cpufreq_conservative.c 17.4 KB
Newer Older
1 2 3 4 5 6
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
7
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
18
#include <linux/cpu.h>
19 20
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
21
#include <linux/mutex.h>
22 23 24 25 26
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>

27 28 29 30 31 32 33 34
/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)

35 36
/*
 * The polling frequency of this governor depends on the capability of
37
 * the processor. Default polling frequency is 1000 times the transition
38 39
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
40
 * rate.
41 42
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
43 44
 * All times here are in uS.
 */
45
#define MIN_SAMPLING_RATE_RATIO			(2)
46

47 48
static unsigned int min_sampling_rate;

49
#define LATENCY_MULTIPLIER			(1000)
50
#define MIN_LATENCY_MULTIPLIER			(100)
51 52
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)
53
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54

D
David Howells 已提交
55
static void do_dbs_timer(struct work_struct *work);
56 57

struct cpu_dbs_info_s {
58 59 60
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
	cputime64_t prev_cpu_nice;
61
	struct cpufreq_policy *cur_policy;
62
	struct delayed_work work;
63 64
	unsigned int down_skip;
	unsigned int requested_freq;
65 66
	int cpu;
	unsigned int enable:1;
67 68 69 70 71 72
	/*
	 * percpu mutex that serializes governor limit change with
	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
	 * when user is changing the governor or limits.
	 */
	struct mutex timer_mutex;
73
};
74
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 76 77

static unsigned int dbs_enable;	/* number of CPUs using this policy */

78
/*
79
 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80
 * different CPUs. It protects dbs_enable in governor start/stop.
81
 */
82
static DEFINE_MUTEX(dbs_mutex);
83

84 85 86
static struct workqueue_struct	*kconservative_wq;

static struct dbs_tuners {
87 88 89 90 91 92
	unsigned int sampling_rate;
	unsigned int sampling_down_factor;
	unsigned int up_threshold;
	unsigned int down_threshold;
	unsigned int ignore_nice;
	unsigned int freq_step;
93
} dbs_tuners_ins = {
94 95 96 97 98
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
	.ignore_nice = 0,
	.freq_step = 5,
99 100
};

101 102
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
103
{
104 105 106 107 108 109 110
	cputime64_t idle_time;
	cputime64_t cur_wall_time;
	cputime64_t busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
			kstat_cpu(cpu).cpustat.system);
111

112 113 114 115
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
116

117 118
	idle_time = cputime64_sub(cur_wall_time, busy_time);
	if (wall)
119
		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
120

121
	return (cputime64_t)jiffies_to_usecs(idle_time);;
122 123 124 125 126 127 128 129 130 131
}

static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
	u64 idle_time = get_cpu_idle_time_us(cpu, wall);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);

	return idle_time;
132 133
}

134 135 136 137 138 139
/* keep track of frequency transitions */
static int
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		     void *data)
{
	struct cpufreq_freqs *freq = data;
140
	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 142
							freq->cpu);

143 144
	struct cpufreq_policy *policy;

145 146 147
	if (!this_dbs_info->enable)
		return 0;

148 149 150 151 152 153 154 155 156 157
	policy = this_dbs_info->cur_policy;

	/*
	 * we only care if our internally tracked freq moves outside
	 * the 'valid' ranges of freqency available to us otherwise
	 * we do not change it
	*/
	if (this_dbs_info->requested_freq > policy->max
			|| this_dbs_info->requested_freq < policy->min)
		this_dbs_info->requested_freq = freq->new;
158 159 160 161 162 163 164 165

	return 0;
}

static struct notifier_block dbs_cpufreq_notifier_block = {
	.notifier_call = dbs_cpufreq_notifier
};

166 167 168
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
169 170
	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
		    "sysfs file is deprecated - used by: %s\n", current->comm);
171
	return sprintf(buf, "%u\n", -1U);
172 173 174 175
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
176
	return sprintf(buf, "%u\n", min_sampling_rate);
177 178
}

179 180
#define define_one_ro(_name)		\
static struct freq_attr _name =		\
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_conservative Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(sampling_down_factor, sampling_down_factor);
show_one(up_threshold, up_threshold);
show_one(down_threshold, down_threshold);
197
show_one(ignore_nice_load, ignore_nice);
198 199
show_one(freq_step, freq_step);

200
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
201 202 203 204
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
205
	ret = sscanf(buf, "%u", &input);
206

207
	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
208 209
		return -EINVAL;

210
	mutex_lock(&dbs_mutex);
211
	dbs_tuners_ins.sampling_down_factor = input;
212
	mutex_unlock(&dbs_mutex);
213 214 215 216

	return count;
}

217
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
218 219 220 221
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
222
	ret = sscanf(buf, "%u", &input);
223

224
	if (ret != 1)
225
		return -EINVAL;
226 227

	mutex_lock(&dbs_mutex);
228
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
229
	mutex_unlock(&dbs_mutex);
230 231 232 233

	return count;
}

234
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
235 236 237 238
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
239
	ret = sscanf(buf, "%u", &input);
240

