intel_ringbuffer.c 82.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50 51 52 53 54 55 56 57 58 59 60
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
{
	if (ringbuf->last_retired_head != -1) {
		ringbuf->head = ringbuf->last_retired_head;
		ringbuf->last_retired_head = -1;
	}

	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
					    ringbuf->tail, ringbuf->size);
}

61
static void __intel_ring_advance(struct intel_engine_cs *engine)
62
{
63
	struct intel_ringbuffer *ringbuf = engine->buffer;
64
	ringbuf->tail &= ringbuf->size - 1;
65
	engine->write_tail(engine, ringbuf->tail);
66 67
}

68
static int
69
gen2_render_ring_flush(struct drm_i915_gem_request *req,
70 71 72
		       u32	invalidate_domains,
		       u32	flush_domains)
{
73
	struct intel_engine_cs *engine = req->engine;
74 75 76 77
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;
78
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79 80 81 82 83
		cmd |= MI_NO_WRITE_FLUSH;

	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
		cmd |= MI_READ_FLUSH;

84
	ret = intel_ring_begin(req, 2);
85 86 87
	if (ret)
		return ret;

88 89 90
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
91 92 93 94 95

	return 0;
}

static int
96
gen4_render_ring_flush(struct drm_i915_gem_request *req,
97 98
		       u32	invalidate_domains,
		       u32	flush_domains)
99
{
100
	struct intel_engine_cs *engine = req->engine;
101
	u32 cmd;
102
	int ret;
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134 135 136
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
137

138
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139
	    (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140
		cmd |= MI_INVALIDATE_ISP;
141

142
	ret = intel_ring_begin(req, 2);
143 144
	if (ret)
		return ret;
145

146 147 148
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
149 150

	return 0;
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
191
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192
{
193
	struct intel_engine_cs *engine = req->engine;
194
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195 196
	int ret;

197
	ret = intel_ring_begin(req, 6);
198 199 200
	if (ret)
		return ret;

201 202
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
204 205 206 207 208
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0); /* low dword */
	intel_ring_emit(engine, 0); /* high dword */
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
209

210
	ret = intel_ring_begin(req, 6);
211 212 213
	if (ret)
		return ret;

214 215 216 217 218 219 220
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
221 222 223 224 225

	return 0;
}

static int
226 227
gen6_render_ring_flush(struct drm_i915_gem_request *req,
		       u32 invalidate_domains, u32 flush_domains)
228
{
229
	struct intel_engine_cs *engine = req->engine;
230
	u32 flags = 0;
231
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232 233
	int ret;

234
	/* Force SNB workarounds for PIPE_CONTROL flushes */
235
	ret = intel_emit_post_sync_nonzero_flush(req);
236 237 238
	if (ret)
		return ret;

239 240 241 242
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
243 244 245 246 247 248 249
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
250
		flags |= PIPE_CONTROL_CS_STALL;
251 252 253 254 255 256 257 258 259 260 261
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
262
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263
	}
264

265
	ret = intel_ring_begin(req, 4);
266 267 268
	if (ret)
		return ret;

269 270 271 272 273
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
274 275 276 277

	return 0;
}

278
static int
279
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280
{
281
	struct intel_engine_cs *engine = req->engine;
282 283
	int ret;

284
	ret = intel_ring_begin(req, 4);
285 286 287
	if (ret)
		return ret;

288 289
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
291 292 293
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
294 295 296 297

	return 0;
}

298
static int
299
gen7_render_ring_flush(struct drm_i915_gem_request *req,
300 301
		       u32 invalidate_domains, u32 flush_domains)
{
302
	struct intel_engine_cs *engine = req->engine;
303
	u32 flags = 0;
304
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305 306
	int ret;

307 308 309 310 311 312 313 314 315 316
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

317 318 319 320 321 322 323
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
326 327 328 329 330 331 332 333
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335 336 337 338
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
339
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340

341 342
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

343 344 345
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
346
		gen7_render_ring_cs_stall_wa(req);
347 348
	}

349
	ret = intel_ring_begin(req, 4);
350 351 352
	if (ret)
		return ret;

353 354 355 356 357
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
358 359 360 361

	return 0;
}

362
static int
363
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364 365
		       u32 flags, u32 scratch_addr)
{
366
	struct intel_engine_cs *engine = req->engine;
367 368
	int ret;

369
	ret = intel_ring_begin(req, 6);
370 371 372
	if (ret)
		return ret;

373 374 375 376 377 378 379
	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, flags);
	intel_ring_emit(engine, scratch_addr);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, 0);
	intel_ring_advance(engine);
380 381 382 383

	return 0;
}

B
Ben Widawsky 已提交
384
static int
385
gen8_render_ring_flush(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
386 387 388
		       u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
389
	u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390
	int ret;
B
Ben Widawsky 已提交
391 392 393 394 395 396

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
399 400 401 402 403 404 405 406 407 408
	}
	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409 410

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411
		ret = gen8_emit_pipe_control(req,
412 413 414 415 416
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
417 418
	}

419
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
420 421
}

422
static void ring_write_tail(struct intel_engine_cs *engine,
423
			    u32 value)
424
{
425
	struct drm_i915_private *dev_priv = engine->i915;
426
	I915_WRITE_TAIL(engine, value);
427 428
}

429
u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430
{
431
	struct drm_i915_private *dev_priv = engine->i915;
432
	u64 acthd;
433

434
	if (INTEL_GEN(dev_priv) >= 8)
435 436
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
437
	else if (INTEL_GEN(dev_priv) >= 4)
438
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439 440 441 442
	else
		acthd = I915_READ(ACTHD);

	return acthd;
443 444
}

445
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446
{
447
	struct drm_i915_private *dev_priv = engine->i915;
448 449 450
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
451
	if (INTEL_GEN(dev_priv) >= 4)
452 453 454 455
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

456
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457
{
458
	struct drm_i915_private *dev_priv = engine->i915;
459
	i915_reg_t mmio;
460 461 462 463

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
464
	if (IS_GEN7(dev_priv)) {
465
		switch (engine->id) {
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
484
	} else if (IS_GEN6(dev_priv)) {
485
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486 487
	} else {
		/* XXX: gen8 returns to sanity */
488
		mmio = RING_HWS_PGA(engine->mmio_base);
489 490
	}

491
	I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492 493 494 495 496 497 498 499 500
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
501
	if (IS_GEN(dev_priv, 6, 7)) {
502
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503 504

		/* ring should be idle before issuing a sync flush*/
505
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506 507 508 509

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
510 511 512
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
513
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514
				  engine->name);
515 516 517
	}
}

518
static bool stop_ring(struct intel_engine_cs *engine)
519
{
520
	struct drm_i915_private *dev_priv = engine->i915;
521

522
	if (!IS_GEN2(dev_priv)) {
523
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524 525 526 527 528
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
529 530
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
531 532 533 534
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
535
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536
				return false;
537 538
		}
	}
539

540 541 542
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
	engine->write_tail(engine, 0);
543

544
	if (!IS_GEN2(dev_priv)) {
545 546
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547
	}
548

