cpufreq_conservative.c 16.3 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
18
#include <linux/cpu.h>
19 20
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22 23 24 25 26
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>

27 28 29 30 31 32 33 34
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

35 36
/*
 * The polling frequency of this governor depends on the capability of
37
 * the processor. Default polling frequency is 1000 times the transition
38 39
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
40
 * rate.
41 42
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
43 44
 * All times here are in uS.
 */
45
#define MIN_SAMPLING_RATE_RATIO			(2)
46

47 48
static unsigned int min_sampling_rate;

49
#define LATENCY_MULTIPLIER			(1000)
50
#define MIN_LATENCY_MULTIPLIER			(100)
51 52
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
53
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54

D
David Howells 已提交
55
static void do_dbs_timer(struct work_struct *work);
56 57

struct cpu_dbs_info_s {
58 59 60
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
61
	struct cpufreq_policy *cur_policy;
62
	struct delayed_work work;
63 64
	unsigned int down_skip;
	unsigned int requested_freq;
65 66
	int cpu;
	unsigned int enable:1;
67 68 69 70 71 72
	/*
	 * percpu mutex that serializes governor limit change with
	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
	 * when user is changing the governor or limits.
	 */
	struct mutex timer_mutex;
73
};
74
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 76 77

static unsigned int dbs_enable;	/* number of CPUs using this policy */

78
/*
79
 * dbs_mutex protects dbs_enable in governor start/stop.
80
 */
81
static DEFINE_MUTEX(dbs_mutex);
82

83
static struct dbs_tuners {
84 85 86 87 88 89
	unsigned int sampling_rate;
	unsigned int sampling_down_factor;
	unsigned int up_threshold;
	unsigned int down_threshold;
	unsigned int ignore_nice;
	unsigned int freq_step;
90
} dbs_tuners_ins = {
91 92 93 94 95
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
	.ignore_nice = 0,
	.freq_step = 5,
96 97
};

98
static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
99
{
100
	u64 idle_time;
101
	u64 cur_wall_time;
102
	u64 busy_time;
103 104

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
105

106 107
	busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
108 109 110 111
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
112 113

	idle_time = cur_wall_time - busy_time;
114
	if (wall)
115
		*wall = jiffies_to_usecs(cur_wall_time);
116

117
	return jiffies_to_usecs(idle_time);
118 119 120 121
}

static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
122
	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
123 124 125

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);
126 127
	else
		idle_time += get_cpu_iowait_time_us(cpu, wall);
128 129

	return idle_time;
130 131
}

132 133 134 135 136 137
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		     void *data)
{
	struct cpufreq_freqs *freq = data;
138
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
139 140
							freq->cpu);

141 142
	struct cpufreq_policy *policy;

143 144 145
	if (!this_dbs_info->enable)
		return 0;

146 147 148 149 150 151 152 153 154 155
	policy = this_dbs_info->cur_policy;

	/*
	 * we only care if our internally tracked freq moves outside
	 * the 'valid' ranges of freqency available to us otherwise
	 * we do not change it
	*/
	if (this_dbs_info->requested_freq > policy->max
			|| this_dbs_info->requested_freq < policy->min)
		this_dbs_info->requested_freq = freq->new;
156 157 158 159 160 161 162 163

	return 0;
}

static struct notifier_block dbs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier
};

164
/************************** sysfs interface ************************/
165 166
static ssize_t show_sampling_rate_min(struct kobject *kobj,
				      struct attribute *attr, char *buf)
167
{
168
	return sprintf(buf, "%u\n", min_sampling_rate);
169 170
}

171
define_one_global_ro(sampling_rate_min);
172 173 174 175

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
176
(struct kobject *kobj, struct attribute *attr, char *buf)		\
177 178 179 180 181 182 183
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
184
show_one(ignore_nice_load, ignore_nice);
185 186
show_one(freq_step, freq_step);

187 188 189
static ssize_t store_sampling_down_factor(struct kobject *a,
					  struct attribute *b,
					  const char *buf, size_t count)
190 191 192
{
	unsigned int input;
	int ret;
193
	ret = sscanf(buf, "%u", &input);
194

