unsigned int data;
578
	size_t write_len;
579 580 581 582 583 584 585 586 587 588
	int ret;

	ret = cqspi_set_protocol(f_pdata, op);
	if (ret)
		return ret;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
			       f_pdata->dtr);
	if (ret)
		return ret;
589

590
	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
591
		dev_err(&cqspi->pdev->dev,
592
			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
593 594 595 596
			n_tx, txbuf);
		return -EINVAL;
	}

597 598 599 600 601 602 603 604
	reg = cqspi_calc_rdreg(f_pdata);
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

605
	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
606 607 608 609 610 611 612 613 614 615

	if (op->addr.nbytes) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
		reg |= ((op->addr.nbytes - 1) &
			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;

		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
	}

616 617 618 619 620
	if (n_tx) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
		data = 0;
621 622 623
		write_len = (n_tx > 4) ? 4 : n_tx;
		memcpy(&data, txbuf, write_len);
		txbuf += write_len;
624 625
		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);

626 627 628 629 630 631 632
		if (n_tx > 4) {
			data = 0;
			write_len = n_tx - 4;
			memcpy(&data, txbuf, write_len);
			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
		}
	}
633 634 635 636

	return cqspi_exec_flash_cmd(cqspi, reg);
}

637 638
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op)
639 640 641 642 643
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int dummy_clk = 0;
	unsigned int reg;
644 645
	int ret;
	u8 opcode;
646

647 648 649 650 651 652 653 654 655 656 657
	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
			       f_pdata->dtr);
	if (ret)
		return ret;

	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
658
	reg |= cqspi_calc_rdreg(f_pdata);
659 660

	/* Setup dummy clock cycles */
661
	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
662

663
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
664
		return -EOPNOTSUPP;
665

666 667 668
	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
669 670 671 672 673 674

	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	/* Set address width */
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
675
	reg |= (op->addr.nbytes - 1);
676 677 678 679
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

680 681 682
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
				       u8 *rxbuf, loff_t from_addr,
				       const size_t n_rx)
683 684
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
685
	struct device *dev = &cqspi->pdev->dev;
686 687 688
	void __iomem *reg_base = cqspi->iobase;
	void __iomem *ahb_base = cqspi->ahb_base;
	unsigned int remaining = n_rx;
689
	unsigned int mod_bytes = n_rx % 4;
690
	unsigned int bytes_to_read = 0;
691
	u8 *rxbuf_end = rxbuf + n_rx;
692 693
	int ret = 0;

694
	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
695 696 697 698 699 700 701 702 703 704 705 706
	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTRD_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	while (remaining > 0) {
707
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
708
						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
709
			ret = -ETIMEDOUT;
710 711 712

		bytes_to_read = cqspi_get_rd_sram_level(cqspi);

713
		if (ret && bytes_to_read == 0) {
714
			dev_err(dev, "Indirect read timeout, no bytes\n");
715 716 717 718
			goto failrd;
		}

		while (bytes_to_read != 0) {
719 720
			unsigned int word_remain = round_down(remaining, 4);

721 722 723
			bytes_to_read *= cqspi->fifo_width;
			bytes_to_read = bytes_to_read > remaining ?
					remaining : bytes_to_read;
724 725 726 727 728 729 730 731 732 733 734 735 736
			bytes_to_read = round_down(bytes_to_read, 4);
			/* Read 4 byte word chunks then single bytes */
			if (bytes_to_read) {
				ioread32_rep(ahb_base, rxbuf,
					     (bytes_to_read / 4));
			} else if (!word_remain && mod_bytes) {
				unsigned int temp = ioread32(ahb_base);

				bytes_to_read = mod_bytes;
				memcpy(rxbuf, &temp, min((unsigned int)
							 (rxbuf_end - rxbuf),
							 bytes_to_read));
			}
737 738 739 740 741 742 743 744 745 746 747 748 749
			rxbuf += bytes_to_read;
			remaining -= bytes_to_read;
			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
		}

