efx.c 91.3 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118 119
bool efx_separate_tx_channels;
module_param(efx_separate_tx_channels, bool, 0444);
MODULE_PARM_DESC(efx_separate_tx_channels,
120
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	struct efx_tx_queue *tx_queue;
248
	int spent;
249

250
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
251
		return 0;
252

253 254 255 256 257
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		tx_queue->pkts_compl = 0;
		tx_queue->bytes_compl = 0;
	}

258
	spent = efx_nic_process_eventq(channel, budget);
259 260 261 262
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

263
		efx_rx_flush_packet(channel);
264
		efx_fast_push_rx_descriptors(rx_queue, true);
265 266
	}

267 268 269 270 271 272 273 274
	/* Update BQL */
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		if (tx_queue->bytes_compl) {
			netdev_tx_completed_queue(tx_queue->core_txq,
				tx_queue->pkts_compl, tx_queue->bytes_compl);
		}
	}

275
	return spent;
276 277 278 279 280 281 282
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
{
	int step = efx->irq_mod_step_us;

	if (channel->irq_mod_score < irq_adapt_low_thresh) {
		if (channel->irq_moderation_us > step) {
			channel->irq_moderation_us -= step;
			efx->type->push_irq_moderation(channel);
		}
	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
		if (channel->irq_moderation_us <
		    efx->irq_rx_moderation_us) {
			channel->irq_moderation_us += step;
			efx->type->push_irq_moderation(channel);
		}
	}

	channel->irq_count = 0;
	channel->irq_mod_score = 0;
}

304 305 306 307
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
308
	struct efx_nic *efx = channel->efx;
309
	int spent;
310

311 312 313
	if (!efx_channel_lock_napi(channel))
		return budget;

314 315 316
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
317

318
	spent = efx_process_channel(channel, budget);
319

320
	if (spent < budget) {
321
		if (efx_channel_has_rx_queue(channel) &&
322 323
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
324
			efx_update_irq_mod(efx, channel);
325 326
		}

327 328
		efx_filter_rfs_expire(channel);

329
		/* There is no race here; although napi_disable() will
330
		 * only wait for napi_complete(), this isn't a problem
331
		 * since efx_nic_eventq_read_ack() will have no effect if
332 333
		 * interrupts have already been disabled.
		 */
334
		napi_complete(napi);
335
		efx_nic_eventq_read_ack(channel);
336 337
	}

338
	efx_channel_unlock_napi(channel);
339
	return spent;
340 341 342 343 344 345 346 347 348
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
349 350 351
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

352
	netif_dbg(efx, probe, efx->net_dev,
353
		  "chan %d create event queue\n", channel->channel);
354

355 356 357
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
358
	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
359 360
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

361
	return efx_nic_probe_eventq(channel);
362 363 364
}

/* Prepare channel's event queue */
365
static int efx_init_eventq(struct efx_channel *channel)
366
{
367
	struct efx_nic *efx = channel->efx;
368 369 370 371
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

372
	netif_dbg(efx, drv, efx->net_dev,
373
		  "chan %d init event queue\n", channel->channel);
374

375 376
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
377
		efx->type->push_irq_moderation(channel);
378 379 380 381
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
382 383
}

384
/* Enable event queue processing and NAPI */
385
void efx_start_eventq(struct efx_channel *channel)
386 387 388 389
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

390
	/* Make sure the NAPI handler sees the enabled flag set */
391 392 393
	channel->enabled = true;
	smp_wmb();

394
	efx_channel_enable(channel);
395 396 397 398 399
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
400
void efx_stop_eventq(struct efx_channel *channel)
401 402 403 404 405
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
406 407
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
408 409 410
	channel->enabled = false;
}

411 412
static void efx_fini_eventq(struct efx_channel *channel)
{
413 414 415
	if (!channel->eventq_init)
		return;

416 417
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
418

419
	efx_nic_fini_eventq(channel);
420
	channel->eventq_init = false;
421 422 423 424
}

static void efx_remove_eventq(struct efx_channel *channel)
{
425 426
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
427

428
	efx_nic_remove_eventq(channel);
429 430 431 432 433 434 435 436
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

437
/* Allocate and initialise a channel structure. */
438 439 440 441 442 443 444 445
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

446 447 448
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
449

450 451 452
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
453

454 455 456 457 458 459
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
460

461 462 463 464
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
465

466 467 468 469 470 471 472 473 474 475 476 477 478
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
479

480 481 482 483 484 485 486
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
487 488 489
	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
	channel->napi_str.napi_id = 0;
	channel->napi_str.state = 0;
490
	memset(&channel->eventq, 0, sizeof(channel->eventq));
491

492 493 494
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
495
			tx_queue->channel = channel;
496 497
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
498 499 500
	}

	rx_queue = &channel->rx_queue;
501 502
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
503 504 505 506 507 508
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

509 510 511 512 513 514
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

515 516
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
517

518 519 520 521
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

522 523
	rc = efx_probe_eventq(channel);
	if (rc)
524
		goto fail;
525 526 527 528

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
529
			goto fail;
530 531 532 533 534
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
535
			goto fail;
536 537 538 539
	}

	return 0;

540 541
fail:
	efx_remove_channel(channel);
542 543 544
	return rc;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
563

564 565 566 567
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

568 569
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
570 571
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
572 573
}

574 575 576 577 578 579 580 581
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

582 583 584 585 586 587
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

605 606 607 608
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
609
static void efx_start_datapath(struct efx_nic *efx)
610
{
611
	netdev_features_t old_features = efx->net_dev->features;
612
	bool old_rx_scatter = efx->rx_scatter;
613 614 615
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
616
	size_t rx_buf_len;
617

618 619 620 621
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
622
	efx->rx_dma_len = (efx->rx_prefix_size +
623 624
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
625
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
626
		      efx->rx_ip_align + efx->rx_dma_len);
627
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
628
		efx->rx_scatter = efx->type->always_rx_scatter;
629 630
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
631
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
632
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
633 634 635
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
636 637 638 639 640 641 642 643
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