549
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550
}
551

552
static int init_ring_common(struct intel_engine_cs *engine)
553
{
554
	struct drm_i915_private *dev_priv = engine->i915;
555
	struct intel_ringbuffer *ringbuf = engine->buffer;
556
	struct drm_i915_gem_object *obj = ringbuf->obj;
557 558
	int ret = 0;

559
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
560

561
	if (!stop_ring(engine)) {
562
		/* G45 ring initialization often fails to reset head to zero */
563 564
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
565 566 567 568 569
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
570

571
		if (!stop_ring(engine)) {
572 573
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
574 575 576 577 578
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
579 580
			ret = -EIO;
			goto out;
581
		}
582 583
	}

584
	if (I915_NEED_GFX_HWS(dev_priv))
585
		intel_ring_setup_status_page(engine);
586
	else
587
		ring_setup_phys_status_page(engine);
588

589
	/* Enforce ordering by reading HEAD register back */
590
	I915_READ_HEAD(engine);
591

592 593 594 595
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
596
	I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
597 598

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
599
	if (I915_READ_HEAD(engine))
600
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
601 602 603
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
604

605
	I915_WRITE_CTL(engine,
606
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
607
			| RING_VALID);
608 609

	/* If the head is still not zero, the ring is dead */
610 611 612
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
		     I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
613
		DRM_ERROR("%s initialization failed "
614
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
615 616 617 618 619 620
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
			  (unsigned long)i915_gem_obj_ggtt_offset(obj));
621 622
		ret = -EIO;
		goto out;
623 624
	}

625
	ringbuf->last_retired_head = -1;
626 627
	ringbuf->head = I915_READ_HEAD(engine);
	ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
628
	intel_ring_update_space(ringbuf);
629

630
	intel_engine_init_hangcheck(engine);
631

632
out:
633
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
634 635

	return ret;
636 637
}

638
void intel_fini_pipe_control(struct intel_engine_cs *engine)
639
{
640
	if (engine->scratch.obj == NULL)
641 642
		return;

643
	i915_gem_object_ggtt_unpin(engine->scratch.obj);
644 645
	drm_gem_object_unreference(&engine->scratch.obj->base);
	engine->scratch.obj = NULL;
646 647
}

648
int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
649
{
650
	struct drm_i915_gem_object *obj;
651 652
	int ret;

653
	WARN_ON(engine->scratch.obj);
654

655
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
656
	if (!obj)
657
		obj = i915_gem_object_create(&engine->i915->drm, size);
658 659 660
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		ret = PTR_ERR(obj);
661 662
		goto err;
	}
663

664
	ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
665 666
	if (ret)
		goto err_unref;
667

668 669
	engine->scratch.obj = obj;
	engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
670
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
671
			 engine->name, engine->scratch.gtt_offset);
672 673 674
	return 0;

err_unref:
675
	drm_gem_object_unreference(&engine->scratch.obj->base);
676 677 678 679
err:
	return ret;
}

680
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
681
{
682
	struct intel_engine_cs *engine = req->engine;
683 684
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
685

686
	if (w->count == 0)
687
		return 0;
688

689
	engine->gpu_caches_dirty = true;
690
	ret = intel_ring_flush_all_caches(req);
691 692
	if (ret)
		return ret;
693

694
	ret = intel_ring_begin(req, (w->count * 2 + 2));
695 696 697
	if (ret)
		return ret;

698
	intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
699
	for (i = 0; i < w->count; i++) {
700 701
		intel_ring_emit_reg(engine, w->reg[i].addr);
		intel_ring_emit(engine, w->reg[i].value);
702
	}
703
	intel_ring_emit(engine, MI_NOOP);
704

705
	intel_ring_advance(engine);
706

707
	engine->gpu_caches_dirty = true;
708
	ret = intel_ring_flush_all_caches(req);
709 710
	if (ret)
		return ret;
711

712
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
713

714
	return 0;
715 716
}

717
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
718 719 720
{
	int ret;

721
	ret = intel_ring_workarounds_emit(req);
722 723 724
	if (ret != 0)
		return ret;

725
	ret = i915_gem_render_state_init(req);
726
	if (ret)
727
		return ret;
728

729
	return 0;
730 731
}

732
static int wa_add(struct drm_i915_private *dev_priv,
733 734
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
735 736 737 738 739 740 741 742 743 744 745 746 747
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
748 749
}

750
#define WA_REG(addr, mask, val) do { \
751
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
752 753
		if (r) \
			return r; \
754
	} while (0)
755 756

#define WA_SET_BIT_MASKED(addr, mask) \
757
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
758 759

#define WA_CLR_BIT_MASKED(addr, mask) \
760
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
761

762
#define WA_SET_FIELD_MASKED(addr, mask, value) \
763
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
764

765 766
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
767

768
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
769

770 771
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
772
{
773
	struct drm_i915_private *dev_priv = engine->i915;
774
	struct i915_workarounds *wa = &dev_priv->workarounds;
775
	const uint32_t index = wa->hw_whitelist_count[engine->id];
776 777 778 779

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

780
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
781
		 i915_mmio_reg_offset(reg));
782
	wa->hw_whitelist_count[engine->id]++;
783 784 785 786

	return 0;
}

787
static int gen8_init_workarounds(struct intel_engine_cs *engine)
788
{
789
	struct drm_i915_private *dev_priv = engine->i915;
790 791

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
792

793 794 795
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

796 797 798 799
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

800 801 802 803 804
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
805
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
806
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
807
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
808 809
			  HDC_FORCE_NON_COHERENT);

810 811 812 813 814 815 816 817 818 819
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

820 821 822
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

823 824 825 826 827 828 829 830 831 832 833 834
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

835 836 837
	return 0;
}

838
static int bdw_init_workarounds(struct intel_engine_cs *engine)
839
{
840
	struct drm_i915_private *dev_priv = engine->i915;
841
	int ret;
842

843
	ret = gen8_init_workarounds(engine);
844 845 846
	if (ret)
		return ret;

847
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
848
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
849

850
	/* WaDisableDopClockGating:bdw */
851 852
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
853

854 855
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
856

857
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
858 859 860
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
861
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
862 863 864 865

	return 0;
}

866
static int chv_init_workarounds(struct intel_engine_cs *engine)
867
{
868
	struct drm_i915_private *dev_priv = engine->i915;
869
	int ret;
870

871
	ret = gen8_init_workarounds(engine);
872 873 874
	if (ret)
		return ret;

875
	/* WaDisableThreadStallDopClockGating:chv */
876
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
877

878 879 880
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

881 882 883
	return 0;
}

884
static int gen9_init_workarounds(struct intel_engine_cs *engine)
885
{
886
	struct drm_i915_private *dev_priv = engine->i915;
887
	int ret;
888

889 890 891
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

892
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
893 894 895
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

896
	/* WaDisableKillLogic:bxt,skl,kbl */
897 898 899
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

900 901
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
902
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
903
			  FLOW_CONTROL_ENABLE |
904 905
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

906
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
907 908 909
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

910
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
911 912
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
913 914
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
915

916
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
917 918
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
919 920
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
921 922 923 924 925
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
926 927
	}