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
	if (ret) {
750
		dev_err(dev, "Indirect read completion error (%i)\n", ret);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		goto failrd;
	}

	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);

	return 0;

failrd:
	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);
	return ret;
}

772 773
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
			     const struct spi_mem_op *op)
774 775
{
	unsigned int reg;
776
	int ret;
777 778
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
779 780 781 782 783 784 785 786 787 788 789
	u8 opcode;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
			       f_pdata->dtr);
	if (ret)
		return ret;

	if (f_pdata->dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;
790 791

	/* Set opcode. */
792 793 794
	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
795
	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
796
	reg = cqspi_calc_rdreg(f_pdata);
797 798
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

799 800 801 802 803 804 805 806 807 808 809 810 811 812
	if (f_pdata->dtr) {
		/*
		 * Some flashes like the cypress Semper flash expect a 4-byte
		 * dummy address with the Read SR command in DTR mode, but this
		 * controller does not support sending address with the Read SR
		 * command. So, disable write completion polling on the
		 * controller's side. spi-nor will take care of polling the
		 * status register.
		 */
		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
	}

813 814
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
815
	reg |= (op->addr.nbytes - 1);
816 817 818 819
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

820 821 822
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
					loff_t to_addr, const u8 *txbuf,
					const size_t n_tx)
823 824
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
825
	struct device *dev = &cqspi->pdev->dev;
826 827 828 829 830
	void __iomem *reg_base = cqspi->iobase;
	unsigned int remaining = n_tx;
	unsigned int write_bytes;
	int ret;

831
	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
832 833 834 835 836 837 838 839 840 841
	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTWR_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
842 843 844 845 846 847 848 849 850
	/*
	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
	 * Controller programming sequence, couple of cycles of
	 * QSPI_REF_CLK delay is required for the above bit to
	 * be internally synchronized by the QSPI module. Provide 5
	 * cycles of delay.
	 */
	if (cqspi->wr_delay)
		ndelay(cqspi->wr_delay);
851 852

	while (remaining > 0) {
853 854
		size_t write_words, mod_bytes;

855
		write_bytes = remaining;
856 857 858 859 860 861 862 863 864 865 866 867 868 869
		write_words = write_bytes / 4;
		mod_bytes = write_bytes % 4;
		/* Write 4 bytes at a time then single bytes. */
		if (write_words) {
			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
			txbuf += (write_words * 4);
		}
		if (mod_bytes) {
			unsigned int temp = 0xFFFFFFFF;

			memcpy(&temp, txbuf, mod_bytes);
			iowrite32(temp, cqspi->ahb_base);
			txbuf += mod_bytes;
		}
870

871
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
872 873
						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
			dev_err(dev, "Indirect write timeout\n");
874 875 876 877 878 879 880 881 882 883 884 885 886 887
			ret = -ETIMEDOUT;
			goto failwr;
		}

		remaining -= write_bytes;

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
	if (ret) {
888
		dev_err(dev, "Indirect write completion error (%i)\n", ret);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		goto failwr;
	}

	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);

	cqspi_wait_idle(cqspi);

	return 0;

failwr:
	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect write */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
	return ret;
}

912
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int chip_select = f_pdata->cs;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	if (cqspi->is_decoded_cs) {
		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;

		/* Convert CS if without decoder.
		 * CS0 to 4b'1110
		 * CS1 to 4b'1101
		 * CS2 to 4b'1011
		 * CS3 to 4b'0111
		 */
		chip_select = 0xF & ~(1 << chip_select);
	}

	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
					   const unsigned int ns_val)
{
	unsigned int ticks;

	ticks = ref_clk_hz / 1000;	/* kHz */
	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);

	return ticks;
}

952
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *iobase = cqspi->iobase;
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	unsigned int tshsl, tchsh, tslch, tsd2d;
	unsigned int reg;
	unsigned int tsclk;

