delayed-inode.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36
					sizeof(struct btrfs_delayed_node),
					0,
37
					SLAB_MEM_SPREAD,
38 39 40 41 42 43 44 45
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
46
	kmem_cache_destroy(delayed_node_cache);
47 48 49 50 51 52 53 54
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
55
	refcount_set(&delayed_node->refs, 0);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

75 76
static struct btrfs_delayed_node *btrfs_get_delayed_node(
		struct btrfs_inode *btrfs_inode)
77 78
{
	struct btrfs_root *root = btrfs_inode->root;
79
	u64 ino = btrfs_ino(btrfs_inode);
80
	struct btrfs_delayed_node *node;
81

S
Seraphime Kirkovski 已提交
82
	node = READ_ONCE(btrfs_inode->delayed_node);
83
	if (node) {
84
		refcount_inc(&node->refs);
85 86 87 88
		return node;
	}

	spin_lock(&root->inode_lock);
89
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 91
	if (node) {
		if (btrfs_inode->delayed_node) {
92
			refcount_inc(&node->refs);	/* can be accessed */
93
			BUG_ON(btrfs_inode->delayed_node != node);
94
			spin_unlock(&root->inode_lock);
95
			return node;
96 97
		}
		btrfs_inode->delayed_node = node;
98
		/* can be accessed and cached in the inode */
99
		refcount_add(2, &node->refs);
100 101 102 103 104
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

105 106 107
	return NULL;
}

108
/* Will return either the node or PTR_ERR(-ENOMEM) */
109
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110
		struct btrfs_inode *btrfs_inode)
111 112 113
{
	struct btrfs_delayed_node *node;
	struct btrfs_root *root = btrfs_inode->root;
114
	u64 ino = btrfs_ino(btrfs_inode);
115 116 117
	int ret;

again:
118
	node = btrfs_get_delayed_node(btrfs_inode);
119 120 121
	if (node)
		return node;

122
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
123 124
	if (!node)
		return ERR_PTR(-ENOMEM);
125
	btrfs_init_delayed_node(node, root, ino);
126

127
	/* cached in the btrfs inode and can be accessed */
128
	refcount_set(&node->refs, 2);
129

130
	ret = radix_tree_preload(GFP_NOFS);
131 132 133 134 135 136
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
137
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
138 139
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
140
		kmem_cache_free(delayed_node_cache, node);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
161
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
162 163 164 165 166 167 168
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
169
		refcount_inc(&node->refs);	/* inserted into list */
170
		root->nodes++;
171
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
172 173 174 175 176 177 178 179 180
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
181
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
182
		root->nodes--;
183
		refcount_dec(&node->refs);	/* not in the list */
184 185 186
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
187
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
188 189 190 191
	}
	spin_unlock(&root->lock);
}

192
static struct btrfs_delayed_node *btrfs_first_delayed_node(
193 194 195 196 197 198 199 200 201 202 203
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
204
	refcount_inc(&node->refs);
205 206 207 208 209 210
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

211
static struct btrfs_delayed_node *btrfs_next_delayed_node(
212 213 214 215 216 217 218 219
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
220 221
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
222 223 224 225 226 227 228 229 230
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
231
	refcount_inc(&next->refs);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

256
	if (refcount_dec_and_test(&delayed_node->refs)) {
257
		bool free = false;
258 259
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
260
		if (refcount_read(&delayed_node->refs) == 0) {
261 262
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
263
			free = true;
264 265
		}
		spin_unlock(&root->inode_lock);
266 267
		if (free)
			kmem_cache_free(delayed_node_cache, delayed_node);
268 269 270 271 272 273 274 275
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

276
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
277 278 279 280 281 282 283 284 285 286 287 288
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
289
	refcount_inc(&node->refs);
290 291 292 293 294 295 296 297 298 299 300 301
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

302
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
303 304 305 306 307 308 309 310
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
311
		refcount_set(&item->refs, 1);
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

377
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
378 379 380
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
381
	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
					   NULL, NULL);
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

447 448 449
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
450 451 452 453

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
454 455 456 457 458 459
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
478 479

	finish_one_item(delayed_root);
480 481 482 483 484 485
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
486
		if (refcount_dec_and_test(&item->refs))
487 488 489 490
			kfree(item);
	}
}

491
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
492 493 494 495 496 497 498 499 500 501 502 503
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

504
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
505 506 507 508 509 510 511 512 513 514 515 516
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

517
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
518 519 520 521 522 523 524 525 526 527 528 529 530
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
531
					       struct btrfs_fs_info *fs_info,
532 533 534 535 536 537 538 539 540 541 542
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
543
	dst_rsv = &fs_info->delayed_block_rsv;
544

