efx.c 94.0 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25
#include "net_driver.h"
26 27
#include <net/gre.h>
#include <net/udp_tunnel.h>
28
#include "efx.h"
B
Ben Hutchings 已提交
29
#include "nic.h"
30
#include "selftest.h"
31
#include "sriov.h"
32

33
#include "mcdi.h"
34
#include "mcdi_pcol.h"
35
#include "workarounds.h"
36

37 38 39 40 41 42 43 44 45
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
46
const char *const efx_loopback_mode_names[] = {
47
	[LOOPBACK_NONE]		= "NONE",
48
	[LOOPBACK_DATA]		= "DATAPATH",
49 50 51
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
52 53 54
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
55 56 57 58 59 60
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
61 62
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
63 64
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
65 66
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
67
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
68 69
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
70
	[LOOPBACK_GMII_WS]	= "GMII_WS",
71 72
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
73
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
74 75 76
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
77
const char *const efx_reset_type_names[] = {
78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
83
	[RESET_TYPE_DATAPATH]           = "DATAPATH",
84
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
85 86 87
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
88
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
89 90
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
91
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
92 93
};

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/* UDP tunnel type names */
static const char *const efx_udp_tunnel_type_names[] = {
	[TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
	[TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
};

void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
{
	if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
	    efx_udp_tunnel_type_names[type] != NULL)
		snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
	else
		snprintf(buf, buflen, "type %d", type);
}

109 110 111 112 113 114
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

115 116 117 118 119 120
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

121 122 123 124 125 126 127 128 129
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
130 131
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
132
 *
133
 * This is only used in MSI-X interrupt mode
134
 */
135 136 137
bool efx_separate_tx_channels;
module_param(efx_separate_tx_channels, bool, 0444);
MODULE_PARM_DESC(efx_separate_tx_channels,
138
		 "Use separate channels for TX and RX");
139 140 141 142 143 144 145

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
146 147
 * monitor.
 * On Falcon-based NICs, this will:
148 149
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
150 151
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
152
 */
S
stephen hemminger 已提交
153
static unsigned int efx_monitor_interval = 1 * HZ;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
186
 * The default (0) means to assign an interrupt to each core.
187 188 189 190 191
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

192 193
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
194 195
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

196
static unsigned irq_adapt_low_thresh = 8000;
197 198 199 200
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

201
static unsigned irq_adapt_high_thresh = 16000;
202 203 204 205
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

206 207 208 209 210 211 212
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

213 214 215 216 217
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
218

219
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
220
static void efx_soft_disable_interrupts(struct efx_nic *efx);
221
static void efx_remove_channel(struct efx_channel *channel);
222
static void efx_remove_channels(struct efx_nic *efx);
223
static const struct efx_channel_type efx_default_channel_type;
224
static void efx_remove_port(struct efx_nic *efx);
225
static void efx_init_napi_channel(struct efx_channel *channel);
226
static void efx_fini_napi(struct efx_nic *efx);
227
static void efx_fini_napi_channel(struct efx_channel *channel);
228 229 230
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
231 232 233

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
234
		if ((efx->state == STATE_READY) ||	\
235
		    (efx->state == STATE_RECOVERY) ||	\
236
		    (efx->state == STATE_DISABLED))	\
237 238 239
			ASSERT_RTNL();			\
	} while (0)

240 241
static int efx_check_disabled(struct efx_nic *efx)
{
242
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
243 244 245 246 247 248 249
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

250 251 252 253 254 255 256 257 258 259 260 261 262
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
263
static int efx_process_channel(struct efx_channel *channel, int budget)
264
{
265
	struct efx_tx_queue *tx_queue;
266
	int spent;
267

268
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
269
		return 0;
270

271 272 273 274 275
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		tx_queue->pkts_compl = 0;
		tx_queue->bytes_compl = 0;
	}

276
	spent = efx_nic_process_eventq(channel, budget);
277 278 279 280
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

281
		efx_rx_flush_packet(channel);
282
		efx_fast_push_rx_descriptors(rx_queue, true);
283 284
	}

285 286 287 288 289 290 291 292
	/* Update BQL */
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		if (tx_queue->bytes_compl) {
			netdev_tx_completed_queue(tx_queue->core_txq,
				tx_queue->pkts_compl, tx_queue->bytes_compl);
		}
	}

293
	return spent;
294 295 296 297 298 299 300
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
{
	int step = efx->irq_mod_step_us;

	if (channel->irq_mod_score < irq_adapt_low_thresh) {
		if (channel->irq_moderation_us > step) {
			channel->irq_moderation_us -= step;
			efx->type->push_irq_moderation(channel);
		}
	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
		if (channel->irq_moderation_us <
		    efx->irq_rx_moderation_us) {
			channel->irq_moderation_us += step;
			efx->type->push_irq_moderation(channel);
		}
	}

	channel->irq_count = 0;
	channel->irq_mod_score = 0;
}

322 323 324 325
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
326
	struct efx_nic *efx = channel->efx;
327
	int spent;
328

329 330 331
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
332

333
	spent = efx_process_channel(channel, budget);
334

335
	if (spent < budget) {
336
		if (efx_channel_has_rx_queue(channel) &&
337 338
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
339
			efx_update_irq_mod(efx, channel);
340 341
		}

342 343
		efx_filter_rfs_expire(channel);

344
		/* There is no race here; although napi_disable() will
345
		 * only wait for napi_complete(), this isn't a problem
346
		 * since efx_nic_eventq_read_ack() will have no effect if
347 348
		 * interrupts have already been disabled.
		 */
349 350
		if (napi_complete_done(napi, spent))
			efx_nic_eventq_read_ack(channel);
351 352
	}

353
	return spent;
354 355 356 357 358 359 360 361 362
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
363 364 365
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

366
	netif_dbg(efx, probe, efx->net_dev,
367
		  "chan %d create event queue\n", channel->channel);
368

369 370 371
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
372
	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
373 374
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

375
	return efx_nic_probe_eventq(channel);
376 377 378
}

/* Prepare channel's event queue */
379
static int efx_init_eventq(struct efx_channel *channel)
380
{
381
	struct efx_nic *efx = channel->efx;
382 383 384 385
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

386
	netif_dbg(efx, drv, efx->net_dev,
387
		  "chan %d init event queue\n", channel->channel);
388

389 390
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
391
		efx->type->push_irq_moderation(channel);
392 393 394 395
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
396 397
}

398
/* Enable event queue processing and NAPI */
399
void efx_start_eventq(struct efx_channel *channel)
400 401 402 403
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

404
	/* Make sure the NAPI handler sees the enabled flag set */
405 406 407 408 409 410 411 412
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
413
void efx_stop_eventq(struct efx_channel *channel)
414 415 416 417 418 419 420 421
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

422 423
static void efx_fini_eventq(struct efx_channel *channel)
{
424 425 426
	if (!channel->eventq_init)
		return;