	/* calculate the number of ref ticks for one sclk tick */
	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);

	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
	/* this particular value must be at least one sclk */
	if (tshsl < tsclk)
		tshsl = tsclk;

	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);

	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
	       << CQSPI_REG_DELAY_TSHSL_LSB;
	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
		<< CQSPI_REG_DELAY_TCHSH_LSB;
	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
		<< CQSPI_REG_DELAY_TSLCH_LSB;
	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
		<< CQSPI_REG_DELAY_TSD2D_LSB;
	writel(reg, iobase + CQSPI_REG_DELAY);
}

static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	void __iomem *reg_base = cqspi->iobase;
	u32 reg, div;

	/* Recalculate the baudrate divisor based on QSPI specification. */
	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1000
				   const bool bypass,
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
				   const unsigned int delay)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_READCAPTURE);

	if (bypass)
		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
	else
		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);

	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
		 << CQSPI_REG_READCAPTURE_DELAY_LSB);

	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
		<< CQSPI_REG_READCAPTURE_DELAY_LSB;

	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}

static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	if (enable)
		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
	else
		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;

	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

1037 1038
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
			    unsigned long sclk)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	int switch_cs = (cqspi->current_cs != f_pdata->cs);
	int switch_ck = (cqspi->sclk != sclk);

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 0);

	/* Switch chip select. */
	if (switch_cs) {
		cqspi->current_cs = f_pdata->cs;
1050
		cqspi_chipselect(f_pdata);
1051 1052 1053 1054 1055 1056
	}

	/* Setup baudrate divisor and delays */
	if (switch_ck) {
		cqspi->sclk = sclk;
		cqspi_config_baudrate_div(cqspi);
1057
		cqspi_delay(f_pdata);
1058 1059
		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
				       f_pdata->read_delay);
1060 1061 1062 1063 1064 1065
	}

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 1);
}

1066 1067
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
			   const struct spi_mem_op *op)
1068
{
1069
	struct cqspi_st *cqspi = f_pdata->cqspi;
1070 1071 1072
	loff_t to = op->addr.val;
	size_t len = op->data.nbytes;
	const u_char *buf = op->data.buf.out;
1073 1074
	int ret;

1075
	ret = cqspi_set_protocol(f_pdata, op);
1076 1077 1078
	if (ret)
		return ret;

1079
	ret = cqspi_write_setup(f_pdata, op);
1080 1081 1082
	if (ret)
		return ret;

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	/*
	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
	 * address (all 0s) with the read status register command in DTR mode.
	 * But this controller does not support sending dummy address bytes to
	 * the flash when it is polling the write completion register in DTR
	 * mode. So, we can not use direct mode when in DTR mode for writing
	 * data.
	 */
	if (!f_pdata->dtr && cqspi->use_direct_mode &&
	    ((to + len) <= cqspi->ahb_size)) {
1093
		memcpy_toio(cqspi->ahb_base + to, buf, len);
1094
		return cqspi_wait_idle(cqspi);
1095
	}
1096

1097
	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1098 1099
}

1100 1101 1102 1103 1104 1105 1106
static void cqspi_rx_dma_callback(void *param)
{
	struct cqspi_st *cqspi = param;

	complete(&cqspi->rx_dma_complete);
}

1107 1108
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
				     u_char *buf, loff_t from, size_t len)
1109 1110
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
1111
	struct device *dev = &cqspi->pdev->dev;
1112 1113 1114 1115 1116 1117
	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
	int ret = 0;
	struct dma_async_tx_descriptor *tx;
	dma_cookie_t cookie;
	dma_addr_t dma_dst;
1118
	struct device *ddev;
1119 1120 1121 1122 1123 1124

	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
		memcpy_fromio(buf, cqspi->ahb_base + from, len);
		return 0;
	}

