efx.c 90.8 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118 119
bool efx_separate_tx_channels;
module_param(efx_separate_tx_channels, bool, 0444);
MODULE_PARM_DESC(efx_separate_tx_channels,
120
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	struct efx_tx_queue *tx_queue;
248
	int spent;
249

250
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
251
		return 0;
252

253 254 255 256 257
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		tx_queue->pkts_compl = 0;
		tx_queue->bytes_compl = 0;
	}

258
	spent = efx_nic_process_eventq(channel, budget);
259 260 261 262
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

263
		efx_rx_flush_packet(channel);
264
		efx_fast_push_rx_descriptors(rx_queue, true);
265 266
	}

267 268 269 270 271 272 273 274
	/* Update BQL */
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		if (tx_queue->bytes_compl) {
			netdev_tx_completed_queue(tx_queue->core_txq,
				tx_queue->pkts_compl, tx_queue->bytes_compl);
		}
	}

275
	return spent;
276 277 278 279 280 281 282
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
{
	int step = efx->irq_mod_step_us;

	if (channel->irq_mod_score < irq_adapt_low_thresh) {
		if (channel->irq_moderation_us > step) {
			channel->irq_moderation_us -= step;
			efx->type->push_irq_moderation(channel);
		}
	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
		if (channel->irq_moderation_us <
		    efx->irq_rx_moderation_us) {
			channel->irq_moderation_us += step;
			efx->type->push_irq_moderation(channel);
		}
	}

	channel->irq_count = 0;
	channel->irq_mod_score = 0;
}

304 305 306 307
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
308
	struct efx_nic *efx = channel->efx;
309
	int spent;
310

311 312 313
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
314

315
	spent = efx_process_channel(channel, budget);
316

317
	if (spent < budget) {
318
		if (efx_channel_has_rx_queue(channel) &&
319 320
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
321
			efx_update_irq_mod(efx, channel);
322 323
		}

324 325
		efx_filter_rfs_expire(channel);

326
		/* There is no race here; although napi_disable() will
327
		 * only wait for napi_complete(), this isn't a problem
328
		 * since efx_nic_eventq_read_ack() will have no effect if
329 330
		 * interrupts have already been disabled.
		 */
331
		napi_complete_done(napi, spent);
332
		efx_nic_eventq_read_ack(channel);
333 334
	}

335
	return spent;
336 337 338 339 340 341 342 343 344
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
345 346 347
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

348
	netif_dbg(efx, probe, efx->net_dev,
349
		  "chan %d create event queue\n", channel->channel);
350

351 352 353
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
354
	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
355 356
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

357
	return efx_nic_probe_eventq(channel);
358 359 360
}

/* Prepare channel's event queue */
361
static int efx_init_eventq(struct efx_channel *channel)
362
{
363
	struct efx_nic *efx = channel->efx;
364 365 366 367
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

368
	netif_dbg(efx, drv, efx->net_dev,
369
		  "chan %d init event queue\n", channel->channel);
370

371 372
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
373
		efx->type->push_irq_moderation(channel);
374 375 376 377
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
378 379
}

380
/* Enable event queue processing and NAPI */
381
void efx_start_eventq(struct efx_channel *channel)
382 383 384 385
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

386
	/* Make sure the NAPI handler sees the enabled flag set */
387 388 389 390 391 392 393 394
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
395
void efx_stop_eventq(struct efx_channel *channel)
396 397 398 399 400 401 402 403
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

404 405
static void efx_fini_eventq(struct efx_channel *channel)
{
406 407 408
	if (!channel->eventq_init)
		return;

409 410
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
411

412
	efx_nic_fini_eventq(channel);
413
	channel->eventq_init = false;
414 415 416 417
}

static void efx_remove_eventq(struct efx_channel *channel)
{
418 419
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
420

421
	efx_nic_remove_eventq(channel);
422 423 424 425 426 427 428 429
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

430
/* Allocate and initialise a channel structure. */
431 432 433 434 435 436 437 438
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

439 440 441
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
442

443 444 445
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
446

447 448 449 450 451 452
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
453

454 455 456 457
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
458

459 460 461 462 463 464 465 466 467 468 469 470 471
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
472

473 474 475 476 477 478 479
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
480 481 482
	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
	channel->napi_str.napi_id = 0;
	channel->napi_str.state = 0;
483
	memset(&channel->eventq, 0, sizeof(channel->eventq));
484

485 486 487
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
488
			tx_queue->channel = channel;
489 490
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
491 492 493
	}

	rx_queue = &channel->rx_queue;
494 495
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
496 497 498 499 500 501
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

502 503 504 505 506 507
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

508 509
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
510

511 512 513 514
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

515 516
	rc = efx_probe_eventq(channel);
	if (rc)
517
		goto fail;
518 519 520 521

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
522
			goto fail;
523 524 525 526 527
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
528
			goto fail;
529 530 531 532
	}

	return 0;

533 534
fail:
	efx_remove_channel(channel);
535 536 537
	return rc;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
556

557 558 559 560
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

561 562
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
563 564
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
565 566
}

567 568 569 570 571 572 573 574
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

575 576 577 578 579 580
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

598 599 600 601
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
602
static void efx_start_datapath(struct efx_nic *efx)
603
{
604
	netdev_features_t old_features = efx->net_dev->features;
605
	bool old_rx_scatter = efx->rx_scatter;
606 607 608
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
609
	size_t rx_buf_len;
610

611 612 613 614
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
615
	efx->rx_dma_len = (efx->rx_prefix_size +
616 617
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
618
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
619
		      efx->rx_ip_align + efx->rx_dma_len);
620
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
621
		efx->rx_scatter = efx->type->always_rx_scatter;
622 623
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
624
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
625
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
626 627 628
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
629 630 631 632 633 634 635 636
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

637 638 639 640 641 642 643 644 645 646 647
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
648