644 645 646 647 648 649 650 651 652 653 654
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
655

656 657 658 659 660 661 662 663 664
	/* Restore previously fixed features in hw_features and remove
	 * features which are fixed now
	 */
	efx->net_dev->hw_features |= efx->net_dev->features;
	efx->net_dev->hw_features &= ~efx->fixed_features;
	efx->net_dev->features |= efx->fixed_features;
	if (efx->net_dev->features != old_features)
		netdev_features_change(efx->net_dev);

J
Jon Cooper 已提交
665
	/* RX filters may also have scatter-enabled flags */
666
	if (efx->rx_scatter != old_rx_scatter)
667
		efx->type->filter_update_rx_scatter(efx);
668

669 670 671 672 673 674 675 676 677 678
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

679 680
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
681
		efx_for_each_channel_tx_queue(tx_queue, channel) {
682
			efx_init_tx_queue(tx_queue);
683 684
			atomic_inc(&efx->active_queues);
		}
685

686
		efx_for_each_channel_rx_queue(rx_queue, channel) {
687
			efx_init_rx_queue(rx_queue);
688
			atomic_inc(&efx->active_queues);
689 690 691
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
692
		}
693

694
		WARN_ON(channel->rx_pkt_n_frags);
695 696
	}

697 698
	efx_ptp_start_datapath(efx);

699 700
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
701 702
}

703
static void efx_stop_datapath(struct efx_nic *efx)
704 705 706 707
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
708
	int rc;
709 710 711 712

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

713 714
	efx_ptp_stop_datapath(efx);

715 716 717 718 719 720
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

721
	efx_for_each_channel(channel, efx) {
722 723 724 725 726 727 728 729 730 731
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
732
	}
733

734
	rc = efx->type->fini_dmaq(efx);
735
	if (rc) {
736 737 738 739 740 741 742
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
743 744
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
745
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
746 747 748 749 750 751 752 753 754
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

755 756
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
757 758 759

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
760
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
761 762
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
763
	channel->type->post_remove(channel);
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
779
	unsigned i, next_buffer_table = 0;
780
	int rc, rc2;
781 782 783 784

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
807

808
	efx_device_detach_sync(efx);
809
	efx_stop_all(efx);
B
Ben Hutchings 已提交
810
	efx_soft_disable_interrupts(efx);
811

812
	/* Clone channels (where possible) */
813 814
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
815 816 817
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

836 837
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
838 839

	for (i = 0; i < efx->n_channels; i++) {
840 841 842 843 844 845 846
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
847
	}
848

849
out:
850 851 852 853 854 855 856 857 858
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
859

860 861 862 863 864 865 866 867 868 869
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
870 871 872 873 874 875 876 877 878 879 880 881 882 883
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

884
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
885
{
886
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
887 888
}

889 890
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
891
	.post_remove		= efx_channel_dummy_op_void,
892 893 894 895 896 897 898 899 900 901
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

902 903 904 905
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

906 907 908 909 910 911 912 913 914 915
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
916
void efx_link_status_changed(struct efx_nic *efx)
917
{
918 919
	struct efx_link_state *link_state = &efx->link_state;

920 921 922 923 924 925 926
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

927
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
928 929
		efx->n_link_state_changes++;

930
		if (link_state->up)
931 932 933 934 935 936
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
937
	if (link_state->up)
938
		netif_info(efx, link, efx->net_dev,
939
			   "link up at %uMbps %s-duplex (MTU %d)\n",
940
			   link_state->speed, link_state->fd ? "full" : "half",
941
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
942
	else
943
		netif_info(efx, link, efx->net_dev, "link down\n");
944 945
}

B
Ben Hutchings 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

959
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

974 975
static void efx_fini_port(struct efx_nic *efx);

976 977 978 979 980 981 982 983 984 985
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
986 987 988 989 990 991 992 993
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
994
{
B
Ben Hutchings 已提交
995 996
	enum efx_phy_mode phy_mode;
	int rc;
997

B
Ben Hutchings 已提交
998
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
999

B
Ben Hutchings 已提交
1000 1001
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
1002 1003 1004 1005 1006
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
1007
	rc = efx->type->reconfigure_port(efx);
1008

B
Ben Hutchings 已提交
1009 1010
	if (rc)
		efx->phy_mode = phy_mode;
1011

B
Ben Hutchings 已提交
1012
	return rc;
1013 1014 1015 1016
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1017
int efx_reconfigure_port(struct efx_nic *efx)
1018
{
B
Ben Hutchings 已提交
1019 1020
	int rc;

1021 1022 1023
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1024
	rc = __efx_reconfigure_port(efx);
1025
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1026 1027

	return rc;
1028 1029
}

1030 1031 1032
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1033 1034 1035 1036 1037
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1038
	if (efx->port_enabled)
1039
		efx_mac_reconfigure(efx);
1040 1041 1042
	mutex_unlock(&efx->mac_lock);
}

1043 1044 1045 1046
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1047
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1048

1049 1050 1051
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1052 1053
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1054
	if (rc)
1055
		return rc;
1056

1057
	/* Initialise MAC address to permanent address */
1058
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1059 1060 1061 1062 1063 1064 1065 1066

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1067
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1068

1069 1070
	mutex_lock(&efx->mac_lock);

1071
	rc = efx->phy_op->init(efx);
1072
	if (rc)
1073
		goto fail1;
1074

1075
	efx->port_initialized = true;
1076

B
Ben Hutchings 已提交
1077 1078
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1079
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1080 1081 1082

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1083
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1084 1085
		goto fail2;