545
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
546
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
J
Josef Bacik 已提交
547
	if (!ret) {
548
		trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
549 550
					      item->key.objectid,
					      num_bytes, 1);
551
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
552
	}
553 554 555 556

	return ret;
}

557
static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
558 559
						struct btrfs_delayed_item *item)
{
560 561
	struct btrfs_block_rsv *rsv;

562 563 564
	if (!item->bytes_reserved)
		return;

565 566
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_item",
J
Josef Bacik 已提交
567 568
				      item->key.objectid, item->bytes_reserved,
				      0);
569
	btrfs_block_rsv_release(fs_info, rsv,
570 571 572 573 574 575
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
576
					struct btrfs_inode *inode,
577 578
					struct btrfs_delayed_node *node)
{
579
	struct btrfs_fs_info *fs_info = root->fs_info;
580 581 582 583
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;
J
Josef Bacik 已提交
584
	bool release = false;
585 586

	src_rsv = trans->block_rsv;
587
	dst_rsv = &fs_info->delayed_block_rsv;
588

589
	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604
	/*
	 * If our block_rsv is the delalloc block reserve then check and see if
	 * we have our extra reservation for updating the inode.  If not fall
	 * through and try to reserve space quickly.
	 *
	 * We used to try and steal from the delalloc block rsv or the global
	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
	 * here through delalloc which means we've likely just cowed down close
	 * to the leaf that contains the inode, so we would steal less just
	 * doing the fallback inode update, so if we do end up having to steal
	 * from the global block rsv we hopefully only steal one or two blocks
	 * worth which is less likely to hurt us.
	 */
	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
605
		spin_lock(&inode->lock);
606
		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
607
				       &inode->runtime_flags))
608 609 610
			release = true;
		else
			src_rsv = NULL;
611
		spin_unlock(&inode->lock);
612 613
	}

614 615 616 617 618 619 620 621 622
	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
	 * we're accounted for.
	 */
623
	if (!src_rsv || (!trans->bytes_reserved &&
624
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
625 626
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
627 628 629 630 631 632 633 634
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
635
		if (!ret) {
636
			node->bytes_reserved = num_bytes;
637
			trace_btrfs_space_reservation(fs_info,
J
Josef Bacik 已提交
638
						      "delayed_inode",
639
						      btrfs_ino(inode),
J
Josef Bacik 已提交
640 641
						      num_bytes, 1);
		}
642 643 644
		return ret;
	}

645
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
646 647 648 649 650 651 652 653 654 655 656 657 658 659

	/*
	 * Migrate only takes a reservation, it doesn't touch the size of the
	 * block_rsv.  This is to simplify people who don't normally have things
	 * migrated from their block rsv.  If they go to release their
	 * reservation, that will decrease the size as well, so if migrate
	 * reduced size we'd end up with a negative size.  But for the
	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
	 * but we could in fact do this reserve/migrate dance several times
	 * between the time we did the original reservation and we'd clean it
	 * up.  So to take care of this, release the space for the meta
	 * reservation here.  I think it may be time for a documentation page on
	 * how block rsvs. work.
	 */
J
Josef Bacik 已提交
660
	if (!ret) {
661
		trace_btrfs_space_reservation(fs_info, "delayed_inode",
662
					      btrfs_ino(inode), num_bytes, 1);
663
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
664
	}
665

J
Josef Bacik 已提交
666
	if (release) {
667
		trace_btrfs_space_reservation(fs_info, "delalloc",
668
					      btrfs_ino(inode), num_bytes, 0);
669
		btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
J
Josef Bacik 已提交
670
	}
671 672 673 674

	return ret;
}

675
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
676 677 678 679 680 681 682
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

683 684
	rsv = &fs_info->delayed_block_rsv;
	trace_btrfs_space_reservation(fs_info, "delayed_inode",
J
Josef Bacik 已提交
685
				      node->inode_id, node->bytes_reserved, 0);
686
	btrfs_block_rsv_release(fs_info, rsv,
687 688 689 690 691 692 693 694
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
695 696 697
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
698
{
699
	struct btrfs_fs_info *fs_info = root->fs_info;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
716
	free_space = btrfs_leaf_free_space(fs_info, leaf);
717 718 719
	INIT_LIST_HEAD(&head);

	next = item;
720
	nitems = 0;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

753
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
754 755 756 757 758
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

759
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
760 761 762 763 764 765 766 767 768 769 770 771 772 773
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
774
	btrfs_clear_path_blocking(path, NULL, 0);
775 776

