cpufreq_conservative.c 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/cpufreq.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/sched.h>
#include <linux/kmod.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
31
#include <linux/mutex.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

/* 
 * The polling frequency of this governor depends on the capability of 
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with 
 * transition latency <= 10mS, using appropriate sampling 
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
static unsigned int 				def_sampling_rate;
51 52 53 54
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
#define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
56 57 58
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
59 60 61 62 63 64 65 66 67 68 69 70 71 72
#define TRANSITION_LATENCY_LIMIT		(10 * 1000)

static void do_dbs_timer(void *data);

struct cpu_dbs_info_s {
	struct cpufreq_policy 	*cur_policy;
	unsigned int 		prev_cpu_idle_up;
	unsigned int 		prev_cpu_idle_down;
	unsigned int 		enable;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

73
static DEFINE_MUTEX 	(dbs_mutex);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);

struct dbs_tuners {
	unsigned int 		sampling_rate;
	unsigned int		sampling_down_factor;
	unsigned int		up_threshold;
	unsigned int		down_threshold;
	unsigned int		ignore_nice;
	unsigned int		freq_step;
};

static struct dbs_tuners dbs_tuners_ins = {
	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
};

91 92 93 94
static inline unsigned int get_cpu_idle_time(unsigned int cpu)
{
	return	kstat_cpu(cpu).cpustat.idle +
		kstat_cpu(cpu).cpustat.iowait +
95
		( dbs_tuners_ins.ignore_nice ?
96 97 98 99
		  kstat_cpu(cpu).cpustat.nice :
		  0);
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

#define define_one_ro(_name) 					\
static struct freq_attr _name =  				\
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
129
show_one(ignore_nice_load, ignore_nice);
130 131 132 133 134 135 136 137
show_one(freq_step, freq_step);

static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);
138
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
139 140
		return -EINVAL;

141
	mutex_lock(&dbs_mutex);
142
	dbs_tuners_ins.sampling_down_factor = input;
143
	mutex_unlock(&dbs_mutex);
144 145 146 147 148 149 150 151 152 153 154

	return count;
}

static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

155
	mutex_lock(&dbs_mutex);
156
	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
157
		mutex_unlock(&dbs_mutex);
158 159 160 161
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
162
	mutex_unlock(&dbs_mutex);
163 164 165 166 167 168 169 170 171 172 173

	return count;
}

static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

174
	mutex_lock(&dbs_mutex);
175
	if (ret != 1 || input > 100 || input < 0 ||
176
			input <= dbs_tuners_ins.down_threshold) {
177
		mutex_unlock(&dbs_mutex);
178 179 180 181
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
182
	mutex_unlock(&dbs_mutex);
183 184 185 186 187 188 189 190 191 192 193

	return count;
}

static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf (buf, "%u", &input);

194
	mutex_lock(&dbs_mutex);
195
	if (ret != 1 || input > 100 || input < 0 ||
196
			input >= dbs_tuners_ins.up_threshold) {
197
		mutex_unlock(&dbs_mutex);
198 199 200 201
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
202
	mutex_unlock(&dbs_mutex);
203 204 205 206

	return count;
}

207
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
208 209 210 211 212 213 214 215 216 217 218 219 220 221
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
	
	ret = sscanf (buf, "%u", &input);
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;
	
222
	mutex_lock(&dbs_mutex);
223
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
224
		mutex_unlock(&dbs_mutex);
225 226 227 228 229
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
230
	for_each_online_cpu(j) {
231 232
		struct cpu_dbs_info_s *j_dbs_info;
		j_dbs_info = &per_cpu(cpu_dbs_info, j);
233
		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
234 235
		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
	}
236
	mutex_unlock(&dbs_mutex);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf (buf, "%u", &input);

	if ( ret != 1 )
		return -EINVAL;

	if ( input > 100 )
		input = 100;
	