427 428
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
429

430
	efx_nic_fini_eventq(channel);
431
	channel->eventq_init = false;
432 433 434 435
}

static void efx_remove_eventq(struct efx_channel *channel)
{
436 437
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
438

439
	efx_nic_remove_eventq(channel);
440 441 442 443 444 445 446 447
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

448
/* Allocate and initialise a channel structure. */
449 450 451 452 453 454 455 456
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

457 458 459
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
460

461 462 463
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
464

465 466 467 468 469 470
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
471

472 473
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
474
	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
475

476 477 478 479 480 481 482 483 484 485 486 487 488
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
489

490 491 492 493 494 495 496
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
497 498 499
	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
	channel->napi_str.napi_id = 0;
	channel->napi_str.state = 0;
500
	memset(&channel->eventq, 0, sizeof(channel->eventq));
501

502 503 504
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
505
			tx_queue->channel = channel;
506 507
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
508 509 510
	}

	rx_queue = &channel->rx_queue;
511 512
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
513
	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
514 515 516 517

	return channel;
}

518 519 520 521 522 523
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

524 525
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
526

527 528 529 530
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

531 532
	rc = efx_probe_eventq(channel);
	if (rc)
533
		goto fail;
534 535 536 537

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
538
			goto fail;
539 540 541 542 543
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
544
			goto fail;
545 546 547 548
	}

	return 0;

549 550
fail:
	efx_remove_channel(channel);
551 552 553
	return rc;
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
572

573 574 575 576
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

577 578
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
579 580
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
581 582
}

583 584 585 586 587 588 589 590
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

591 592 593 594 595 596
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

614 615 616 617
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
618
static void efx_start_datapath(struct efx_nic *efx)
619
{
620
	netdev_features_t old_features = efx->net_dev->features;
621
	bool old_rx_scatter = efx->rx_scatter;
622 623 624
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
625
	size_t rx_buf_len;
626

627 628 629 630
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
631
	efx->rx_dma_len = (efx->rx_prefix_size +
632 633
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
634
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
635
		      efx->rx_ip_align + efx->rx_dma_len);
636
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
637
		efx->rx_scatter = efx->type->always_rx_scatter;
638 639
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
640
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
641
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
642 643 644
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
645 646 647 648 649 650 651 652
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

653 654 655 656 657 658 659 660 661 662 663
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
664

665 666 667 668 669 670 671 672 673
	/* Restore previously fixed features in hw_features and remove
	 * features which are fixed now
	 */
	efx->net_dev->hw_features |= efx->net_dev->features;
	efx->net_dev->hw_features &= ~efx->fixed_features;
	efx->net_dev->features |= efx->fixed_features;
	if (efx->net_dev->features != old_features)
		netdev_features_change(efx->net_dev);

J
Jon Cooper 已提交
674
	/* RX filters may also have scatter-enabled flags */
675
	if (efx->rx_scatter != old_rx_scatter)
676
		efx->type->filter_update_rx_scatter(efx);
677

678 679 680 681 682 683 684 685 686 687
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

688 689
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
690
		efx_for_each_channel_tx_queue(tx_queue, channel) {
691
			efx_init_tx_queue(tx_queue);
692 693
			atomic_inc(&efx->active_queues);
		}
694

695
		efx_for_each_channel_rx_queue(rx_queue, channel) {
696
			efx_init_rx_queue(rx_queue);
697
			atomic_inc(&efx->active_queues);
698 699 700
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
701
		}
702

703
		WARN_ON(channel->rx_pkt_n_frags);
704 705
	}

706 707
	efx_ptp_start_datapath(efx);

708 709
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
710 711
}

712
static void efx_stop_datapath(struct efx_nic *efx)
713 714 715 716
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
717
	int rc;
718 719 720 721

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

722 723
	efx_ptp_stop_datapath(efx);

724 725 726 727 728 729
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

730
	efx_for_each_channel(channel, efx) {
731 732 733 734 735 736 737 738 739 740
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
741
	}
742

743
	rc = efx->type->fini_dmaq(efx);
744
	if (rc) {
745 746 747 748 749 750 751
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
752 753
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
754
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
755 756 757 758 759 760 761 762 763
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

764 765
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
766 767 768

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
769
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
770 771
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
772
	channel->type->post_remove(channel);
773 774
}

775 776 777 778 779 780 781 782 783 784 785 786 787
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
788
	unsigned i, next_buffer_table = 0;
789
	int rc, rc2;
790 791 792 793

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
816

817
	efx_device_detach_sync(efx);
818
	efx_stop_all(efx);
B
Ben Hutchings 已提交
819
	efx_soft_disable_interrupts(efx);
820

821
	/* Clone channels (where possible) */
822 823
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
824 825 826
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

845 846
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
847 848

	for (i = 0; i < efx->n_channels; i++) {
849 850 851 852 853 854 855
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
856
	}
857

858
out:
859 860 861 862 863 864 865 866 867
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
868

869 870 871 872 873 874 875 876
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
877
		efx_device_attach_if_not_resetting(efx);
878
	}
879 880 881 882 883 884 885 886 887 888 889 890 891 892
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

893
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
894
{
895
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
896 897
}

898 899
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
900
	.post_remove		= efx_channel_dummy_op_void,
901 902 903 904 905 906 907 908 909 910
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

911 912 913 914
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

915 916 917 918 919 920 921 922 923 924
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
925
void efx_link_status_changed(struct efx_nic *efx)
926
{
927 928
	struct efx_link_state *link_state = &efx->link_state;

929 930 931 932 933 934 935
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

936
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
937 938
		efx->n_link_state_changes++;

939
		if (link_state->up)
940 941 942 943 944 945
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
946
	if (link_state->up)
947
		netif_info(efx, link, efx->net_dev,
948
			   "link up at %uMbps %s-duplex (MTU %d)\n",
949
			   link_state->speed, link_state->fd ? "full" : "half",
950
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
951
	else
952
		netif_info(efx, link, efx->net_dev, "link down\n");
953 954
}

B
Ben Hutchings 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

968
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

983 984
static void efx_fini_port(struct efx_nic *efx);

985 986 987 988 989 990 991 992 993 994
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
995 996 997 998 999 1000 1001 1002
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
1003
{
B
Ben Hutchings 已提交
1004 1005
	enum efx_phy_mode phy_mode;
	int rc;
1006

B
Ben Hutchings 已提交
1007
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1008

B
Ben Hutchings 已提交
1009 1010
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
1011 1012 1013 1014 1015
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
1016
	rc = efx->type->reconfigure_port(efx);
1017

B
Ben Hutchings 已提交
1018 1019
	if (rc)
		efx->phy_mode = phy_mode;
1020

B
Ben Hutchings 已提交
1021
	return rc;
1022 1023 1024 1025
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1026
int efx_reconfigure_port(struct efx_nic *efx)
1027
{
B
Ben Hutchings 已提交
1028 1029
	int rc;