	/* insert the keys of the items */
777
	setup_items_for_insert(root, path, keys, data_size,
778
			       total_data_size, total_size, nitems);
779 780 781 782 783 784 785 786 787 788

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

789
		btrfs_delayed_item_release_metadata(fs_info, curr);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
811
	struct btrfs_fs_info *fs_info = root->fs_info;
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

829
	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
853
		btrfs_release_path(path);
854 855 856 857 858 859 860 861
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
862
		btrfs_batch_insert_items(root, path, curr);
863 864 865 866
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

867
	btrfs_release_path(path);
868 869 870 871 872 873 874 875 876 877 878 879 880
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
881
	struct btrfs_fs_info *fs_info = root->fs_info;
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
931
		btrfs_delayed_item_release_metadata(fs_info, curr);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
966
		btrfs_release_path(path);
967 968
		if (curr) {
			mutex_unlock(&node->mutex);
969
			goto do_again;
970
		} else
971 972 973 974
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
975
	btrfs_release_path(path);
976 977 978 979
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
980
	btrfs_release_path(path);
981 982 983 984 985 986 987 988
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

989 990
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
991
		BUG_ON(!delayed_node->root);
992
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
993 994 995
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
996
		finish_one_item(delayed_root);
997 998 999
	}
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1012 1013 1014 1015
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1016
{
1017
	struct btrfs_fs_info *fs_info = root->fs_info;
1018 1019 1020
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1021
	int mod;
1022 1023 1024
	int ret;

	key.objectid = node->inode_id;
1025
	key.type = BTRFS_INODE_ITEM_KEY;
1026
	key.offset = 0;
1027

1028 1029 1030 1031 1032 1033
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1034
	if (ret > 0) {
1035
		btrfs_release_path(path);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1074
	btrfs_delayed_inode_release_metadata(fs_info, node);
1075 1076
	btrfs_release_delayed_inode(node);

1077 1078 1079 1080 1081
	return ret;

search:
	btrfs_release_path(path);

1082
	key.type = BTRFS_INODE_EXTREF_KEY;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1103
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1104 1105 1106 1107 1108 1109 1110 1111 1112
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1132 1133 1134 1135 1136 1137
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1138
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1139
				     struct btrfs_fs_info *fs_info, int nr)
1140 1141 1142 1143
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1144
	struct btrfs_block_rsv *block_rsv;
1145
	int ret = 0;
1146
	bool count = (nr > 0);
1147

1148 1149 1150
	if (trans->aborted)
		return -EIO;

1151 1152 1153 1154 1155
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1156
	block_rsv = trans->block_rsv;
1157
	trans->block_rsv = &fs_info->delayed_block_rsv;
1158

1159
	delayed_root = fs_info->delayed_root;
1160 1161

	curr_node = btrfs_first_delayed_node(delayed_root);
1162
	while (curr_node && (!count || (count && nr--))) {
1163 1164
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1165 1166
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1167
			curr_node = NULL;
1168
			btrfs_abort_transaction(trans, ret);
1169 1170 1171 1172 1173 1174 1175 1176
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1177 1178
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1179
	btrfs_free_path(path);
1180
	trans->block_rsv = block_rsv;
1181

1182 1183 1184
	return ret;
}

1185
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1186
			    struct btrfs_fs_info *fs_info)
1187
{
1188
	return __btrfs_run_delayed_items(trans, fs_info, -1);
1189 1190 1191
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1192
			       struct btrfs_fs_info *fs_info, int nr)
1193
{
1194
	return __btrfs_run_delayed_items(trans, fs_info, nr);
1195 1196
}

1197
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1198
				     struct btrfs_inode *inode)
1199
{
1200
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1201 1202
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1216
	path = btrfs_alloc_path();
1217 1218
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1219
		return -ENOMEM;
1220
	}
1221 1222 1223 1224 1225 1226 1227
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1228
	btrfs_release_delayed_node(delayed_node);
1229 1230 1231
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1232 1233 1234
	return ret;
}

1235
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1236
{
1237
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1238
	struct btrfs_trans_handle *trans;
1239
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1240 1241 1242 1243 1244 1245 1246 1247
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1248
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
1269
	trans->block_rsv = &fs_info->delayed_block_rsv;
1270 1271

	mutex_lock(&delayed_node->mutex);
1272
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1273 1274 1275 1276 1277 1278 1279 1280 1281
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
1282
	btrfs_end_transaction(trans);
1283
	btrfs_btree_balance_dirty(fs_info);
1284 1285 1286 1287 1288 1289
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1290
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1291 1292 1293
{
	struct btrfs_delayed_node *delayed_node;