1086
	mutex_unlock(&efx->mac_lock);
1087
	return 0;
1088

1089
fail2:
1090
	efx->phy_op->fini(efx);
1091 1092
fail1:
	mutex_unlock(&efx->mac_lock);
1093
	return rc;
1094 1095 1096 1097
}

static void efx_start_port(struct efx_nic *efx)
{
1098
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1099 1100 1101
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1102
	efx->port_enabled = true;
1103

1104
	/* Ensure MAC ingress/egress is enabled */
1105
	efx_mac_reconfigure(efx);
1106

1107 1108 1109
	mutex_unlock(&efx->mac_lock);
}

1110 1111 1112 1113 1114
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1115 1116
static void efx_stop_port(struct efx_nic *efx)
{
1117
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1118

1119 1120
	EFX_ASSERT_RESET_SERIALISED(efx);

1121
	mutex_lock(&efx->mac_lock);
1122
	efx->port_enabled = false;
1123 1124 1125
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1126 1127
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1128 1129 1130 1131

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1132 1133 1134 1135
}

static void efx_fini_port(struct efx_nic *efx)
{
1136
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1137 1138 1139 1140

	if (!efx->port_initialized)
		return;

1141
	efx->phy_op->fini(efx);
1142
	efx->port_initialized = false;
1143

1144
	efx->link_state.up = false;
1145 1146 1147 1148 1149
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1150
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1151

1152
	efx->type->remove_port(efx);
1153 1154 1155 1156 1157 1158 1159 1160
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1232 1233 1234 1235 1236
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1237
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1238
	int rc, bar;
1239

1240
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1241

1242 1243
	bar = efx->type->mem_bar;

1244 1245
	rc = pci_enable_device(pci_dev);
	if (rc) {
1246 1247
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
C
Christoph Hellwig 已提交
1259 1260 1261
		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
		if (rc == 0)
			break;
1262 1263 1264
		dma_mask >>= 1;
	}
	if (rc) {
1265 1266
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1267 1268
		goto fail2;
	}
1269 1270
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1271

1272 1273
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1274
	if (rc) {
1275 1276
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1277 1278 1279
		rc = -EIO;
		goto fail3;
	}
1280
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1281
	if (!efx->membase) {
1282 1283
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1284
			  (unsigned long long)efx->membase_phys, mem_map_size);
1285 1286 1287
		rc = -ENOMEM;
		goto fail4;
	}
1288 1289
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1290 1291
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1292 1293 1294 1295

	return 0;

 fail4:
1296
	pci_release_region(efx->pci_dev, bar);
1297
 fail3:
1298
	efx->membase_phys = 0;
1299 1300 1301 1302 1303 1304 1305 1306
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1307 1308
	int bar;

1309
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1310 1311 1312 1313 1314 1315 1316

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1317 1318
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1319
		efx->membase_phys = 0;
1320 1321
	}

1322 1323 1324
	/* Don't disable bus-mastering if VFs are assigned */
	if (!pci_vfs_assigned(efx->pci_dev))
		pci_disable_device(efx->pci_dev);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1334 1335
}

1336
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1337
{
1338
	cpumask_var_t thread_mask;
1339
	unsigned int count;
1340
	int cpu;
1341

1342 1343 1344 1345 1346 1347 1348 1349
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1350

1351 1352 1353 1354 1355
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
1356
					   topology_sibling_cpumask(cpu));
1357 1358 1359 1360
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1361 1362
	}

1363 1364 1365
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1377
	}
1378
#endif
1379 1380 1381 1382 1383 1384 1385

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1386
static int efx_probe_interrupts(struct efx_nic *efx)
1387
{
1388 1389
	unsigned int extra_channels = 0;
	unsigned int i, j;
1390
	int rc;
1391

1392 1393 1394 1395
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1396
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1397
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1398
		unsigned int n_channels;
1399

1400
		n_channels = efx_wanted_parallelism(efx);
1401
		if (efx_separate_tx_channels)
B
Ben Hutchings 已提交
1402
			n_channels *= 2;
1403
		n_channels += extra_channels;
1404
		n_channels = min(n_channels, efx->max_channels);
1405

B
Ben Hutchings 已提交
1406
		for (i = 0; i < n_channels; i++)
1407
			xentries[i].entry = i;
1408 1409 1410 1411 1412 1413 1414 1415
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1416 1417
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1418
				  " available (%d < %u).\n", rc, n_channels);
1419 1420
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1421
			n_channels = rc;
1422 1423
		}

1424
		if (rc > 0) {
B
Ben Hutchings 已提交
1425
			efx->n_channels = n_channels;
1426 1427
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
1428 1429 1430 1431
			if (efx_separate_tx_channels) {
				efx->n_tx_channels = min(max(n_channels / 2,
							     1U),
							 efx->max_tx_channels);
1432 1433 1434
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1435
			} else {
1436 1437
				efx->n_tx_channels = min(n_channels,
							 efx->max_tx_channels);
1438
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1439
			}
1440
			for (i = 0; i < efx->n_channels; i++)
1441 1442
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1443 1444 1445 1446 1447
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1448
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1449 1450
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1451 1452
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1453
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1454
		} else {
1455 1456
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1457 1458 1459 1460 1461 1462
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1463
		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1464 1465
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1466 1467
		efx->legacy_irq = efx->pci_dev->irq;
	}
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1484
	/* RSS might be usable on VFs even if it is disabled on the PF */
1485 1486 1487 1488 1489 1490 1491 1492 1493
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1494

1495
	return 0;
1496 1497
}

1498
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1499
{
1500 1501
	struct efx_channel *channel, *end_channel;
	int rc;
1502

1503 1504
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1505 1506
	efx->irq_soft_enabled = true;
	smp_wmb();
1507 1508

	efx_for_each_channel(channel, efx) {
1509 1510 1511 1512 1513
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1514 1515 1516 1517
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1531 1532
}

B
Ben Hutchings 已提交
1533
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1534 1535 1536
{
	struct efx_channel *channel;

1537 1538 1539
	if (efx->state == STATE_DISABLED)
		return;

