delayed-inode.c 51.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36
					sizeof(struct btrfs_delayed_node),
					0,
37
					SLAB_MEM_SPREAD,
38 39 40 41 42 43 44 45
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
46
	kmem_cache_destroy(delayed_node_cache);
47 48 49 50 51 52 53 54
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
55
	refcount_set(&delayed_node->refs, 0);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

75 76
static struct btrfs_delayed_node *btrfs_get_delayed_node(
		struct btrfs_inode *btrfs_inode)
77 78
{
	struct btrfs_root *root = btrfs_inode->root;
79
	u64 ino = btrfs_ino(btrfs_inode);
80
	struct btrfs_delayed_node *node;
81

S
Seraphime Kirkovski 已提交
82
	node = READ_ONCE(btrfs_inode->delayed_node);
83
	if (node) {
84
		refcount_inc(&node->refs);
85 86 87 88
		return node;
	}

	spin_lock(&root->inode_lock);
89
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90

91 92
	if (node) {
		if (btrfs_inode->delayed_node) {
93
			refcount_inc(&node->refs);	/* can be accessed */
94
			BUG_ON(btrfs_inode->delayed_node != node);
95
			spin_unlock(&root->inode_lock);
96
			return node;
97
		}
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

		/*
		 * It's possible that we're racing into the middle of removing
		 * this node from the radix tree.  In this case, the refcount
		 * was zero and it should never go back to one.  Just return
		 * NULL like it was never in the radix at all; our release
		 * function is in the process of removing it.
		 *
		 * Some implementations of refcount_inc refuse to bump the
		 * refcount once it has hit zero.  If we don't do this dance
		 * here, refcount_inc() may decide to just WARN_ONCE() instead
		 * of actually bumping the refcount.
		 *
		 * If this node is properly in the radix, we want to bump the
		 * refcount twice, once for the inode and once for this get
		 * operation.
		 */
		if (refcount_inc_not_zero(&node->refs)) {
			refcount_inc(&node->refs);
			btrfs_inode->delayed_node = node;
		} else {
			node = NULL;
		}

122 123 124 125 126
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

127 128 129
	return NULL;
}

130
/* Will return either the node or PTR_ERR(-ENOMEM) */
131
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
132
		struct btrfs_inode *btrfs_inode)
133 134 135
{
	struct btrfs_delayed_node *node;
	struct btrfs_root *root = btrfs_inode->root;
136
	u64 ino = btrfs_ino(btrfs_inode);
137 138 139
	int ret;

again:
140
	node = btrfs_get_delayed_node(btrfs_inode);
141 142 143
	if (node)
		return node;

144
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
145 146
	if (!node)
		return ERR_PTR(-ENOMEM);
147
	btrfs_init_delayed_node(node, root, ino);
148

149
	/* cached in the btrfs inode and can be accessed */
150
	refcount_set(&node->refs, 2);
151

152
	ret = radix_tree_preload(GFP_NOFS);
153 154 155 156 157 158
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
159
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
160 161
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
162
		kmem_cache_free(delayed_node_cache, node);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
183
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
184 185 186 187 188 189 190
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
191
		refcount_inc(&node->refs);	/* inserted into list */
192
		root->nodes++;
193
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
194 195 196 197 198 199 200 201 202
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
203
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
204
		root->nodes--;
205
		refcount_dec(&node->refs);	/* not in the list */
206 207 208
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
209
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
210 211 212 213
	}
	spin_unlock(&root->lock);
}

214
static struct btrfs_delayed_node *btrfs_first_delayed_node(
215 216 217 218 219 220 221 222 223 224 225
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
226
	refcount_inc(&node->refs);
227 228 229 230 231 232
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

233
static struct btrfs_delayed_node *btrfs_next_delayed_node(
234 235 236 237 238 239 240 241
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
242 243
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
244 245 246 247 248 249 250 251 252
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
253
	refcount_inc(&next->refs);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

278
	if (refcount_dec_and_test(&delayed_node->refs)) {
279
		struct btrfs_root *root = delayed_node->root;
280