928 929
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
930 931 932
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
933

934 935
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
936 937
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
938

939
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
940 941 942
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

943
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
944 945
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
946 947 948
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

949 950 951 952
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

975 976 977 978
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
979 980 981
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

982
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
983 984
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

985
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
986 987 988
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

989 990 991 992 993
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

994
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
995
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
996 997 998
	if (ret)
		return ret;

999
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1000
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1001 1002 1003
	if (ret)
		return ret;

1004 1005 1006
	return 0;
}

1007
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1008
{
1009
	struct drm_i915_private *dev_priv = engine->i915;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1020
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1048
static int skl_init_workarounds(struct intel_engine_cs *engine)
1049
{
1050
	struct drm_i915_private *dev_priv = engine->i915;
1051
	int ret;
1052

1053
	ret = gen9_init_workarounds(engine);
1054 1055
	if (ret)
		return ret;
1056

1057 1058 1059 1060 1061
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1062
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1063 1064 1065 1066
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1067
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1068 1069 1070 1071 1072 1073 1074 1075
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1076
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1077 1078 1079 1080 1081
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1082
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1083 1084 1085 1086
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1087
	/* WaDisablePowerCompilerClockGating:skl */
1088
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1089 1090 1091
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1092
	/* WaBarrierPerformanceFixDisable:skl */
1093
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1094 1095 1096 1097
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1098
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1099
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1100 1101 1102 1103
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1104 1105 1106
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1107
	/* WaDisableLSQCROPERFforOCL:skl */
1108
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1109 1110 1111
	if (ret)
		return ret;

1112
	return skl_tune_iz_hashing(engine);
1113 1114
}

1115
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1116
{
1117
	struct drm_i915_private *dev_priv = engine->i915;
1118
	int ret;
1119

1120
	ret = gen9_init_workarounds(engine);
1121 1122
	if (ret)
		return ret;
1123

1124 1125
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1126
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1127 1128 1129
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1130
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1131 1132 1133 1134
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1135 1136 1137 1138
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1139 1140 1141 1142 1143 1144
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1145
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1146
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1147 1148 1149 1150 1151
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1152 1153 1154
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1155
	/* WaDisableLSQCROPERFforOCL:bxt */
1156
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1157
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1158 1159
		if (ret)
			return ret;
1160

1161
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1162 1163
		if (ret)
			return ret;
1164 1165
	}

1166
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1167
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1168 1169
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1170

1171 1172 1173 1174 1175
	/* WaInsertDummyPushConstPs:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1176 1177 1178
	return 0;
}

1179 1180
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1181
	struct drm_i915_private *dev_priv = engine->i915;
1182 1183 1184 1185 1186 1187
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1188 1189 1190 1191
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1192 1193 1194 1195 1196
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1197 1198 1199 1200 1201
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1202 1203 1204 1205 1206 1207 1208 1209
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1210 1211 1212 1213 1214
	/* WaInsertDummyPushConstPs:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1215 1216 1217
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1218 1219 1220 1221 1222
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1223 1224 1225 1226 1227
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1228 1229 1230
	return 0;
}

1231
int init_workarounds_ring(struct intel_engine_cs *engine)
1232
{
1233
	struct drm_i915_private *dev_priv = engine->i915;
1234

1235
	WARN_ON(engine->id != RCS);
1236 1237

	dev_priv->workarounds.count = 0;
1238
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1239

1240
	if (IS_BROADWELL(dev_priv))
1241
		return bdw_init_workarounds(engine);
1242

1243
	if (IS_CHERRYVIEW(dev_priv))
1244
		return chv_init_workarounds(engine);
1245

1246
	if (IS_SKYLAKE(dev_priv))
1247
		return skl_init_workarounds(engine);
1248

1249
	if (IS_BROXTON(dev_priv))
1250
		return bxt_init_workarounds(engine);
1251

1252 1253 1254
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1255 1256 1257
	return 0;
}

1258
static int init_render_ring(struct intel_engine_cs *engine)
1259
{
1260
	struct drm_i915_private *dev_priv = engine->i915;
1261
	int ret = init_ring_common(engine);
1262 1263
	if (ret)
		return ret;
1264

1265
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1266
	if (IS_GEN(dev_priv, 4, 6))
1267
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1268 1269 1270 1271

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1272
	 *
1273
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1274
	 */
1275
	if (IS_GEN(dev_priv, 6, 7))
1276 1277
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1278
	/* Required for the hardware to program scanline values for waiting */
1279
	/* WaEnableFlushTlbInvalidationMode:snb */
1280
	if (IS_GEN6(dev_priv))
1281
		I915_WRITE(GFX_MODE,
1282
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1283

1284
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1285
	if (IS_GEN7(dev_priv))
1286
		I915_WRITE(GFX_MODE_GEN7,
1287
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1288
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1289

1290
	if (IS_GEN6(dev_priv)) {
1291 1292 1293 1294 1295 1296
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1297
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1298 1299
	}

1300
	if (IS_GEN(dev_priv, 6, 7))
1301
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1302

1303 1304
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1305

1306
	return init_workarounds_ring(engine);
1307 1308
}

1309
static void render_ring_cleanup(struct intel_engine_cs *engine)
1310
{
1311
	struct drm_i915_private *dev_priv = engine->i915;
1312 1313 1314 1315 1316 1317

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
		dev_priv->semaphore_obj = NULL;
	}
1318

1319
	intel_fini_pipe_control(engine);
1320 1321
}

1322
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1323 1324 1325
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 8
1326
	struct intel_engine_cs *signaller = signaller_req->engine;
1327
	struct drm_i915_private *dev_priv = signaller_req->i915;
1328
	struct intel_engine_cs *waiter;
1329 1330
	enum intel_engine_id id;
	int ret, num_rings;
1331

1332
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1333 1334 1335
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1336
	ret = intel_ring_begin(signaller_req, num_dwords);
1337 1338 1339
	if (ret)
		return ret;

1340 1341
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1342 1343 1344 1345 1346 1347
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_QW_WRITE |
1348
					   PIPE_CONTROL_CS_STALL);
1349 1350
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1351
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1352 1353
		intel_ring_emit(signaller, 0);
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1354
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1355 1356 1357 1358 1359 1360
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1361
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1362 1363 1364
			   unsigned int num_dwords)
{
#define MBOX_UPDATE_DWORDS 6
1365
	struct intel_engine_cs *signaller = signaller_req->engine;
1366
	struct drm_i915_private *dev_priv = signaller_req->i915;
1367
	struct intel_engine_cs *waiter;
1368 1369
	enum intel_engine_id id;
	int ret, num_rings;
1370

1371
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1372 1373 1374
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
#undef MBOX_UPDATE_DWORDS

1375
	ret = intel_ring_begin(signaller_req, num_dwords);
1376 1377 1378
	if (ret)
		return ret;

