cpufreq_conservative.c 15.4 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
18
#include <linux/cpu.h>
19 20
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22 23 24 25 26
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>

27 28 29 30 31 32 33 34
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

35 36
/*
 * The polling frequency of this governor depends on the capability of
37
 * the processor. Default polling frequency is 1000 times the transition
38 39
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
40
 * rate.
41 42
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
43 44
 * All times here are in uS.
 */
45
#define MIN_SAMPLING_RATE_RATIO			(2)
46

47 48
static unsigned int min_sampling_rate;

49
#define LATENCY_MULTIPLIER			(1000)
50
#define MIN_LATENCY_MULTIPLIER			(100)
51 52
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
53
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54

D
David Howells 已提交
55
static void do_dbs_timer(struct work_struct *work);
56 57

struct cpu_dbs_info_s {
58 59 60
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
61
	struct cpufreq_policy *cur_policy;
62
	struct delayed_work work;
63 64
	unsigned int down_skip;
	unsigned int requested_freq;
65 66
	int cpu;
	unsigned int enable:1;
67 68 69 70 71 72
	/*
	 * percpu mutex that serializes governor limit change with
	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
	 * when user is changing the governor or limits.
	 */
	struct mutex timer_mutex;
73
};
74
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 76 77

static unsigned int dbs_enable;	/* number of CPUs using this policy */

78
/*
79
 * dbs_mutex protects dbs_enable in governor start/stop.
80
 */
81
static DEFINE_MUTEX(dbs_mutex);
82

83
static struct dbs_tuners {
84 85 86 87 88 89
	unsigned int sampling_rate;
	unsigned int sampling_down_factor;
	unsigned int up_threshold;
	unsigned int down_threshold;
	unsigned int ignore_nice;
	unsigned int freq_step;
90
} dbs_tuners_ins = {
91 92 93 94 95
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
	.ignore_nice = 0,
	.freq_step = 5,
96 97
};

98 99 100 101 102 103
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		     void *data)
{
	struct cpufreq_freqs *freq = data;
104
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
105 106
							freq->cpu);

107 108
	struct cpufreq_policy *policy;

109 110 111
	if (!this_dbs_info->enable)
		return 0;

112 113 114 115 116 117 118 119 120 121
	policy = this_dbs_info->cur_policy;

	/*
	 * we only care if our internally tracked freq moves outside
	 * the 'valid' ranges of freqency available to us otherwise
	 * we do not change it
	*/
	if (this_dbs_info->requested_freq > policy->max
			|| this_dbs_info->requested_freq < policy->min)
		this_dbs_info->requested_freq = freq->new;
122 123 124 125 126 127 128 129

	return 0;
}

static struct notifier_block dbs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier
};

130
/************************** sysfs interface ************************/
131 132
static ssize_t show_sampling_rate_min(struct kobject *kobj,
				      struct attribute *attr, char *buf)
133
{
134
	return sprintf(buf, "%u\n", min_sampling_rate);
135 136
}

137
define_one_global_ro(sampling_rate_min);
138 139 140 141

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
142
(struct kobject *kobj, struct attribute *attr, char *buf)		\
143 144 145 146 147 148 149
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
150
show_one(ignore_nice_load, ignore_nice);
151 152
show_one(freq_step, freq_step);

153 154 155
static ssize_t store_sampling_down_factor(struct kobject *a,
					  struct attribute *b,
					  const char *buf, size_t count)
156 157 158
{
	unsigned int input;
	int ret;
159
	ret = sscanf(buf, "%u", &input);
160

161
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
162 163 164 165 166 167
		return -EINVAL;

	dbs_tuners_ins.sampling_down_factor = input;
	return count;
}

168 169
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
170 171 172
{
	unsigned int input;
	int ret;
173
	ret = sscanf(buf, "%u", &input);
174

175
	if (ret != 1)
176
		return -EINVAL;
177

178
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
179 180 181
	return count;
}

182 183
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
184 185 186
{
	unsigned int input;
	int ret;
187
	ret = sscanf(buf, "%u", &input);
188