1030 1031 1032
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1033
	rc = __efx_reconfigure_port(efx);
1034
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1035 1036

	return rc;
1037 1038
}

1039 1040 1041
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1042 1043 1044 1045 1046
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1047
	if (efx->port_enabled)
1048
		efx_mac_reconfigure(efx);
1049 1050 1051
	mutex_unlock(&efx->mac_lock);
}

1052 1053 1054 1055
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1056
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1057

1058 1059 1060
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1061 1062
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1063
	if (rc)
1064
		return rc;
1065

1066
	/* Initialise MAC address to permanent address */
1067
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1068 1069 1070 1071 1072 1073 1074 1075

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1076
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1077

1078 1079
	mutex_lock(&efx->mac_lock);

1080
	rc = efx->phy_op->init(efx);
1081
	if (rc)
1082
		goto fail1;
1083

1084
	efx->port_initialized = true;
1085

B
Ben Hutchings 已提交
1086 1087
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1088
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1089 1090 1091

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1092
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1093 1094
		goto fail2;

1095
	mutex_unlock(&efx->mac_lock);
1096
	return 0;
1097

1098
fail2:
1099
	efx->phy_op->fini(efx);
1100 1101
fail1:
	mutex_unlock(&efx->mac_lock);
1102
	return rc;
1103 1104 1105 1106
}

static void efx_start_port(struct efx_nic *efx)
{
1107
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1108 1109 1110
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1111
	efx->port_enabled = true;
1112

1113
	/* Ensure MAC ingress/egress is enabled */
1114
	efx_mac_reconfigure(efx);
1115

1116 1117 1118
	mutex_unlock(&efx->mac_lock);
}

1119 1120 1121 1122 1123
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1124 1125
static void efx_stop_port(struct efx_nic *efx)
{
1126
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1127

1128 1129
	EFX_ASSERT_RESET_SERIALISED(efx);

1130
	mutex_lock(&efx->mac_lock);
1131
	efx->port_enabled = false;
1132 1133 1134
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1135 1136
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1137 1138 1139 1140

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1141 1142 1143 1144
}

static void efx_fini_port(struct efx_nic *efx)
{
1145
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1146 1147 1148 1149

	if (!efx->port_initialized)
		return;

1150
	efx->phy_op->fini(efx);
1151
	efx->port_initialized = false;
1152

1153
	efx->link_state.up = false;
1154 1155 1156 1157 1158
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1159
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1160

1161
	efx->type->remove_port(efx);
1162 1163 1164 1165 1166 1167 1168 1169
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1241 1242 1243 1244 1245
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1246
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1247
	int rc, bar;
1248

1249
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1250

1251
	bar = efx->type->mem_bar(efx);
1252

1253 1254
	rc = pci_enable_device(pci_dev);
	if (rc) {
1255 1256
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
C
Christoph Hellwig 已提交
1268 1269 1270
		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
		if (rc == 0)
			break;
1271 1272 1273
		dma_mask >>= 1;
	}
	if (rc) {
1274 1275
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1276 1277
		goto fail2;
	}
1278 1279
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1280

1281 1282
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1283
	if (rc) {
1284 1285
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1286 1287 1288
		rc = -EIO;
		goto fail3;
	}
1289
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1290
	if (!efx->membase) {
1291 1292
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1293
			  (unsigned long long)efx->membase_phys, mem_map_size);
1294 1295 1296
		rc = -ENOMEM;
		goto fail4;
	}
1297 1298
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1299 1300
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1301 1302 1303 1304

	return 0;

 fail4:
1305
	pci_release_region(efx->pci_dev, bar);
1306
 fail3:
1307
	efx->membase_phys = 0;
1308 1309 1310 1311 1312 1313 1314 1315
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1316 1317
	int bar;

1318
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1319 1320 1321 1322 1323 1324 1325

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1326
		bar = efx->type->mem_bar(efx);
1327
		pci_release_region(efx->pci_dev, bar);
1328
		efx->membase_phys = 0;
1329 1330
	}

1331 1332 1333
	/* Don't disable bus-mastering if VFs are assigned */
	if (!pci_vfs_assigned(efx->pci_dev))
		pci_disable_device(efx->pci_dev);
1334 1335
}

1336 1337 1338 1339 1340 1341 1342
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1343 1344
}

1345
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1346
{
1347
	cpumask_var_t thread_mask;
1348
	unsigned int count;
1349
	int cpu;
1350

1351 1352 1353 1354 1355 1356 1357 1358
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1359

1360 1361 1362 1363 1364
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
1365
					   topology_sibling_cpumask(cpu));
1366 1367 1368 1369
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1370 1371
	}

1372 1373 1374 1375 1376 1377 1378
	if (count > EFX_MAX_RX_QUEUES) {
		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
			       "Reducing number of rx queues from %u to %u.\n",
			       count, EFX_MAX_RX_QUEUES);
		count = EFX_MAX_RX_QUEUES;
	}

1379 1380 1381
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1393
	}
1394
#endif
1395 1396 1397 1398 1399 1400 1401

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1402
static int efx_probe_interrupts(struct efx_nic *efx)
1403
{
1404 1405
	unsigned int extra_channels = 0;
	unsigned int i, j;
1406
	int rc;
1407

1408 1409 1410 1411
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1412
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1413
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1414
		unsigned int n_channels;
1415

1416
		n_channels = efx_wanted_parallelism(efx);
1417
		if (efx_separate_tx_channels)
B
Ben Hutchings 已提交
1418
			n_channels *= 2;
1419
		n_channels += extra_channels;
1420
		n_channels = min(n_channels, efx->max_channels);
1421

B
Ben Hutchings 已提交
1422
		for (i = 0; i < n_channels; i++)
1423
			xentries[i].entry = i;
1424 1425 1426 1427 1428 1429
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1430 1431 1432 1433
			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
				efx->interrupt_mode = EFX_INT_MODE_MSI;
			else
				return rc;
1434
		} else if (rc < n_channels) {
1435 1436
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1437
				  " available (%d < %u).\n", rc, n_channels);
1438 1439
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1440
			n_channels = rc;
1441 1442
		}

1443
		if (rc > 0) {
B
Ben Hutchings 已提交
1444
			efx->n_channels = n_channels;
1445 1446
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
1447 1448 1449 1450
			if (efx_separate_tx_channels) {
				efx->n_tx_channels = min(max(n_channels / 2,
							     1U),
							 efx->max_tx_channels);
1451 1452 1453
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1454
			} else {
1455 1456
				efx->n_tx_channels = min(n_channels,
							 efx->max_tx_channels);
1457
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1458
			}
1459
			for (i = 0; i < efx->n_channels; i++)
1460 1461
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1462 1463 1464 1465 1466
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1467
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1468 1469
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1470 1471
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1472
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1473
		} else {
1474 1475
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1476 1477 1478 1479
			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
				efx->interrupt_mode = EFX_INT_MODE_LEGACY;
			else
				return rc;
1480 1481 1482 1483 1484
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1485
		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1486 1487
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1488 1489
		efx->legacy_irq = efx->pci_dev->irq;
	}
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1506
	/* RSS might be usable on VFs even if it is disabled on the PF */
1507 1508 1509 1510 1511 1512 1513 1514 1515
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1516