281
		spin_lock(&root->inode_lock);
282 283 284 285 286 287 288
		/*
		 * Once our refcount goes to zero, nobody is allowed to bump it
		 * back up.  We can delete it now.
		 */
		ASSERT(refcount_read(&delayed_node->refs) == 0);
		radix_tree_delete(&root->delayed_nodes_tree,
				  delayed_node->inode_id);
289
		spin_unlock(&root->inode_lock);
290
		kmem_cache_free(delayed_node_cache, delayed_node);
291 292 293 294 295 296 297 298
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

299
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
300 301 302 303 304 305 306 307 308 309 310 311
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
312
	refcount_inc(&node->refs);
313 314 315 316 317 318 319 320 321 322 323 324
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

325
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
326 327 328 329 330 331 332 333
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
334
		refcount_set(&item->refs, 1);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

400
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
401 402 403
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
404
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

470 471 472
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
473 474 475 476

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
477 478 479 480 481 482
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
501 502

	finish_one_item(delayed_root);
503 504 505 506 507 508
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
509
		if (refcount_dec_and_test(&item->refs))
510 511 512 513
			kfree(item);
	}
}

514
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
515 516 517 518 519 520 521 522 523 524 525 526
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

527
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
528 529 530 531 532 533 534 535 536 537 538 539
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

540
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
541 542 543 544 545 546 547 548 549 550 551 552 553
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
554
					       struct btrfs_fs_info *fs_info,
555 556 557 558 559 560 561 562 563 564 565
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
566
	dst_rsv = &fs_info->delayed_block_rsv;
567

568
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
569
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
570
	if (!ret) {
571
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
572 573
					      item->key.objectid,
					      num_bytes, 1);
574
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
575
	}
576 577 578 579

	return ret;
}

580
static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
581 582
						struct btrfs_delayed_item *item)
{
583 584
	struct btrfs_block_rsv *rsv;

585 586 587
	if (!item->bytes_reserved)
		return;

588 589
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
590 591
				      item->key.objectid, item->bytes_reserved,
				      0);
592
	btrfs_block_rsv_release(fs_info, rsv,
593 594 595 596 597 598
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
599
					struct btrfs_inode *inode,
600 601
					struct btrfs_delayed_node *node)
{
602
	struct btrfs_fs_info *fs_info = root->fs_info;
603 604 605 606 607 608
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	src_rsv = trans->block_rsv;
609
	dst_rsv = &fs_info->delayed_block_rsv;
610

611
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
612 613 614 615 616 617 618 619

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
620
	 * we always reserve enough to update the inode item.
621
	 */
622
	if (!src_rsv || (!trans->bytes_reserved &&
623
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
624 625
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
626 627 628 629 630 631 632 633
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
634
		if (!ret) {
635
			node->bytes_reserved = num_bytes;
636
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
637
						      "delayed_inode",
638
						      btrfs_ino(inode),
J
Josef Bacik 已提交
639 640
						      num_bytes, 1);
		}
641 642 643
		return ret;
	}

644
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
645
	if (!ret) {
646
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
647
					      btrfs_ino(inode), num_bytes, 1);
648
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
649
	}
650 651 652 653

	return ret;
}

654
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
655 656 657 658 659 660 661
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

662 663
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
664
				      node->inode_id, node->bytes_reserved, 0);
665
	btrfs_block_rsv_release(fs_info, rsv,
666 667 668 669 670 671 672 673
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
674 675 676
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
677
{
678
	struct btrfs_fs_info *fs_info = root->fs_info;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
695
	free_space = btrfs_leaf_free_space(fs_info, leaf);
696 697 698
	INIT_LIST_HEAD(&head);

	next = item;
699
	nitems = 0;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

732
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
733 734 735 736 737
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

738
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
753
	btrfs_clear_path_blocking(path, NULL, 0);
754 755

	/* insert the keys of the items */
756
	setup_items_for_insert(root, path, keys, data_size,
757
			       total_data_size, total_size, nitems);
758 759 760 761 762 763 764 765 766 767

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

768
		btrfs_delayed_item_release_metadata(fs_info, curr);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
790
	struct btrfs_fs_info *fs_info = root->fs_info;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

808
	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
832
		btrfs_release_path(path);
833 834 835 836 837 838 839 840
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
841
		btrfs_batch_insert_items(root, path, curr);
842 843 844 845
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