1540 1541
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1542 1543 1544 1545
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1546 1547 1548 1549 1550 1551 1552
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1553
		if (!channel->type->keep_eventq)
1554
			efx_fini_eventq(channel);
1555
	}
1556 1557 1558

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1559 1560
}

1561
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1562
{
1563 1564
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1565 1566 1567 1568 1569 1570 1571 1572

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1573
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1574 1575

	efx_for_each_channel(channel, efx) {
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1594
		if (channel->type->keep_eventq)
1595
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1596 1597
	}

1598 1599 1600
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1614
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1615 1616
}

1617 1618 1619 1620 1621
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1622
	efx_for_each_channel(channel, efx)
1623 1624 1625 1626 1627 1628 1629 1630
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1631
static void efx_set_channels(struct efx_nic *efx)
1632
{
1633 1634 1635
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1636
	efx->tx_channel_offset =
1637 1638
		efx_separate_tx_channels ?
		efx->n_channels - efx->n_tx_channels : 0;
1639

1640 1641
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1642 1643 1644
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1645 1646 1647 1648 1649
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1650 1651 1652 1653
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1654 1655 1656 1657 1658 1659
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1660
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1661 1662

	/* Carry out hardware-type specific initialisation */
1663
	rc = efx->type->probe(efx);
1664 1665 1666
	if (rc)
		return rc;

1667 1668 1669 1670 1671 1672 1673 1674
	do {
		if (!efx->max_channels || !efx->max_tx_channels) {
			netif_err(efx, drv, efx->net_dev,
				  "Insufficient resources to allocate"
				  " any channels\n");
			rc = -ENOSPC;
			goto fail1;
		}
1675

1676 1677 1678 1679 1680 1681
		/* Determine the number of channels and queues by trying
		 * to hook in MSI-X interrupts.
		 */
		rc = efx_probe_interrupts(efx);
		if (rc)
			goto fail1;
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		efx_set_channels(efx);

		/* dimension_resources can fail with EAGAIN */
		rc = efx->type->dimension_resources(efx);
		if (rc != 0 && rc != -EAGAIN)
			goto fail2;

		if (rc == -EAGAIN)
			/* try again with new max_channels */
			efx_remove_interrupts(efx);

	} while (rc == -EAGAIN);
1695

1696
	if (efx->n_channels > 1)
1697 1698 1699
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1700

1701 1702
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1703 1704

	/* Initialise the interrupt moderation settings */
1705
	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1706 1707
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1708 1709

	return 0;
1710

1711 1712 1713
fail2:
	efx_remove_interrupts(efx);
fail1:
1714 1715
	efx->type->remove(efx);
	return rc;
1716 1717 1718 1719
}

static void efx_remove_nic(struct efx_nic *efx)
{
1720
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1721 1722

	efx_remove_interrupts(efx);
1723
	efx->type->remove(efx);
1724 1725
}

1726 1727 1728 1729 1730
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1731
	init_rwsem(&efx->filter_sem);
1732
	mutex_lock(&efx->mac_lock);
1733
	down_write(&efx->filter_sem);
1734 1735
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1736
		goto out_unlock;
1737 1738 1739

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		struct efx_channel *channel;
		int i, success = 1;

		efx_for_each_channel(channel, efx) {
			channel->rps_flow_id =
				kcalloc(efx->type->max_rx_ip_filters,
					sizeof(*channel->rps_flow_id),
					GFP_KERNEL);
			if (!channel->rps_flow_id)
				success = 0;
			else
				for (i = 0;
				     i < efx->type->max_rx_ip_filters;
				     ++i)
					channel->rps_flow_id[i] =
						RPS_FLOW_ID_INVALID;
		}

		if (!success) {
			efx_for_each_channel(channel, efx)
				kfree(channel->rps_flow_id);
1761
			efx->type->filter_table_remove(efx);
1762 1763
			rc = -ENOMEM;
			goto out_unlock;
1764
		}
1765 1766

		efx->rps_expire_index = efx->rps_expire_channel = 0;
1767 1768
	}
#endif
1769 1770
out_unlock:
	up_write(&efx->filter_sem);
1771
	mutex_unlock(&efx->mac_lock);
1772
	return rc;
1773 1774 1775 1776 1777
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
1778 1779 1780 1781
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		kfree(channel->rps_flow_id);
1782
#endif
1783
	down_write(&efx->filter_sem);
1784
	efx->type->filter_table_remove(efx);
1785
	up_write(&efx->filter_sem);
1786 1787 1788 1789
}

static void efx_restore_filters(struct efx_nic *efx)
{
1790
	down_read(&efx->filter_sem);
1791
	efx->type->filter_table_restore(efx);
1792
	up_read(&efx->filter_sem);
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1807
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1808 1809 1810 1811 1812
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1813
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1814 1815 1816
		goto fail2;
	}

1817 1818 1819 1820 1821
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1822
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1823

1824 1825 1826 1827 1828 1829 1830 1831
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1832 1833 1834 1835
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1836
		goto fail4;
B
Ben Hutchings 已提交
1837 1838
	}

1839 1840
	rc = efx_probe_channels(efx);
	if (rc)
1841
		goto fail5;
1842

1843 1844
	return 0;

1845
 fail5:
1846
	efx_remove_filters(efx);
1847 1848 1849 1850
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1851 1852 1853 1854 1855 1856 1857 1858
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1859 1860 1861 1862 1863 1864
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1865
 */
1866 1867 1868
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1869
	BUG_ON(efx->state == STATE_DISABLED);
1870 1871 1872

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1873 1874
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1875 1876 1877
		return;

	efx_start_port(efx);
1878
	efx_start_datapath(efx);
1879

1880 1881
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1882 1883
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1884

1885
	/* Link state detection is normally event-driven; we have
1886 1887
	 * to poll now because we could have missed a change
	 */
1888 1889 1890 1891
	mutex_lock(&efx->mac_lock);
	if (efx->phy_op->poll(efx))
		efx_link_status_changed(efx);
	mutex_unlock(&efx->mac_lock);
1892