1517
	return 0;
1518 1519
}

1520
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1521
{
1522 1523
	struct efx_channel *channel, *end_channel;
	int rc;
1524

1525 1526
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1527 1528
	efx->irq_soft_enabled = true;
	smp_wmb();
1529 1530

	efx_for_each_channel(channel, efx) {
1531 1532 1533 1534 1535
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1536 1537 1538 1539
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1553 1554
}

B
Ben Hutchings 已提交
1555
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1556 1557 1558
{
	struct efx_channel *channel;

1559 1560 1561
	if (efx->state == STATE_DISABLED)
		return;

1562 1563
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1564 1565 1566 1567
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1568 1569 1570 1571 1572 1573 1574
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1575
		if (!channel->type->keep_eventq)
1576
			efx_fini_eventq(channel);
1577
	}
1578 1579 1580

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1581 1582
}

1583
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1584
{
1585 1586
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1587 1588 1589 1590 1591 1592 1593 1594

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1595
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1596 1597

	efx_for_each_channel(channel, efx) {
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1616
		if (channel->type->keep_eventq)
1617
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1618 1619
	}

1620 1621 1622
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1636
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1637 1638
}

1639 1640 1641 1642 1643
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1644
	efx_for_each_channel(channel, efx)
1645 1646 1647 1648 1649 1650 1651 1652
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1653
static void efx_set_channels(struct efx_nic *efx)
1654
{
1655 1656 1657
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1658
	efx->tx_channel_offset =
1659 1660
		efx_separate_tx_channels ?
		efx->n_channels - efx->n_tx_channels : 0;
1661

1662 1663
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1664 1665 1666
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1667 1668 1669 1670 1671
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1672 1673 1674 1675
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1676 1677 1678 1679 1680 1681
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1682
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1683 1684

	/* Carry out hardware-type specific initialisation */
1685
	rc = efx->type->probe(efx);
1686 1687 1688
	if (rc)
		return rc;

1689 1690 1691 1692 1693 1694 1695 1696
	do {
		if (!efx->max_channels || !efx->max_tx_channels) {
			netif_err(efx, drv, efx->net_dev,
				  "Insufficient resources to allocate"
				  " any channels\n");
			rc = -ENOSPC;
			goto fail1;
		}
1697

1698 1699 1700 1701 1702 1703
		/* Determine the number of channels and queues by trying
		 * to hook in MSI-X interrupts.
		 */
		rc = efx_probe_interrupts(efx);
		if (rc)
			goto fail1;
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		efx_set_channels(efx);

		/* dimension_resources can fail with EAGAIN */
		rc = efx->type->dimension_resources(efx);
		if (rc != 0 && rc != -EAGAIN)
			goto fail2;

		if (rc == -EAGAIN)
			/* try again with new max_channels */
			efx_remove_interrupts(efx);

	} while (rc == -EAGAIN);
1717

1718
	if (efx->n_channels > 1)
1719 1720 1721
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1722

1723 1724
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1725 1726

	/* Initialise the interrupt moderation settings */
1727
	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1728 1729
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1730 1731

	return 0;
1732

1733 1734 1735
fail2:
	efx_remove_interrupts(efx);
fail1:
1736 1737
	efx->type->remove(efx);
	return rc;
1738 1739 1740 1741
}

static void efx_remove_nic(struct efx_nic *efx)
{
1742
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1743 1744

	efx_remove_interrupts(efx);
1745
	efx->type->remove(efx);
1746 1747
}

1748 1749 1750 1751 1752
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1753
	init_rwsem(&efx->filter_sem);
1754
	mutex_lock(&efx->mac_lock);
1755
	down_write(&efx->filter_sem);
1756 1757
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1758
		goto out_unlock;
1759 1760 1761

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		struct efx_channel *channel;
		int i, success = 1;

		efx_for_each_channel(channel, efx) {
			channel->rps_flow_id =
				kcalloc(efx->type->max_rx_ip_filters,
					sizeof(*channel->rps_flow_id),
					GFP_KERNEL);
			if (!channel->rps_flow_id)
				success = 0;
			else
				for (i = 0;
				     i < efx->type->max_rx_ip_filters;
				     ++i)
					channel->rps_flow_id[i] =
						RPS_FLOW_ID_INVALID;
		}

		if (!success) {
			efx_for_each_channel(channel, efx)
				kfree(channel->rps_flow_id);
1783
			efx->type->filter_table_remove(efx);
1784 1785
			rc = -ENOMEM;
			goto out_unlock;
1786
		}
1787 1788

		efx->rps_expire_index = efx->rps_expire_channel = 0;
1789 1790
	}
#endif
1791 1792
out_unlock:
	up_write(&efx->filter_sem);
1793
	mutex_unlock(&efx->mac_lock);
1794
	return rc;
1795 1796 1797 1798 1799
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
1800 1801 1802 1803
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		kfree(channel->rps_flow_id);
1804
#endif
1805
	down_write(&efx->filter_sem);
1806
	efx->type->filter_table_remove(efx);
1807
	up_write(&efx->filter_sem);
1808 1809 1810 1811
}

static void efx_restore_filters(struct efx_nic *efx)
{
1812
	down_read(&efx->filter_sem);
1813
	efx->type->filter_table_restore(efx);
1814
	up_read(&efx->filter_sem);
1815 1816
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1829
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1830 1831 1832 1833 1834
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1835
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1836 1837 1838
		goto fail2;
	}

1839 1840 1841 1842 1843
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1844
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1845

1846 1847 1848 1849 1850 1851 1852 1853
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1854 1855 1856 1857
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1858
		goto fail4;
B
Ben Hutchings 已提交
1859 1860
	}

1861 1862
	rc = efx_probe_channels(efx);
	if (rc)
1863
		goto fail5;
1864

1865 1866
	return 0;

1867
 fail5:
1868
	efx_remove_filters(efx);
1869 1870 1871 1872
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1873 1874 1875 1876 1877 1878 1879 1880
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1881 1882 1883 1884 1885 1886
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1887
 */
1888 1889 1890
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1891
	BUG_ON(efx->state == STATE_DISABLED);
1892 1893 1894

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1895 1896
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1897 1898 1899
		return;

	efx_start_port(efx);
1900
	efx_start_datapath(efx);
1901

1902 1903
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1904 1905
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1906

1907
	/* Link state detection is normally event-driven; we have
1908 1909
	 * to poll now because we could have missed a change
	 */
1910 1911 1912 1913
	mutex_lock(&efx->mac_lock);
	if (efx->phy_op->poll(efx))
		efx_link_status_changed(efx);
	mutex_unlock(&efx->mac_lock);
1914