1294
	delayed_node = READ_ONCE(inode->delayed_node);
1295 1296 1297
	if (!delayed_node)
		return;

1298
	inode->delayed_node = NULL;
1299 1300 1301
	btrfs_release_delayed_node(delayed_node);
}

1302 1303 1304
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1305
	struct btrfs_work work;
1306 1307
};

1308
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1309
{
1310 1311
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1312 1313 1314 1315
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1316
	struct btrfs_block_rsv *block_rsv;
1317
	int total_done = 0;
1318

1319 1320
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1321 1322 1323 1324 1325

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1326 1327 1328 1329 1330 1331 1332 1333 1334
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1335 1336
	root = delayed_node->root;

C
Chris Mason 已提交
1337
	trans = btrfs_join_transaction(root);
1338
	if (IS_ERR(trans))
1339
		goto release_path;
1340

1341
	block_rsv = trans->block_rsv;
1342
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1343

1344
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1345

1346
	trans->block_rsv = block_rsv;
1347
	btrfs_end_transaction(trans);
1348
	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1349 1350 1351 1352 1353 1354

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
1355 1356
	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
	    total_done < async_work->nr)
1357 1358
		goto again;

1359 1360 1361
free_path:
	btrfs_free_path(path);
out:
1362 1363
	wake_up(&delayed_root->wait);
	kfree(async_work);
1364 1365
}

1366

1367
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1368
				     struct btrfs_fs_info *fs_info, int nr)
1369
{
1370
	struct btrfs_async_delayed_work *async_work;
1371

1372 1373
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1374 1375
		return 0;

1376 1377
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1378 1379
		return -ENOMEM;

1380
	async_work->delayed_root = delayed_root;
1381 1382
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1383
	async_work->nr = nr;
1384

1385
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1386 1387 1388
	return 0;
}

1389
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1390
{
1391
	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1392 1393
}

1394
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1395 1396 1397
{
	int val = atomic_read(&delayed_root->items_seq);

1398
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1399
		return 1;
1400 1401 1402 1403

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1404 1405 1406
	return 0;
}

1407
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1408
{
1409
	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1410 1411 1412 1413 1414

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1415
		int seq;
1416
		int ret;
1417 1418

		seq = atomic_read(&delayed_root->items_seq);
1419

1420
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1421 1422 1423
		if (ret)
			return;

1424 1425
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1426
		return;
1427 1428
	}

1429
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1430 1431
}

1432
/* Will return 0 or -ENOMEM */
1433
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1434 1435
				   struct btrfs_fs_info *fs_info,
				   const char *name, int name_len,
1436
				   struct btrfs_inode *dir,
1437 1438 1439 1440 1441 1442 1443 1444
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

1445
	delayed_node = btrfs_get_or_create_delayed_node(dir);
1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1455
	delayed_item->key.objectid = btrfs_ino(dir);
1456
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1457 1458 1459 1460
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1461 1462 1463 1464
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1465 1466
	memcpy((char *)(dir_item + 1), name, name_len);

1467
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
J
Josef Bacik 已提交
1468 1469 1470 1471 1472 1473 1474
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1475 1476 1477
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1478
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1479 1480 1481
			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  name_len, name, delayed_node->root->objectid,
			  delayed_node->inode_id, ret);
1482 1483 1484 1485 1486 1487 1488 1489 1490
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1491
static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

1504
	btrfs_delayed_item_release_metadata(fs_info, item);
1505 1506 1507 1508 1509 1510
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511
				   struct btrfs_fs_info *fs_info,
1512
				   struct btrfs_inode *dir, u64 index)
1513 1514 1515 1516 1517 1518
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

1519
	node = btrfs_get_or_create_delayed_node(dir);
1520 1521 1522
	if (IS_ERR(node))
		return PTR_ERR(node);

1523
	item_key.objectid = btrfs_ino(dir);
1524
	item_key.type = BTRFS_DIR_INDEX_KEY;
1525 1526
	item_key.offset = index;

1527
	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

1539
	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1549
		btrfs_err(fs_info,
J
Jeff Mahoney 已提交
1550 1551
			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
			  index, node->root->objectid, node->inode_id, ret);
1552 1553 1554 1555 1556 1557 1558 1559
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

1560
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1561
{
1562
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1563 1564 1565 1566 1567 1568 1569 1570 1571

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1572 1573
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1574
		return -EINVAL;
1575
	}
1576

1577
	inode->index_cnt = delayed_node->index_cnt;
1578 1579
	btrfs_release_delayed_node(delayed_node);
	return 0;
1580 1581
}