1379 1380
	for_each_engine_id(waiter, dev_priv, id) {
		u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1381 1382 1383 1384 1385 1386 1387 1388
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
					   MI_FLUSH_DW_OP_STOREDW);
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
					   MI_FLUSH_DW_USE_GTT);
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1389
		intel_ring_emit(signaller, signaller_req->fence.seqno);
1390
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1391
					   MI_SEMAPHORE_TARGET(waiter->hw_id));
1392 1393 1394 1395 1396 1397
		intel_ring_emit(signaller, 0);
	}

	return 0;
}

1398
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1399
		       unsigned int num_dwords)
1400
{
1401
	struct intel_engine_cs *signaller = signaller_req->engine;
1402
	struct drm_i915_private *dev_priv = signaller_req->i915;
1403
	struct intel_engine_cs *useless;
1404 1405
	enum intel_engine_id id;
	int ret, num_rings;
1406

1407
#define MBOX_UPDATE_DWORDS 3
1408
	num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1409 1410
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
#undef MBOX_UPDATE_DWORDS
1411

1412
	ret = intel_ring_begin(signaller_req, num_dwords);
1413 1414 1415
	if (ret)
		return ret;

1416 1417
	for_each_engine_id(useless, dev_priv, id) {
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1418 1419

		if (i915_mmio_reg_valid(mbox_reg)) {
1420
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1421
			intel_ring_emit_reg(signaller, mbox_reg);
1422
			intel_ring_emit(signaller, signaller_req->fence.seqno);
1423 1424
		}
	}
1425

1426 1427 1428 1429
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
		intel_ring_emit(signaller, MI_NOOP);

1430
	return 0;
1431 1432
}

1433 1434
/**
 * gen6_add_request - Update the semaphore mailbox registers
1435 1436
 *
 * @request - request to write to the ring
1437 1438 1439 1440
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1441
static int
1442
gen6_add_request(struct drm_i915_gem_request *req)
1443
{
1444
	struct intel_engine_cs *engine = req->engine;
1445
	int ret;
1446

1447 1448
	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 4);
B
Ben Widawsky 已提交
1449
	else
1450
		ret = intel_ring_begin(req, 4);
B
Ben Widawsky 已提交
1451

1452 1453 1454
	if (ret)
		return ret;

1455 1456 1457
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1458
	intel_ring_emit(engine, req->fence.seqno);
1459 1460
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1461 1462 1463 1464

	return 0;
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static int
gen8_render_add_request(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	int ret;

	if (engine->semaphore.signal)
		ret = engine->semaphore.signal(req, 8);
	else
		ret = intel_ring_begin(req, 8);
	if (ret)
		return ret;

	intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, i915_gem_request_get_seqno(req));
	/* We're thrashing one dword of HWS. */
	intel_ring_emit(engine, 0);
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	intel_ring_emit(engine, MI_NOOP);
	__intel_ring_advance(engine);

	return 0;
}

1494
static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1495 1496 1497 1498 1499
					      u32 seqno)
{
	return dev_priv->last_seqno < seqno;
}

1500 1501 1502 1503 1504 1505 1506
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1507 1508

static int
1509
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1510 1511 1512
	       struct intel_engine_cs *signaller,
	       u32 seqno)
{
1513
	struct intel_engine_cs *waiter = waiter_req->engine;
1514
	struct drm_i915_private *dev_priv = waiter_req->i915;
1515
	u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1516
	struct i915_hw_ppgtt *ppgtt;
1517 1518
	int ret;

1519
	ret = intel_ring_begin(waiter_req, 4);
1520 1521 1522 1523 1524 1525 1526
	if (ret)
		return ret;

	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
				MI_SEMAPHORE_GLOBAL_GTT |
				MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(waiter, seqno);
1527 1528
	intel_ring_emit(waiter, lower_32_bits(offset));
	intel_ring_emit(waiter, upper_32_bits(offset));
1529
	intel_ring_advance(waiter);
1530 1531 1532 1533 1534 1535 1536 1537 1538

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
	ppgtt = waiter_req->ctx->ppgtt;
	if (ppgtt && waiter_req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1539 1540 1541
	return 0;
}

1542
static int
1543
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1544
	       struct intel_engine_cs *signaller,
1545
	       u32 seqno)
1546
{
1547
	struct intel_engine_cs *waiter = waiter_req->engine;
1548 1549 1550
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1551 1552
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
	int ret;
1553

1554 1555 1556 1557 1558 1559
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
	seqno -= 1;

1560
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1561

1562
	ret = intel_ring_begin(waiter_req, 4);
1563 1564 1565
	if (ret)
		return ret;

1566
	/* If seqno wrap happened, omit the wait with no-ops */
1567
	if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1568
		intel_ring_emit(waiter, dw1 | wait_mbox);
1569 1570 1571 1572 1573 1574 1575 1576 1577
		intel_ring_emit(waiter, seqno);
		intel_ring_emit(waiter, 0);
		intel_ring_emit(waiter, MI_NOOP);
	} else {
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
		intel_ring_emit(waiter, MI_NOOP);
	}
1578
	intel_ring_advance(waiter);
1579 1580 1581 1582

	return 0;
}

1583 1584
static void
gen5_seqno_barrier(struct intel_engine_cs *ring)
1585
{
1586 1587 1588
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1589
	 *
1590 1591 1592 1593 1594 1595 1596
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1597
	 */
1598
	usleep_range(125, 250);
1599 1600
}

1601 1602
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1603
{
1604
	struct drm_i915_private *dev_priv = engine->i915;
1605

1606 1607
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1608 1609 1610 1611 1612 1613 1614 1615 1616
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1617 1618 1619
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1620
	 */
1621
	spin_lock_irq(&dev_priv->uncore.lock);
1622
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1623
	spin_unlock_irq(&dev_priv->uncore.lock);
1624 1625
}

1626 1627
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1628
{
1629
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1630 1631 1632
}

static void
1633
gen5_irq_disable(struct intel_engine_cs *engine)
1634
{
1635
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1636 1637
}

1638 1639
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1640
{
1641
	struct drm_i915_private *dev_priv = engine->i915;
1642

1643 1644 1645
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1646 1647
}

1648
static void
1649
i9xx_irq_disable(struct intel_engine_cs *engine)
1650
{
1651
	struct drm_i915_private *dev_priv = engine->i915;
1652

1653 1654
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1655 1656
}

1657 1658
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1659
{
1660
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1661

1662 1663 1664
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1665 1666 1667
}

static void
1668
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1669
{
1670
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1671

1672 1673
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1674 1675
}

1676
static int
1677
bsd_ring_flush(struct drm_i915_gem_request *req,
1678 1679
	       u32     invalidate_domains,
	       u32     flush_domains)
1680
{
1681
	struct intel_engine_cs *engine = req->engine;
1682 1683
	int ret;

1684
	ret = intel_ring_begin(req, 2);
1685 1686 1687
	if (ret)
		return ret;

1688 1689 1690
	intel_ring_emit(engine, MI_FLUSH);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1691
	return 0;
1692 1693
}

1694
static int
1695
i9xx_add_request(struct drm_i915_gem_request *req)
1696
{
1697
	struct intel_engine_cs *engine = req->engine;
1698 1699
	int ret;

