delayed-inode.c 50.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 */

#include <linux/slab.h>
8
#include <linux/iversion.h>
9 10 11
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
12
#include "ctree.h"
13
#include "qgroup.h"
14

15 16 17
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
18 19 20 21 22

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
23
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 25
					sizeof(struct btrfs_delayed_node),
					0,
26
					SLAB_MEM_SPREAD,
27 28 29 30 31 32
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

33
void __cold btrfs_delayed_inode_exit(void)
34
{
35
	kmem_cache_destroy(delayed_node_cache);
36 37 38 39 40 41 42 43
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
44
	refcount_set(&delayed_node->refs, 0);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

64 65
static struct btrfs_delayed_node *btrfs_get_delayed_node(
		struct btrfs_inode *btrfs_inode)
66 67
{
	struct btrfs_root *root = btrfs_inode->root;
68
	u64 ino = btrfs_ino(btrfs_inode);
69
	struct btrfs_delayed_node *node;
70

S
Seraphime Kirkovski 已提交
71
	node = READ_ONCE(btrfs_inode->delayed_node);
72
	if (node) {
73
		refcount_inc(&node->refs);
74 75 76 77
		return node;
	}

	spin_lock(&root->inode_lock);
78
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79

80 81
	if (node) {
		if (btrfs_inode->delayed_node) {
82
			refcount_inc(&node->refs);	/* can be accessed */
83
			BUG_ON(btrfs_inode->delayed_node != node);
84
			spin_unlock(&root->inode_lock);
85
			return node;
86
		}
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

		/*
		 * It's possible that we're racing into the middle of removing
		 * this node from the radix tree.  In this case, the refcount
		 * was zero and it should never go back to one.  Just return
		 * NULL like it was never in the radix at all; our release
		 * function is in the process of removing it.
		 *
		 * Some implementations of refcount_inc refuse to bump the
		 * refcount once it has hit zero.  If we don't do this dance
		 * here, refcount_inc() may decide to just WARN_ONCE() instead
		 * of actually bumping the refcount.
		 *
		 * If this node is properly in the radix, we want to bump the
		 * refcount twice, once for the inode and once for this get
		 * operation.
		 */
		if (refcount_inc_not_zero(&node->refs)) {
			refcount_inc(&node->refs);
			btrfs_inode->delayed_node = node;
		} else {
			node = NULL;
		}

111 112 113 114 115
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

116 117 118
	return NULL;
}

119
/* Will return either the node or PTR_ERR(-ENOMEM) */
120
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121
		struct btrfs_inode *btrfs_inode)
122 123 124
{
	struct btrfs_delayed_node *node;
	struct btrfs_root *root = btrfs_inode->root;
125
	u64 ino = btrfs_ino(btrfs_inode);
126 127 128
	int ret;

again:
129
	node = btrfs_get_delayed_node(btrfs_inode);
130 131 132
	if (node)
		return node;

133
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 135
	if (!node)
		return ERR_PTR(-ENOMEM);
136
	btrfs_init_delayed_node(node, root, ino);
137

138
	/* cached in the btrfs inode and can be accessed */
139
	refcount_set(&node->refs, 2);
140

141
	ret = radix_tree_preload(GFP_NOFS);
142 143 144 145 146 147
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
148
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 150
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
151
		kmem_cache_free(delayed_node_cache, node);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
172
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 174 175 176 177 178 179
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
180
		refcount_inc(&node->refs);	/* inserted into list */
181
		root->nodes++;
182
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 184 185 186 187 188 189 190 191
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
192
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193
		root->nodes--;
194
		refcount_dec(&node->refs);	/* not in the list */
195 196 197
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
198
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 200 201 202
	}
	spin_unlock(&root->lock);
}

203
static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 205 206 207 208 209 210 211 212 213 214
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
215
	refcount_inc(&node->refs);
216 217 218 219 220 221
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