846
	btrfs_release_path(path);
847 848 849 850 851 852 853 854 855 856 857 858 859
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
860
	struct btrfs_fs_info *fs_info = root->fs_info;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
910
		btrfs_delayed_item_release_metadata(fs_info, curr);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
945
		btrfs_release_path(path);
946 947
		if (curr) {
			mutex_unlock(&node->mutex);
948
			goto do_again;
949
		} else
950 951 952 953
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
954
	btrfs_release_path(path);
955 956 957 958
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
959
	btrfs_release_path(path);
960 961 962 963 964 965 966 967
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

968 969
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
970
		BUG_ON(!delayed_node->root);
971
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
972 973 974
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
975
		finish_one_item(delayed_root);
976 977 978
	}
}

979 980 981 982 983 984 985 986 987 988 989 990
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

991 992 993 994
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
995
{
996
	struct btrfs_fs_info *fs_info = root->fs_info;
997 998 999
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1000
	int mod;
1001 1002 1003
	int ret;

	key.objectid = node->inode_id;
1004
	key.type = BTRFS_INODE_ITEM_KEY;
1005
	key.offset = 0;
1006

1007 1008 1009 1010 1011 1012
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1013
	if (ret > 0) {
1014
		btrfs_release_path(path);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1053
	btrfs_delayed_inode_release_metadata(fs_info, node);
1054 1055
	btrfs_release_delayed_inode(node);

1056 1057 1058 1059 1060
	return ret;

search:
	btrfs_release_path(path);

1061
	key.type = BTRFS_INODE_EXTREF_KEY;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1082
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1083 1084 1085 1086 1087 1088 1089 1090 1091
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1111 1112 1113 1114 1115 1116
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1117
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1118
				     struct btrfs_fs_info *fs_info, int nr)
1119 1120 1121 1122
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1123
	struct btrfs_block_rsv *block_rsv;
1124
	int ret = 0;
1125
	bool count = (nr > 0);
1126

1127 1128 1129
	if (trans->aborted)
		return -EIO;

1130 1131 1132 1133 1134
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1135
	block_rsv = trans->block_rsv;
1136
	trans->block_rsv = &fs_info->delayed_block_rsv;
1137

1138
	delayed_root = fs_info->delayed_root;
1139 1140

	curr_node = btrfs_first_delayed_node(delayed_root);
1141
	while (curr_node && (!count || (count && nr--))) {
1142 1143
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1144 1145
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1146
			curr_node = NULL;
1147
			btrfs_abort_transaction(trans, ret);
1148 1149 1150 1151 1152 1153 1154 1155
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1156 1157
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1158
	btrfs_free_path(path);
1159
	trans->block_rsv = block_rsv;
1160

1161 1162 1163
	return ret;
}

1164
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1165
			    struct btrfs_fs_info *fs_info)
1166
{
1167
	return __btrfs_run_delayed_items(trans, fs_info, -1);
1168 1169 1170
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1171
			       struct btrfs_fs_info *fs_info, int nr)
1172
{
1173
	return __btrfs_run_delayed_items(trans, fs_info, nr);
1174 1175
}

1176
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1177
				     struct btrfs_inode *inode)
1178
{
1179
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1180 1181
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1195
	path = btrfs_alloc_path();
1196 1197
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1198
		return -ENOMEM;
1199
	}
1200 1201 1202 1203 1204 1205 1206
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1207
	btrfs_release_delayed_node(delayed_node);
1208 1209 1210
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1211 1212 1213
	return ret;
}

1214
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1215
{
1216
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1217
	struct btrfs_trans_handle *trans;
1218
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1219 1220 1221 1222 1223 1224 1225 1226
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1227
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1248
	trans->block_rsv = &fs_info->delayed_block_rsv;
1249 1250

	mutex_lock(&delayed_node->mutex);
1251
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1252 1253 1254 1255 1256 1257 1258 1259 1260
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1261
	btrfs_end_transaction(trans);
1262
	btrfs_btree_balance_dirty(fs_info);
1263 1264 1265 1266 1267 1268
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1269
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1270 1271 1272
{
	struct btrfs_delayed_node *delayed_node;