1915
	efx->type->start_stats(efx);
1916 1917 1918 1919
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1920 1921
}

1922 1923 1924 1925 1926
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1927 1928 1929 1930 1931 1932 1933 1934
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1935 1936 1937 1938 1939 1940 1941
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1942
	efx->type->stop_stats(efx);
1943 1944
	efx_stop_port(efx);

1945 1946 1947 1948 1949 1950
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1951 1952 1953
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1954 1955 1956 1957
}

static void efx_remove_all(struct efx_nic *efx)
{
1958
	efx_remove_channels(efx);
1959
	efx_remove_filters(efx);
1960 1961 1962
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1963 1964 1965 1966 1967 1968 1969 1970 1971
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/
1972
unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1973
{
1974 1975
	if (usecs == 0)
		return 0;
1976
	if (usecs * 1000 < efx->timer_quantum_ns)
1977
		return 1; /* never round down to 0 */
1978 1979 1980 1981 1982 1983 1984 1985 1986
	return usecs * 1000 / efx->timer_quantum_ns;
}

unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
{
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */
	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1987 1988
}

1989
/* Set interrupt moderation parameters */
1990 1991 1992
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1993
{
1994
	struct efx_channel *channel;
1995 1996
	unsigned int timer_max_us;

1997 1998
	EFX_ASSERT_RESET_SERIALISED(efx);

1999 2000 2001
	timer_max_us = efx->timer_max_ns / 1000;

	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
2002 2003
		return -EINVAL;

2004
	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
2005 2006 2007 2008 2009 2010
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

2011
	efx->irq_rx_adaptive = rx_adaptive;
2012
	efx->irq_rx_moderation_us = rx_usecs;
2013
	efx_for_each_channel(channel, efx) {
2014
		if (efx_channel_has_rx_queue(channel))
2015
			channel->irq_moderation_us = rx_usecs;
2016
		else if (efx_channel_has_tx_queues(channel))
2017
			channel->irq_moderation_us = tx_usecs;
2018
	}
2019 2020

	return 0;
2021 2022
}

2023 2024 2025 2026
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
	*rx_adaptive = efx->irq_rx_adaptive;
2027
	*rx_usecs = efx->irq_rx_moderation_us;
2028 2029 2030 2031 2032

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
2033
	if (efx->tx_channel_offset == 0) {
2034
		*tx_usecs = *rx_usecs;
2035 2036 2037 2038 2039 2040
	} else {
		struct efx_channel *tx_channel;

		tx_channel = efx->channel[efx->tx_channel_offset];
		*tx_usecs = tx_channel->irq_moderation_us;
	}
2041 2042
}

2043 2044 2045 2046 2047 2048
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

2049
/* Run periodically off the general workqueue */
2050 2051 2052 2053 2054
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

2055 2056 2057
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
2058
	BUG_ON(efx->type->monitor == NULL);
2059 2060 2061

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
2062 2063 2064 2065 2066 2067
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
2084
	struct efx_nic *efx = netdev_priv(net_dev);
2085
	struct mii_ioctl_data *data = if_mii(ifr);
2086

2087
	if (cmd == SIOCSHWTSTAMP)
2088 2089 2090
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2091

2092 2093 2094 2095 2096 2097
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2098 2099 2100 2101 2102 2103 2104 2105
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2106 2107 2108 2109 2110 2111 2112 2113 2114
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

2115
static void efx_init_napi(struct efx_nic *efx)
2116 2117 2118
{
	struct efx_channel *channel;

2119 2120
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2121 2122 2123 2124
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
E
Eric Dumazet 已提交
2125
	if (channel->napi_dev)
2126
		netif_napi_del(&channel->napi_str);
E
Eric Dumazet 已提交
2127

2128
	channel->napi_dev = NULL;
2129 2130 2131 2132 2133 2134
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2135 2136
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2153
	struct efx_nic *efx = netdev_priv(net_dev);
2154 2155
	struct efx_channel *channel;

2156
	efx_for_each_channel(channel, efx)
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
2169
int efx_net_open(struct net_device *net_dev)
2170
{
2171
	struct efx_nic *efx = netdev_priv(net_dev);
2172 2173
	int rc;

2174 2175
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2176

2177 2178 2179
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2180 2181
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2182 2183
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2184

2185 2186 2187 2188
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2189
	efx_start_all(efx);
2190 2191
	if (efx->state == STATE_DISABLED || efx->reset_pending)
		netif_device_detach(efx->net_dev);
2192
	efx_selftest_async_start(efx);
2193 2194 2195 2196 2197 2198 2199
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
2200
int efx_net_stop(struct net_device *net_dev)
2201
{
2202
	struct efx_nic *efx = netdev_priv(net_dev);
2203

2204 2205
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2206

2207 2208
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2209 2210 2211 2212

	return 0;
}

2213
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2214 2215
static void efx_net_stats(struct net_device *net_dev,
			  struct rtnl_link_stats64 *stats)
2216
{
2217
	struct efx_nic *efx = netdev_priv(net_dev);
2218

2219
	spin_lock_bh(&efx->stats_lock);
2220
	efx->type->update_stats(efx, NULL, stats);
2221
	spin_unlock_bh(&efx->stats_lock);
2222 2223 2224 2225 2226
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2227
	struct efx_nic *efx = netdev_priv(net_dev);
2228

2229 2230 2231
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2232

2233
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2234 2235 2236 2237 2238 2239
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2240
	struct efx_nic *efx = netdev_priv(net_dev);
2241
	int rc;
2242

2243 2244 2245
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2246

2247
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2248

2249 2250 2251
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2252
	mutex_lock(&efx->mac_lock);
2253
	net_dev->mtu = new_mtu;
2254
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2255 2256
	mutex_unlock(&efx->mac_lock);

2257
	efx_start_all(efx);
2258
	efx_device_attach_if_not_resetting(efx);
2259
	return 0;
2260 2261 2262 2263
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2264
	struct efx_nic *efx = netdev_priv(net_dev);
2265
	struct sockaddr *addr = data;
2266
	u8 *new_addr = addr->sa_data;
2267 2268
	u8 old_addr[6];
	int rc;
2269 2270

	if (!is_valid_ether_addr(new_addr)) {
2271 2272 2273
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2274
		return -EADDRNOTAVAIL;
2275 2276
	}

2277 2278
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2279
	ether_addr_copy(net_dev->dev_addr, new_addr);
2280 2281
	if (efx->type->set_mac_address) {
		rc = efx->type->set_mac_address(efx);
2282 2283 2284 2285 2286
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2287 2288