649 650 651 652 653 654 655 656 657
	/* Restore previously fixed features in hw_features and remove
	 * features which are fixed now
	 */
	efx->net_dev->hw_features |= efx->net_dev->features;
	efx->net_dev->hw_features &= ~efx->fixed_features;
	efx->net_dev->features |= efx->fixed_features;
	if (efx->net_dev->features != old_features)
		netdev_features_change(efx->net_dev);

J
Jon Cooper 已提交
658
	/* RX filters may also have scatter-enabled flags */
659
	if (efx->rx_scatter != old_rx_scatter)
660
		efx->type->filter_update_rx_scatter(efx);
661

662 663 664 665 666 667 668 669 670 671
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

672 673
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
674
		efx_for_each_channel_tx_queue(tx_queue, channel) {
675
			efx_init_tx_queue(tx_queue);
676 677
			atomic_inc(&efx->active_queues);
		}
678

679
		efx_for_each_channel_rx_queue(rx_queue, channel) {
680
			efx_init_rx_queue(rx_queue);
681
			atomic_inc(&efx->active_queues);
682 683 684
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
685
		}
686

687
		WARN_ON(channel->rx_pkt_n_frags);
688 689
	}

690 691
	efx_ptp_start_datapath(efx);

692 693
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
694 695
}

696
static void efx_stop_datapath(struct efx_nic *efx)
697 698 699 700
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
701
	int rc;
702 703 704 705

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

706 707
	efx_ptp_stop_datapath(efx);

708 709 710 711 712 713
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

714
	efx_for_each_channel(channel, efx) {
715 716 717 718 719 720 721 722 723 724
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
725
	}
726

727
	rc = efx->type->fini_dmaq(efx);
728
	if (rc) {
729 730 731 732 733 734 735
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
736 737
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
738
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
739 740 741 742 743 744 745 746 747
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

748 749
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
750 751 752

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
753
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
754 755
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
756
	channel->type->post_remove(channel);
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
772
	unsigned i, next_buffer_table = 0;
773
	int rc, rc2;
774 775 776 777

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
800

801
	efx_device_detach_sync(efx);
802
	efx_stop_all(efx);
B
Ben Hutchings 已提交
803
	efx_soft_disable_interrupts(efx);
804

805
	/* Clone channels (where possible) */
806 807
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
808 809 810
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

829 830
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
831 832

	for (i = 0; i < efx->n_channels; i++) {
833 834 835 836 837 838 839
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
840
	}
841

842
out:
843 844 845 846 847 848 849 850 851
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
852

853 854 855 856 857 858 859 860 861 862
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

877
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
878
{
879
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
880 881
}

882 883
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
884
	.post_remove		= efx_channel_dummy_op_void,
885 886 887 888 889 890 891 892 893 894
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

895 896 897 898
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

899 900 901 902 903 904 905 906 907 908
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
909
void efx_link_status_changed(struct efx_nic *efx)
910
{
911 912
	struct efx_link_state *link_state = &efx->link_state;

913 914 915 916 917 918 919
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

920
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
921 922
		efx->n_link_state_changes++;

923
		if (link_state->up)
924 925 926 927 928 929
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
930
	if (link_state->up)
931
		netif_info(efx, link, efx->net_dev,
932
			   "link up at %uMbps %s-duplex (MTU %d)\n",
933
			   link_state->speed, link_state->fd ? "full" : "half",
934
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
935
	else
936
		netif_info(efx, link, efx->net_dev, "link down\n");
937 938
}

B
Ben Hutchings 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

952
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

967 968
static void efx_fini_port(struct efx_nic *efx);

969 970 971 972 973 974 975 976 977 978
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
979 980 981 982 983 984 985 986
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
987
{
B
Ben Hutchings 已提交
988 989
	enum efx_phy_mode phy_mode;
	int rc;
990

B
Ben Hutchings 已提交
991
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
992

B
Ben Hutchings 已提交
993 994
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
995 996 997 998 999
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
1000
	rc = efx->type->reconfigure_port(efx);
1001

B
Ben Hutchings 已提交
1002 1003
	if (rc)
		efx->phy_mode = phy_mode;
1004

B
Ben Hutchings 已提交
1005
	return rc;
1006 1007 1008 1009
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1010
int efx_reconfigure_port(struct efx_nic *efx)
1011
{
B
Ben Hutchings 已提交
1012 1013
	int rc;

1014 1015 1016
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1017
	rc = __efx_reconfigure_port(efx);
1018
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1019 1020

	return rc;
1021 1022
}

1023 1024 1025
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1026 1027 1028 1029 1030
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1031
	if (efx->port_enabled)
1032
		efx_mac_reconfigure(efx);
1033 1034 1035
	mutex_unlock(&efx->mac_lock);
}

1036 1037 1038 1039
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1040
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1041

1042 1043 1044
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1045 1046
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1047
	if (rc)
1048
		return rc;
1049

1050
	/* Initialise MAC address to permanent address */
1051
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1052 1053 1054 1055 1056 1057 1058 1059

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1060
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1061

1062 1063
	mutex_lock(&efx->mac_lock);

1064
	rc = efx->phy_op->init(efx);
1065
	if (rc)
1066
		goto fail1;
1067

1068
	efx->port_initialized = true;
1069

B
Ben Hutchings 已提交
1070 1071
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1072
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1073 1074 1075

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1076
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1077 1078
		goto fail2;

1079
	mutex_unlock(&efx->mac_lock);
1080
	return 0;
1081

1082
fail2:
1083
	efx->phy_op->fini(efx);
1084 1085
fail1:
	mutex_unlock(&efx->mac_lock);
1086
	return rc;
1087 1088 1089 1090
}

static void efx_start_port(struct efx_nic *efx)
{
1091
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1092 1093 1094
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1095
	efx->port_enabled = true;
1096

1097
	/* Ensure MAC ingress/egress is enabled */
1098
	efx_mac_reconfigure(efx);
1099