222
static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 224 225 226 227 228 229 230
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
231 232
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
233 234 235 236 237 238 239 240 241
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
242
	refcount_inc(&next->refs);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

267
	if (refcount_dec_and_test(&delayed_node->refs)) {
268
		struct btrfs_root *root = delayed_node->root;
269

270
		spin_lock(&root->inode_lock);
271 272 273 274 275 276 277
		/*
		 * Once our refcount goes to zero, nobody is allowed to bump it
		 * back up.  We can delete it now.
		 */
		ASSERT(refcount_read(&delayed_node->refs) == 0);
		radix_tree_delete(&root->delayed_nodes_tree,
				  delayed_node->inode_id);
278
		spin_unlock(&root->inode_lock);
279
		kmem_cache_free(delayed_node_cache, delayed_node);
280 281 282 283 284 285 286 287
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

288
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 290 291 292 293 294 295 296 297 298 299 300
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
301
	refcount_inc(&node->refs);
302 303 304 305 306 307 308 309 310 311 312 313
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

314
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 316 317 318 319 320 321 322
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
323
		refcount_set(&item->refs, 1);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

389
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 391 392
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
393
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

459 460 461
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
462

463
	/* atomic_dec_return implies a barrier */
464
	if ((atomic_dec_return(&delayed_root->items) <
465 466
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
		cond_wake_up_nomb(&delayed_root->wait);
467 468
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
487 488

	finish_one_item(delayed_root);
489 490 491 492 493 494
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
495
		if (refcount_dec_and_test(&item->refs))
496 497 498 499
			kfree(item);
	}
}

500
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501 502 503 504 505 506 507 508 509 510 511 512
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

513
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514 515 516 517 518 519 520 521 522 523 524 525
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

526
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527 528 529 530 531 532 533 534 535 536 537 538 539
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
540
					       struct btrfs_root *root,
541 542 543 544
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
545
	struct btrfs_fs_info *fs_info = root->fs_info;
546 547 548 549 550 551 552
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
553
	dst_rsv = &fs_info->delayed_block_rsv;
554

555
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
556 557 558 559 560 561

	/*
	 * Here we migrate space rsv from transaction rsv, since have already
	 * reserved space when starting a transaction.  So no need to reserve
	 * qgroup space here.
	 */
562
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
563
	if (!ret) {
564
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
565 566
					      item->key.objectid,
					      num_bytes, 1);
567
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
568
	}
569 570 571 572

	return ret;
}

573
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
574 575
						struct btrfs_delayed_item *item)
{
576
	struct btrfs_block_rsv *rsv;
577
	struct btrfs_fs_info *fs_info = root->fs_info;
578

579 580 581
	if (!item->bytes_reserved)
		return;

582
	rsv = &fs_info->delayed_block_rsv;
583 584 585 586
	/*
	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
	 * to release/reserve qgroup space.
	 */
587
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
588 589
				      item->key.objectid, item->bytes_reserved,
				      0);
590
	btrfs_block_rsv_release(fs_info, rsv,
591 592 593 594 595 596
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
597
					struct btrfs_inode *inode,
598 599
					struct btrfs_delayed_node *node)
{
600
	struct btrfs_fs_info *fs_info = root->fs_info;
601 602 603 604 605 606
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	src_rsv = trans->block_rsv;
607
	dst_rsv = &fs_info->delayed_block_rsv;
608

609
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
610 611 612 613 614 615 616 617

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
618
	 * we always reserve enough to update the inode item.
619
	 */
620
	if (!src_rsv || (!trans->bytes_reserved &&
621
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
622 623 624 625
		ret = btrfs_qgroup_reserve_meta_prealloc(root,
				fs_info->nodesize, true);
		if (ret < 0)
			return ret;
M
Miao Xie 已提交
626 627
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
628 629 630 631 632 633
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
634
		if (ret == -EAGAIN) {
635
			ret = -ENOSPC;
636 637
			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
		}
J
Josef Bacik 已提交
638
		if (!ret) {
639
			node->bytes_reserved = num_bytes;
640
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
641
						      "delayed_inode",
642
						      btrfs_ino(inode),
J
Josef Bacik 已提交
643
						      num_bytes, 1);
644 645
		} else {
			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
J
Josef Bacik 已提交
646
		}
647 648 649
		return ret;
	}

