delayed-inode.c 48.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
					sizeof(struct btrfs_delayed_node),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
	if (delayed_node_cache)
		kmem_cache_destroy(delayed_node_cache);
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
	atomic_set(&delayed_node->refs, 0);
	delayed_node->count = 0;
58
	delayed_node->flags = 0;
59 60 61 62 63 64 65
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	delayed_node->index_cnt = 0;
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
	delayed_node->bytes_reserved = 0;
66
	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
							struct btrfs_root *root)
{
	return root->fs_info->delayed_root;
}

87
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 89 90
{
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
91
	u64 ino = btrfs_ino(inode);
92
	struct btrfs_delayed_node *node;
93 94 95

	node = ACCESS_ONCE(btrfs_inode->delayed_node);
	if (node) {
96
		atomic_inc(&node->refs);
97 98 99 100
		return node;
	}

	spin_lock(&root->inode_lock);
101
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 103
	if (node) {
		if (btrfs_inode->delayed_node) {
104 105
			atomic_inc(&node->refs);	/* can be accessed */
			BUG_ON(btrfs_inode->delayed_node != node);
106
			spin_unlock(&root->inode_lock);
107
			return node;
108 109
		}
		btrfs_inode->delayed_node = node;
110 111
		/* can be accessed and cached in the inode */
		atomic_add(2, &node->refs);
112 113 114 115 116
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

117 118 119
	return NULL;
}

120
/* Will return either the node or PTR_ERR(-ENOMEM) */
121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
							struct inode *inode)
{
	struct btrfs_delayed_node *node;
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
	u64 ino = btrfs_ino(inode);
	int ret;

again:
	node = btrfs_get_delayed_node(inode);
	if (node)
		return node;

135 136 137
	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
	if (!node)
		return ERR_PTR(-ENOMEM);
138
	btrfs_init_delayed_node(node, root, ino);
139

140 141
	/* cached in the btrfs inode and can be accessed */
	atomic_add(2, &node->refs);
142 143 144 145 146 147 148 149

	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
150
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	if (ret == -EEXIST) {
		kmem_cache_free(delayed_node_cache, node);
		spin_unlock(&root->inode_lock);
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
174
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 176 177 178 179 180 181 182 183
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
		atomic_inc(&node->refs);	/* inserted into list */
		root->nodes++;
184
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 186 187 188 189 190 191 192 193
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
194
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 196 197 198 199
		root->nodes--;
		atomic_dec(&node->refs);	/* not in the list */
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
200
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 202 203 204
	}
	spin_unlock(&root->lock);
}

205
static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

224
static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 226 227 228 229 230 231 232
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
233 234
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&next->refs);
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

	if (atomic_dec_and_test(&delayed_node->refs)) {
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
		if (atomic_read(&delayed_node->refs) == 0) {
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
			kmem_cache_free(delayed_node_cache, delayed_node);
		}
		spin_unlock(&root->inode_lock);
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

286
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

312
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
		atomic_set(&item->refs, 1);
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

387
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
					   NULL, NULL);
	return item;
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

460 461 462 463 464 465 466 467 468
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
487 488

	finish_one_item(delayed_root);
489 490 491 492 493 494 495 496 497 498 499
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
		if (atomic_dec_and_test(&item->refs))
			kfree(item);
	}
}

500
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501 502 503 504 505 506 507 508 509 510 511 512
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

513
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514 515 516 517 518 519 520 521 522 523 524 525
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

526
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
					       struct btrfs_root *root,
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
552
	dst_rsv = &root->fs_info->delayed_block_rsv;
553 554 555

	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
J
Josef Bacik 已提交
556 557 558 559
	if (!ret) {
		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
					      item->key.objectid,
					      num_bytes, 1);
560
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
561
	}
562 563 564 565 566 567 568

	return ret;
}

static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
						struct btrfs_delayed_item *item)
{
569 570
	struct btrfs_block_rsv *rsv;

571 572 573
	if (!item->bytes_reserved)
		return;

574
	rsv = &root->fs_info->delayed_block_rsv;
J
Josef Bacik 已提交
575 576 577
	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
				      item->key.objectid, item->bytes_reserved,
				      0);
578
	btrfs_block_rsv_release(root, rsv,
579 580 581 582 583 584
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
585
					struct inode *inode,
586 587 588 589 590 591
					struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;
J
Josef Bacik 已提交
592
	bool release = false;
593 594

	src_rsv = trans->block_rsv;
595
	dst_rsv = &root->fs_info->delayed_block_rsv;
596 597