1100 1101 1102
	mutex_unlock(&efx->mac_lock);
}

1103 1104 1105 1106 1107
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1108 1109
static void efx_stop_port(struct efx_nic *efx)
{
1110
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1111

1112 1113
	EFX_ASSERT_RESET_SERIALISED(efx);

1114
	mutex_lock(&efx->mac_lock);
1115
	efx->port_enabled = false;
1116 1117 1118
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1119 1120
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1121 1122 1123 1124

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1125 1126 1127 1128
}

static void efx_fini_port(struct efx_nic *efx)
{
1129
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1130 1131 1132 1133

	if (!efx->port_initialized)
		return;

1134
	efx->phy_op->fini(efx);
1135
	efx->port_initialized = false;
1136

1137
	efx->link_state.up = false;
1138 1139 1140 1141 1142
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1143
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1144

1145
	efx->type->remove_port(efx);
1146 1147 1148 1149 1150 1151 1152 1153
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1225 1226 1227 1228 1229
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1230
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1231
	int rc, bar;
1232

1233
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1234

1235 1236
	bar = efx->type->mem_bar;

1237 1238
	rc = pci_enable_device(pci_dev);
	if (rc) {
1239 1240
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
C
Christoph Hellwig 已提交
1252 1253 1254
		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
		if (rc == 0)
			break;
1255 1256 1257
		dma_mask >>= 1;
	}
	if (rc) {
1258 1259
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1260 1261
		goto fail2;
	}
1262 1263
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1264

1265 1266
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1267
	if (rc) {
1268 1269
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1270 1271 1272
		rc = -EIO;
		goto fail3;
	}
1273
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1274
	if (!efx->membase) {
1275 1276
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1277
			  (unsigned long long)efx->membase_phys, mem_map_size);
1278 1279 1280
		rc = -ENOMEM;
		goto fail4;
	}
1281 1282
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1283 1284
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1285 1286 1287 1288

	return 0;

 fail4:
1289
	pci_release_region(efx->pci_dev, bar);
1290
 fail3:
1291
	efx->membase_phys = 0;
1292 1293 1294 1295 1296 1297 1298 1299
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1300 1301
	int bar;

1302
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1303 1304 1305 1306 1307 1308 1309

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1310 1311
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1312
		efx->membase_phys = 0;
1313 1314
	}

1315 1316 1317
	/* Don't disable bus-mastering if VFs are assigned */
	if (!pci_vfs_assigned(efx->pci_dev))
		pci_disable_device(efx->pci_dev);
1318 1319
}

1320 1321 1322 1323 1324 1325 1326
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1327 1328
}

1329
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1330
{
1331
	cpumask_var_t thread_mask;
1332
	unsigned int count;
1333
	int cpu;
1334

1335 1336 1337 1338 1339 1340 1341 1342
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1343

1344 1345 1346 1347 1348
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
1349
					   topology_sibling_cpumask(cpu));
1350 1351 1352 1353
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1354 1355
	}

1356 1357 1358
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1370
	}
1371
#endif
1372 1373 1374 1375 1376 1377 1378

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1379
static int efx_probe_interrupts(struct efx_nic *efx)
1380
{
1381 1382
	unsigned int extra_channels = 0;
	unsigned int i, j;
1383
	int rc;
1384

1385 1386 1387 1388
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1389
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1390
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1391
		unsigned int n_channels;
1392

1393
		n_channels = efx_wanted_parallelism(efx);
1394
		if (efx_separate_tx_channels)
B
Ben Hutchings 已提交
1395
			n_channels *= 2;
1396
		n_channels += extra_channels;
1397
		n_channels = min(n_channels, efx->max_channels);
1398

B
Ben Hutchings 已提交
1399
		for (i = 0; i < n_channels; i++)
1400
			xentries[i].entry = i;
1401 1402 1403 1404 1405 1406 1407 1408
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1409 1410
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1411
				  " available (%d < %u).\n", rc, n_channels);
1412 1413
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1414
			n_channels = rc;
1415 1416
		}

1417
		if (rc > 0) {
B
Ben Hutchings 已提交
1418
			efx->n_channels = n_channels;
1419 1420
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
1421 1422 1423 1424
			if (efx_separate_tx_channels) {
				efx->n_tx_channels = min(max(n_channels / 2,
							     1U),
							 efx->max_tx_channels);
1425 1426 1427
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1428
			} else {
1429 1430
				efx->n_tx_channels = min(n_channels,
							 efx->max_tx_channels);
1431
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1432
			}
1433
			for (i = 0; i < efx->n_channels; i++)
1434 1435
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1436 1437 1438 1439 1440
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1441
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1442 1443
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1444 1445
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1446
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1447
		} else {
1448 1449
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1450 1451 1452 1453 1454 1455
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1456
		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1457 1458
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1459 1460
		efx->legacy_irq = efx->pci_dev->irq;
	}
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1477
	/* RSS might be usable on VFs even if it is disabled on the PF */
1478 1479 1480 1481 1482 1483 1484 1485 1486
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1487

1488
	return 0;
1489 1490
}

1491
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1492
{
1493 1494
	struct efx_channel *channel, *end_channel;
	int rc;
1495

1496 1497
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1498 1499
	efx->irq_soft_enabled = true;
	smp_wmb();
1500 1501

	efx_for_each_channel(channel, efx) {
1502 1503 1504 1505 1506
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1507 1508 1509 1510
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1524 1525
}

B
Ben Hutchings 已提交
1526
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1527 1528 1529
{
	struct efx_channel *channel;

1530 1531 1532
	if (efx->state == STATE_DISABLED)
		return;

1533 1534
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1535 1536 1537 1538
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1539 1540 1541 1542 1543 1544 1545
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1546
		if (!channel->type->keep_eventq)
1547
			efx_fini_eventq(channel);
1548
	}
1549 1550 1551

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1552 1553
}

1554
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1555
{
1556 1557
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1558 1559 1560 1561 1562 1563 1564 1565