195
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
196 197 198 199 200 201
		return -EINVAL;

	dbs_tuners_ins.sampling_down_factor = input;
	return count;
}

202 203
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
204 205 206
{
	unsigned int input;
	int ret;
207
	ret = sscanf(buf, "%u", &input);
208

209
	if (ret != 1)
210
		return -EINVAL;
211

212
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
213 214 215
	return count;
}

216 217
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
218 219 220
{
	unsigned int input;
	int ret;
221
	ret = sscanf(buf, "%u", &input);
222

223
	if (ret != 1 || input > 100 ||
224
			input <= dbs_tuners_ins.down_threshold)
225 226 227 228 229 230
		return -EINVAL;

	dbs_tuners_ins.up_threshold = input;
	return count;
}

231 232
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
				    const char *buf, size_t count)
233 234 235
{
	unsigned int input;
	int ret;
236
	ret = sscanf(buf, "%u", &input);
237

238 239
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
240
			input >= dbs_tuners_ins.up_threshold)
241 242 243 244 245 246
		return -EINVAL;

	dbs_tuners_ins.down_threshold = input;
	return count;
}

247 248
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
				      const char *buf, size_t count)
249 250 251 252 253
{
	unsigned int input;
	int ret;

	unsigned int j;
254 255 256

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
257 258
		return -EINVAL;

259
	if (input > 1)
260
		input = 1;
261

262
	if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
263
		return count;
264

265 266
	dbs_tuners_ins.ignore_nice = input;

267
	/* we need to re-evaluate prev_cpu_idle */
268
	for_each_online_cpu(j) {
269
		struct cpu_dbs_info_s *dbs_info;
270
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
271 272 273
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
		if (dbs_tuners_ins.ignore_nice)
274
			dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
275 276 277 278
	}
	return count;
}

279 280
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
			       const char *buf, size_t count)
281 282 283
{
	unsigned int input;
	int ret;
284
	ret = sscanf(buf, "%u", &input);
285

286
	if (ret != 1)
287 288
		return -EINVAL;

289
	if (input > 100)
290
		input = 100;
291

292 293 294 295 296 297
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
	dbs_tuners_ins.freq_step = input;
	return count;
}

298 299 300 301 302 303
define_one_global_rw(sampling_rate);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(up_threshold);
define_one_global_rw(down_threshold);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(freq_step);
304

305
static struct attribute *dbs_attributes[] = {
306 307 308 309 310
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
311
	&ignore_nice_load.attr,
312 313 314 315 316 317 318 319 320 321 322
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

323
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
324
{
325
	unsigned int load = 0;
326
	unsigned int max_load = 0;
327
	unsigned int freq_target;
328

329 330
	struct cpufreq_policy *policy;
	unsigned int j;
331

332 333
	policy = this_dbs_info->cur_policy;

334
	/*
335 336 337 338
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate*sampling_down_factor, we check, if current
	 * idle time is more than 80%, then we try to decrease frequency
339
	 *
340 341
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
342
	 * 5% (default) of maximum frequency
343 344
	 */

345 346 347 348 349
	/* Get Absolute Load */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
350

351
		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
352 353 354

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

355 356
		wall_time = (unsigned int)
			(cur_wall_time - j_dbs_info->prev_cpu_wall);
357
		j_dbs_info->prev_cpu_wall = cur_wall_time;
358

359 360
		idle_time = (unsigned int)
			(cur_idle_time - j_dbs_info->prev_cpu_idle);
361
		j_dbs_info->prev_cpu_idle = cur_idle_time;
362

363
		if (dbs_tuners_ins.ignore_nice) {
364
			u64 cur_nice;
365 366
			unsigned long cur_nice_jiffies;

367 368
			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 j_dbs_info->prev_cpu_nice;
369 370 371 372 373 374 375
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

376
			j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
377 378 379 380 381 382 383
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;
384 385 386

		if (load > max_load)
			max_load = load;
387 388 389 390 391 392 393 394
	}

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (dbs_tuners_ins.freq_step == 0)
		return;
395

396
	/* Check for frequency increase */
397
	if (max_load > dbs_tuners_ins.up_threshold) {
398
		this_dbs_info->down_skip = 0;
399

400
		/* if we are already at full speed then break out early */
401
		if (this_dbs_info->requested_freq == policy->max)
402
			return;
403