1893
	efx->type->start_stats(efx);
1894 1895 1896 1897
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1898 1899
}

1900 1901 1902 1903 1904
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1905 1906 1907 1908 1909 1910 1911 1912
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1913 1914 1915 1916 1917 1918 1919
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1920
	efx->type->stop_stats(efx);
1921 1922
	efx_stop_port(efx);

1923 1924 1925 1926 1927 1928
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1929 1930 1931
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1932 1933 1934 1935
}

static void efx_remove_all(struct efx_nic *efx)
{
1936
	efx_remove_channels(efx);
1937
	efx_remove_filters(efx);
1938 1939 1940
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1941 1942 1943 1944 1945 1946 1947 1948 1949
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/
1950
unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1951
{
1952 1953
	if (usecs == 0)
		return 0;
1954
	if (usecs * 1000 < efx->timer_quantum_ns)
1955
		return 1; /* never round down to 0 */
1956 1957 1958 1959 1960 1961 1962 1963 1964
	return usecs * 1000 / efx->timer_quantum_ns;
}

unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
{
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */
	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1965 1966
}

1967
/* Set interrupt moderation parameters */
1968 1969 1970
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1971
{
1972
	struct efx_channel *channel;
1973 1974
	unsigned int timer_max_us;

1975 1976
	EFX_ASSERT_RESET_SERIALISED(efx);

1977 1978 1979
	timer_max_us = efx->timer_max_ns / 1000;

	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1980 1981
		return -EINVAL;

1982
	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1983 1984 1985 1986 1987 1988
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1989
	efx->irq_rx_adaptive = rx_adaptive;
1990
	efx->irq_rx_moderation_us = rx_usecs;
1991
	efx_for_each_channel(channel, efx) {
1992
		if (efx_channel_has_rx_queue(channel))
1993
			channel->irq_moderation_us = rx_usecs;
1994
		else if (efx_channel_has_tx_queues(channel))
1995
			channel->irq_moderation_us = tx_usecs;
1996
	}
1997 1998

	return 0;
1999 2000
}

2001 2002 2003 2004
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
	*rx_adaptive = efx->irq_rx_adaptive;
2005
	*rx_usecs = efx->irq_rx_moderation_us;
2006 2007 2008 2009 2010

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
2011
	if (efx->tx_channel_offset == 0) {
2012
		*tx_usecs = *rx_usecs;
2013 2014 2015 2016 2017 2018
	} else {
		struct efx_channel *tx_channel;

		tx_channel = efx->channel[efx->tx_channel_offset];
		*tx_usecs = tx_channel->irq_moderation_us;
	}
2019 2020
}

2021 2022 2023 2024 2025 2026
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

2027
/* Run periodically off the general workqueue */
2028 2029 2030 2031 2032
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

2033 2034 2035
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
2036
	BUG_ON(efx->type->monitor == NULL);
2037 2038 2039

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
2040 2041 2042 2043 2044 2045
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
2062
	struct efx_nic *efx = netdev_priv(net_dev);
2063
	struct mii_ioctl_data *data = if_mii(ifr);
2064

2065
	if (cmd == SIOCSHWTSTAMP)
2066 2067 2068
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2069

2070 2071 2072 2073 2074 2075
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2076 2077 2078 2079 2080 2081 2082 2083
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2084 2085 2086 2087 2088 2089 2090
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2091
	efx_channel_busy_poll_init(channel);
2092 2093
}

2094
static void efx_init_napi(struct efx_nic *efx)
2095 2096 2097
{
	struct efx_channel *channel;

2098 2099
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2100 2101 2102 2103
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
E
Eric Dumazet 已提交
2104
	if (channel->napi_dev)
2105
		netif_napi_del(&channel->napi_str);
E
Eric Dumazet 已提交
2106

2107
	channel->napi_dev = NULL;
2108 2109 2110 2111 2112 2113
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2114 2115
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2132
	struct efx_nic *efx = netdev_priv(net_dev);
2133 2134
	struct efx_channel *channel;

2135
	efx_for_each_channel(channel, efx)
2136 2137 2138 2139 2140
		efx_schedule_channel(channel);
}

#endif

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

2153
	if (!efx_channel_try_lock_poll(channel))
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2172 2173 2174 2175 2176 2177 2178
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
2179
int efx_net_open(struct net_device *net_dev)
2180
{
2181
	struct efx_nic *efx = netdev_priv(net_dev);
2182 2183
	int rc;

2184 2185
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2186

2187 2188 2189
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2190 2191
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2192 2193
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2194

2195 2196 2197 2198
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2199
	efx_start_all(efx);
2200
	efx_selftest_async_start(efx);
2201 2202 2203 2204 2205 2206 2207
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
2208
int efx_net_stop(struct net_device *net_dev)
2209
{
2210
	struct efx_nic *efx = netdev_priv(net_dev);
2211

2212 2213
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2214

2215 2216
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2217 2218 2219 2220

	return 0;
}

2221
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2222 2223
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2224
{
2225
	struct efx_nic *efx = netdev_priv(net_dev);
2226

2227
	spin_lock_bh(&efx->stats_lock);
2228
	efx->type->update_stats(efx, NULL, stats);
2229 2230
	spin_unlock_bh(&efx->stats_lock);

2231 2232 2233 2234 2235 2236
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2237
	struct efx_nic *efx = netdev_priv(net_dev);
2238

2239 2240 2241
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2242

2243
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2244 2245 2246 2247 2248 2249
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2250
	struct efx_nic *efx = netdev_priv(net_dev);
2251
	int rc;
2252

2253 2254 2255
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2256

2257
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2258

2259 2260 2261
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2262
	mutex_lock(&efx->mac_lock);
2263
	net_dev->mtu = new_mtu;
2264
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2265 2266
	mutex_unlock(&efx->mac_lock);