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1566
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1567 1568

	efx_for_each_channel(channel, efx) {
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1587
		if (channel->type->keep_eventq)
1588
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1589 1590
	}

1591 1592 1593
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1607
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1608 1609
}

1610 1611 1612 1613 1614
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1615
	efx_for_each_channel(channel, efx)
1616 1617 1618 1619 1620 1621 1622 1623
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1624
static void efx_set_channels(struct efx_nic *efx)
1625
{
1626 1627 1628
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1629
	efx->tx_channel_offset =
1630 1631
		efx_separate_tx_channels ?
		efx->n_channels - efx->n_tx_channels : 0;
1632

1633 1634
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1635 1636 1637
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1638 1639 1640 1641 1642
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1643 1644 1645 1646
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1647 1648 1649 1650 1651 1652
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1653
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1654 1655

	/* Carry out hardware-type specific initialisation */
1656
	rc = efx->type->probe(efx);
1657 1658 1659
	if (rc)
		return rc;

1660 1661 1662 1663 1664 1665 1666 1667
	do {
		if (!efx->max_channels || !efx->max_tx_channels) {
			netif_err(efx, drv, efx->net_dev,
				  "Insufficient resources to allocate"
				  " any channels\n");
			rc = -ENOSPC;
			goto fail1;
		}
1668

1669 1670 1671 1672 1673 1674
		/* Determine the number of channels and queues by trying
		 * to hook in MSI-X interrupts.
		 */
		rc = efx_probe_interrupts(efx);
		if (rc)
			goto fail1;
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		efx_set_channels(efx);

		/* dimension_resources can fail with EAGAIN */
		rc = efx->type->dimension_resources(efx);
		if (rc != 0 && rc != -EAGAIN)
			goto fail2;

		if (rc == -EAGAIN)
			/* try again with new max_channels */
			efx_remove_interrupts(efx);

	} while (rc == -EAGAIN);
1688

1689
	if (efx->n_channels > 1)
1690 1691 1692
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1693

1694 1695
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1696 1697

	/* Initialise the interrupt moderation settings */
1698
	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1699 1700
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1701 1702

	return 0;
1703

1704 1705 1706
fail2:
	efx_remove_interrupts(efx);
fail1:
1707 1708
	efx->type->remove(efx);
	return rc;
1709 1710 1711 1712
}

static void efx_remove_nic(struct efx_nic *efx)
{
1713
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1714 1715

	efx_remove_interrupts(efx);
1716
	efx->type->remove(efx);
1717 1718
}

1719 1720 1721 1722 1723
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1724
	init_rwsem(&efx->filter_sem);
1725
	mutex_lock(&efx->mac_lock);
1726
	down_write(&efx->filter_sem);
1727 1728
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1729
		goto out_unlock;
1730 1731 1732

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		struct efx_channel *channel;
		int i, success = 1;

		efx_for_each_channel(channel, efx) {
			channel->rps_flow_id =
				kcalloc(efx->type->max_rx_ip_filters,
					sizeof(*channel->rps_flow_id),
					GFP_KERNEL);
			if (!channel->rps_flow_id)
				success = 0;
			else
				for (i = 0;
				     i < efx->type->max_rx_ip_filters;
				     ++i)
					channel->rps_flow_id[i] =
						RPS_FLOW_ID_INVALID;
		}

		if (!success) {
			efx_for_each_channel(channel, efx)
				kfree(channel->rps_flow_id);
1754
			efx->type->filter_table_remove(efx);
1755 1756
			rc = -ENOMEM;
			goto out_unlock;
1757
		}
1758 1759

		efx->rps_expire_index = efx->rps_expire_channel = 0;
1760 1761
	}
#endif
1762 1763
out_unlock:
	up_write(&efx->filter_sem);
1764
	mutex_unlock(&efx->mac_lock);
1765
	return rc;
1766 1767 1768 1769 1770
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
1771 1772 1773 1774
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		kfree(channel->rps_flow_id);
1775
#endif
1776
	down_write(&efx->filter_sem);
1777
	efx->type->filter_table_remove(efx);
1778
	up_write(&efx->filter_sem);
1779 1780 1781 1782
}

static void efx_restore_filters(struct efx_nic *efx)
{
1783
	down_read(&efx->filter_sem);
1784
	efx->type->filter_table_restore(efx);
1785
	up_read(&efx->filter_sem);
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1800
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1801 1802 1803 1804 1805
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1806
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1807 1808 1809
		goto fail2;
	}

1810 1811 1812 1813 1814
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1815
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1816

1817 1818 1819 1820 1821 1822 1823 1824
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1825 1826 1827 1828
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1829
		goto fail4;
B
Ben Hutchings 已提交
1830 1831
	}

1832 1833
	rc = efx_probe_channels(efx);
	if (rc)
1834
		goto fail5;
1835

1836 1837
	return 0;

1838
 fail5:
1839
	efx_remove_filters(efx);
1840 1841 1842 1843
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1844 1845 1846 1847 1848 1849 1850 1851
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1852 1853 1854 1855 1856 1857
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1858
 */
1859 1860 1861
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1862
	BUG_ON(efx->state == STATE_DISABLED);
1863 1864 1865

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1866 1867
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1868 1869 1870
		return;

	efx_start_port(efx);
1871
	efx_start_datapath(efx);
1872

1873 1874
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1875 1876
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1877

1878
	/* Link state detection is normally event-driven; we have
1879 1880
	 * to poll now because we could have missed a change
	 */
1881 1882 1883 1884
	mutex_lock(&efx->mac_lock);
	if (efx->phy_op->poll(efx))
		efx_link_status_changed(efx);
	mutex_unlock(&efx->mac_lock);
1885

1886
	efx->type->start_stats(efx);
1887 1888 1889 1890
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1891 1892
}

1893 1894 1895 1896 1897
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1898 1899 1900 1901 1902 1903 1904 1905
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1906 1907 1908 1909 1910 1911 1912
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1913
	efx->type->stop_stats(efx);
1914 1915
	efx_stop_port(efx);