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2289
	mutex_lock(&efx->mac_lock);
2290
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2291
	mutex_unlock(&efx->mac_lock);
2292 2293 2294 2295

	return 0;
}

2296
/* Context: netif_addr_lock held, BHs disabled. */
2297
static void efx_set_rx_mode(struct net_device *net_dev)
2298
{
2299
	struct efx_nic *efx = netdev_priv(net_dev);
2300

2301 2302 2303
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2304 2305
}

2306
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2307 2308
{
	struct efx_nic *efx = netdev_priv(net_dev);
2309
	int rc;
2310 2311

	/* If disabling RX n-tuple filtering, clear existing filters */
2312 2313 2314 2315 2316 2317
	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
		if (rc)
			return rc;
	}

E
Edward Cree 已提交
2318 2319 2320 2321 2322
	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
	 * If rx-fcs is changed, mac_reconfigure updates that too.
	 */
	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
					  NETIF_F_RXFCS)) {
2323 2324 2325 2326 2327
		/* efx_set_rx_mode() will schedule MAC work to update filters
		 * when a new features are finally set in net_dev.
		 */
		efx_set_rx_mode(net_dev);
	}
2328 2329 2330 2331

	return 0;
}

2332 2333
static int efx_get_phys_port_id(struct net_device *net_dev,
				struct netdev_phys_item_id *ppid)
2334 2335 2336 2337 2338 2339 2340 2341 2342
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->get_phys_port_id)
		return efx->type->get_phys_port_id(efx, ppid);
	else
		return -EOPNOTSUPP;
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
static int efx_get_phys_port_name(struct net_device *net_dev,
				  char *name, size_t len)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (snprintf(name, len, "p%u", efx->port_num) >= len)
		return -EINVAL;
	return 0;
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_add_vid)
		return efx->type->vlan_rx_add_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_kill_vid)
		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
{
	switch (in) {
	case UDP_TUNNEL_TYPE_VXLAN:
		return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
	case UDP_TUNNEL_TYPE_GENEVE:
		return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
	default:
		return -1;
	}
}

static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
{
	struct efx_nic *efx = netdev_priv(dev);
	struct efx_udp_tunnel tnl;
	int efx_tunnel_type;

	efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
	if (efx_tunnel_type < 0)
		return;

	tnl.type = (u16)efx_tunnel_type;
	tnl.port = ti->port;

	if (efx->type->udp_tnl_add_port)
		(void)efx->type->udp_tnl_add_port(efx, tnl);
}

static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
{
	struct efx_nic *efx = netdev_priv(dev);
	struct efx_udp_tunnel tnl;
	int efx_tunnel_type;

	efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
	if (efx_tunnel_type < 0)
		return;

	tnl.type = (u16)efx_tunnel_type;
	tnl.port = ti->port;

2415
	if (efx->type->udp_tnl_del_port)
2416 2417 2418
		(void)efx->type->udp_tnl_del_port(efx, tnl);
}

2419
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2420 2421
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2422
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2423 2424 2425 2426 2427 2428
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2429
	.ndo_set_rx_mode	= efx_set_rx_mode,
2430
	.ndo_set_features	= efx_set_features,
2431 2432
	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
2433
#ifdef CONFIG_SFC_SRIOV
2434 2435 2436 2437
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2438
	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2439
#endif
2440
	.ndo_get_phys_port_id   = efx_get_phys_port_id,
2441
	.ndo_get_phys_port_name	= efx_get_phys_port_name,
S
Stephen Hemminger 已提交
2442 2443 2444
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2445
	.ndo_setup_tc		= efx_setup_tc,
2446 2447 2448
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
2449 2450
	.ndo_udp_tunnel_add	= efx_udp_tunnel_add,
	.ndo_udp_tunnel_del	= efx_udp_tunnel_del,
S
Stephen Hemminger 已提交
2451 2452
};

2453 2454 2455 2456 2457 2458 2459
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2460 2461 2462
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2463
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2464

2465
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2466 2467
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2468 2469 2470 2471 2472 2473 2474 2475

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2476 2477 2478 2479 2480 2481
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2482
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
#ifdef CONFIG_SFC_MCDI_LOGGING
static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
}
static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
			    const char *buf, size_t count)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	bool enable = count > 0 && *buf != '0';

	mcdi->logging_enabled = enable;
	return count;
}
static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
#endif

2506 2507 2508
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2509
	struct efx_channel *channel;
2510 2511 2512 2513
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2514 2515
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2516
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2517
	net_dev->ethtool_ops = &efx_ethtool_ops;
2518
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2519 2520
	net_dev->min_mtu = EFX_MIN_MTU;
	net_dev->max_mtu = EFX_MAX_MTU;
2521

2522
	rtnl_lock();
2523

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2537 2538 2539
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2540
	efx_update_name(efx);
2541

2542 2543 2544
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2545 2546 2547 2548
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2549 2550
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2551 2552
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2553 2554
	}

2555 2556
	efx_associate(efx);

2557
	rtnl_unlock();
2558

B
Ben Hutchings 已提交
2559 2560
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2561 2562
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2563 2564
		goto fail_registered;
	}
2565 2566 2567 2568 2569 2570 2571 2572
#ifdef CONFIG_SFC_MCDI_LOGGING
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
	if (rc) {
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
		goto fail_attr_mcdi_logging;
	}
#endif
B
Ben Hutchings 已提交
2573

2574
	return 0;
B
Ben Hutchings 已提交
2575

2576 2577 2578 2579
#ifdef CONFIG_SFC_MCDI_LOGGING
fail_attr_mcdi_logging:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
#endif
2580 2581
fail_registered:
	rtnl_lock();
2582
	efx_dissociate(efx);
2583
	unregister_netdevice(net_dev);
2584
fail_locked:
2585
	efx->state = STATE_UNINIT;
2586
	rtnl_unlock();
2587
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2588
	return rc;
2589 2590 2591 2592 2593 2594 2595
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2596
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2597

2598 2599 2600 2601 2602 2603 2604 2605
	if (efx_dev_registered(efx)) {
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
#ifdef CONFIG_SFC_MCDI_LOGGING
		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
#endif
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
		unregister_netdev(efx->net_dev);
	}
2606 2607 2608 2609 2610 2611 2612 2613
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2614 2615
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2616
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2617 2618 2619
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2620 2621 2622
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2623
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2624
	efx_disable_interrupts(efx);
2625 2626

	mutex_lock(&efx->mac_lock);
2627 2628
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH)
2629
		efx->phy_op->fini(efx);
2630
	efx->type->fini(efx);
2631 2632
}

B
Ben Hutchings 已提交
2633 2634 2635 2636 2637
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2638
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2639 2640 2641
{
	int rc;

B
Ben Hutchings 已提交
2642
	EFX_ASSERT_RESET_SERIALISED(efx);
2643

2644 2645 2646 2647
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2648
	rc = efx->type->init(efx);
2649
	if (rc) {
2650
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2651
		goto fail;
2652 2653
	}

2654 2655 2656
	if (!ok)
		goto fail;