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
257
	mutex_lock(&dbs_mutex);
258
	dbs_tuners_ins.freq_step = input;
259
	mutex_unlock(&dbs_mutex);
260 261 262 263 264 265 266 267 268 269 270 271

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
272
define_one_rw(ignore_nice_load);
273 274 275 276 277 278 279 280 281
define_one_rw(freq_step);

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
282
	&ignore_nice_load.attr,
283 284 285 286 287 288 289 290 291 292 293 294 295 296
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

static void dbs_check_cpu(int cpu)
{
	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
297
	unsigned int tmp_idle_ticks, total_idle_ticks;
298 299
	unsigned int freq_step;
	unsigned int freq_down_sampling_rate;
300 301 302 303
	static unsigned short down_skip[NR_CPUS];
	static unsigned int requested_freq[NR_CPUS];
	static unsigned int init_flag = NR_CPUS;
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
304 305 306 307 308
	struct cpufreq_policy *policy;

	if (!this_dbs_info->enable)
		return;

309 310 311 312 313
	if ( init_flag != 0 ) {
		for_each_cpu(init_flag) {
			down_skip[init_flag] = 0;
			/* I doubt a CPU exists with a freq of 0hz :) */
			requested_freq[init_flag] = 0;
314
		}
315
		init_flag = 0;
316 317
	}
	
318 319 320 321 322 323 324 325 326 327 328 329 330
	/*
	 * If its a freshly initialised cpu we setup requested_freq.  This
	 * check could be avoided if we did not care about a first time
	 * stunted increase in CPU speed when there is a load.  I feel we
	 * should be initialising this to something.  The removal of a CPU
	 * is not a problem, after a short time the CPU should settle down
	 * to a 'natural' frequency.
	 */
	if (requested_freq[cpu] == 0)
		requested_freq[cpu] = this_dbs_info->cur_policy->cur;

	policy = this_dbs_info->cur_policy;

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	/* 
	 * The default safe range is 20% to 80% 
	 * Every sampling_rate, we check
	 * 	- If current idle time is less than 20%, then we try to 
	 * 	  increase frequency
	 * Every sampling_rate*sampling_down_factor, we check
	 * 	- If current idle time is more than 80%, then we try to
	 * 	  decrease frequency
	 *
	 * Any frequency increase takes it to the maximum frequency. 
	 * Frequency reduction happens at minimum steps of 
	 * 5% (default) of max_frequency 
	 */

	/* Check for frequency increase */
346
	idle_ticks = UINT_MAX;
347

348 349 350 351 352 353 354 355
	/* Check for frequency increase */
	total_idle_ticks = get_cpu_idle_time(cpu);
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_up;
	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;

	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
356 357 358 359

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
360
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
361 362

	if (idle_ticks < up_idle_ticks) {
363
		down_skip[cpu] = 0;
364 365
		this_dbs_info->prev_cpu_idle_down =
			this_dbs_info->prev_cpu_idle_up;
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		/* if we are already at full speed then break out early */
		if (requested_freq[cpu] == policy->max)
			return;
		
		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;
		
		requested_freq[cpu] += freq_step;
		if (requested_freq[cpu] > policy->max)
			requested_freq[cpu] = policy->max;

		__cpufreq_driver_target(policy, requested_freq[cpu], 
			CPUFREQ_RELATION_H);
		return;
	}

	/* Check for frequency decrease */
	down_skip[cpu]++;
	if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
		return;

391 392 393 394 395
	/* Check for frequency decrease */
	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
	tmp_idle_ticks = total_idle_ticks -
		this_dbs_info->prev_cpu_idle_down;
	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
396

397 398
	if (tmp_idle_ticks < idle_ticks)
		idle_ticks = tmp_idle_ticks;
399 400 401 402 403 404 405 406

	/* Scale idle ticks by 100 and compare with up and down ticks */
	idle_ticks *= 100;
	down_skip[cpu] = 0;

	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
		dbs_tuners_ins.sampling_down_factor;
	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
407
		usecs_to_jiffies(freq_down_sampling_rate);
408