404
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
405 406

		/* max freq cannot be less than 100. But who knows.... */
407 408
		if (unlikely(freq_target == 0))
			freq_target = 5;
409

410
		this_dbs_info->requested_freq += freq_target;
411 412
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
413

414
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
415 416 417 418
			CPUFREQ_RELATION_H);
		return;
	}

419 420 421 422 423
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
424
	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
425
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
426

427
		this_dbs_info->requested_freq -= freq_target;
428 429
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
430

431 432 433 434 435 436
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

437
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
438
				CPUFREQ_RELATION_H);
439 440 441 442
		return;
	}
}

D
David Howells 已提交
443
static void do_dbs_timer(struct work_struct *work)
444
{
445 446 447 448 449 450 451 452 453
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

454
	mutex_lock(&dbs_info->timer_mutex);
455 456 457

	dbs_check_cpu(dbs_info);

458
	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
459
	mutex_unlock(&dbs_info->timer_mutex);
460
}
461

462
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
463
{
464 465 466 467 468 469
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
470
	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
471 472
}

473
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
474
{
475
	dbs_info->enable = 0;
476
	cancel_delayed_work_sync(&dbs_info->work);
477 478 479 480 481 482 483 484
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
485
	int rc;
486

487
	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
488 489 490

	switch (event) {
	case CPUFREQ_GOV_START:
491
		if ((!cpu_online(cpu)) || (!policy->cur))
492 493
			return -EINVAL;

494
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
495

496
		for_each_cpu(j, policy->cpus) {
497
			struct cpu_dbs_info_s *j_dbs_info;
498
			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
499
			j_dbs_info->cur_policy = policy;
500

501 502
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
503
			if (dbs_tuners_ins.ignore_nice)
504
				j_dbs_info->prev_cpu_nice =
505
						kcpustat_cpu(j).cpustat[CPUTIME_NICE];
506
		}
507 508
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
509

510
		mutex_init(&this_dbs_info->timer_mutex);
511 512 513 514 515 516 517 518
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
519 520 521
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
522

523 524 525 526 527 528 529
			rc = sysfs_create_group(cpufreq_global_kobject,
						&dbs_attr_group);
			if (rc) {
				mutex_unlock(&dbs_mutex);
				return rc;
			}

530 531 532 533 534 535 536 537 538 539 540 541
			/*
			 * conservative does not implement micro like ondemand
			 * governor, thus we are bound to jiffes/HZ
			 */
			min_sampling_rate =
				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
542

543 544 545
			cpufreq_register_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
546
		}
547
		mutex_unlock(&dbs_mutex);
548

549 550
		dbs_timer_init(this_dbs_info);

551 552 553
		break;

	case CPUFREQ_GOV_STOP:
554
		dbs_timer_exit(this_dbs_info);
555 556

		mutex_lock(&dbs_mutex);
557
		dbs_enable--;
558
		mutex_destroy(&this_dbs_info->timer_mutex);
559

560 561 562 563
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
564
		if (dbs_enable == 0)
565 566 567 568
			cpufreq_unregister_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

569
		mutex_unlock(&dbs_mutex);
570 571 572
		if (!dbs_enable)
			sysfs_remove_group(cpufreq_global_kobject,
					   &dbs_attr_group);
573 574 575 576

		break;

	case CPUFREQ_GOV_LIMITS:
577
		mutex_lock(&this_dbs_info->timer_mutex);
578 579 580
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
581
					policy->max, CPUFREQ_RELATION_H);
582 583 584
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
585
					policy->min, CPUFREQ_RELATION_L);
586
		mutex_unlock(&this_dbs_info->timer_mutex);
587

588 589 590 591 592
		break;
	}
	return 0;
}

593 594 595
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
596 597 598 599 600
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
601 602 603 604
};

static int __init cpufreq_gov_dbs_init(void)
{
605
	return cpufreq_register_governor(&cpufreq_gov_conservative);
606 607 608 609
}

static void __exit cpufreq_gov_dbs_exit(void)
{
610
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
611 612 613
}


614
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616 617
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
618
MODULE_LICENSE("GPL");
619

620 621 622
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
623
module_init(cpufreq_gov_dbs_init);
624
#endif
625
module_exit(cpufreq_gov_dbs_exit);