241
	mutex_lock(&dbs_mutex);
242
	if (ret != 1 || input > 100 ||
243
			input <= dbs_tuners_ins.down_threshold) {
244
		mutex_unlock(&dbs_mutex);
245 246 247 248
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
249
	mutex_unlock(&dbs_mutex);
250 251 252 253

	return count;
}

254
static ssize_t store_down_threshold(struct cpufreq_policy *unused,
255 256 257 258
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
259
	ret = sscanf(buf, "%u", &input);
260

261
	mutex_lock(&dbs_mutex);
262 263 264
	/* cannot be lower than 11 otherwise freq will not fall */
	if (ret != 1 || input < 11 || input > 100 ||
			input >= dbs_tuners_ins.up_threshold) {
265
		mutex_unlock(&dbs_mutex);
266 267 268 269
		return -EINVAL;
	}

	dbs_tuners_ins.down_threshold = input;
270
	mutex_unlock(&dbs_mutex);
271 272 273 274

	return count;
}

275
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
276 277 278 279 280 281
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
282 283 284

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
285 286
		return -EINVAL;

287
	if (input > 1)
288
		input = 1;
289

290
	mutex_lock(&dbs_mutex);
291
	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
292
		mutex_unlock(&dbs_mutex);
293 294 295 296
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

297
	/* we need to re-evaluate prev_cpu_idle */
298
	for_each_online_cpu(j) {
299
		struct cpu_dbs_info_s *dbs_info;
300
		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
301 302 303 304
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
		if (dbs_tuners_ins.ignore_nice)
			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
305
	}
306
	mutex_unlock(&dbs_mutex);
307 308 309 310 311 312 313 314 315

	return count;
}

static ssize_t store_freq_step(struct cpufreq_policy *policy,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
316
	ret = sscanf(buf, "%u", &input);
317

318
	if (ret != 1)
319 320
		return -EINVAL;

321
	if (input > 100)
322
		input = 100;
323

324 325
	/* no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :) */
326
	mutex_lock(&dbs_mutex);
327
	dbs_tuners_ins.freq_step = input;
328
	mutex_unlock(&dbs_mutex);
329 330 331 332 333 334 335 336 337 338 339 340

	return count;
}

#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(sampling_down_factor);
define_one_rw(up_threshold);
define_one_rw(down_threshold);
341
define_one_rw(ignore_nice_load);
342 343
define_one_rw(freq_step);

344
static struct attribute *dbs_attributes[] = {
345 346 347 348 349 350
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
351
	&ignore_nice_load.attr,
352 353 354 355 356 357 358 359 360 361 362
	&freq_step.attr,
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "conservative",
};

/************************** sysfs end ************************/

363
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
364
{
365
	unsigned int load = 0;
366
	unsigned int freq_target;
367

368 369
	struct cpufreq_policy *policy;
	unsigned int j;
370

371 372
	policy = this_dbs_info->cur_policy;

373
	/*
374 375 376 377
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
	 * Every sampling_rate*sampling_down_factor, we check, if current
	 * idle time is more than 80%, then we try to decrease frequency
378
	 *
379 380
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
381
	 * 5% (default) of maximum frequency
382 383
	 */

384 385 386 387 388
	/* Get Absolute Load */
	for_each_cpu(j, policy->cpus) {
		struct cpu_dbs_info_s *j_dbs_info;
		cputime64_t cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
389

390
		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
391 392 393 394 395 396

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);

		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
				j_dbs_info->prev_cpu_wall);
		j_dbs_info->prev_cpu_wall = cur_wall_time;
397

398 399 400
		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
				j_dbs_info->prev_cpu_idle);
		j_dbs_info->prev_cpu_idle = cur_idle_time;
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		if (dbs_tuners_ins.ignore_nice) {
			cputime64_t cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
					 j_dbs_info->prev_cpu_nice);
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;
	}

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (dbs_tuners_ins.freq_step == 0)
		return;
431

432 433
	/* Check for frequency increase */
	if (load > dbs_tuners_ins.up_threshold) {
434
		this_dbs_info->down_skip = 0;
435

436
		/* if we are already at full speed then break out early */
437
		if (this_dbs_info->requested_freq == policy->max)
438
			return;
439

440
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
441 442

		/* max freq cannot be less than 100. But who knows.... */
443 444
		if (unlikely(freq_target == 0))
			freq_target = 5;
445

446
		this_dbs_info->requested_freq += freq_target;
447 448
		if (this_dbs_info->requested_freq > policy->max)
			this_dbs_info->requested_freq = policy->max;
449

450
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
451 452 453 454
			CPUFREQ_RELATION_H);
		return;
	}

455 456 457 458 459 460
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
	if (load < (dbs_tuners_ins.down_threshold - 10)) {
461
		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
462

463
		this_dbs_info->requested_freq -= freq_target;
464 465
		if (this_dbs_info->requested_freq < policy->min)
			this_dbs_info->requested_freq = policy->min;
466