409
	if (idle_ticks > down_idle_ticks) {
410 411
		/*
		 * if we are already at the lowest speed then break out early
412
		 * or if we 'cannot' reduce the speed as the user might want
413 414
		 * freq_step to be zero
		 */
415 416 417 418 419 420 421 422 423 424 425 426 427 428
		if (requested_freq[cpu] == policy->min
				|| dbs_tuners_ins.freq_step == 0)
			return;

		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;

		/* max freq cannot be less than 100. But who knows.... */
		if (unlikely(freq_step == 0))
			freq_step = 5;

		requested_freq[cpu] -= freq_step;
		if (requested_freq[cpu] < policy->min)
			requested_freq[cpu] = policy->min;

429 430
		__cpufreq_driver_target(policy, requested_freq[cpu],
				CPUFREQ_RELATION_H);
431 432 433 434 435 436 437
		return;
	}
}

static void do_dbs_timer(void *data)
{ 
	int i;
438
	mutex_lock(&dbs_mutex);
439 440 441 442
	for_each_online_cpu(i)
		dbs_check_cpu(i);
	schedule_delayed_work(&dbs_work, 
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
443
	mutex_unlock(&dbs_mutex);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
} 

static inline void dbs_timer_init(void)
{
	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
	schedule_delayed_work(&dbs_work,
			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
	return;
}

static inline void dbs_timer_exit(void)
{
	cancel_delayed_work(&dbs_work);
	return;
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || 
		    (!policy->cur))
			return -EINVAL;

		if (policy->cpuinfo.transition_latency >
				(TRANSITION_LATENCY_LIMIT * 1000))
			return -EINVAL;
		if (this_dbs_info->enable) /* Already enabled */
			break;
		 
481
		mutex_lock(&dbs_mutex);
482 483 484 485 486
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
		
487
			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
488 489 490 491 492 493 494 495 496 497 498 499 500
			j_dbs_info->prev_cpu_idle_down
				= j_dbs_info->prev_cpu_idle_up;
		}
		this_dbs_info->enable = 1;
		sysfs_create_group(&policy->kobj, &dbs_attr_group);
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
501 502 503
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
504

505
			def_sampling_rate = 10 * latency *
506
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
507 508 509 510

			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
				def_sampling_rate = MIN_STAT_SAMPLING_RATE;

511 512 513 514 515 516 517
			dbs_tuners_ins.sampling_rate = def_sampling_rate;
			dbs_tuners_ins.ignore_nice = 0;
			dbs_tuners_ins.freq_step = 5;

			dbs_timer_init();
		}
		
518
		mutex_unlock(&dbs_mutex);
519 520 521
		break;

	case CPUFREQ_GOV_STOP:
522
		mutex_lock(&dbs_mutex);
523 524 525 526 527 528 529 530 531 532
		this_dbs_info->enable = 0;
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 0) 
			dbs_timer_exit();
		
533
		mutex_unlock(&dbs_mutex);
534 535 536 537

		break;

	case CPUFREQ_GOV_LIMITS:
538
		mutex_lock(&dbs_mutex);
539 540 541 542 543 544 545 546
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->max, CPUFREQ_RELATION_H);
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
				       	policy->min, CPUFREQ_RELATION_L);
547
		mutex_unlock(&dbs_mutex);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
		break;
	}
	return 0;
}

static struct cpufreq_governor cpufreq_gov_dbs = {
	.name		= "conservative",
	.governor	= cpufreq_governor_dbs,
	.owner		= THIS_MODULE,
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_dbs);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	/* Make sure that the scheduled work is indeed not running */
	flush_scheduled_work();

	cpufreq_unregister_governor(&cpufreq_gov_dbs);
}


MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
MODULE_LICENSE ("GPL");

module_init(cpufreq_gov_dbs_init);
module_exit(cpufreq_gov_dbs_exit);