	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 599 600 601 602 603 604 605 606 607

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
	 * we're accounted for.
	 */
608
	if (!src_rsv || (!trans->bytes_reserved &&
609
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
610 611
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
612 613 614 615 616 617 618 619
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
620
		if (!ret) {
621
			node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
622 623 624 625 626
			trace_btrfs_space_reservation(root->fs_info,
						      "delayed_inode",
						      btrfs_ino(inode),
						      num_bytes, 1);
		}
627
		return ret;
628
	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
629
		spin_lock(&BTRFS_I(inode)->lock);
630 631
		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
				       &BTRFS_I(inode)->runtime_flags)) {
632 633 634 635 636 637 638 639 640 641 642 643 644 645
			spin_unlock(&BTRFS_I(inode)->lock);
			release = true;
			goto migrate;
		}
		spin_unlock(&BTRFS_I(inode)->lock);

		/* Ok we didn't have space pre-reserved.  This shouldn't happen
		 * too often but it can happen if we do delalloc to an existing
		 * inode which gets dirtied because of the time update, and then
		 * isn't touched again until after the transaction commits and
		 * then we try to write out the data.  First try to be nice and
		 * reserve something strictly for us.  If not be a pain and try
		 * to steal from the delalloc block rsv.
		 */
M
Miao Xie 已提交
646 647
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
648 649 650 651
		if (!ret)
			goto out;

		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
652
		if (!WARN_ON(ret))
653 654 655 656 657 658 659 660 661
			goto out;

		/*
		 * Ok this is a problem, let's just steal from the global rsv
		 * since this really shouldn't happen that often.
		 */
		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
					      dst_rsv, num_bytes);
		goto out;
662 663
	}

664
migrate:
665
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

out:
	/*
	 * Migrate only takes a reservation, it doesn't touch the size of the
	 * block_rsv.  This is to simplify people who don't normally have things
	 * migrated from their block rsv.  If they go to release their
	 * reservation, that will decrease the size as well, so if migrate
	 * reduced size we'd end up with a negative size.  But for the
	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
	 * but we could in fact do this reserve/migrate dance several times
	 * between the time we did the original reservation and we'd clean it
	 * up.  So to take care of this, release the space for the meta
	 * reservation here.  I think it may be time for a documentation page on
	 * how block rsvs. work.
	 */
J
Josef Bacik 已提交
681 682 683
	if (!ret) {
		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
					      btrfs_ino(inode), num_bytes, 1);
684
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
685
	}
686

J
Josef Bacik 已提交
687 688 689
	if (release) {
		trace_btrfs_space_reservation(root->fs_info, "delalloc",
					      btrfs_ino(inode), num_bytes, 0);
690
		btrfs_block_rsv_release(root, src_rsv, num_bytes);
J
Josef Bacik 已提交
691
	}
692 693 694 695 696 697 698 699 700 701 702 703

	return ret;
}

static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

704
	rsv = &root->fs_info->delayed_block_rsv;
J
Josef Bacik 已提交
705 706
	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
				      node->inode_id, node->bytes_reserved, 0);
707 708 709 710 711 712 713 714 715
	btrfs_block_rsv_release(root, rsv,
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
716 717 718
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
{
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
	free_space = btrfs_leaf_free_space(root, leaf);
	INIT_LIST_HEAD(&head);

	next = item;
740
	nitems = 0;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

773
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
774 775 776 777 778
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

779
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
780 781 782 783 784 785 786 787 788 789 790 791 792 793
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
794
	btrfs_clear_path_blocking(path, NULL, 0);
795 796

	/* insert the keys of the items */
797
	setup_items_for_insert(root, path, keys, data_size,
798
			       total_data_size, total_size, nitems);
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

		btrfs_delayed_item_release_metadata(root, curr);

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

	btrfs_delayed_item_release_metadata(root, delayed_item);
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
872
		btrfs_release_path(path);
873 874 875 876 877 878 879 880
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
881
		btrfs_batch_insert_items(root, path, curr);
882 883 884 885
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

886
	btrfs_release_path(path);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
		btrfs_delayed_item_release_metadata(root, curr);
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
984
		btrfs_release_path(path);
985 986
		if (curr) {
			mutex_unlock(&node->mutex);
987
			goto do_again;
988
		} else
989 990 991 992
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
993
	btrfs_release_path(path);
994 995 996 997
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
998
	btrfs_release_path(path);
999 1000 1001 1002 1003 1004 1005 1006
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