1273
	delayed_node = READ_ONCE(inode->delayed_node);
1274 1275 1276
	if (!delayed_node)
		return;

1277
	inode->delayed_node = NULL;
1278 1279 1280
	btrfs_release_delayed_node(delayed_node);
}

1281 1282 1283
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1284
	struct btrfs_work work;
1285 1286
};

1287
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1288
{
1289 1290
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1291 1292 1293 1294
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1295
	struct btrfs_block_rsv *block_rsv;
1296
	int total_done = 0;
1297

1298 1299
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1300 1301 1302 1303 1304

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1305 1306 1307 1308 1309 1310 1311 1312 1313
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1314 1315
	root = delayed_node->root;

C
Chris Mason 已提交
1316
	trans = btrfs_join_transaction(root);
1317
	if (IS_ERR(trans))
1318
		goto release_path;
1319

1320
	block_rsv = trans->block_rsv;
1321
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1322

1323
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1324

1325
	trans->block_rsv = block_rsv;
1326
	btrfs_end_transaction(trans);
1327
	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1328 1329 1330 1331 1332 1333

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
1334 1335
	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
	    total_done < async_work->nr)
1336 1337
		goto again;

1338 1339 1340
free_path:
	btrfs_free_path(path);
out:
1341 1342
	wake_up(&delayed_root->wait);
	kfree(async_work);
1343 1344
}

1345

1346
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1347
				     struct btrfs_fs_info *fs_info, int nr)
1348
{
1349
	struct btrfs_async_delayed_work *async_work;
1350

1351 1352
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1353 1354
		return 0;

1355 1356
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1357 1358
		return -ENOMEM;

1359
	async_work->delayed_root = delayed_root;
1360 1361
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1362
	async_work->nr = nr;
1363

1364
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365 1366 1367
	return 0;
}

1368
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369
{
1370
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1371 1372
}

1373
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374 1375 1376
{
	int val = atomic_read(&delayed_root->items_seq);

1377
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378
		return 1;
1379 1380 1381 1382

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1383 1384 1385
	return 0;
}

1386
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387
{
1388
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389 1390 1391 1392 1393

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1394
		int seq;
1395
		int ret;
1396 1397

		seq = atomic_read(&delayed_root->items_seq);
1398

1399
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1400 1401 1402
		if (ret)
			return;

1403 1404
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1405
		return;
1406 1407
	}

1408
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1409 1410
}

1411
/* Will return 0 or -ENOMEM */
1412
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1413 1414
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
1415
				   struct btrfs_inode *dir,
1416 1417 1418 1419 1420 1421 1422 1423
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

1424
	delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1434
	delayed_item->key.objectid = btrfs_ino(dir);
1435
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 1437 1438 1439
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1440 1441 1442 1443
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1444 1445
	memcpy((char *)(dir_item + 1), name, name_len);

1446
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
J
Josef Bacik 已提交
1447 1448 1449 1450 1451 1452 1453
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1454 1455 1456
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1457
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1458 1459 1460
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1461 1462 1463 1464 1465 1466 1467 1468 1469
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1470
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1483
	btrfs_delayed_item_release_metadata(fs_info, item);
1484 1485 1486 1487 1488 1489
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1490
				   struct btrfs_fs_info *fs_info,
1491
				   struct btrfs_inode *dir, u64 index)
1492 1493 1494 1495 1496 1497
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

1498
	node = btrfs_get_or_create_delayed_node(dir);
1499 1500 1501
	if (IS_ERR(node))
		return PTR_ERR(node);

1502
	item_key.objectid = btrfs_ino(dir);
1503
	item_key.type = BTRFS_DIR_INDEX_KEY;
1504 1505
	item_key.offset = index;

1506
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1518
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1519 1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1528
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1529 1530
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1531 1532 1533 1534 1535 1536 1537 1538
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

1539
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1540
{
1541
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1542 1543 1544 1545 1546 1547 1548 1549 1550

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1551 1552
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1553
		return -EINVAL;
1554
	}
1555

1556
	inode->index_cnt = delayed_node->index_cnt;
1557 1558
	btrfs_release_delayed_node(delayed_node);
	return 0;
1559 1560
}