2657 2658
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH) {
2659 2660 2661
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2662 2663
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2664 2665
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2666 2667
	}

2668 2669 2670
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2671 2672 2673 2674 2675 2676 2677 2678 2679

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2680
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2681
	efx_restore_filters(efx);
2682
	up_read(&efx->filter_sem);
2683 2684
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2685 2686 2687 2688 2689

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

2690 2691 2692
	if (efx->type->udp_tnl_push_ports)
		efx->type->udp_tnl_push_ports(efx);

2693 2694 2695 2696
	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2697 2698 2699

	mutex_unlock(&efx->mac_lock);

2700 2701 2702
	return rc;
}

2703 2704
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2705
 *
2706
 * Caller must hold the rtnl_lock.
2707
 */
2708
int efx_reset(struct efx_nic *efx, enum reset_type method)
2709
{
2710 2711
	int rc, rc2;
	bool disabled;
2712

2713 2714
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2715

2716
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2717
	efx_reset_down(efx, method);
2718

2719
	rc = efx->type->reset(efx, method);
2720
	if (rc) {
2721
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2722
		goto out;
2723 2724
	}

2725 2726 2727
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2728 2729 2730 2731
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2732 2733 2734 2735 2736 2737 2738

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2739
out:
2740
	/* Leave device stopped if necessary */
2741 2742 2743
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2744 2745 2746 2747 2748
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2749 2750
	}

2751
	if (disabled) {
2752
		dev_close(efx->net_dev);
2753
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2754 2755
		efx->state = STATE_DISABLED;
	} else {
2756
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2757
		efx_device_attach_if_not_resetting(efx);
2758
	}
2759 2760 2761
	return rc;
}

2762 2763 2764 2765 2766
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2767
int efx_try_recovery(struct efx_nic *efx)
2768 2769 2770 2771 2772 2773 2774
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2775
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2804 2805 2806 2807 2808
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2809
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2810 2811 2812
	unsigned long pending;
	enum reset_type method;

2813
	pending = READ_ONCE(efx->reset_pending);
2814 2815
	method = fls(pending) - 1;

2816 2817 2818
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2819 2820 2821 2822
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2823

2824
	if (!pending)
2825 2826
		return;

2827
	rtnl_lock();
2828 2829 2830 2831 2832 2833

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2834
		(void)efx_reset(efx, method);
2835

2836
	rtnl_unlock();
2837 2838 2839 2840 2841 2842
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2843 2844 2845 2846 2847 2848 2849
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2850 2851 2852
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2853
	case RESET_TYPE_RECOVER_OR_ALL:
2854 2855
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2856
	case RESET_TYPE_RECOVER_OR_DISABLE:
2857
	case RESET_TYPE_DATAPATH:
2858
	case RESET_TYPE_MC_BIST:
2859
	case RESET_TYPE_MCDI_TIMEOUT:
2860
		method = type;
2861 2862
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2863 2864
		break;
	default:
2865
		method = efx->type->map_reset_reason(type);
2866 2867 2868
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2869 2870
		break;
	}
2871

2872
	set_bit(method, &efx->reset_pending);
2873 2874 2875 2876 2877
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
2878
	if (READ_ONCE(efx->state) != STATE_READY)
2879
		return;
2880

2881 2882 2883 2884
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2885
	queue_work(reset_workqueue, &efx->reset_work);
2886 2887 2888 2889 2890 2891 2892 2893 2894
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2895
static const struct pci_device_id efx_pci_table[] = {
2896
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2897
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2898
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2899
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2900 2901
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2902 2903
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2904 2905
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2906 2907 2908 2909 2910 2911
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2912 2913 2914 2915 2916
	{0}			/* end of list */
};

/**************************************************************************
 *
2917
 * Dummy PHY/MAC operations
2918
 *
2919
 * Can be used for some unimplemented operations
2920 2921 2922 2923 2924 2925 2926 2927 2928
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2929 2930

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2931 2932 2933
{
	return false;
}
2934

2935
static const struct efx_phy_operations efx_dummy_phy_operations = {
2936
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2937
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2938
	.poll		 = efx_port_dummy_op_poll,
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2951
static int efx_init_struct(struct efx_nic *efx,
2952 2953
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2954
	int rc = -ENOMEM, i;
2955 2956

	/* Initialise common structures */
2957 2958
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2959
	spin_lock_init(&efx->biu_lock);
2960 2961 2962
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2963 2964
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2965
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2966
	efx->pci_dev = pci_dev;
2967
	efx->msg_enable = debug;
2968
	efx->state = STATE_UNINIT;
2969 2970 2971
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2972
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2973 2974
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2975 2976
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2977 2978
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2979 2980 2981
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2982
	efx->mdio.dev = net_dev;
2983
	INIT_WORK(&efx->mac_work, efx_mac_work);
2984
	init_waitqueue_head(&efx->flush_wq);
2985 2986

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2987 2988 2989
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2990 2991
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2992 2993 2994
	}

	/* Higher numbered interrupt modes are less capable! */
2995 2996 2997 2998 2999
	if (WARN_ON_ONCE(efx->type->max_interrupt_mode >
			 efx->type->min_interrupt_mode)) {
		rc = -EIO;
		goto fail;
	}
3000 3001
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);
3002 3003
	efx->interrupt_mode = min(efx->type->min_interrupt_mode,
				  interrupt_mode);
3004

3005 3006 3007 3008
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
3009
	if (!efx->workqueue)
3010
		goto fail;
3011

3012
	return 0;
3013 3014 3015

fail:
	efx_fini_struct(efx);
3016
	return rc;
3017 3018 3019 3020
}

static void efx_fini_struct(struct efx_nic *efx)
{
3021 3022 3023 3024 3025
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

3026 3027
	kfree(efx->vpd_sn);

3028 3029 3030 3031 3032 3033
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
3056 3057 3058 3059 3060 3061
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
3062
	efx_disable_interrupts(efx);
3063
	efx_nic_fini_interrupt(efx);
3064
	efx_fini_port(efx);
3065
	efx->type->fini(efx);
3066 3067 3068 3069 3070
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
3071 3072
 * This is called only at module unload (or hotplug removal).  A PF can call
 * this on its VFs to ensure they are unbound first.
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
3084
	efx_dissociate(efx);
3085
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
3086
	efx_disable_interrupts(efx);
3087
	efx->state = STATE_UNINIT;
3088 3089
	rtnl_unlock();

3090 3091 3092
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

3093 3094
	efx_unregister_netdev(efx);

3095 3096
	efx_mtd_remove(efx);

3097 3098 3099
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
3100
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3101 3102 3103

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
3104 3105

	pci_disable_pcie_error_reporting(pci_dev);
3106 3107
};

3108 3109 3110 3111 3112 3113
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
3114
static void efx_probe_vpd_strings(struct efx_nic *efx)
3115 3116 3117 3118
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
3119
	int ro_start, ro_size, i, j;
3120 3121 3122 3123 3124 3125 3126 3127 3128