1582 1583 1584
bool btrfs_readdir_get_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1585 1586 1587 1588
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

1589
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1590
	if (!delayed_node)
1591 1592 1593 1594 1595 1596 1597 1598
		return false;

	/*
	 * We can only do one readdir with delayed items at a time because of
	 * item->readdir_list.
	 */
	inode_unlock_shared(inode);
	inode_lock(inode);
1599 1600 1601 1602

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
1603
		refcount_inc(&item->refs);
1604 1605 1606 1607 1608 1609
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
1610
		refcount_inc(&item->refs);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
1624
	refcount_dec(&delayed_node->refs);
1625 1626

	return true;
1627 1628
}

1629 1630 1631
void btrfs_readdir_put_delayed_items(struct inode *inode,
				     struct list_head *ins_list,
				     struct list_head *del_list)
1632 1633 1634 1635 1636
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
1637
		if (refcount_dec_and_test(&curr->refs))
1638 1639 1640 1641 1642
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
1643
		if (refcount_dec_and_test(&curr->refs))
1644 1645
			kfree(curr);
	}
1646 1647 1648 1649 1650 1651

	/*
	 * The VFS is going to do up_read(), so we need to downgrade back to a
	 * read lock.
	 */
	downgrade_write(&inode->i_rwsem);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

1670
		if (refcount_dec_and_test(&curr->refs))
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1685
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1686
				    struct list_head *ins_list)
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1707
		if (curr->key.offset < ctx->pos) {
1708
			if (refcount_dec_and_test(&curr->refs))
1709 1710 1711 1712
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1713
		ctx->pos = curr->key.offset;
1714 1715 1716

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1717
		name_len = btrfs_stack_dir_name_len(di);
1718 1719 1720 1721

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1722
		over = !dir_emit(ctx, name, name_len,
1723 1724
			       location.objectid, d_type);

1725
		if (refcount_dec_and_test(&curr->refs))
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
			kfree(curr);

		if (over)
			return 1;
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1738 1739
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1740 1741 1742 1743 1744 1745
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1746
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1747 1748 1749
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1750
	btrfs_set_stack_inode_block_group(inode_item, 0);
1751

1752
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1753
				     inode->i_atime.tv_sec);
1754
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1755 1756
				      inode->i_atime.tv_nsec);

1757
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1758
				     inode->i_mtime.tv_sec);
1759
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1760 1761
				      inode->i_mtime.tv_nsec);

1762
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1763
				     inode->i_ctime.tv_sec);
1764
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1765
				      inode->i_ctime.tv_nsec);
1766 1767 1768 1769 1770

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1771 1772
}

1773 1774 1775 1776 1777
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

1778
	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779 1780 1781 1782
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1783
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784 1785 1786 1787 1788 1789 1790
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1791 1792
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793
	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1795
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1796 1797
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1798 1799
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1800
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1801 1802 1803 1804
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1805 1806
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1807

1808 1809
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1810

1811 1812
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1813

1814 1815 1816 1817 1818
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1819 1820 1821 1822 1823 1824 1825 1826
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1827 1828 1829 1830
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1831
	int ret = 0;
1832

1833
	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1834 1835 1836 1837
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1838
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1839 1840 1841 1842
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1843
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1844
						   delayed_node);
1845 1846
	if (ret)
		goto release_node;
1847 1848

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1849
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1850 1851 1852 1853 1854 1855 1856 1857
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1858
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1859
{
1860
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1861 1862
	struct btrfs_delayed_node *delayed_node;

1863 1864 1865 1866 1867
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
1868
	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1869 1870
		return -EAGAIN;

1871
	delayed_node = btrfs_get_or_create_delayed_node(inode);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
1895
	atomic_inc(&fs_info->delayed_root->items);
1896 1897 1898 1899 1900 1901
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1902 1903 1904
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
1905
	struct btrfs_fs_info *fs_info = root->fs_info;
1906 1907 1908 1909 1910
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
1911
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1912 1913 1914 1915 1916 1917 1918
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
1919
		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1920 1921 1922 1923 1924
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1925 1926 1927
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1928
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1929
		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1930 1931 1932 1933 1934
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

1935
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1936 1937 1938
{
	struct btrfs_delayed_node *delayed_node;

1939
	delayed_node = btrfs_get_delayed_node(inode);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
1966
			refcount_inc(&delayed_nodes[i]->refs);
1967 1968 1969 1970 1971 1972 1973 1974
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1975

1976
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1977 1978 1979
{
	struct btrfs_delayed_node *curr_node, *prev_node;

1980
	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1981 1982 1983 1984 1985 1986 1987 1988 1989
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}