1125 1126 1127
	ddev = cqspi->rx_chan->device->dev;
	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
	if (dma_mapping_error(ddev, dma_dst)) {
1128
		dev_err(dev, "dma mapping failed\n");
1129 1130 1131 1132 1133
		return -ENOMEM;
	}
	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
				       len, flags);
	if (!tx) {
1134
		dev_err(dev, "device_prep_dma_memcpy error\n");
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		ret = -EIO;
		goto err_unmap;
	}

	tx->callback = cqspi_rx_dma_callback;
	tx->callback_param = cqspi;
	cookie = tx->tx_submit(tx);
	reinit_completion(&cqspi->rx_dma_complete);

	ret = dma_submit_error(cookie);
	if (ret) {
1146
		dev_err(dev, "dma_submit_error %d\n", cookie);
1147 1148 1149 1150 1151
		ret = -EIO;
		goto err_unmap;
	}

	dma_async_issue_pending(cqspi->rx_chan);
1152
	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1153
					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1154
		dmaengine_terminate_sync(cqspi->rx_chan);
1155
		dev_err(dev, "DMA wait_for_completion_timeout\n");
1156 1157 1158 1159 1160
		ret = -ETIMEDOUT;
		goto err_unmap;
	}

err_unmap:
1161
	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1162

1163
	return ret;
1164 1165
}

1166 1167
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
			  const struct spi_mem_op *op)
1168
{
1169 1170 1171 1172
	struct cqspi_st *cqspi = f_pdata->cqspi;
	loff_t from = op->addr.val;
	size_t len = op->data.nbytes;
	u_char *buf = op->data.buf.in;
1173 1174
	int ret;

1175
	ret = cqspi_set_protocol(f_pdata, op);
1176 1177 1178
	if (ret)
		return ret;

1179
	ret = cqspi_read_setup(f_pdata, op);
1180 1181 1182
	if (ret)
		return ret;

1183 1184
	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1185

1186
	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1187 1188
}

1189
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1190
{
1191 1192
	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
	struct cqspi_flash_pdata *f_pdata;
1193

1194 1195
	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1196

1197 1198 1199
	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
		if (!op->addr.nbytes)
			return cqspi_command_read(f_pdata, op);
1200

1201 1202
		return cqspi_read(f_pdata, op);
	}
1203

1204 1205
	if (!op->addr.nbytes || !op->data.buf.out)
		return cqspi_command_write(f_pdata, op);
1206

1207
	return cqspi_write(f_pdata, op);
1208 1209
}

1210
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1211 1212 1213
{
	int ret;

1214 1215 1216
	ret = cqspi_mem_process(mem, op);
	if (ret)
		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1217 1218 1219 1220

	return ret;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static int cqspi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
{
	u32 mode = mem->spi->mode;

	switch (buswidth) {
	case 1:
		return 0;

	case 2:
		if ((tx &&
		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
		    (!tx &&
		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
			return 0;

		break;

	case 4:
		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
			return 0;

		break;

	case 8:
		if ((tx && (mode & SPI_TX_OCTAL)) ||
		    (!tx && (mode & SPI_RX_OCTAL)))
			return 0;

		break;

	default:
		break;
	}

	return -EOPNOTSUPP;
}

static bool cqspi_supports_mem_op(struct spi_mem *mem,
				  const struct spi_mem_op *op)
{
1262 1263
	bool all_true, all_false;

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (cqspi_check_buswidth_req(mem, op->cmd.buswidth, true))
		return false;

	if (op->addr.nbytes &&
	    cqspi_check_buswidth_req(mem, op->addr.buswidth, true))
		return false;

	if (op->dummy.nbytes &&
	    cqspi_check_buswidth_req(mem, op->dummy.buswidth, true))
		return false;

	if (op->data.nbytes &&
	    cqspi_check_buswidth_req(mem, op->data.buswidth,
				     op->data.dir == SPI_MEM_DATA_OUT))
		return false;