650
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
651
	if (!ret) {
652
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
653
					      btrfs_ino(inode), num_bytes, 1);
654
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
655
	}
656 657 658 659

	return ret;
}

660
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
661 662
						struct btrfs_delayed_node *node,
						bool qgroup_free)
663 664 665 666 667 668
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

669 670
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
671
				      node->inode_id, node->bytes_reserved, 0);
672
	btrfs_block_rsv_release(fs_info, rsv,
673
				node->bytes_reserved);
674 675 676 677 678 679
	if (qgroup_free)
		btrfs_qgroup_free_meta_prealloc(node->root,
				node->bytes_reserved);
	else
		btrfs_qgroup_convert_reserved_meta(node->root,
				node->bytes_reserved);
680 681 682 683 684 685 686
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
687 688 689
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
690
{
691
	struct btrfs_fs_info *fs_info = root->fs_info;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
708
	free_space = btrfs_leaf_free_space(fs_info, leaf);
709 710 711
	INIT_LIST_HEAD(&head);

	next = item;
712
	nitems = 0;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

745
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
746 747 748 749 750
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

751
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
752 753 754 755 756 757 758 759 760 761 762 763 764 765
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
766
	btrfs_clear_path_blocking(path, NULL, 0);
767 768

	/* insert the keys of the items */
769
	setup_items_for_insert(root, path, keys, data_size,
770
			       total_data_size, total_size, nitems);
771 772 773 774 775 776 777 778 779 780

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

781
		btrfs_delayed_item_release_metadata(root, curr);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

820
	btrfs_delayed_item_release_metadata(root, delayed_item);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
844
		btrfs_release_path(path);
845 846 847 848 849 850 851 852
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
853
		btrfs_batch_insert_items(root, path, curr);
854 855 856 857
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

858
	btrfs_release_path(path);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
921
		btrfs_delayed_item_release_metadata(root, curr);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
956
		btrfs_release_path(path);
957 958
		if (curr) {
			mutex_unlock(&node->mutex);
959
			goto do_again;
960
		} else
961 962 963 964
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
965
	btrfs_release_path(path);
966 967 968 969
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
970
	btrfs_release_path(path);
971 972 973 974 975 976 977 978
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

979 980
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981
		BUG_ON(!delayed_node->root);
982
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983 984 985
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
986
		finish_one_item(delayed_root);
987 988 989
	}
}

990 991 992 993 994 995 996 997 998 999 1000 1001
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1002 1003 1004 1005
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1006
{
1007
	struct btrfs_fs_info *fs_info = root->fs_info;
1008 1009 1010
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1011
	int mod;
1012 1013 1014
	int ret;

	key.objectid = node->inode_id;
1015
	key.type = BTRFS_INODE_ITEM_KEY;
1016
	key.offset = 0;
1017

1018 1019 1020 1021 1022 1023
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1024
	if (ret > 0) {
1025
		btrfs_release_path(path);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1064
	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1065 1066
	btrfs_release_delayed_inode(node);

1067 1068 1069 1070 1071
	return ret;

search:
	btrfs_release_path(path);

1072
	key.type = BTRFS_INODE_EXTREF_KEY;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1093
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1094 1095 1096 1097 1098 1099 1100 1101 1102
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1122 1123 1124 1125 1126 1127
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1128
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1129
{
1130
	struct btrfs_fs_info *fs_info = trans->fs_info;
1131 1132 1133
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1134
	struct btrfs_block_rsv *block_rsv;
1135
	int ret = 0;
1136
	bool count = (nr > 0);
1137