1007 1008
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1009
		BUG_ON(!delayed_node->root);
1010
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1011 1012 1013
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
1014
		finish_one_item(delayed_root);
1015 1016 1017
	}
}

1018 1019 1020 1021
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = node->inode_id;
	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
	key.offset = 0;
1031

1032 1033
	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
	if (ret > 0) {
1034
		btrfs_release_path(path);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	btrfs_unlock_up_safe(path, 1);
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);
1047
	btrfs_release_path(path);
1048 1049 1050 1051 1052 1053 1054

	btrfs_delayed_inode_release_metadata(root, node);
	btrfs_release_delayed_inode(node);

	return 0;
}

1055 1056 1057 1058 1059 1060 1061 1062
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1063
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1064 1065 1066 1067 1068 1069 1070 1071 1072
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1092 1093 1094 1095 1096 1097
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1098 1099
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root, int nr)
1100 1101 1102 1103
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1104
	struct btrfs_block_rsv *block_rsv;
1105
	int ret = 0;
1106
	bool count = (nr > 0);
1107

1108 1109 1110
	if (trans->aborted)
		return -EIO;

1111 1112 1113 1114 1115
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1116
	block_rsv = trans->block_rsv;
1117
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1118

1119 1120 1121
	delayed_root = btrfs_get_delayed_root(root);

	curr_node = btrfs_first_delayed_node(delayed_root);
1122
	while (curr_node && (!count || (count && nr--))) {
1123 1124
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1125 1126
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1127
			curr_node = NULL;
1128
			btrfs_abort_transaction(trans, root, ret);
1129 1130 1131 1132 1133 1134 1135 1136
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1137 1138
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1139
	btrfs_free_path(path);
1140
	trans->block_rsv = block_rsv;
1141

1142 1143 1144
	return ret;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
	return __btrfs_run_delayed_items(trans, root, -1);
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, int nr)
{
	return __btrfs_run_delayed_items(trans, root, nr);
}

1157 1158 1159 1160
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				     struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1161 1162
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1176
	path = btrfs_alloc_path();
1177 1178
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1179
		return -ENOMEM;
1180
	}
1181 1182 1183 1184 1185 1186 1187
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1188
	btrfs_release_delayed_node(delayed_node);
1189 1190 1191
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1192 1193 1194
	return ret;
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
int btrfs_commit_inode_delayed_inode(struct inode *inode)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1207
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	mutex_lock(&delayed_node->mutex);
1231
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
	btrfs_end_transaction(trans, delayed_node->root);
	btrfs_btree_balance_dirty(delayed_node->root);
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
void btrfs_remove_delayed_node(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
	if (!delayed_node)
		return;

	BTRFS_I(inode)->delayed_node = NULL;
	btrfs_release_delayed_node(delayed_node);
}

1261 1262 1263
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1264 1265 1266
	struct btrfs_work work;
};

1267
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1268
{
1269 1270
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1271 1272 1273 1274
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1275
	struct btrfs_block_rsv *block_rsv;
1276
	int total_done = 0;
1277

1278 1279
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1280 1281 1282 1283 1284

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1285 1286 1287 1288 1289 1290 1291 1292 1293
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1294 1295
	root = delayed_node->root;

C
Chris Mason 已提交
1296
	trans = btrfs_join_transaction(root);
1297
	if (IS_ERR(trans))
1298
		goto release_path;
1299

1300
	block_rsv = trans->block_rsv;
1301
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1302

1303
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1304

1305
	trans->block_rsv = block_rsv;
1306
	btrfs_end_transaction(trans, root);
1307
	btrfs_btree_balance_dirty_nodelay(root);
1308 1309 1310 1311 1312 1313 1314 1315 1316

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
	if (async_work->nr == 0 || total_done < async_work->nr)
		goto again;

1317 1318 1319
free_path:
	btrfs_free_path(path);
out:
1320 1321
	wake_up(&delayed_root->wait);
	kfree(async_work);
1322 1323
}

1324

1325
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1326
				     struct btrfs_root *root, int nr)
1327
{
1328
	struct btrfs_async_delayed_work *async_work;
1329

1330
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1331 1332
		return 0;

1333 1334
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1335 1336
		return -ENOMEM;

1337 1338 1339 1340
	async_work->delayed_root = delayed_root;
	async_work->work.func = btrfs_async_run_delayed_root;
	async_work->work.flags = 0;
	async_work->nr = nr;
1341

1342
	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1343 1344 1345
	return 0;
}