2267
	efx_start_all(efx);
2268
	netif_device_attach(efx->net_dev);
2269
	return 0;
2270 2271 2272 2273
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2274
	struct efx_nic *efx = netdev_priv(net_dev);
2275
	struct sockaddr *addr = data;
2276
	u8 *new_addr = addr->sa_data;
2277 2278
	u8 old_addr[6];
	int rc;
2279 2280

	if (!is_valid_ether_addr(new_addr)) {
2281 2282 2283
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2284
		return -EADDRNOTAVAIL;
2285 2286
	}

2287 2288
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2289
	ether_addr_copy(net_dev->dev_addr, new_addr);
2290 2291
	if (efx->type->set_mac_address) {
		rc = efx->type->set_mac_address(efx);
2292 2293 2294 2295 2296
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2297 2298

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2299
	mutex_lock(&efx->mac_lock);
2300
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2301
	mutex_unlock(&efx->mac_lock);
2302 2303 2304 2305

	return 0;
}

2306
/* Context: netif_addr_lock held, BHs disabled. */
2307
static void efx_set_rx_mode(struct net_device *net_dev)
2308
{
2309
	struct efx_nic *efx = netdev_priv(net_dev);
2310

2311 2312 2313
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2314 2315
}

2316
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2317 2318
{
	struct efx_nic *efx = netdev_priv(net_dev);
2319
	int rc;
2320 2321

	/* If disabling RX n-tuple filtering, clear existing filters */
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
		if (rc)
			return rc;
	}

	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
		/* efx_set_rx_mode() will schedule MAC work to update filters
		 * when a new features are finally set in net_dev.
		 */
		efx_set_rx_mode(net_dev);
	}
2335 2336 2337 2338

	return 0;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_add_vid)
		return efx->type->vlan_rx_add_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_kill_vid)
		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

2359
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2360 2361
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2362
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2363 2364 2365 2366 2367 2368
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2369
	.ndo_set_rx_mode	= efx_set_rx_mode,
2370
	.ndo_set_features	= efx_set_features,
2371 2372
	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
2373
#ifdef CONFIG_SFC_SRIOV
2374 2375 2376 2377
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2378
	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2379
	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2380
#endif
S
Stephen Hemminger 已提交
2381 2382 2383
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2384
	.ndo_setup_tc		= efx_setup_tc,
2385 2386 2387
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2388 2389 2390
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2391 2392
};

2393 2394 2395 2396 2397 2398 2399
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2400 2401 2402
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2403
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2404

2405
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2406 2407
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2408 2409 2410 2411 2412 2413 2414 2415

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2416 2417 2418 2419 2420 2421
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2422
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
#ifdef CONFIG_SFC_MCDI_LOGGING
static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
}
static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
			    const char *buf, size_t count)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	bool enable = count > 0 && *buf != '0';

	mcdi->logging_enabled = enable;
	return count;
}
static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
#endif

2446 2447 2448
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2449
	struct efx_channel *channel;
2450 2451 2452 2453
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2454 2455
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2456
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2457
	net_dev->ethtool_ops = &efx_ethtool_ops;
2458
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2459 2460
	net_dev->min_mtu = EFX_MIN_MTU;
	net_dev->max_mtu = EFX_MAX_MTU;
2461

2462
	rtnl_lock();
2463

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2477 2478 2479
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2480
	efx_update_name(efx);
2481

2482 2483 2484
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2485 2486 2487 2488
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2489 2490
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2491 2492
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2493 2494
	}

2495 2496
	efx_associate(efx);

2497
	rtnl_unlock();
2498

B
Ben Hutchings 已提交
2499 2500
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2501 2502
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2503 2504
		goto fail_registered;
	}
2505 2506 2507 2508 2509 2510 2511 2512
#ifdef CONFIG_SFC_MCDI_LOGGING
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
	if (rc) {
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
		goto fail_attr_mcdi_logging;
	}
#endif
B
Ben Hutchings 已提交
2513

2514
	return 0;
B
Ben Hutchings 已提交
2515

2516 2517 2518 2519
#ifdef CONFIG_SFC_MCDI_LOGGING
fail_attr_mcdi_logging:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
#endif
2520 2521
fail_registered:
	rtnl_lock();
2522
	efx_dissociate(efx);
2523
	unregister_netdevice(net_dev);
2524
fail_locked:
2525
	efx->state = STATE_UNINIT;
2526
	rtnl_unlock();
2527
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2528
	return rc;
2529 2530 2531 2532 2533 2534 2535
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2536
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2537

2538 2539 2540 2541 2542 2543 2544 2545
	if (efx_dev_registered(efx)) {
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
#ifdef CONFIG_SFC_MCDI_LOGGING
		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
#endif
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
		unregister_netdev(efx->net_dev);
	}
2546 2547 2548 2549 2550 2551 2552 2553
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2554 2555
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2556
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2557 2558 2559
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2560 2561 2562
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2563
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2564
	efx_disable_interrupts(efx);
2565 2566

	mutex_lock(&efx->mac_lock);
2567 2568
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH)
2569
		efx->phy_op->fini(efx);
2570
	efx->type->fini(efx);
2571 2572
}

B
Ben Hutchings 已提交
2573 2574 2575 2576 2577
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2578
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2579 2580 2581
{
	int rc;

B
Ben Hutchings 已提交
2582
	EFX_ASSERT_RESET_SERIALISED(efx);
2583

2584 2585 2586 2587
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2588
	rc = efx->type->init(efx);
2589
	if (rc) {
2590
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2591
		goto fail;
2592 2593
	}

2594 2595 2596
	if (!ok)
		goto fail;

2597 2598
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH) {
2599 2600 2601
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2602 2603
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2604 2605
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2606 2607
	}

2608 2609 2610
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2611 2612 2613 2614 2615 2616 2617 2618 2619