1561 1562 1563
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1564 1565 1566 1567
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

1568
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1569
	if (!delayed_node)
1570 1571 1572 1573 1574 1575 1576 1577
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1578 1579 1580 1581

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
1582
		refcount_inc(&item->refs);
1583 1584 1585 1586 1587 1588
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
1589
		refcount_inc(&item->refs);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
1603
	refcount_dec(&delayed_node->refs);
1604 1605

	return true;
1606 1607
}

1608 1609 1610
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1611 1612 1613 1614 1615
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
1616
		if (refcount_dec_and_test(&curr->refs))
1617 1618 1619 1620 1621
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
1622
		if (refcount_dec_and_test(&curr->refs))
1623 1624
			kfree(curr);
	}
1625 1626 1627 1628 1629 1630

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

1649
		if (refcount_dec_and_test(&curr->refs))
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1664
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1665
				    struct list_head *ins_list)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1686
		if (curr->key.offset < ctx->pos) {
1687
			if (refcount_dec_and_test(&curr->refs))
1688 1689 1690 1691
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1692
		ctx->pos = curr->key.offset;
1693 1694 1695

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1696
		name_len = btrfs_stack_dir_name_len(di);
1697 1698 1699 1700

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1701
		over = !dir_emit(ctx, name, name_len,
1702 1703
			       location.objectid, d_type);

1704
		if (refcount_dec_and_test(&curr->refs))
1705 1706 1707 1708
			kfree(curr);

		if (over)
			return 1;
1709
		ctx->pos++;
1710 1711 1712 1713 1714 1715 1716 1717
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1718 1719
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1720 1721 1722 1723 1724 1725
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1726
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1727 1728 1729
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1730
	btrfs_set_stack_inode_block_group(inode_item, 0);
1731

1732
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1733
				     inode->i_atime.tv_sec);
1734
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1735 1736
				      inode->i_atime.tv_nsec);

1737
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1738
				     inode->i_mtime.tv_sec);
1739
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1740 1741
				      inode->i_mtime.tv_nsec);

1742
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1743
				     inode->i_ctime.tv_sec);
1744
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1745
				      inode->i_ctime.tv_nsec);
1746 1747 1748 1749 1750

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1751 1752
}

1753 1754 1755 1756 1757
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

1758
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1759 1760 1761 1762
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1763
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1764 1765 1766 1767 1768 1769 1770
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1771 1772
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1773
	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1774
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1775
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776 1777
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778 1779
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1780
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1781 1782 1783 1784
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1785 1786
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1787

1788 1789
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1790

1791 1792
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1793

1794 1795 1796 1797 1798
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1799 1800 1801 1802 1803 1804 1805 1806
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1807 1808 1809 1810
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1811
	int ret = 0;
1812

1813
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1814 1815 1816 1817
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1818
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1819 1820 1821 1822
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1823
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1824
						   delayed_node);
1825 1826
	if (ret)
		goto release_node;
1827 1828

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1829
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1830 1831 1832 1833 1834 1835 1836 1837
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1838
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1839
{
1840
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1841 1842
	struct btrfs_delayed_node *delayed_node;

1843 1844 1845 1846 1847
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1848
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1849 1850
		return -EAGAIN;

1851
	delayed_node = btrfs_get_or_create_delayed_node(inode);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1875
	atomic_inc(&fs_info->delayed_root->items);
1876 1877 1878 1879 1880 1881
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1882 1883 1884
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1885
	struct btrfs_fs_info *fs_info = root->fs_info;
1886 1887 1888 1889 1890
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1891
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1892 1893 1894 1895 1896 1897 1898
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1899
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1900 1901 1902 1903 1904
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1905 1906 1907
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1908
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1909
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1910 1911 1912 1913 1914
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

1915
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1916 1917 1918
{
	struct btrfs_delayed_node *delayed_node;

1919
	delayed_node = btrfs_get_delayed_node(inode);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
1946
			refcount_inc(&delayed_nodes[i]->refs);
1947 1948 1949 1950 1951 1952 1953 1954
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1955

1956
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1957 1958 1959
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1960
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1961 1962 1963 1964 1965 1966 1967 1968 1969
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}