1916 1917 1918 1919 1920 1921
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1922 1923 1924
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1925 1926 1927 1928
}

static void efx_remove_all(struct efx_nic *efx)
{
1929
	efx_remove_channels(efx);
1930
	efx_remove_filters(efx);
1931 1932 1933
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1934 1935 1936 1937 1938 1939 1940 1941 1942
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/
1943
unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1944
{
1945 1946
	if (usecs == 0)
		return 0;
1947
	if (usecs * 1000 < efx->timer_quantum_ns)
1948
		return 1; /* never round down to 0 */
1949 1950 1951 1952 1953 1954 1955 1956 1957
	return usecs * 1000 / efx->timer_quantum_ns;
}

unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
{
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */
	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1958 1959
}

1960
/* Set interrupt moderation parameters */
1961 1962 1963
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1964
{
1965
	struct efx_channel *channel;
1966 1967
	unsigned int timer_max_us;

1968 1969
	EFX_ASSERT_RESET_SERIALISED(efx);

1970 1971 1972
	timer_max_us = efx->timer_max_ns / 1000;

	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1973 1974
		return -EINVAL;

1975
	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1976 1977 1978 1979 1980 1981
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1982
	efx->irq_rx_adaptive = rx_adaptive;
1983
	efx->irq_rx_moderation_us = rx_usecs;
1984
	efx_for_each_channel(channel, efx) {
1985
		if (efx_channel_has_rx_queue(channel))
1986
			channel->irq_moderation_us = rx_usecs;
1987
		else if (efx_channel_has_tx_queues(channel))
1988
			channel->irq_moderation_us = tx_usecs;
1989
	}
1990 1991

	return 0;
1992 1993
}

1994 1995 1996 1997
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
	*rx_adaptive = efx->irq_rx_adaptive;
1998
	*rx_usecs = efx->irq_rx_moderation_us;
1999 2000 2001 2002 2003

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
2004
	if (efx->tx_channel_offset == 0) {
2005
		*tx_usecs = *rx_usecs;
2006 2007 2008 2009 2010 2011
	} else {
		struct efx_channel *tx_channel;

		tx_channel = efx->channel[efx->tx_channel_offset];
		*tx_usecs = tx_channel->irq_moderation_us;
	}
2012 2013
}

2014 2015 2016 2017 2018 2019
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

2020
/* Run periodically off the general workqueue */
2021 2022 2023 2024 2025
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

2026 2027 2028
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
2029
	BUG_ON(efx->type->monitor == NULL);
2030 2031 2032

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
2033 2034 2035 2036 2037 2038
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
2055
	struct efx_nic *efx = netdev_priv(net_dev);
2056
	struct mii_ioctl_data *data = if_mii(ifr);
2057

2058
	if (cmd == SIOCSHWTSTAMP)
2059 2060 2061
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2062

2063 2064 2065 2066 2067 2068
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2069 2070 2071 2072 2073 2074 2075 2076
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2077 2078 2079 2080 2081 2082 2083 2084 2085
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

2086
static void efx_init_napi(struct efx_nic *efx)
2087 2088 2089
{
	struct efx_channel *channel;

2090 2091
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2092 2093 2094 2095
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
E
Eric Dumazet 已提交
2096
	if (channel->napi_dev)
2097
		netif_napi_del(&channel->napi_str);
E
Eric Dumazet 已提交
2098

2099
	channel->napi_dev = NULL;
2100 2101 2102 2103 2104 2105
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2106 2107
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2124
	struct efx_nic *efx = netdev_priv(net_dev);
2125 2126
	struct efx_channel *channel;

2127
	efx_for_each_channel(channel, efx)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
2140
int efx_net_open(struct net_device *net_dev)
2141
{
2142
	struct efx_nic *efx = netdev_priv(net_dev);
2143 2144
	int rc;

2145 2146
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2147

2148 2149 2150
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2151 2152
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2153 2154
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2155

2156 2157 2158 2159
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2160
	efx_start_all(efx);
2161
	efx_selftest_async_start(efx);
2162 2163 2164 2165 2166 2167 2168
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
2169
int efx_net_stop(struct net_device *net_dev)
2170
{
2171
	struct efx_nic *efx = netdev_priv(net_dev);
2172

2173 2174
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2175

2176 2177
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2178 2179 2180 2181

	return 0;
}

2182
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2183 2184
static void efx_net_stats(struct net_device *net_dev,
			  struct rtnl_link_stats64 *stats)
2185
{
2186
	struct efx_nic *efx = netdev_priv(net_dev);
2187

2188
	spin_lock_bh(&efx->stats_lock);
2189
	efx->type->update_stats(efx, NULL, stats);
2190
	spin_unlock_bh(&efx->stats_lock);
2191 2192 2193 2194 2195
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2196
	struct efx_nic *efx = netdev_priv(net_dev);
2197

2198 2199 2200
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2201

2202
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2203 2204 2205 2206 2207 2208
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2209
	struct efx_nic *efx = netdev_priv(net_dev);
2210
	int rc;
2211

2212 2213 2214
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2215

2216
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2217

2218 2219 2220
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2221
	mutex_lock(&efx->mac_lock);
2222
	net_dev->mtu = new_mtu;
2223
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2224 2225
	mutex_unlock(&efx->mac_lock);

2226
	efx_start_all(efx);
2227
	netif_device_attach(efx->net_dev);
2228
	return 0;
2229 2230 2231 2232
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2233
	struct efx_nic *efx = netdev_priv(net_dev);
2234
	struct sockaddr *addr = data;
2235
	u8 *new_addr = addr->sa_data;
2236 2237
	u8 old_addr[6];
	int rc;
2238 2239

	if (!is_valid_ether_addr(new_addr)) {
2240 2241 2242
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2243
		return -EADDRNOTAVAIL;
2244 2245
	}