1138 1139 1140
	if (trans->aborted)
		return -EIO;

1141 1142 1143 1144 1145
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1146
	block_rsv = trans->block_rsv;
1147
	trans->block_rsv = &fs_info->delayed_block_rsv;
1148

1149
	delayed_root = fs_info->delayed_root;
1150 1151

	curr_node = btrfs_first_delayed_node(delayed_root);
1152
	while (curr_node && (!count || (count && nr--))) {
1153 1154
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1155 1156
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1157
			curr_node = NULL;
1158
			btrfs_abort_transaction(trans, ret);
1159 1160 1161 1162 1163 1164 1165 1166
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1167 1168
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1169
	btrfs_free_path(path);
1170
	trans->block_rsv = block_rsv;
1171

1172 1173 1174
	return ret;
}

1175
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176
{
1177
	return __btrfs_run_delayed_items(trans, -1);
1178 1179
}

1180
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181
{
1182
	return __btrfs_run_delayed_items(trans, nr);
1183 1184
}

1185
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186
				     struct btrfs_inode *inode)
1187
{
1188
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 1190
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1204
	path = btrfs_alloc_path();
1205 1206
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1207
		return -ENOMEM;
1208
	}
1209 1210 1211 1212 1213 1214 1215
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1216
	btrfs_release_delayed_node(delayed_node);
1217 1218 1219
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1220 1221 1222
	return ret;
}

1223
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1224
{
1225
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1226
	struct btrfs_trans_handle *trans;
1227
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1228 1229 1230 1231 1232 1233 1234 1235
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1236
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1257
	trans->block_rsv = &fs_info->delayed_block_rsv;
1258 1259

	mutex_lock(&delayed_node->mutex);
1260
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1261 1262 1263 1264 1265 1266 1267 1268 1269
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1270
	btrfs_end_transaction(trans);
1271
	btrfs_btree_balance_dirty(fs_info);
1272 1273 1274 1275 1276 1277
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1278
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1279 1280 1281
{
	struct btrfs_delayed_node *delayed_node;

1282
	delayed_node = READ_ONCE(inode->delayed_node);
1283 1284 1285
	if (!delayed_node)
		return;

1286
	inode->delayed_node = NULL;
1287 1288 1289
	btrfs_release_delayed_node(delayed_node);
}

1290 1291 1292
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1293
	struct btrfs_work work;
1294 1295
};

1296
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1297
{
1298 1299
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1300 1301 1302 1303
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1304
	struct btrfs_block_rsv *block_rsv;
1305
	int total_done = 0;
1306

1307 1308
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1309 1310 1311 1312 1313

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1314 1315 1316 1317
	do {
		if (atomic_read(&delayed_root->items) <
		    BTRFS_DELAYED_BACKGROUND / 2)
			break;
1318

1319 1320 1321
		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
		if (!delayed_node)
			break;
1322

1323 1324
		path->leave_spinning = 1;
		root = delayed_node->root;
1325

1326 1327 1328 1329 1330 1331 1332
		trans = btrfs_join_transaction(root);
		if (IS_ERR(trans)) {
			btrfs_release_path(path);
			btrfs_release_prepared_delayed_node(delayed_node);
			total_done++;
			continue;
		}
1333

1334 1335
		block_rsv = trans->block_rsv;
		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1336

1337
		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1338

1339 1340 1341
		trans->block_rsv = block_rsv;
		btrfs_end_transaction(trans);
		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1342

1343 1344 1345
		btrfs_release_path(path);
		btrfs_release_prepared_delayed_node(delayed_node);
		total_done++;
1346

1347 1348
	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
		 || total_done < async_work->nr);
1349

1350 1351
	btrfs_free_path(path);
out:
1352 1353
	wake_up(&delayed_root->wait);
	kfree(async_work);
1354 1355
}