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
		   op->data.dtr;
	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
		    !op->data.dtr;

	/* Mixed DTR modes not supported. */
	if (!(all_true || all_false))
		return false;

	/* DTR mode opcodes should be 2 bytes. */
	if (all_true && op->cmd.nbytes != 2)
		return false;

1293 1294 1295
	return true;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
				    struct cqspi_flash_pdata *f_pdata,
				    struct device_node *np)
{
	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
		dev_err(&pdev->dev, "couldn't determine read-delay\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
		return -ENXIO;
	}

	return 0;
}

1333
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1334
{
1335 1336
	struct device *dev = &cqspi->pdev->dev;
	struct device_node *np = dev->of_node;
1337 1338 1339 1340

	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");

	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1341
		dev_err(dev, "couldn't determine fifo-depth\n");
1342 1343 1344 1345
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1346
		dev_err(dev, "couldn't determine fifo-width\n");
1347 1348 1349 1350 1351
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,trigger-address",
				 &cqspi->trigger_address)) {
1352
		dev_err(dev, "couldn't determine trigger-address\n");
1353 1354 1355
		return -ENXIO;
	}

1356 1357
	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");

1358 1359 1360 1361 1362
	return 0;
}

static void cqspi_controller_init(struct cqspi_st *cqspi)
{
1363 1364
	u32 reg;

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	cqspi_controller_enable(cqspi, 0);

	/* Configure the remap address register, no remap */
	writel(0, cqspi->iobase + CQSPI_REG_REMAP);

	/* Disable all interrupts. */
	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);

	/* Configure the SRAM split to 1:1 . */
	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);

	/* Load indirect trigger address. */
	writel(cqspi->trigger_address,
	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);

	/* Program read watermark -- 1/2 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
	/* Program write watermark -- 1/8 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);

1387 1388 1389 1390 1391 1392
	/* Disable direct access controller */
	if (!cqspi->use_direct_mode) {
		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
	}
1393

1394 1395 1396
	cqspi_controller_enable(cqspi, 1);
}

1397
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1398 1399 1400 1401 1402 1403 1404 1405
{
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_MEMCPY, mask);

	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
	if (IS_ERR(cqspi->rx_chan)) {
1406
		int ret = PTR_ERR(cqspi->rx_chan);
1407
		cqspi->rx_chan = NULL;
1408
		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1409 1410
	}
	init_completion(&cqspi->rx_dma_complete);
1411 1412

	return 0;
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422
static const char *cqspi_get_name(struct spi_mem *mem)
{
	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
	struct device *dev = &cqspi->pdev->dev;

	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}

1423 1424
static const struct spi_controller_mem_ops cqspi_mem_ops = {
	.exec_op = cqspi_exec_mem_op,
1425
	.get_name = cqspi_get_name,
1426
	.supports_op = cqspi_supports_mem_op,
1427 1428
};

1429
static int cqspi_setup_flash(struct cqspi_st *cqspi)
1430 1431 1432
{
	struct platform_device *pdev = cqspi->pdev;
	struct device *dev = &pdev->dev;
1433
	struct device_node *np = dev->of_node;
1434 1435
	struct cqspi_flash_pdata *f_pdata;
	unsigned int cs;
1436
	int ret;
1437

1438 1439
	/* Get flash device data */
	for_each_available_child_of_node(dev->of_node, np) {
1440 1441
		ret = of_property_read_u32(np, "reg", &cs);
		if (ret) {
1442
			dev_err(dev, "Couldn't determine chip select.\n");
1443
			return ret;
1444 1445
		}

1446
		if (cs >= CQSPI_MAX_CHIPSELECT) {
1447
			dev_err(dev, "Chip select %d out of range.\n", cs);
1448
			return -EINVAL;
1449 1450 1451 1452 1453 1454 1455 1456
		}

		f_pdata = &cqspi->f_pdata[cs];
		f_pdata->cqspi = cqspi;
		f_pdata->cs = cs;