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2620
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2621
	efx_restore_filters(efx);
2622
	up_read(&efx->filter_sem);
2623 2624
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2625 2626 2627 2628 2629 2630 2631 2632 2633

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2634 2635 2636

	mutex_unlock(&efx->mac_lock);

2637 2638 2639
	return rc;
}

2640 2641
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2642
 *
2643
 * Caller must hold the rtnl_lock.
2644
 */
2645
int efx_reset(struct efx_nic *efx, enum reset_type method)
2646
{
2647 2648
	int rc, rc2;
	bool disabled;
2649

2650 2651
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2652

2653
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2654
	efx_reset_down(efx, method);
2655

2656
	rc = efx->type->reset(efx, method);
2657
	if (rc) {
2658
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2659
		goto out;
2660 2661
	}

2662 2663 2664
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2665 2666 2667 2668
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2669 2670 2671 2672 2673 2674 2675

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2676
out:
2677
	/* Leave device stopped if necessary */
2678 2679 2680
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2681 2682 2683 2684 2685
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2686 2687
	}

2688
	if (disabled) {
2689
		dev_close(efx->net_dev);
2690
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2691 2692
		efx->state = STATE_DISABLED;
	} else {
2693
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2694
		netif_device_attach(efx->net_dev);
2695
	}
2696 2697 2698
	return rc;
}

2699 2700 2701 2702 2703
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2704
int efx_try_recovery(struct efx_nic *efx)
2705 2706 2707 2708 2709 2710 2711
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2712
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2741 2742 2743 2744 2745
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2746
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2747 2748 2749 2750 2751 2752
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2753 2754 2755
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2756 2757 2758 2759
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2760

2761
	if (!pending)
2762 2763
		return;

2764
	rtnl_lock();
2765 2766 2767 2768 2769 2770

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2771
		(void)efx_reset(efx, method);
2772

2773
	rtnl_unlock();
2774 2775 2776 2777 2778 2779
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2780 2781 2782 2783 2784 2785 2786
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2787 2788 2789
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2790
	case RESET_TYPE_RECOVER_OR_ALL:
2791 2792
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2793
	case RESET_TYPE_RECOVER_OR_DISABLE:
2794
	case RESET_TYPE_DATAPATH:
2795
	case RESET_TYPE_MC_BIST:
2796
	case RESET_TYPE_MCDI_TIMEOUT:
2797
		method = type;
2798 2799
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2800 2801
		break;
	default:
2802
		method = efx->type->map_reset_reason(type);
2803 2804 2805
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2806 2807
		break;
	}
2808

2809
	set_bit(method, &efx->reset_pending);
2810 2811 2812 2813 2814 2815 2816
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2817

2818 2819 2820 2821
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2822
	queue_work(reset_workqueue, &efx->reset_work);
2823 2824 2825 2826 2827 2828 2829 2830 2831
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2832
static const struct pci_device_id efx_pci_table[] = {
2833
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2834
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2835
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2836
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2837 2838
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2839 2840
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2841 2842
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2843 2844 2845 2846 2847 2848
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2849 2850 2851 2852 2853
	{0}			/* end of list */
};

/**************************************************************************
 *
2854
 * Dummy PHY/MAC operations
2855
 *
2856
 * Can be used for some unimplemented operations
2857 2858 2859 2860 2861 2862 2863 2864 2865
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2866 2867

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2868 2869 2870
{
	return false;
}
2871

2872
static const struct efx_phy_operations efx_dummy_phy_operations = {
2873
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2874
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2875
	.poll		 = efx_port_dummy_op_poll,
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2888
static int efx_init_struct(struct efx_nic *efx,
2889 2890
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2891
	int i;
2892 2893

	/* Initialise common structures */
2894 2895
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2896
	spin_lock_init(&efx->biu_lock);
2897 2898 2899
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2900 2901
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2902
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2903
	efx->pci_dev = pci_dev;
2904
	efx->msg_enable = debug;
2905
	efx->state = STATE_UNINIT;
2906 2907 2908
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2909
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2910 2911
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2912 2913
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2914 2915
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2916 2917 2918
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2919
	efx->mdio.dev = net_dev;
2920
	INIT_WORK(&efx->mac_work, efx_mac_work);
2921
	init_waitqueue_head(&efx->flush_wq);
2922 2923

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2924 2925 2926
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2927 2928
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2929 2930 2931 2932 2933 2934
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2935 2936 2937 2938
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2939
	if (!efx->workqueue)
2940
		goto fail;
2941

2942
	return 0;
2943 2944 2945 2946

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2947 2948 2949 2950
}

static void efx_fini_struct(struct efx_nic *efx)
{
2951 2952 2953 2954 2955
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2956 2957
	kfree(efx->vpd_sn);

2958 2959 2960 2961 2962 2963
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2986 2987 2988 2989 2990 2991
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2992
	efx_disable_interrupts(efx);
2993
	efx_nic_fini_interrupt(efx);
2994
	efx_fini_port(efx);
2995
	efx->type->fini(efx);
2996 2997 2998 2999 3000
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
3001 3002
 * This is called only at module unload (or hotplug removal).  A PF can call
 * this on its VFs to ensure they are unbound first.
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
3014
	efx_dissociate(efx);
3015
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
3016
	efx_disable_interrupts(efx);
3017
	efx->state = STATE_UNINIT;
3018 3019
	rtnl_unlock();

3020 3021 3022
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

3023 3024
	efx_unregister_netdev(efx);

3025 3026
	efx_mtd_remove(efx);

3027 3028 3029
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
3030
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3031 3032 3033

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
3034 3035

	pci_disable_pcie_error_reporting(pci_dev);
3036 3037
};

3038 3039 3040 3041 3042 3043
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
3044
static void efx_probe_vpd_strings(struct efx_nic *efx)
3045 3046 3047 3048
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
3049
	int ro_start, ro_size, i, j;
3050 3051 3052 3053 3054 3055 3056 3057 3058