189
	if (ret != 1 || input > 100 ||
190
			input <= dbs_tuners_ins.down_threshold)
191 192 193 194 195 196
		return -EINVAL;

	dbs_tuners_ins.up_threshold = input;
	return count;
}

197 198
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
				    const char *buf, size_t count)
199 200 201
{
	unsigned int input;
	int ret;
202
	ret = sscanf(buf, "%u", &input);
203

204 205
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
206
			input >= dbs_tuners_ins.up_threshold)
207 208 209 210 211 212
		return -EINVAL;

	dbs_tuners_ins.down_threshold = input;
	return count;
}

213 214
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
				      const char *buf, size_t count)
215 216 217 218 219
{
	unsigned int input;
	int ret;

	unsigned int j;
220 221 222

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
223 224
		return -EINVAL;

225
	if (input > 1)
226
		input = 1;
227

228
	if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
229
		return count;
230

231 232
	dbs_tuners_ins.ignore_nice = input;

233
	/* we need to re-evaluate prev_cpu_idle */
234
	for_each_online_cpu(j) {
235
		struct cpu_dbs_info_s *dbs_info;
236
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
237 238 239
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
		if (dbs_tuners_ins.ignore_nice)
240
			dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
241 242 243 244
	}
	return count;
}

245 246
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
			       const char *buf, size_t count)
247 248 249
{
	unsigned int input;
	int ret;
250
	ret = sscanf(buf, "%u", &input);
251

252
	if (ret != 1)
253 254
		return -EINVAL;

255
	if (input > 100)
256
		input = 100;
257

258 259 260 261 262 263
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
	dbs_tuners_ins.freq_step = input;
	return count;
}

264 265 266 267 268 269
define_one_global_rw(sampling_rate);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(up_threshold);
define_one_global_rw(down_threshold);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(freq_step);
270

271
static struct attribute *dbs_attributes[] = {
272 273 274 275 276
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
277
	&ignore_nice_load.attr,
278 279 280 281 282 283 284 285 286 287 288
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

289
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
290
{
291
	unsigned int load = 0;
292
	unsigned int max_load = 0;
293
	unsigned int freq_target;
294

295 296
	struct cpufreq_policy *policy;
	unsigned int j;
297

298 299
	policy = this_dbs_info->cur_policy;

300
	/*
301 302 303 304
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate*sampling_down_factor, we check, if current
	 * idle time is more than 80%, then we try to decrease frequency
305
	 *
306 307
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
308
	 * 5% (default) of maximum frequency
309 310
	 */

311 312 313 314 315
	/* Get Absolute Load */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
316

317
		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
318 319 320

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

321 322
		wall_time = (unsigned int)
			(cur_wall_time - j_dbs_info->prev_cpu_wall);
323
		j_dbs_info->prev_cpu_wall = cur_wall_time;
324

325 326
		idle_time = (unsigned int)
			(cur_idle_time - j_dbs_info->prev_cpu_idle);
327
		j_dbs_info->prev_cpu_idle = cur_idle_time;
328

329
		if (dbs_tuners_ins.ignore_nice) {
330
			u64 cur_nice;
331 332
			unsigned long cur_nice_jiffies;

333 334
			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 j_dbs_info->prev_cpu_nice;
335 336 337 338 339 340 341
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

342
			j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
343 344 345 346 347 348 349
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;
350 351 352

		if (load > max_load)
			max_load = load;
353 354 355 356 357 358 359 360
	}

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (dbs_tuners_ins.freq_step == 0)
		return;
361

362
	/* Check for frequency increase */
363
	if (max_load > dbs_tuners_ins.up_threshold) {
364
		this_dbs_info->down_skip = 0;
365

366
		/* if we are already at full speed then break out early */
367
		if (this_dbs_info->requested_freq == policy->max)
368
			return;
369

370
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
371 372

		/* max freq cannot be less than 100. But who knows.... */
373 374
		if (unlikely(freq_target == 0))
			freq_target = 5;
375

376
		this_dbs_info->requested_freq += freq_target;
377 378
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
379

380
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
381 382 383 384
			CPUFREQ_RELATION_H);
		return;
	}