1700
	ret = intel_ring_begin(req, 4);
1701 1702
	if (ret)
		return ret;
1703

1704 1705 1706
	intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
	intel_ring_emit(engine,
			I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1707
	intel_ring_emit(engine, req->fence.seqno);
1708 1709
	intel_ring_emit(engine, MI_USER_INTERRUPT);
	__intel_ring_advance(engine);
1710

1711
	return 0;
1712 1713
}

1714 1715
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1716
{
1717
	struct drm_i915_private *dev_priv = engine->i915;
1718

1719 1720 1721
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1722
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1723 1724 1725
}

static void
1726
gen6_irq_disable(struct intel_engine_cs *engine)
1727
{
1728
	struct drm_i915_private *dev_priv = engine->i915;
1729

1730
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1731
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1732 1733
}

1734 1735
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1736
{
1737
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1738

1739 1740
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1741 1742 1743
}

static void
1744
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1745
{
1746
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1747

1748 1749
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1750 1751
}

1752 1753
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1754
{
1755
	struct drm_i915_private *dev_priv = engine->i915;
1756

1757 1758 1759
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1760
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1761 1762 1763
}

static void
1764
gen8_irq_disable(struct intel_engine_cs *engine)
1765
{
1766
	struct drm_i915_private *dev_priv = engine->i915;
1767

1768
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1769 1770
}

1771
static int
1772
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1773
			 u64 offset, u32 length,
1774
			 unsigned dispatch_flags)
1775
{
1776
	struct intel_engine_cs *engine = req->engine;
1777
	int ret;
1778

1779
	ret = intel_ring_begin(req, 2);
1780 1781 1782
	if (ret)
		return ret;

1783
	intel_ring_emit(engine,
1784 1785
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1786 1787
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1788 1789
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
1790

1791 1792 1793
	return 0;
}

1794 1795
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1796 1797
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1798
static int
1799
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1800 1801
			 u64 offset, u32 len,
			 unsigned dispatch_flags)
1802
{
1803
	struct intel_engine_cs *engine = req->engine;
1804
	u32 cs_offset = engine->scratch.gtt_offset;
1805
	int ret;
1806

1807
	ret = intel_ring_begin(req, 6);
1808 1809
	if (ret)
		return ret;
1810

1811
	/* Evict the invalid PTE TLBs */
1812 1813 1814 1815 1816 1817 1818
	intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(engine, cs_offset);
	intel_ring_emit(engine, 0xdeadbeef);
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
1819

1820
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1821 1822 1823
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1824
		ret = intel_ring_begin(req, 6 + 2);
1825 1826
		if (ret)
			return ret;
1827 1828 1829 1830 1831

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
		intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(engine,
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
		intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(engine, cs_offset);
		intel_ring_emit(engine, 4096);
		intel_ring_emit(engine, offset);

		intel_ring_emit(engine, MI_FLUSH);
		intel_ring_emit(engine, MI_NOOP);
		intel_ring_advance(engine);
1843 1844

		/* ... and execute it. */
1845
		offset = cs_offset;
1846
	}
1847

1848
	ret = intel_ring_begin(req, 2);
1849 1850 1851
	if (ret)
		return ret;

1852 1853 1854 1855
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1856

1857 1858 1859 1860
	return 0;
}

static int
1861
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
1862
			 u64 offset, u32 len,
1863
			 unsigned dispatch_flags)
1864
{
1865
	struct intel_engine_cs *engine = req->engine;
1866 1867
	int ret;

1868
	ret = intel_ring_begin(req, 2);
1869 1870 1871
	if (ret)
		return ret;

1872 1873 1874 1875
	intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					  0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(engine);
1876 1877 1878 1879

	return 0;
}

1880
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1881
{
1882
	struct drm_i915_private *dev_priv = engine->i915;
1883 1884 1885 1886

	if (!dev_priv->status_page_dmah)
		return;

1887
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1888
	engine->status_page.page_addr = NULL;
1889 1890
}

1891
static void cleanup_status_page(struct intel_engine_cs *engine)
1892
{
1893
	struct drm_i915_gem_object *obj;
1894

1895
	obj = engine->status_page.obj;
1896
	if (obj == NULL)
1897 1898
		return;

1899
	kunmap(sg_page(obj->pages->sgl));
B
Ben Widawsky 已提交
1900
	i915_gem_object_ggtt_unpin(obj);
1901
	drm_gem_object_unreference(&obj->base);
1902
	engine->status_page.obj = NULL;
1903 1904
}

1905
static int init_status_page(struct intel_engine_cs *engine)
1906
{
1907
	struct drm_i915_gem_object *obj = engine->status_page.obj;
1908

1909
	if (obj == NULL) {
1910
		unsigned flags;
1911
		int ret;
1912

1913
		obj = i915_gem_object_create(&engine->i915->drm, 4096);
1914
		if (IS_ERR(obj)) {
1915
			DRM_ERROR("Failed to allocate status page\n");
1916
			return PTR_ERR(obj);
1917
		}
1918

1919 1920 1921 1922
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
		if (ret)
			goto err_unref;

1923
		flags = 0;
1924
		if (!HAS_LLC(engine->i915))
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
			/* On g33, we cannot place HWS above 256MiB, so
			 * restrict its pinning to the low mappable arena.
			 * Though this restriction is not documented for
			 * gen4, gen5, or byt, they also behave similarly
			 * and hang if the HWS is placed at the top of the
			 * GTT. To generalise, it appears that all !llc
			 * platforms have issues with us placing the HWS
			 * above the mappable region (even though we never
			 * actualy map it).
			 */
			flags |= PIN_MAPPABLE;
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1937 1938 1939 1940 1941 1942
		if (ret) {
err_unref:
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

1943
		engine->status_page.obj = obj;
1944
	}
1945

1946 1947 1948
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
	engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1949

1950
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1951
			engine->name, engine->status_page.gfx_addr);
1952 1953 1954 1955

	return 0;
}

1956
static int init_phys_status_page(struct intel_engine_cs *engine)
1957
{
1958
	struct drm_i915_private *dev_priv = engine->i915;
1959 1960 1961

	if (!dev_priv->status_page_dmah) {
		dev_priv->status_page_dmah =
1962
			drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1963 1964 1965 1966
		if (!dev_priv->status_page_dmah)
			return -ENOMEM;
	}

1967 1968
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1969 1970 1971 1972

	return 0;
}

1973
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1974
{
1975 1976 1977
	GEM_BUG_ON(ringbuf->vma == NULL);
	GEM_BUG_ON(ringbuf->virtual_start == NULL);

1978
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1979
		i915_gem_object_unpin_map(ringbuf->obj);
1980
	else
1981
		i915_vma_unpin_iomap(ringbuf->vma);
1982
	ringbuf->virtual_start = NULL;
1983

1984
	i915_gem_object_ggtt_unpin(ringbuf->obj);
1985
	ringbuf->vma = NULL;
1986 1987
}

1988
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
1989 1990 1991
				     struct intel_ringbuffer *ringbuf)
{
	struct drm_i915_gem_object *obj = ringbuf->obj;
1992 1993
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	unsigned flags = PIN_OFFSET_BIAS | 4096;
1994
	void *addr;
1995 1996
	int ret;