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
3129 3130
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
3131 3132 3133 3134
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

3135 3136 3137
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3178 3179 3180
}


3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

3193
	efx_init_napi(efx);
3194

3195
	rc = efx->type->init(efx);
3196
	if (rc) {
3197 3198
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
3199
		goto fail3;
3200 3201 3202 3203
	}

	rc = efx_init_port(efx);
	if (rc) {
3204 3205
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
3206
		goto fail4;
3207 3208
	}

3209
	rc = efx_nic_init_interrupt(efx);
3210
	if (rc)
3211
		goto fail5;
3212 3213 3214
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3215 3216 3217

	return 0;

3218 3219
 fail6:
	efx_nic_fini_interrupt(efx);
3220
 fail5:
3221 3222
	efx_fini_port(efx);
 fail4:
3223
	efx->type->fini(efx);
3224 3225 3226 3227 3228 3229 3230
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
static int efx_pci_probe_post_io(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc = efx_pci_probe_main(efx);

	if (rc)
		return rc;

	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}

	/* Determine netdevice features */
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
E
Edward Cree 已提交
3248
			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
		net_dev->features |= NETIF_F_TSO6;
	/* Check whether device supports TSO */
	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
		net_dev->features &= ~NETIF_F_ALL_TSO;
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);

E
Edward Cree 已提交
3259 3260 3261 3262
	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;

	/* Disable receiving frames with bad FCS, by default. */
	net_dev->features &= ~NETIF_F_RXALL;
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	/* Disable VLAN filtering by default.  It may be enforced if
	 * the feature is fixed (i.e. VLAN filters are required to
	 * receive VLAN tagged packets due to vPort restrictions).
	 */
	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	net_dev->features |= efx->fixed_features;

	rc = efx_register_netdev(efx);
	if (!rc)
		return 0;

	efx_pci_remove_main(efx);
	return rc;
}

3279 3280 3281
/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3282
 * theoretically).  It sets up PCI mappings, resets the NIC,
3283 3284 3285 3286 3287
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3288
static int efx_pci_probe(struct pci_dev *pci_dev,
3289
			 const struct pci_device_id *entry)
3290 3291 3292
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3293
	int rc;
3294 3295

	/* Allocate and initialise a struct net_device and struct efx_nic */
3296 3297
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3298 3299
	if (!net_dev)
		return -ENOMEM;
3300 3301
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
3302
	efx->fixed_features |= NETIF_F_HIGHDMA;
3303

3304
	pci_set_drvdata(pci_dev, efx);
3305
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3306
	rc = efx_init_struct(efx, pci_dev, net_dev);
3307 3308 3309
	if (rc)
		goto fail1;

3310
	netif_info(efx, probe, efx->net_dev,
3311
		   "Solarflare NIC detected\n");
3312

3313 3314
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3315

3316 3317 3318 3319 3320
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	rc = efx_pci_probe_post_io(efx);
	if (rc) {
		/* On failure, retry once immediately.
		 * If we aborted probe due to a scheduled reset, dismiss it.
		 */
		efx->reset_pending = 0;
		rc = efx_pci_probe_post_io(efx);
		if (rc) {
			/* On another failure, retry once more
			 * after a 50-305ms delay.
			 */
			unsigned char r;

			get_random_bytes(&r, 1);
			msleep((unsigned int)r + 50);
			efx->reset_pending = 0;
			rc = efx_pci_probe_post_io(efx);
		}
	}
3340 3341
	if (rc)
		goto fail3;
3342

3343
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3344

3345
	/* Try to create MTDs, but allow this to fail */
3346
	rtnl_lock();
3347
	rc = efx_mtd_probe(efx);
3348
	rtnl_unlock();
3349
	if (rc && rc != -EPERM)
3350 3351 3352
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3353 3354
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
3355 3356 3357
		netif_notice(efx, probe, efx->net_dev,
			     "PCIE error reporting unavailable (%d).\n",
			     rc);
3358

3359 3360 3361
	if (efx->type->udp_tnl_push_ports)
		efx->type->udp_tnl_push_ports(efx);

3362 3363 3364 3365 3366 3367 3368
	return 0;

 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3369
	WARN_ON(rc > 0);
3370
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3371 3372 3373 3374
	free_netdev(net_dev);
	return rc;
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3395 3396 3397 3398
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3399 3400
	rtnl_lock();

3401 3402
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3403

3404
		efx_device_detach_sync(efx);
3405

3406
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3407
		efx_disable_interrupts(efx);
3408
	}
3409

3410 3411
	rtnl_unlock();

3412 3413 3414 3415 3416
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3417
	int rc;
3418 3419
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3420 3421
	rtnl_lock();

3422
	if (efx->state != STATE_DISABLED) {
3423 3424 3425
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3426

3427 3428 3429
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3430

3431
		efx_start_all(efx);
3432

3433
		efx_device_attach_if_not_resetting(efx);
3434

3435
		efx->state = STATE_READY;
3436

3437 3438
		efx->type->resume_wol(efx);
	}
3439

3440 3441
	rtnl_unlock();

3442 3443 3444
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3445
	return 0;
3446 3447 3448 3449 3450

fail:
	rtnl_unlock();

	return rc;
3451 3452 3453 3454 3455 3456 3457 3458 3459
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3460
	efx->reset_pending = 0;
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3487 3488
	rc = efx_pm_thaw(dev);
	return rc;
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3502
static const struct dev_pm_ops efx_pm_ops = {
3503 3504 3505 3506 3507 3508 3509 3510
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3511 3512 3513 3514
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3515 3516
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3533
		efx_disable_interrupts(efx);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3550
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3551
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
3604
static const struct pci_error_handlers efx_err_handlers = {
3605 3606 3607 3608 3609
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3610
static struct pci_driver efx_pci_driver = {
3611
	.name		= KBUILD_MODNAME,
3612 3613 3614
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3615
	.driver.pm	= &efx_pm_ops,
3616
	.err_handler	= &efx_err_handlers,
3617 3618 3619
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3642
#ifdef CONFIG_SFC_SRIOV
3643 3644 3645
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3646
#endif
3647

3648 3649 3650 3651 3652
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3653 3654 3655 3656 3657 3658 3659 3660

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3661 3662
	destroy_workqueue(reset_workqueue);
 err_reset:
3663
#ifdef CONFIG_SFC_SRIOV
3664 3665
	efx_fini_sriov();
 err_sriov:
3666
#endif
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3677
	destroy_workqueue(reset_workqueue);
3678
#ifdef CONFIG_SFC_SRIOV
3679
	efx_fini_sriov();
3680
#endif
3681 3682 3683 3684 3685 3686 3687
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3688 3689
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3690
MODULE_DESCRIPTION("Solarflare network driver");
3691 3692
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);
3693
MODULE_VERSION(EFX_DRIVER_VERSION);