1346 1347 1348 1349 1350 1351 1352
void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
	delayed_root = btrfs_get_delayed_root(root);
	WARN_ON(btrfs_first_delayed_node(delayed_root));
}

1353
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1354 1355 1356
{
	int val = atomic_read(&delayed_root->items_seq);

1357
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1358
		return 1;
1359 1360 1361 1362

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1363 1364 1365
	return 0;
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
void btrfs_balance_delayed_items(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;

	delayed_root = btrfs_get_delayed_root(root);

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1376
		int seq;
1377
		int ret;
1378 1379

		seq = atomic_read(&delayed_root->items_seq);
1380 1381

		ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382 1383 1384
		if (ret)
			return;

1385 1386
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1387
		return;
1388 1389
	}

1390
	btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1391 1392
}

1393
/* Will return 0 or -ENOMEM */
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root, const char *name,
				   int name_len, struct inode *dir,
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

	delayed_node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1415
	delayed_item->key.objectid = btrfs_ino(dir);
1416 1417 1418 1419 1420
	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1421 1422 1423 1424
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1425 1426
	memcpy((char *)(dir_item + 1), name, name_len);

J
Josef Bacik 已提交
1427 1428 1429 1430 1431 1432 1433 1434
	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1435 1436 1437
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1438
		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1439
				"into the insertion tree of the delayed node"
1440
				"(root id: %llu, inode id: %llu, errno: %d)",
1441
				name_len, name, delayed_node->root->objectid,
1442
				delayed_node->inode_id, ret);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

	btrfs_delayed_item_release_metadata(root, item);
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root, struct inode *dir,
				   u64 index)
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

	node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(node))
		return PTR_ERR(node);

1484
	item_key.objectid = btrfs_ino(dir);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
	item_key.offset = index;

	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1510
		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1511
				"into the deletion tree of the delayed node"
1512
				"(root id: %llu, inode id: %llu, errno: %d)",
1513
				index, node->root->objectid, node->inode_id,
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
				ret);
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
1525
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1526 1527 1528 1529 1530 1531 1532 1533 1534

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1535 1536
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1537
		return -EINVAL;
1538
	}
1539 1540

	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1541 1542
	btrfs_release_delayed_node(delayed_node);
	return 0;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
}

void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
			     struct list_head *del_list)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
	atomic_dec(&delayed_node->refs);
}

void btrfs_put_delayed_items(struct list_head *ins_list,
			     struct list_head *del_list)
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1631
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
				    struct list_head *ins_list)
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1653
		if (curr->key.offset < ctx->pos) {
1654 1655 1656 1657 1658
			if (atomic_dec_and_test(&curr->refs))
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1659
		ctx->pos = curr->key.offset;
1660 1661 1662

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1663
		name_len = btrfs_stack_dir_name_len(di);
1664 1665 1666 1667

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1668
		over = !dir_emit(ctx, name, name_len,
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
			       location.objectid, d_type);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (over)
			return 1;
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1684 1685
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1686 1687 1688 1689 1690 1691
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1692
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1693 1694 1695
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1696
	btrfs_set_stack_inode_block_group(inode_item, 0);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
				     inode->i_atime.tv_sec);
	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
				      inode->i_atime.tv_nsec);

	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
				     inode->i_mtime.tv_sec);
	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
				      inode->i_mtime.tv_nsec);

	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
				     inode->i_ctime.tv_sec);
	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
				      inode->i_ctime.tv_nsec);
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;
	struct btrfs_timespec *tspec;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1725
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1726 1727 1728 1729 1730 1731 1732
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1733 1734
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1735 1736
	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1737
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1738 1739
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1740
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

	tspec = btrfs_inode_atime(inode_item);
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);

	tspec = btrfs_inode_mtime(inode_item);
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);

	tspec = btrfs_inode_ctime(inode_item);
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);

	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1765 1766 1767 1768
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1769
	int ret = 0;
1770 1771 1772 1773 1774 1775

	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1776
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1777 1778 1779 1780
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1781 1782
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
						   delayed_node);
1783 1784
	if (ret)
		goto release_node;
1785 1786

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1787
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
		btrfs_delayed_item_release_metadata(root, curr_item);
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
		btrfs_delayed_item_release_metadata(root, curr_item);
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1818
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		btrfs_delayed_inode_release_metadata(root, delayed_node);
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

void btrfs_kill_delayed_inode_items(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
			atomic_inc(&delayed_nodes[i]->refs);
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;

	delayed_root = btrfs_get_delayed_root(root);

	curr_node = btrfs_first_delayed_node(delayed_root);
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}