2246 2247
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2248
	ether_addr_copy(net_dev->dev_addr, new_addr);
2249 2250
	if (efx->type->set_mac_address) {
		rc = efx->type->set_mac_address(efx);
2251 2252 2253 2254 2255
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2256 2257

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2258
	mutex_lock(&efx->mac_lock);
2259
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2260
	mutex_unlock(&efx->mac_lock);
2261 2262 2263 2264

	return 0;
}

2265
/* Context: netif_addr_lock held, BHs disabled. */
2266
static void efx_set_rx_mode(struct net_device *net_dev)
2267
{
2268
	struct efx_nic *efx = netdev_priv(net_dev);
2269

2270 2271 2272
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2273 2274
}

2275
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2276 2277
{
	struct efx_nic *efx = netdev_priv(net_dev);
2278
	int rc;
2279 2280

	/* If disabling RX n-tuple filtering, clear existing filters */
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
		if (rc)
			return rc;
	}

	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
		/* efx_set_rx_mode() will schedule MAC work to update filters
		 * when a new features are finally set in net_dev.
		 */
		efx_set_rx_mode(net_dev);
	}
2294 2295 2296 2297

	return 0;
}

2298 2299
static int efx_get_phys_port_id(struct net_device *net_dev,
				struct netdev_phys_item_id *ppid)
2300 2301 2302 2303 2304 2305 2306 2307 2308
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->get_phys_port_id)
		return efx->type->get_phys_port_id(efx, ppid);
	else
		return -EOPNOTSUPP;
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static int efx_get_phys_port_name(struct net_device *net_dev,
				  char *name, size_t len)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (snprintf(name, len, "p%u", efx->port_num) >= len)
		return -EINVAL;
	return 0;
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_add_vid)
		return efx->type->vlan_rx_add_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_kill_vid)
		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

2339
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2340 2341
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2342
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2343 2344 2345 2346 2347 2348
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2349
	.ndo_set_rx_mode	= efx_set_rx_mode,
2350
	.ndo_set_features	= efx_set_features,
2351 2352
	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
2353
#ifdef CONFIG_SFC_SRIOV
2354 2355 2356 2357
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2358
	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2359
#endif
2360
	.ndo_get_phys_port_id   = efx_get_phys_port_id,
2361
	.ndo_get_phys_port_name	= efx_get_phys_port_name,
S
Stephen Hemminger 已提交
2362 2363 2364
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2365
	.ndo_setup_tc		= efx_setup_tc,
2366 2367 2368
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2369 2370
};

2371 2372 2373 2374 2375 2376 2377
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2378 2379 2380
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2381
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2382

2383
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2384 2385
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2386 2387 2388 2389 2390 2391 2392 2393

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2394 2395 2396 2397 2398 2399
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2400
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2401

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
#ifdef CONFIG_SFC_MCDI_LOGGING
static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
}
static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
			    const char *buf, size_t count)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	bool enable = count > 0 && *buf != '0';

	mcdi->logging_enabled = enable;
	return count;
}
static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
#endif

2424 2425 2426
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2427
	struct efx_channel *channel;
2428 2429 2430 2431
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2432 2433
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2434
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2435
	net_dev->ethtool_ops = &efx_ethtool_ops;
2436
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2437 2438
	net_dev->min_mtu = EFX_MIN_MTU;
	net_dev->max_mtu = EFX_MAX_MTU;
2439

2440
	rtnl_lock();
2441

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2455 2456 2457
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2458
	efx_update_name(efx);
2459

2460 2461 2462
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2463 2464 2465 2466
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2467 2468
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2469 2470
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2471 2472
	}

2473 2474
	efx_associate(efx);

2475
	rtnl_unlock();
2476

B
Ben Hutchings 已提交
2477 2478
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2479 2480
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2481 2482
		goto fail_registered;
	}
2483 2484 2485 2486 2487 2488 2489 2490
#ifdef CONFIG_SFC_MCDI_LOGGING
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
	if (rc) {
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
		goto fail_attr_mcdi_logging;
	}
#endif
B
Ben Hutchings 已提交
2491

2492
	return 0;
B
Ben Hutchings 已提交
2493

2494 2495 2496 2497
#ifdef CONFIG_SFC_MCDI_LOGGING
fail_attr_mcdi_logging:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
#endif
2498 2499
fail_registered:
	rtnl_lock();
2500
	efx_dissociate(efx);
2501
	unregister_netdevice(net_dev);
2502
fail_locked:
2503
	efx->state = STATE_UNINIT;
2504
	rtnl_unlock();
2505
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2506
	return rc;
2507 2508 2509 2510 2511 2512 2513
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2514
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2515

2516 2517 2518 2519 2520 2521 2522 2523
	if (efx_dev_registered(efx)) {
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
#ifdef CONFIG_SFC_MCDI_LOGGING
		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
#endif
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
		unregister_netdev(efx->net_dev);
	}
2524 2525 2526 2527 2528 2529 2530 2531
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2532 2533
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2534
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2535 2536 2537
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2538 2539 2540
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2541
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2542
	efx_disable_interrupts(efx);
2543 2544

	mutex_lock(&efx->mac_lock);
2545 2546
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH)
2547
		efx->phy_op->fini(efx);
2548
	efx->type->fini(efx);
2549 2550
}

B
Ben Hutchings 已提交
2551 2552 2553 2554 2555
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2556
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2557 2558 2559
{
	int rc;

B
Ben Hutchings 已提交
2560
	EFX_ASSERT_RESET_SERIALISED(efx);
2561

2562 2563 2564 2565
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2566
	rc = efx->type->init(efx);
2567
	if (rc) {
2568
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2569
		goto fail;
2570 2571
	}

2572 2573 2574
	if (!ok)
		goto fail;

2575 2576
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH) {
2577 2578 2579
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2580 2581
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2582 2583
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2584 2585
	}

2586 2587 2588
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2589 2590 2591 2592 2593 2594 2595 2596 2597