385 386 387 388 389
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
390
	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
391
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
392

393
		this_dbs_info->requested_freq -= freq_target;
394 395
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
396

397 398 399 400 401 402
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

403
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
404
				CPUFREQ_RELATION_H);
405 406 407 408
		return;
	}
}

D
David Howells 已提交
409
static void do_dbs_timer(struct work_struct *work)
410
{
411 412 413 414 415 416 417 418 419
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

420
	mutex_lock(&dbs_info->timer_mutex);
421 422 423

	dbs_check_cpu(dbs_info);

424
	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
425
	mutex_unlock(&dbs_info->timer_mutex);
426
}
427

428
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
429
{
430 431 432 433 434
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
435
	INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
436
	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
437 438
}

439
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
440
{
441
	dbs_info->enable = 0;
442
	cancel_delayed_work_sync(&dbs_info->work);
443 444 445 446 447 448 449 450
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
451
	int rc;
452

453
	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
454 455 456

	switch (event) {
	case CPUFREQ_GOV_START:
457
		if ((!cpu_online(cpu)) || (!policy->cur))
458 459
			return -EINVAL;

460
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
461

462
		for_each_cpu(j, policy->cpus) {
463
			struct cpu_dbs_info_s *j_dbs_info;
464
			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
465
			j_dbs_info->cur_policy = policy;
466

467 468
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
469
			if (dbs_tuners_ins.ignore_nice)
470
				j_dbs_info->prev_cpu_nice =
471
						kcpustat_cpu(j).cpustat[CPUTIME_NICE];
472
		}
473
		this_dbs_info->cpu = cpu;
474 475
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
476

477
		mutex_init(&this_dbs_info->timer_mutex);
478 479 480 481 482 483 484 485
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
486 487 488
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
489

490 491 492 493 494 495 496
			rc = sysfs_create_group(cpufreq_global_kobject,
						&dbs_attr_group);
			if (rc) {
				mutex_unlock(&dbs_mutex);
				return rc;
			}

497 498 499 500 501 502 503 504 505 506 507 508
			/*
			 * conservative does not implement micro like ondemand
			 * governor, thus we are bound to jiffes/HZ
			 */
			min_sampling_rate =
				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
509

510 511 512
			cpufreq_register_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
513
		}
514
		mutex_unlock(&dbs_mutex);
515

516 517
		dbs_timer_init(this_dbs_info);

518 519 520
		break;

	case CPUFREQ_GOV_STOP:
521
		dbs_timer_exit(this_dbs_info);
522 523

		mutex_lock(&dbs_mutex);
524
		dbs_enable--;
525
		mutex_destroy(&this_dbs_info->timer_mutex);
526

527 528 529 530
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
531
		if (dbs_enable == 0)
532 533 534 535
			cpufreq_unregister_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

536
		mutex_unlock(&dbs_mutex);
537 538 539
		if (!dbs_enable)
			sysfs_remove_group(cpufreq_global_kobject,
					   &dbs_attr_group);
540 541 542 543

		break;

	case CPUFREQ_GOV_LIMITS:
544
		mutex_lock(&this_dbs_info->timer_mutex);
545 546 547
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
548
					policy->max, CPUFREQ_RELATION_H);
549 550 551
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
552
					policy->min, CPUFREQ_RELATION_L);
553
		dbs_check_cpu(this_dbs_info);
554
		mutex_unlock(&this_dbs_info->timer_mutex);
555

556 557 558 559 560
		break;
	}
	return 0;
}

561 562 563
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
564 565 566 567 568
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
569 570 571 572
};

static int __init cpufreq_gov_dbs_init(void)
{
573
	return cpufreq_register_governor(&cpufreq_gov_conservative);
574 575 576 577
}

static void __exit cpufreq_gov_dbs_exit(void)
{
578
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
579 580 581
}


582
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
583
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
584 585
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
586
MODULE_LICENSE("GPL");
587

588 589 590
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
591
module_init(cpufreq_gov_dbs_init);
592
#endif
593
module_exit(cpufreq_gov_dbs_exit);