467 468 469 470 471 472
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (policy->cur == policy->min)
			return;

473
		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
474
				CPUFREQ_RELATION_H);
475 476 477 478
		return;
	}
}

D
David Howells 已提交
479
static void do_dbs_timer(struct work_struct *work)
480
{
481 482 483 484 485 486 487 488 489
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;

	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);

	delay -= jiffies % delay;

490
	mutex_lock(&dbs_info->timer_mutex);
491 492 493 494

	dbs_check_cpu(dbs_info);

	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
495
	mutex_unlock(&dbs_info->timer_mutex);
496
}
497

498
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
499
{
500 501 502 503 504 505 506 507
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;

	dbs_info->enable = 1;
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
				delay);
508 509
}

510
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
511
{
512
	dbs_info->enable = 0;
513
	cancel_delayed_work_sync(&dbs_info->work);
514 515 516 517 518 519 520 521
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
522
	int rc;
523

524
	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
525 526 527

	switch (event) {
	case CPUFREQ_GOV_START:
528
		if ((!cpu_online(cpu)) || (!policy->cur))
529 530
			return -EINVAL;

531
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
532 533 534 535 536 537 538

		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
		if (rc) {
			mutex_unlock(&dbs_mutex);
			return rc;
		}

539
		for_each_cpu(j, policy->cpus) {
540
			struct cpu_dbs_info_s *j_dbs_info;
541
			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
542
			j_dbs_info->cur_policy = policy;
543

544 545 546 547 548 549
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
			if (dbs_tuners_ins.ignore_nice) {
				j_dbs_info->prev_cpu_nice =
						kstat_cpu(j).cpustat.nice;
			}
550
		}
551 552
		this_dbs_info->down_skip = 0;
		this_dbs_info->requested_freq = policy->cur;
J
Jeff Garzik 已提交
553

554
		mutex_init(&this_dbs_info->timer_mutex);
555 556 557 558 559 560 561 562
		dbs_enable++;
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
563 564 565
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
566

567 568 569 570 571 572 573 574 575 576 577 578
			/*
			 * conservative does not implement micro like ondemand
			 * governor, thus we are bound to jiffes/HZ
			 */
			min_sampling_rate =
				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
579

580 581 582
			cpufreq_register_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);
583
		}
584
		mutex_unlock(&dbs_mutex);
585

586 587
		dbs_timer_init(this_dbs_info);

588 589 590
		break;

	case CPUFREQ_GOV_STOP:
591
		dbs_timer_exit(this_dbs_info);
592 593

		mutex_lock(&dbs_mutex);
594 595
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
596
		mutex_destroy(&this_dbs_info->timer_mutex);
597

598 599 600 601
		/*
		 * Stop the timerschedule work, when this governor
		 * is used for first time
		 */
602
		if (dbs_enable == 0)
603 604 605 606
			cpufreq_unregister_notifier(
					&dbs_cpufreq_notifier_block,
					CPUFREQ_TRANSITION_NOTIFIER);

607
		mutex_unlock(&dbs_mutex);
608 609 610 611

		break;

	case CPUFREQ_GOV_LIMITS:
612
		mutex_lock(&this_dbs_info->timer_mutex);
613 614 615
		if (policy->max < this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
616
					policy->max, CPUFREQ_RELATION_H);
617 618 619
		else if (policy->min > this_dbs_info->cur_policy->cur)
			__cpufreq_driver_target(
					this_dbs_info->cur_policy,
620
					policy->min, CPUFREQ_RELATION_L);
621
		mutex_unlock(&this_dbs_info->timer_mutex);
622

623 624 625 626 627
		break;
	}
	return 0;
}

628 629 630
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
static
#endif
631 632 633 634 635
struct cpufreq_governor cpufreq_gov_conservative = {
	.name			= "conservative",
	.governor		= cpufreq_governor_dbs,
	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
	.owner			= THIS_MODULE,
636 637 638 639
};

static int __init cpufreq_gov_dbs_init(void)
{
640 641 642 643 644 645 646 647 648 649 650 651 652
	int err;

	kconservative_wq = create_workqueue("kconservative");
	if (!kconservative_wq) {
		printk(KERN_ERR "Creation of kconservative failed\n");
		return -EFAULT;
	}

	err = cpufreq_register_governor(&cpufreq_gov_conservative);
	if (err)
		destroy_workqueue(kconservative_wq);

	return err;
653 654 655 656
}

static void __exit cpufreq_gov_dbs_exit(void)
{
657
	cpufreq_unregister_governor(&cpufreq_gov_conservative);
658
	destroy_workqueue(kconservative_wq);
659 660 661
}


662
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
663
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
664 665
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
666
MODULE_LICENSE("GPL");
667

668 669 670
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
fs_initcall(cpufreq_gov_dbs_init);
#else
671
module_init(cpufreq_gov_dbs_init);
672
#endif
673
module_exit(cpufreq_gov_dbs_exit);