1356

1357
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1358
				     struct btrfs_fs_info *fs_info, int nr)
1359
{
1360
	struct btrfs_async_delayed_work *async_work;
1361

1362 1363
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1364 1365
		return -ENOMEM;

1366
	async_work->delayed_root = delayed_root;
1367 1368
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1369
	async_work->nr = nr;
1370

1371
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1372 1373 1374
	return 0;
}

1375
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1376
{
1377
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1378 1379
}

1380
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1381 1382 1383
{
	int val = atomic_read(&delayed_root->items_seq);

1384
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1385
		return 1;
1386 1387 1388 1389

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1390 1391 1392
	return 0;
}

1393
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1394
{
1395
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1396

1397 1398
	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1399 1400 1401
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1402
		int seq;
1403
		int ret;
1404 1405

		seq = atomic_read(&delayed_root->items_seq);
1406

1407
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1408 1409 1410
		if (ret)
			return;

1411 1412
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1413
		return;
1414 1415
	}

1416
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1417 1418
}

1419
/* Will return 0 or -ENOMEM */
1420
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1421 1422
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
1423
				   struct btrfs_inode *dir,
1424 1425 1426 1427 1428 1429 1430 1431
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

1432
	delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1442
	delayed_item->key.objectid = btrfs_ino(dir);
1443
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1444 1445 1446 1447
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1448 1449 1450 1451
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1452 1453
	memcpy((char *)(dir_item + 1), name, name_len);

1454
	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
J
Josef Bacik 已提交
1455 1456 1457 1458 1459 1460 1461
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1462 1463 1464
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1465
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1466 1467 1468
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1469 1470 1471 1472 1473 1474 1475 1476 1477
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1478
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1491
	btrfs_delayed_item_release_metadata(node->root, item);
1492 1493 1494 1495 1496 1497
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1498
				   struct btrfs_fs_info *fs_info,
1499
				   struct btrfs_inode *dir, u64 index)
1500 1501 1502 1503 1504 1505
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

1506
	node = btrfs_get_or_create_delayed_node(dir);
1507 1508 1509
	if (IS_ERR(node))
		return PTR_ERR(node);

1510
	item_key.objectid = btrfs_ino(dir);
1511
	item_key.type = BTRFS_DIR_INDEX_KEY;
1512 1513
	item_key.offset = index;

1514
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1526
	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1527 1528 1529 1530 1531 1532 1533 1534 1535
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1536
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1537 1538
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1539 1540 1541 1542 1543 1544 1545 1546
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

1547
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1548
{
1549
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1550 1551 1552 1553 1554 1555 1556 1557 1558

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1559 1560
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1561
		return -EINVAL;
1562
	}
1563

1564
	inode->index_cnt = delayed_node->index_cnt;
1565 1566
	btrfs_release_delayed_node(delayed_node);
	return 0;
1567 1568
}

1569 1570 1571
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1572 1573 1574 1575
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

1576
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1577
	if (!delayed_node)
1578 1579 1580 1581 1582 1583 1584 1585
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1586 1587 1588 1589

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
1590
		refcount_inc(&item->refs);
1591 1592 1593 1594 1595 1596
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
1597
		refcount_inc(&item->refs);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
1611
	refcount_dec(&delayed_node->refs);
1612 1613

	return true;
1614 1615
}

1616 1617 1618
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1619 1620 1621 1622 1623
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
1624
		if (refcount_dec_and_test(&curr->refs))
1625 1626 1627 1628 1629
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
1630
		if (refcount_dec_and_test(&curr->refs))
1631 1632
			kfree(curr);
	}
1633 1634 1635 1636 1637 1638

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1639 1640 1641 1642 1643
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
1644 1645
	struct btrfs_delayed_item *curr;
	int ret = 0;
1646