1997
	if (HAS_LLC(dev_priv) && !obj->stolen) {
1998
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
1999 2000
		if (ret)
			return ret;
2001

2002
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2003 2004
		if (ret)
			goto err_unpin;
2005

2006 2007 2008
		addr = i915_gem_object_pin_map(obj);
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2009
			goto err_unpin;
2010 2011
		}
	} else {
2012 2013
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
					    flags | PIN_MAPPABLE);
2014 2015
		if (ret)
			return ret;
2016

2017
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2018 2019
		if (ret)
			goto err_unpin;
2020

2021 2022 2023
		/* Access through the GTT requires the device to be awake. */
		assert_rpm_wakelock_held(dev_priv);

2024 2025 2026
		addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
		if (IS_ERR(addr)) {
			ret = PTR_ERR(addr);
2027
			goto err_unpin;
2028
		}
2029 2030
	}

2031
	ringbuf->virtual_start = addr;
2032
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2033
	return 0;
2034 2035 2036 2037

err_unpin:
	i915_gem_object_ggtt_unpin(obj);
	return ret;
2038 2039
}

2040
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2041
{
2042 2043 2044 2045
	drm_gem_object_unreference(&ringbuf->obj->base);
	ringbuf->obj = NULL;
}

2046 2047
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
				      struct intel_ringbuffer *ringbuf)
2048
{
2049
	struct drm_i915_gem_object *obj;
2050

2051 2052
	obj = NULL;
	if (!HAS_LLC(dev))
2053
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2054
	if (obj == NULL)
2055
		obj = i915_gem_object_create(dev, ringbuf->size);
2056 2057
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2058

2059 2060 2061
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2062
	ringbuf->obj = obj;
2063

2064
	return 0;
2065 2066
}

2067 2068 2069 2070 2071 2072 2073
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
{
	struct intel_ringbuffer *ring;
	int ret;

	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2074 2075 2076
	if (ring == NULL) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				 engine->name);
2077
		return ERR_PTR(-ENOMEM);
2078
	}
2079

2080
	ring->engine = engine;
2081
	list_add(&ring->link, &engine->buffers);
2082 2083 2084 2085 2086 2087 2088

	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2089
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2090 2091 2092 2093 2094
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2095
	ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2096
	if (ret) {
2097 2098 2099
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
				 engine->name, ret);
		list_del(&ring->link);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		kfree(ring);
		return ERR_PTR(ret);
	}

	return ring;
}

void
intel_ringbuffer_free(struct intel_ringbuffer *ring)
{
	intel_destroy_ringbuffer_obj(ring);
2111
	list_del(&ring->link);
2112 2113 2114
	kfree(ring);
}

2115 2116 2117 2118 2119 2120
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2121
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
		ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
		if (ret)
			goto error;
	}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	i915_gem_context_reference(ctx);
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2155
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

	if (--ce->pin_count)
		return;

	if (ce->state)
		i915_gem_object_ggtt_unpin(ce->state);

	i915_gem_context_unreference(ctx);
}

2166
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2167
{
2168
	struct drm_i915_private *dev_priv = engine->i915;
2169
	struct intel_ringbuffer *ringbuf;
2170 2171
	int ret;

2172
	WARN_ON(engine->buffer);
2173

2174 2175
	intel_engine_setup_common(engine);

2176 2177
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2178

2179
	ret = intel_engine_init_common(engine);
2180 2181
	if (ret)
		goto error;
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2194
	ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2195 2196 2197 2198
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
		goto error;
	}
2199
	engine->buffer = ringbuf;
2200

2201
	if (I915_NEED_GFX_HWS(dev_priv)) {
2202
		ret = init_status_page(engine);
2203
		if (ret)
2204
			goto error;
2205
	} else {
2206 2207
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2208
		if (ret)
2209
			goto error;
2210 2211
	}

2212
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2213 2214
	if (ret) {
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2215
				engine->name, ret);
2216 2217
		intel_destroy_ringbuffer_obj(ringbuf);
		goto error;
2218
	}
2219

2220
	return 0;
2221

2222
error:
2223
	intel_cleanup_engine(engine);
2224
	return ret;
2225 2226
}

2227
void intel_cleanup_engine(struct intel_engine_cs *engine)
2228
{
2229
	struct drm_i915_private *dev_priv;
2230

2231
	if (!intel_engine_initialized(engine))
2232 2233
		return;

2234
	dev_priv = engine->i915;
2235

2236
	if (engine->buffer) {
2237
		intel_stop_engine(engine);
2238
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2239

2240 2241 2242
		intel_unpin_ringbuffer_obj(engine->buffer);
		intel_ringbuffer_free(engine->buffer);
		engine->buffer = NULL;
2243
	}
2244

2245 2246
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2247

2248
	if (I915_NEED_GFX_HWS(dev_priv)) {
2249
		cleanup_status_page(engine);
2250
	} else {
2251 2252
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2253
	}
2254

2255 2256
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2257
	intel_engine_fini_breadcrumbs(engine);
2258 2259 2260

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2261
	engine->i915 = NULL;
2262 2263
}

2264
int intel_engine_idle(struct intel_engine_cs *engine)
2265
{
2266
	struct drm_i915_gem_request *req;
2267 2268

	/* Wait upon the last request to be completed */
2269
	if (list_empty(&engine->request_list))
2270 2271
		return 0;

2272 2273 2274
	req = list_entry(engine->request_list.prev,
			 struct drm_i915_gem_request,
			 list);
2275 2276 2277

	/* Make sure we do not trigger any retires */
	return __i915_wait_request(req,
2278
				   req->i915->mm.interruptible,
2279
				   NULL, NULL);
2280 2281
}

2282
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2283
{
2284 2285 2286 2287 2288 2289
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2290
	request->reserved_space += LEGACY_REQUEST_SIZE;
2291

2292
	request->ringbuf = request->engine->buffer;
2293 2294 2295 2296 2297

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2298
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2299
	return 0;
2300 2301
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *target;

	intel_ring_update_space(ringbuf);
	if (ringbuf->space >= bytes)
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2321
	GEM_BUG_ON(!req->reserved_space);
2322 2323 2324 2325

	list_for_each_entry(target, &engine->request_list, list) {
		unsigned space;

2326
		/*
2327 2328 2329
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
2330
		 */
2331 2332 2333 2334 2335 2336 2337 2338
		if (target->ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
		space = __intel_ring_space(target->postfix, ringbuf->tail,
					   ringbuf->size);
		if (space >= bytes)
			break;
2339
	}
2340

2341 2342 2343 2344
	if (WARN_ON(&target->list == &engine->request_list))
		return -ENOSPC;

	return i915_wait_request(target);
2345 2346
}

2347
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2348
{
2349
	struct intel_ringbuffer *ringbuf = req->ringbuf;
2350
	int remain_actual = ringbuf->size - ringbuf->tail;
2351 2352 2353
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2354
	bool need_wrap = false;
2355