		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
		if (ret)
1457
			return ret;
1458 1459 1460 1461 1462 1463 1464
	}

	return 0;
}

static int cqspi_probe(struct platform_device *pdev)
{
1465 1466
	const struct cqspi_driver_platdata *ddata;
	struct reset_control *rstc, *rstc_ocp;
1467
	struct device *dev = &pdev->dev;
1468 1469
	struct spi_master *master;
	struct resource *res_ahb;
1470 1471 1472 1473 1474
	struct cqspi_st *cqspi;
	struct resource *res;
	int ret;
	int irq;

1475 1476 1477
	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
	if (!master) {
		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1478
		return -ENOMEM;
1479 1480 1481 1482 1483 1484
	}
	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
	master->mem_ops = &cqspi_mem_ops;
	master->dev.of_node = pdev->dev.of_node;

	cqspi = spi_master_get_devdata(master);
1485 1486 1487 1488

	cqspi->pdev = pdev;

	/* Obtain configuration from OF. */
1489
	ret = cqspi_of_get_pdata(cqspi);
1490 1491
	if (ret) {
		dev_err(dev, "Cannot get mandatory OF data.\n");
1492 1493
		ret = -ENODEV;
		goto probe_master_put;
1494 1495 1496 1497 1498 1499
	}

	/* Obtain QSPI clock. */
	cqspi->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(cqspi->clk)) {
		dev_err(dev, "Cannot claim QSPI clock.\n");
1500 1501
		ret = PTR_ERR(cqspi->clk);
		goto probe_master_put;
1502 1503 1504 1505 1506 1507 1508
	}

	/* Obtain and remap controller address. */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cqspi->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(cqspi->iobase)) {
		dev_err(dev, "Cannot remap controller address.\n");
1509 1510
		ret = PTR_ERR(cqspi->iobase);
		goto probe_master_put;
1511 1512 1513 1514 1515 1516 1517
	}

	/* Obtain and remap AHB address. */
	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
	if (IS_ERR(cqspi->ahb_base)) {
		dev_err(dev, "Cannot remap AHB address.\n");
1518 1519
		ret = PTR_ERR(cqspi->ahb_base);
		goto probe_master_put;
1520
	}
1521
	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1522
	cqspi->ahb_size = resource_size(res_ahb);
1523 1524 1525 1526 1527

	init_completion(&cqspi->transfer_complete);

	/* Obtain IRQ line. */
	irq = platform_get_irq(pdev, 0);
1528 1529 1530 1531
	if (irq < 0) {
		ret = -ENXIO;
		goto probe_master_put;
	}
1532

1533 1534 1535 1536
	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		pm_runtime_put_noidle(dev);
1537
		goto probe_master_put;
1538 1539
	}

1540 1541 1542
	ret = clk_prepare_enable(cqspi->clk);
	if (ret) {
		dev_err(dev, "Cannot enable QSPI clock.\n");
1543
		goto probe_clk_failed;
1544 1545
	}

1546 1547 1548
	/* Obtain QSPI reset control */
	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
	if (IS_ERR(rstc)) {
1549
		ret = PTR_ERR(rstc);
1550
		dev_err(dev, "Cannot get QSPI reset.\n");
1551
		goto probe_reset_failed;
1552 1553 1554 1555
	}

	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
	if (IS_ERR(rstc_ocp)) {
1556
		ret = PTR_ERR(rstc_ocp);
1557
		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1558
		goto probe_reset_failed;
1559 1560 1561 1562 1563 1564 1565 1566
	}

	reset_control_assert(rstc);
	reset_control_deassert(rstc);

	reset_control_assert(rstc_ocp);
	reset_control_deassert(rstc_ocp);