1647
	list_for_each_entry(curr, del_list, readdir_list) {
1648 1649
		if (curr->key.offset > index)
			break;
1650 1651 1652 1653
		if (curr->key.offset == index) {
			ret = 1;
			break;
		}
1654
	}
1655
	return ret;
1656 1657 1658 1659 1660 1661
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1662
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1663
				    struct list_head *ins_list)
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1684
		if (curr->key.offset < ctx->pos) {
1685
			if (refcount_dec_and_test(&curr->refs))
1686 1687 1688 1689
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1690
		ctx->pos = curr->key.offset;
1691 1692 1693

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1694
		name_len = btrfs_stack_dir_name_len(di);
1695 1696 1697 1698

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1699
		over = !dir_emit(ctx, name, name_len,
1700 1701
			       location.objectid, d_type);

1702
		if (refcount_dec_and_test(&curr->refs))
1703 1704 1705 1706
			kfree(curr);

		if (over)
			return 1;
1707
		ctx->pos++;
1708 1709 1710 1711 1712 1713 1714 1715
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1716 1717
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1718 1719 1720 1721 1722 1723
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1724 1725
	btrfs_set_stack_inode_sequence(inode_item,
				       inode_peek_iversion(inode));
1726 1727 1728
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1729
	btrfs_set_stack_inode_block_group(inode_item, 0);
1730

1731
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1732
				     inode->i_atime.tv_sec);
1733
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1734 1735
				      inode->i_atime.tv_nsec);

1736
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1737
				     inode->i_mtime.tv_sec);
1738
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1739 1740
				      inode->i_mtime.tv_nsec);

1741
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1742
				     inode->i_ctime.tv_sec);
1743
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1744
				      inode->i_ctime.tv_nsec);
1745 1746 1747 1748 1749

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1750 1751
}

1752 1753 1754 1755 1756
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

1757
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1758 1759 1760 1761
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1762
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1763 1764 1765 1766 1767 1768 1769
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1770 1771
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1772
	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1773
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1774
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1775 1776
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1777 1778
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1779 1780
	inode_set_iversion_queried(inode,
				   btrfs_stack_inode_sequence(inode_item));
1781 1782 1783 1784
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1785 1786
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1787

1788 1789
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1790

1791 1792
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1793

1794 1795 1796 1797 1798
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1799 1800 1801 1802 1803 1804 1805 1806
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1807 1808 1809 1810
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1811
	int ret = 0;
1812

1813
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1814 1815 1816 1817
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1818
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1819 1820 1821 1822
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1823
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1824
						   delayed_node);
1825 1826
	if (ret)
		goto release_node;
1827 1828

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1829
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1830 1831 1832 1833 1834 1835 1836 1837
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1838
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1839
{
1840
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1841 1842
	struct btrfs_delayed_node *delayed_node;

1843 1844 1845 1846 1847
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1848
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1849 1850
		return -EAGAIN;

1851
	delayed_node = btrfs_get_or_create_delayed_node(inode);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1875
	atomic_inc(&fs_info->delayed_root->items);
1876 1877 1878 1879 1880 1881
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1882 1883 1884
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1885
	struct btrfs_fs_info *fs_info = root->fs_info;
1886 1887 1888 1889 1890
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1891
		btrfs_delayed_item_release_metadata(root, curr_item);
1892 1893 1894 1895 1896 1897 1898
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1899
		btrfs_delayed_item_release_metadata(root, curr_item);
1900 1901 1902 1903 1904
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1905 1906 1907
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1908
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1909
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1910 1911 1912 1913 1914
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

1915
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1916 1917 1918
{
	struct btrfs_delayed_node *delayed_node;

1919
	delayed_node = btrfs_get_delayed_node(inode);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
1946
			refcount_inc(&delayed_nodes[i]->refs);
1947 1948 1949 1950 1951 1952 1953 1954
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1955

1956
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1957 1958 1959
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1960
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1961 1962 1963 1964 1965 1966 1967 1968 1969
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}