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2598
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2599
	efx_restore_filters(efx);
2600
	up_read(&efx->filter_sem);
2601 2602
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2603 2604 2605 2606 2607 2608 2609 2610 2611

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2612 2613 2614

	mutex_unlock(&efx->mac_lock);

2615 2616 2617
	return rc;
}

2618 2619
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2620
 *
2621
 * Caller must hold the rtnl_lock.
2622
 */
2623
int efx_reset(struct efx_nic *efx, enum reset_type method)
2624
{
2625 2626
	int rc, rc2;
	bool disabled;
2627

2628 2629
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2630

2631
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2632
	efx_reset_down(efx, method);
2633

2634
	rc = efx->type->reset(efx, method);
2635
	if (rc) {
2636
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2637
		goto out;
2638 2639
	}

2640 2641 2642
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2643 2644 2645 2646
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2647 2648 2649 2650 2651 2652 2653

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2654
out:
2655
	/* Leave device stopped if necessary */
2656 2657 2658
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2659 2660 2661 2662 2663
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2664 2665
	}

2666
	if (disabled) {
2667
		dev_close(efx->net_dev);
2668
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2669 2670
		efx->state = STATE_DISABLED;
	} else {
2671
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2672
		netif_device_attach(efx->net_dev);
2673
	}
2674 2675 2676
	return rc;
}

2677 2678 2679 2680 2681
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2682
int efx_try_recovery(struct efx_nic *efx)
2683 2684 2685 2686 2687 2688 2689
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2690
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2719 2720 2721 2722 2723
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2724
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2725 2726 2727 2728 2729 2730
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2731 2732 2733
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2734 2735 2736 2737
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2738

2739
	if (!pending)
2740 2741
		return;

2742
	rtnl_lock();
2743 2744 2745 2746 2747 2748

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2749
		(void)efx_reset(efx, method);
2750

2751
	rtnl_unlock();
2752 2753 2754 2755 2756 2757
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2758 2759 2760 2761 2762 2763 2764
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2765 2766 2767
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2768
	case RESET_TYPE_RECOVER_OR_ALL:
2769 2770
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2771
	case RESET_TYPE_RECOVER_OR_DISABLE:
2772
	case RESET_TYPE_DATAPATH:
2773
	case RESET_TYPE_MC_BIST:
2774
	case RESET_TYPE_MCDI_TIMEOUT:
2775
		method = type;
2776 2777
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2778 2779
		break;
	default:
2780
		method = efx->type->map_reset_reason(type);
2781 2782 2783
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2784 2785
		break;
	}
2786

2787
	set_bit(method, &efx->reset_pending);
2788 2789 2790 2791 2792 2793 2794
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2795

2796 2797 2798 2799
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2800
	queue_work(reset_workqueue, &efx->reset_work);
2801 2802 2803 2804 2805 2806 2807 2808 2809
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2810
static const struct pci_device_id efx_pci_table[] = {
2811
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2812
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2813
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2814
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2815 2816
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2817 2818
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2819 2820
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2821 2822 2823 2824 2825 2826
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2827 2828 2829 2830 2831
	{0}			/* end of list */
};

/**************************************************************************
 *
2832
 * Dummy PHY/MAC operations
2833
 *
2834
 * Can be used for some unimplemented operations
2835 2836 2837 2838 2839 2840 2841 2842 2843
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2844 2845

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2846 2847 2848
{
	return false;
}
2849

2850
static const struct efx_phy_operations efx_dummy_phy_operations = {
2851
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2852
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2853
	.poll		 = efx_port_dummy_op_poll,
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2866
static int efx_init_struct(struct efx_nic *efx,
2867 2868
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2869
	int i;
2870 2871

	/* Initialise common structures */
2872 2873
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2874
	spin_lock_init(&efx->biu_lock);
2875 2876 2877
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2878 2879
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2880
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2881
	efx->pci_dev = pci_dev;
2882
	efx->msg_enable = debug;
2883
	efx->state = STATE_UNINIT;
2884 2885 2886
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2887
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2888 2889
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2890 2891
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2892 2893
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2894 2895 2896
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2897
	efx->mdio.dev = net_dev;
2898
	INIT_WORK(&efx->mac_work, efx_mac_work);
2899
	init_waitqueue_head(&efx->flush_wq);
2900 2901

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2902 2903 2904
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2905 2906
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2907 2908 2909 2910 2911 2912
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2913 2914 2915 2916
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2917
	if (!efx->workqueue)
2918
		goto fail;
2919

2920
	return 0;
2921 2922 2923 2924

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2925 2926 2927 2928
}

static void efx_fini_struct(struct efx_nic *efx)
{
2929 2930 2931 2932 2933
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2934 2935
	kfree(efx->vpd_sn);

2936 2937 2938 2939 2940 2941
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2964 2965 2966 2967 2968 2969
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2970
	efx_disable_interrupts(efx);
2971
	efx_nic_fini_interrupt(efx);
2972
	efx_fini_port(efx);
2973
	efx->type->fini(efx);
2974 2975 2976 2977 2978
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
2979 2980
 * This is called only at module unload (or hotplug removal).  A PF can call
 * this on its VFs to ensure they are unbound first.
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2992
	efx_dissociate(efx);
2993
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2994
	efx_disable_interrupts(efx);
2995
	efx->state = STATE_UNINIT;
2996 2997
	rtnl_unlock();

2998 2999 3000
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

3001 3002
	efx_unregister_netdev(efx);

3003 3004
	efx_mtd_remove(efx);

3005 3006 3007
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
3008
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3009 3010 3011

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
3012 3013

	pci_disable_pcie_error_reporting(pci_dev);
3014 3015
};

3016 3017 3018 3019 3020 3021
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
3022
static void efx_probe_vpd_strings(struct efx_nic *efx)
3023 3024 3025 3026
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
3027
	int ro_start, ro_size, i, j;
3028 3029 3030 3031 3032 3033 3034 3035 3036