2356
	total_bytes = bytes + req->reserved_space;
2357

2358 2359 2360 2361 2362 2363 2364
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2365 2366 2367 2368 2369 2370 2371
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2372
		wait_bytes = remain_actual + req->reserved_space;
2373
	} else {
2374 2375
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2376 2377
	}

2378 2379
	if (wait_bytes > ringbuf->space) {
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2380 2381
		if (unlikely(ret))
			return ret;
2382

2383
		intel_ring_update_space(ringbuf);
2384 2385
		if (unlikely(ringbuf->space < wait_bytes))
			return -EAGAIN;
M
Mika Kuoppala 已提交
2386 2387
	}

2388 2389 2390
	if (unlikely(need_wrap)) {
		GEM_BUG_ON(remain_actual > ringbuf->space);
		GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2391

2392 2393 2394 2395 2396 2397
		/* Fill the tail with MI_NOOP */
		memset(ringbuf->virtual_start + ringbuf->tail,
		       0, remain_actual);
		ringbuf->tail = 0;
		ringbuf->space -= remain_actual;
	}
2398

2399 2400
	ringbuf->space -= bytes;
	GEM_BUG_ON(ringbuf->space < 0);
2401
	return 0;
2402
}
2403

2404
/* Align the ring tail to a cacheline boundary */
2405
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2406
{
2407
	struct intel_engine_cs *engine = req->engine;
2408
	int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2409 2410 2411 2412 2413
	int ret;

	if (num_dwords == 0)
		return 0;

2414
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2415
	ret = intel_ring_begin(req, num_dwords);
2416 2417 2418 2419
	if (ret)
		return ret;

	while (num_dwords--)
2420
		intel_ring_emit(engine, MI_NOOP);
2421

2422
	intel_ring_advance(engine);
2423 2424 2425 2426

	return 0;
}

2427
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2428
{
2429
	struct drm_i915_private *dev_priv = engine->i915;
2430

2431 2432 2433 2434 2435 2436 2437 2438
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2439
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2440 2441
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2442
		if (HAS_VEBOX(dev_priv))
2443
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2444
	}
2445 2446 2447 2448 2449 2450 2451 2452
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2453 2454
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2455

2456 2457 2458
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2459
	engine->last_submitted_seqno = seqno;
2460

2461
	engine->hangcheck.seqno = seqno;
2462 2463 2464 2465 2466 2467 2468

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	rcu_read_lock();
	intel_engine_wakeup(engine);
	rcu_read_unlock();
2469
}
2470

2471
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2472
				     u32 value)
2473
{
2474
	struct drm_i915_private *dev_priv = engine->i915;
2475

2476 2477
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2478
       /* Every tail move must follow the sequence below */
2479 2480 2481 2482

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2483 2484
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2485 2486

	/* Clear the context id. Here be magic! */
2487
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2488

2489
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2490 2491 2492 2493 2494
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2495
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2496

2497
	/* Now that the ring is fully powered up, update the tail */
2498 2499
	I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
	POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2500 2501 2502 2503

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2504 2505 2506 2507
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2508 2509
}

2510
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2511
			       u32 invalidate, u32 flush)
2512
{
2513
	struct intel_engine_cs *engine = req->engine;
2514
	uint32_t cmd;
2515 2516
	int ret;

2517
	ret = intel_ring_begin(req, 4);
2518 2519 2520
	if (ret)
		return ret;

2521
	cmd = MI_FLUSH_DW;
2522
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2523
		cmd += 1;
2524 2525 2526 2527 2528 2529 2530 2531

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2532 2533 2534 2535 2536 2537
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2538
	if (invalidate & I915_GEM_GPU_DOMAINS)
2539 2540
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2541 2542 2543
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2544
	if (INTEL_GEN(req->i915) >= 8) {
2545 2546
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2547
	} else  {
2548 2549
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2550
	}
2551
	intel_ring_advance(engine);
2552
	return 0;
2553 2554
}

2555
static int
2556
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2557
			      u64 offset, u32 len,
2558
			      unsigned dispatch_flags)
2559
{
2560
	struct intel_engine_cs *engine = req->engine;
2561
	bool ppgtt = USES_PPGTT(engine->dev) &&
2562
			!(dispatch_flags & I915_DISPATCH_SECURE);
2563 2564
	int ret;

2565
	ret = intel_ring_begin(req, 4);
2566 2567 2568 2569
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2570
	intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2571 2572
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2573 2574 2575 2576
	intel_ring_emit(engine, lower_32_bits(offset));
	intel_ring_emit(engine, upper_32_bits(offset));
	intel_ring_emit(engine, MI_NOOP);
	intel_ring_advance(engine);
2577 2578 2579 2580

	return 0;
}

2581
static int
2582
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2583 2584
			     u64 offset, u32 len,
			     unsigned dispatch_flags)
2585
{
2586
	struct intel_engine_cs *engine = req->engine;
2587 2588
	int ret;

2589
	ret = intel_ring_begin(req, 2);
2590 2591 2592
	if (ret)
		return ret;

2593
	intel_ring_emit(engine,
2594
			MI_BATCH_BUFFER_START |
2595
			(dispatch_flags & I915_DISPATCH_SECURE ?
2596 2597 2598
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2599
	/* bit0-7 is the length on GEN6+ */
2600 2601
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2602 2603 2604 2605

	return 0;
}

2606
static int
2607
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
2608
			      u64 offset, u32 len,
2609
			      unsigned dispatch_flags)
2610
{
2611
	struct intel_engine_cs *engine = req->engine;
2612
	int ret;
2613

2614
	ret = intel_ring_begin(req, 2);
2615 2616
	if (ret)
		return ret;
2617

2618
	intel_ring_emit(engine,
2619
			MI_BATCH_BUFFER_START |
2620 2621
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2622
	/* bit0-7 is the length on GEN6+ */
2623 2624
	intel_ring_emit(engine, offset);
	intel_ring_advance(engine);
2625

2626
	return 0;
2627 2628
}

2629 2630
/* Blitter support (SandyBridge+) */

2631
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2632
			   u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
2633
{
2634
	struct intel_engine_cs *engine = req->engine;
2635
	uint32_t cmd;
2636 2637
	int ret;

2638
	ret = intel_ring_begin(req, 4);
2639 2640 2641
	if (ret)
		return ret;

2642
	cmd = MI_FLUSH_DW;
2643
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2644
		cmd += 1;
2645 2646 2647 2648 2649 2650 2651 2652

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2653 2654 2655 2656 2657 2658
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2659
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2660
		cmd |= MI_INVALIDATE_TLB;
2661 2662 2663
	intel_ring_emit(engine, cmd);
	intel_ring_emit(engine,
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2664
	if (INTEL_GEN(req->i915) >= 8) {
2665 2666
		intel_ring_emit(engine, 0); /* upper addr */
		intel_ring_emit(engine, 0); /* value */
B
Ben Widawsky 已提交
2667
	} else  {
2668 2669
		intel_ring_emit(engine, 0);
		intel_ring_emit(engine, MI_NOOP);
B
Ben Widawsky 已提交
2670
	}
2671
	intel_ring_advance(engine);
R
Rodrigo Vivi 已提交
2672