1567
	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1568
	master->max_speed_hz = cqspi->master_ref_clk_hz;
1569
	ddata  = of_device_get_match_data(dev);
1570 1571
	if (ddata) {
		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1572
			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1573 1574
						cqspi->master_ref_clk_hz);
		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1575
			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1576 1577 1578
		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
			cqspi->use_direct_mode = true;
	}
1579 1580 1581 1582 1583

	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
			       pdev->name, cqspi);
	if (ret) {
		dev_err(dev, "Cannot request IRQ.\n");
1584
		goto probe_reset_failed;
1585 1586 1587 1588 1589 1590 1591
	}

	cqspi_wait_idle(cqspi);
	cqspi_controller_init(cqspi);
	cqspi->current_cs = -1;
	cqspi->sclk = 0;

1592
	ret = cqspi_setup_flash(cqspi);
1593
	if (ret) {
1594
		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1595 1596 1597
		goto probe_setup_failed;
	}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (cqspi->use_direct_mode) {
		ret = cqspi_request_mmap_dma(cqspi);
		if (ret == -EPROBE_DEFER)
			goto probe_setup_failed;
	}

	ret = devm_spi_register_master(dev, master);
	if (ret) {
		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
		goto probe_setup_failed;
	}

	return 0;
1611
probe_setup_failed:
1612
	cqspi_controller_enable(cqspi, 0);
1613
probe_reset_failed:
1614
	clk_disable_unprepare(cqspi->clk);
1615 1616 1617
probe_clk_failed:
	pm_runtime_put_sync(dev);
	pm_runtime_disable(dev);
1618 1619
probe_master_put:
	spi_master_put(master);
1620 1621 1622 1623 1624 1625 1626 1627 1628
	return ret;
}

static int cqspi_remove(struct platform_device *pdev)
{
	struct cqspi_st *cqspi = platform_get_drvdata(pdev);

	cqspi_controller_enable(cqspi, 0);

1629 1630 1631
	if (cqspi->rx_chan)
		dma_release_channel(cqspi->rx_chan);

1632 1633
	clk_disable_unprepare(cqspi->clk);

1634 1635 1636
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 0);
	return 0;
}

static int cqspi_resume(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 1);
	return 0;
}

static const struct dev_pm_ops cqspi__dev_pm_ops = {
	.suspend = cqspi_suspend,
	.resume = cqspi_resume,
};

#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS	NULL
#endif

1667
static const struct cqspi_driver_platdata cdns_qspi = {
1668
	.quirks = CQSPI_DISABLE_DAC_MODE,
1669 1670 1671 1672 1673 1674 1675
};

static const struct cqspi_driver_platdata k2g_qspi = {
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

static const struct cqspi_driver_platdata am654_ospi = {
1676
	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1677 1678 1679
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

1680 1681 1682 1683
static const struct cqspi_driver_platdata intel_lgm_qspi = {
	.quirks = CQSPI_DISABLE_DAC_MODE,
};

1684
static const struct of_device_id cqspi_dt_ids[] = {
1685 1686
	{
		.compatible = "cdns,qspi-nor",
1687
		.data = &cdns_qspi,
1688 1689 1690
	},
	{
		.compatible = "ti,k2g-qspi",
1691 1692 1693 1694 1695
		.data = &k2g_qspi,
	},
	{
		.compatible = "ti,am654-ospi",
		.data = &am654_ospi,
1696
	},
1697 1698
	{
		.compatible = "intel,lgm-qspi",
1699
		.data = &intel_lgm_qspi,
1700
	},
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	{ /* end of table */ }
};

MODULE_DEVICE_TABLE(of, cqspi_dt_ids);

static struct platform_driver cqspi_platform_driver = {
	.probe = cqspi_probe,
	.remove = cqspi_remove,
	.driver = {
		.name = CQSPI_NAME,
		.pm = CQSPI_DEV_PM_OPS,
		.of_match_table = cqspi_dt_ids,
	},
};

module_platform_driver(cqspi_platform_driver);

MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1723 1724
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1725
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");