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
3037 3038
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
3039 3040 3041 3042
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

3043 3044 3045
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3086 3087 3088
}


3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

3101
	efx_init_napi(efx);
3102

3103
	rc = efx->type->init(efx);
3104
	if (rc) {
3105 3106
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
3107
		goto fail3;
3108 3109 3110 3111
	}

	rc = efx_init_port(efx);
	if (rc) {
3112 3113
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
3114
		goto fail4;
3115 3116
	}

3117
	rc = efx_nic_init_interrupt(efx);
3118
	if (rc)
3119
		goto fail5;
3120 3121 3122
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3123 3124 3125

	return 0;

3126 3127
 fail6:
	efx_nic_fini_interrupt(efx);
3128
 fail5:
3129 3130
	efx_fini_port(efx);
 fail4:
3131
	efx->type->fini(efx);
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3142
 * theoretically).  It sets up PCI mappings, resets the NIC,
3143 3144 3145 3146 3147
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3148
static int efx_pci_probe(struct pci_dev *pci_dev,
3149
			 const struct pci_device_id *entry)
3150 3151 3152
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3153
	int rc;
3154 3155

	/* Allocate and initialise a struct net_device and struct efx_nic */
3156 3157
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3158 3159
	if (!net_dev)
		return -ENOMEM;
3160 3161
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
3162
	efx->fixed_features |= NETIF_F_HIGHDMA;
3163

3164
	pci_set_drvdata(pci_dev, efx);
3165
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3166
	rc = efx_init_struct(efx, pci_dev, net_dev);
3167 3168 3169
	if (rc)
		goto fail1;

3170
	netif_info(efx, probe, efx->net_dev,
3171
		   "Solarflare NIC detected\n");
3172

3173 3174
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3175

3176 3177 3178 3179 3180
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3181 3182 3183
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3184

E
Edward Cree 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
			      NETIF_F_TSO | NETIF_F_RXCSUM);
	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
		net_dev->features |= NETIF_F_TSO6;
	/* Check whether device supports TSO */
	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
		net_dev->features &= ~NETIF_F_ALL_TSO;
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);

	net_dev->hw_features = net_dev->features & ~efx->fixed_features;

	/* Disable VLAN filtering by default.  It may be enforced if
	 * the feature is fixed (i.e. VLAN filters are required to
	 * receive VLAN tagged packets due to vPort restrictions).
	 */
	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	net_dev->features |= efx->fixed_features;

3206 3207
	rc = efx_register_netdev(efx);
	if (rc)
3208
		goto fail4;
3209

3210 3211 3212 3213 3214 3215
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3216

3217
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3218

3219
	/* Try to create MTDs, but allow this to fail */
3220
	rtnl_lock();
3221
	rc = efx_mtd_probe(efx);
3222
	rtnl_unlock();
3223
	if (rc && rc != -EPERM)
3224 3225 3226
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3227 3228
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
3229 3230 3231
		netif_notice(efx, probe, efx->net_dev,
			     "PCIE error reporting unavailable (%d).\n",
			     rc);
3232

3233 3234 3235
	return 0;

 fail4:
3236
	efx_pci_remove_main(efx);
3237 3238 3239 3240 3241
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3242
	WARN_ON(rc > 0);
3243
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3244 3245 3246 3247
	free_netdev(net_dev);
	return rc;
}

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3268 3269 3270 3271
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3272 3273
	rtnl_lock();

3274 3275
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3276

3277
		efx_device_detach_sync(efx);
3278

3279
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3280
		efx_disable_interrupts(efx);
3281
	}
3282

3283 3284
	rtnl_unlock();

3285 3286 3287 3288 3289
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3290
	int rc;
3291 3292
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3293 3294
	rtnl_lock();

3295
	if (efx->state != STATE_DISABLED) {
3296 3297 3298
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3299

3300 3301 3302
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3303

3304
		efx_start_all(efx);
3305

3306
		netif_device_attach(efx->net_dev);
3307

3308
		efx->state = STATE_READY;
3309

3310 3311
		efx->type->resume_wol(efx);
	}
3312

3313 3314
	rtnl_unlock();

3315 3316 3317
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3318
	return 0;
3319 3320 3321 3322 3323

fail:
	rtnl_unlock();

	return rc;
3324 3325 3326 3327 3328 3329 3330 3331 3332
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3333
	efx->reset_pending = 0;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3360 3361
	rc = efx_pm_thaw(dev);
	return rc;
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3375
static const struct dev_pm_ops efx_pm_ops = {
3376 3377 3378 3379 3380 3381 3382 3383
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3384 3385 3386 3387
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3388 3389
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3406
		efx_disable_interrupts(efx);
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3423
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3424
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
3477
static const struct pci_error_handlers efx_err_handlers = {
3478 3479 3480 3481 3482
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3483
static struct pci_driver efx_pci_driver = {
3484
	.name		= KBUILD_MODNAME,
3485 3486 3487
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3488
	.driver.pm	= &efx_pm_ops,
3489
	.err_handler	= &efx_err_handlers,
3490 3491 3492
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3515
#ifdef CONFIG_SFC_SRIOV
3516 3517 3518
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3519
#endif
3520

3521 3522 3523 3524 3525
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3526 3527 3528 3529 3530 3531 3532 3533

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3534 3535
	destroy_workqueue(reset_workqueue);
 err_reset:
3536
#ifdef CONFIG_SFC_SRIOV
3537 3538
	efx_fini_sriov();
 err_sriov:
3539
#endif
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3550
	destroy_workqueue(reset_workqueue);
3551
#ifdef CONFIG_SFC_SRIOV
3552
	efx_fini_sriov();
3553
#endif
3554 3555 3556 3557 3558 3559 3560
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3561 3562
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3563
MODULE_DESCRIPTION("Solarflare network driver");
3564 3565
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);
3566
MODULE_VERSION(EFX_DRIVER_VERSION);