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
3059 3060
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
3061 3062 3063 3064
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

3065 3066 3067
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3108 3109 3110
}


3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

3123
	efx_init_napi(efx);
3124

3125
	rc = efx->type->init(efx);
3126
	if (rc) {
3127 3128
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
3129
		goto fail3;
3130 3131 3132 3133
	}

	rc = efx_init_port(efx);
	if (rc) {
3134 3135
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
3136
		goto fail4;
3137 3138
	}

3139
	rc = efx_nic_init_interrupt(efx);
3140
	if (rc)
3141
		goto fail5;
3142 3143 3144
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3145 3146 3147

	return 0;

3148 3149
 fail6:
	efx_nic_fini_interrupt(efx);
3150
 fail5:
3151 3152
	efx_fini_port(efx);
 fail4:
3153
	efx->type->fini(efx);
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3164
 * theoretically).  It sets up PCI mappings, resets the NIC,
3165 3166 3167 3168 3169
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3170
static int efx_pci_probe(struct pci_dev *pci_dev,
3171
			 const struct pci_device_id *entry)
3172 3173 3174
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3175
	int rc;
3176 3177

	/* Allocate and initialise a struct net_device and struct efx_nic */
3178 3179
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3180 3181
	if (!net_dev)
		return -ENOMEM;
3182 3183
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
3184
	efx->fixed_features |= NETIF_F_HIGHDMA;
3185

3186
	pci_set_drvdata(pci_dev, efx);
3187
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3188
	rc = efx_init_struct(efx, pci_dev, net_dev);
3189 3190 3191
	if (rc)
		goto fail1;

3192
	netif_info(efx, probe, efx->net_dev,
3193
		   "Solarflare NIC detected\n");
3194

3195 3196
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3197

3198 3199 3200 3201 3202
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3203 3204 3205
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3206

E
Edward Cree 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
			      NETIF_F_TSO | NETIF_F_RXCSUM);
	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
		net_dev->features |= NETIF_F_TSO6;
	/* Check whether device supports TSO */
	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
		net_dev->features &= ~NETIF_F_ALL_TSO;
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);

	net_dev->hw_features = net_dev->features & ~efx->fixed_features;

	/* Disable VLAN filtering by default.  It may be enforced if
	 * the feature is fixed (i.e. VLAN filters are required to
	 * receive VLAN tagged packets due to vPort restrictions).
	 */
	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	net_dev->features |= efx->fixed_features;

3228 3229
	rc = efx_register_netdev(efx);
	if (rc)
3230
		goto fail4;
3231

3232 3233 3234 3235 3236 3237
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3238

3239
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3240

3241
	/* Try to create MTDs, but allow this to fail */
3242
	rtnl_lock();
3243
	rc = efx_mtd_probe(efx);
3244
	rtnl_unlock();
3245
	if (rc && rc != -EPERM)
3246 3247 3248
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3249 3250
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
3251 3252 3253
		netif_notice(efx, probe, efx->net_dev,
			     "PCIE error reporting unavailable (%d).\n",
			     rc);
3254

3255 3256 3257
	return 0;

 fail4:
3258
	efx_pci_remove_main(efx);
3259 3260 3261 3262 3263
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3264
	WARN_ON(rc > 0);
3265
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3266 3267 3268 3269
	free_netdev(net_dev);
	return rc;
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3290 3291 3292 3293
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3294 3295
	rtnl_lock();

3296 3297
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3298

3299
		efx_device_detach_sync(efx);
3300

3301
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3302
		efx_disable_interrupts(efx);
3303
	}
3304

3305 3306
	rtnl_unlock();

3307 3308 3309 3310 3311
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3312
	int rc;
3313 3314
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3315 3316
	rtnl_lock();

3317
	if (efx->state != STATE_DISABLED) {
3318 3319 3320
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3321

3322 3323 3324
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3325

3326
		efx_start_all(efx);
3327

3328
		netif_device_attach(efx->net_dev);
3329

3330
		efx->state = STATE_READY;
3331

3332 3333
		efx->type->resume_wol(efx);
	}
3334

3335 3336
	rtnl_unlock();

3337 3338 3339
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3340
	return 0;
3341 3342 3343 3344 3345

fail:
	rtnl_unlock();

	return rc;
3346 3347 3348 3349 3350 3351 3352 3353 3354
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3355
	efx->reset_pending = 0;
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3382 3383
	rc = efx_pm_thaw(dev);
	return rc;
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3397
static const struct dev_pm_ops efx_pm_ops = {
3398 3399 3400 3401 3402 3403 3404 3405
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3406 3407 3408 3409
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3410 3411
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3428
		efx_disable_interrupts(efx);
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3445
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3446
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
3499
static const struct pci_error_handlers efx_err_handlers = {
3500 3501 3502 3503 3504
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3505
static struct pci_driver efx_pci_driver = {
3506
	.name		= KBUILD_MODNAME,
3507 3508 3509
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3510
	.driver.pm	= &efx_pm_ops,
3511
	.err_handler	= &efx_err_handlers,
3512 3513 3514
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3537
#ifdef CONFIG_SFC_SRIOV
3538 3539 3540
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3541
#endif
3542

3543 3544 3545 3546 3547
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3548 3549 3550 3551 3552 3553 3554 3555

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3556 3557
	destroy_workqueue(reset_workqueue);
 err_reset:
3558
#ifdef CONFIG_SFC_SRIOV
3559 3560
	efx_fini_sriov();
 err_sriov:
3561
#endif
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3572
	destroy_workqueue(reset_workqueue);
3573
#ifdef CONFIG_SFC_SRIOV
3574
	efx_fini_sriov();
3575
#endif
3576 3577 3578 3579 3580 3581 3582
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3583 3584
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3585
MODULE_DESCRIPTION("Solarflare network driver");
3586 3587
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);