2673
	return 0;
Z
Zou Nan hai 已提交
2674 2675
}

2676 2677 2678
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2679
	struct drm_i915_gem_object *obj;
2680
	int ret, i;
2681 2682 2683 2684 2685

	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2686
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
			ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
			if (ret != 0) {
				drm_gem_object_unreference(&obj->base);
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2703 2704 2705 2706
	if (!i915_semaphore_is_enabled(dev_priv))
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2707 2708
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2709 2710
		engine->semaphore.sync_to = gen8_ring_sync;
		engine->semaphore.signal = gen8_xcs_signal;
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2722 2723 2724
	} else if (INTEL_GEN(dev_priv) >= 6) {
		engine->semaphore.sync_to = gen6_ring_sync;
		engine->semaphore.signal = gen6_signal;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2773 2774 2775
	}
}

2776 2777 2778
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2779 2780
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2781
	if (INTEL_GEN(dev_priv) >= 8) {
2782 2783
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2784 2785
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2786 2787
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2788 2789
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2790 2791
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2792
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2793
	} else if (INTEL_GEN(dev_priv) >= 3) {
2794 2795
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2796
	} else {
2797 2798
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2799 2800 2801
	}
}

2802 2803 2804
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2805
	engine->init_hw = init_ring_common;
2806
	engine->write_tail = ring_write_tail;
2807

2808 2809
	engine->add_request = i9xx_add_request;
	if (INTEL_GEN(dev_priv) >= 6)
2810
		engine->add_request = gen6_add_request;
2811 2812 2813 2814

	if (INTEL_GEN(dev_priv) >= 8)
		engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
	else if (INTEL_GEN(dev_priv) >= 6)
2815
		engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2816
	else if (INTEL_GEN(dev_priv) >= 4)
2817
		engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2818 2819 2820 2821
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
		engine->dispatch_execbuffer = i830_dispatch_execbuffer;
	else
		engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2822

2823
	intel_ring_init_irq(dev_priv, engine);
2824
	intel_ring_init_semaphores(dev_priv, engine);
2825 2826
}

2827
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2828
{
2829
	struct drm_i915_private *dev_priv = engine->i915;
2830
	int ret;
2831

2832 2833
	intel_ring_default_vfuncs(dev_priv, engine);

2834 2835
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2836

2837
	if (INTEL_GEN(dev_priv) >= 8) {
2838
		engine->init_context = intel_rcs_ctx_init;
2839
		engine->add_request = gen8_render_add_request;
2840
		engine->flush = gen8_render_ring_flush;
2841
		if (i915_semaphore_is_enabled(dev_priv))
2842
			engine->semaphore.signal = gen8_rcs_signal;
2843
	} else if (INTEL_GEN(dev_priv) >= 6) {
2844 2845
		engine->init_context = intel_rcs_ctx_init;
		engine->flush = gen7_render_ring_flush;
2846
		if (IS_GEN6(dev_priv))
2847
			engine->flush = gen6_render_ring_flush;
2848
	} else if (IS_GEN5(dev_priv)) {
2849
		engine->flush = gen4_render_ring_flush;
2850
	} else {
2851
		if (INTEL_GEN(dev_priv) < 4)
2852
			engine->flush = gen2_render_ring_flush;
2853
		else
2854 2855
			engine->flush = gen4_render_ring_flush;
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2856
	}
B
Ben Widawsky 已提交
2857

2858
	if (IS_HASWELL(dev_priv))
2859
		engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2860

2861 2862
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2863

2864
	ret = intel_init_ring_buffer(engine);
2865 2866 2867
	if (ret)
		return ret;

2868
	if (INTEL_GEN(dev_priv) >= 6) {
2869 2870 2871 2872 2873
		ret = intel_init_pipe_control(engine, 4096);
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
		ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2874 2875 2876 2877 2878
		if (ret)
			return ret;
	}

	return 0;
2879 2880
}

2881
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2882
{
2883
	struct drm_i915_private *dev_priv = engine->i915;
2884

2885 2886
	intel_ring_default_vfuncs(dev_priv, engine);

2887
	if (INTEL_GEN(dev_priv) >= 6) {
2888
		/* gen6 bsd needs a special wa for tail updates */
2889
		if (IS_GEN6(dev_priv))
2890 2891
			engine->write_tail = gen6_bsd_ring_write_tail;
		engine->flush = gen6_bsd_ring_flush;
2892
		if (INTEL_GEN(dev_priv) < 8)
2893
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2894
	} else {
2895 2896
		engine->mmio_base = BSD_RING_BASE;
		engine->flush = bsd_ring_flush;
2897
		if (IS_GEN5(dev_priv))
2898
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2899
		else
2900
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2901 2902
	}

2903
	return intel_init_ring_buffer(engine);
2904
}
2905

2906
/**
2907
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2908
 */
2909
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2910
{
2911
	struct drm_i915_private *dev_priv = engine->i915;
2912 2913 2914

	intel_ring_default_vfuncs(dev_priv, engine);

2915
	engine->flush = gen6_bsd_ring_flush;
2916

2917
	return intel_init_ring_buffer(engine);
2918 2919
}

2920
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2921
{
2922
	struct drm_i915_private *dev_priv = engine->i915;
2923 2924 2925

	intel_ring_default_vfuncs(dev_priv, engine);

2926
	engine->flush = gen6_ring_flush;
2927
	if (INTEL_GEN(dev_priv) < 8)
2928
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2929

2930
	return intel_init_ring_buffer(engine);
2931
}
2932

2933
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2934
{
2935
	struct drm_i915_private *dev_priv = engine->i915;
2936 2937 2938

	intel_ring_default_vfuncs(dev_priv, engine);

2939
	engine->flush = gen6_ring_flush;
2940

2941
	if (INTEL_GEN(dev_priv) < 8) {
2942
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2943 2944
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2945
	}
B
Ben Widawsky 已提交
2946

2947
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2948 2949
}

2950
int
2951
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2952
{
2953
	struct intel_engine_cs *engine = req->engine;
2954 2955
	int ret;

2956
	if (!engine->gpu_caches_dirty)
2957 2958
		return 0;

2959
	ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
2960 2961 2962
	if (ret)
		return ret;

2963
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2964

2965
	engine->gpu_caches_dirty = false;
2966 2967 2968 2969
	return 0;
}

int
2970
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2971
{
2972
	struct intel_engine_cs *engine = req->engine;
2973 2974 2975 2976
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
2977
	if (engine->gpu_caches_dirty)
2978 2979
		flush_domains = I915_GEM_GPU_DOMAINS;

2980
	ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2981 2982 2983
	if (ret)
		return ret;

2984
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2985

2986
	engine->gpu_caches_dirty = false;
2987 2988
	return 0;
}
2989 2990

void
2991
intel_stop_engine(struct intel_engine_cs *engine)
2992 2993 2994
{
	int ret;

2995
	if (!intel_engine_initialized(engine))
2996 2997
		return;

2998
	ret = intel_engine_idle(engine);
2999
	if (ret)
3000
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3001
			  engine->name, ret);
3002

3003
	stop_ring(engine);
3004
}