metaspace.cpp 138.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
26
#include "memory/allocation.hpp"
27
#include "memory/binaryTreeDictionary.hpp"
28
#include "memory/freeList.hpp"
29 30 31
#include "memory/collectorPolicy.hpp"
#include "memory/filemap.hpp"
#include "memory/freeList.hpp"
32
#include "memory/gcLocker.hpp"
33
#include "memory/metachunk.hpp"
34
#include "memory/metaspace.hpp"
35
#include "memory/metaspaceGCThresholdUpdater.hpp"
36
#include "memory/metaspaceShared.hpp"
37
#include "memory/metaspaceTracer.hpp"
38 39
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
40
#include "runtime/atomic.inline.hpp"
41
#include "runtime/globals.hpp"
42
#include "runtime/init.hpp"
43
#include "runtime/java.hpp"
44
#include "runtime/mutex.hpp"
45
#include "runtime/orderAccess.inline.hpp"
46
#include "services/memTracker.hpp"
47
#include "services/memoryService.hpp"
48 49 50
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"

51 52
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC

53 54
typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
55 56

// Set this constant to enable slow integrity checking of the free chunk lists
57 58
const bool metaspace_slow_verify = false;

59
size_t const allocation_from_dictionary_limit = 4 * K;
60 61 62

MetaWord* last_allocated = 0;

63
size_t Metaspace::_compressed_class_space_size;
64
const MetaspaceTracer* Metaspace::_tracer = NULL;
65

66 67
// Used in declarations in SpaceManager and ChunkManager
enum ChunkIndex {
68 69 70 71 72 73 74 75 76 77 78 79 80 81
  ZeroIndex = 0,
  SpecializedIndex = ZeroIndex,
  SmallIndex = SpecializedIndex + 1,
  MediumIndex = SmallIndex + 1,
  HumongousIndex = MediumIndex + 1,
  NumberOfFreeLists = 3,
  NumberOfInUseLists = 4
};

enum ChunkSizes {    // in words.
  ClassSpecializedChunk = 128,
  SpecializedChunk = 128,
  ClassSmallChunk = 256,
  SmallChunk = 512,
82
  ClassMediumChunk = 4 * K,
83
  MediumChunk = 8 * K
84 85 86
};

static ChunkIndex next_chunk_index(ChunkIndex i) {
87
  assert(i < NumberOfInUseLists, "Out of bound");
88 89 90
  return (ChunkIndex) (i+1);
}

91
volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
92 93 94
uint MetaspaceGC::_shrink_factor = 0;
bool MetaspaceGC::_should_concurrent_collect = false;

95
typedef class FreeList<Metachunk> ChunkList;
96 97

// Manages the global free lists of chunks.
98
class ChunkManager : public CHeapObj<mtInternal> {
99
  friend class TestVirtualSpaceNodeTest;
100 101

  // Free list of chunks of different sizes.
102
  //   SpecializedChunk
103 104 105
  //   SmallChunk
  //   MediumChunk
  //   HumongousChunk
106 107 108 109
  ChunkList _free_chunks[NumberOfFreeLists];

  //   HumongousChunk
  ChunkTreeDictionary _humongous_dictionary;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  // ChunkManager in all lists of this type
  size_t _free_chunks_total;
  size_t _free_chunks_count;

  void dec_free_chunks_total(size_t v) {
    assert(_free_chunks_count > 0 &&
             _free_chunks_total > 0,
             "About to go negative");
    Atomic::add_ptr(-1, &_free_chunks_count);
    jlong minus_v = (jlong) - (jlong) v;
    Atomic::add_ptr(minus_v, &_free_chunks_total);
  }

  // Debug support

  size_t sum_free_chunks();
  size_t sum_free_chunks_count();

  void locked_verify_free_chunks_total();
130 131 132 133 134
  void slow_locked_verify_free_chunks_total() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_total();
    }
  }
135
  void locked_verify_free_chunks_count();
136 137 138 139 140
  void slow_locked_verify_free_chunks_count() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_count();
    }
  }
141 142 143 144
  void verify_free_chunks_count();

 public:

145 146 147 148 149 150
  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
      : _free_chunks_total(0), _free_chunks_count(0) {
    _free_chunks[SpecializedIndex].set_size(specialized_size);
    _free_chunks[SmallIndex].set_size(small_size);
    _free_chunks[MediumIndex].set_size(medium_size);
  }
151 152 153 154

  // add or delete (return) a chunk to the global freelist.
  Metachunk* chunk_freelist_allocate(size_t word_size);

155 156 157 158
  // Map a size to a list index assuming that there are lists
  // for special, small, medium, and humongous chunks.
  static ChunkIndex list_index(size_t size);

159 160 161 162
  // Remove the chunk from its freelist.  It is
  // expected to be on one of the _free_chunks[] lists.
  void remove_chunk(Metachunk* chunk);

163 164 165 166
  // Add the simple linked list of chunks to the freelist of chunks
  // of type index.
  void return_chunks(ChunkIndex index, Metachunk* chunks);

167
  // Total of the space in the free chunks list
E
ehelin 已提交
168 169
  size_t free_chunks_total_words();
  size_t free_chunks_total_bytes();
170 171 172 173 174 175 176 177

  // Number of chunks in the free chunks list
  size_t free_chunks_count();

  void inc_free_chunks_total(size_t v, size_t count = 1) {
    Atomic::add_ptr(count, &_free_chunks_count);
    Atomic::add_ptr(v, &_free_chunks_total);
  }
178 179 180
  ChunkTreeDictionary* humongous_dictionary() {
    return &_humongous_dictionary;
  }
181 182 183 184 185 186

  ChunkList* free_chunks(ChunkIndex index);

  // Returns the list for the given chunk word size.
  ChunkList* find_free_chunks_list(size_t word_size);

187
  // Remove from a list by size.  Selects list based on size of chunk.
188 189
  Metachunk* free_chunks_get(size_t chunk_word_size);

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#define index_bounds_check(index)                                         \
  assert(index == SpecializedIndex ||                                     \
         index == SmallIndex ||                                           \
         index == MediumIndex ||                                          \
         index == HumongousIndex, err_msg("Bad index: %d", (int) index))

  size_t num_free_chunks(ChunkIndex index) const {
    index_bounds_check(index);

    if (index == HumongousIndex) {
      return _humongous_dictionary.total_free_blocks();
    }

    ssize_t count = _free_chunks[index].count();
    return count == -1 ? 0 : (size_t) count;
  }

  size_t size_free_chunks_in_bytes(ChunkIndex index) const {
    index_bounds_check(index);

    size_t word_size = 0;
    if (index == HumongousIndex) {
      word_size = _humongous_dictionary.total_size();
    } else {
      const size_t size_per_chunk_in_words = _free_chunks[index].size();
      word_size = size_per_chunk_in_words * num_free_chunks(index);
    }

    return word_size * BytesPerWord;
  }

  MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
    return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
                                         num_free_chunks(SmallIndex),
                                         num_free_chunks(MediumIndex),
                                         num_free_chunks(HumongousIndex),
                                         size_free_chunks_in_bytes(SpecializedIndex),
                                         size_free_chunks_in_bytes(SmallIndex),
                                         size_free_chunks_in_bytes(MediumIndex),
                                         size_free_chunks_in_bytes(HumongousIndex));
  }

232 233
  // Debug support
  void verify();
234 235 236 237 238
  void slow_verify() {
    if (metaspace_slow_verify) {
      verify();
    }
  }
239
  void locked_verify();
240 241 242 243 244
  void slow_locked_verify() {
    if (metaspace_slow_verify) {
      locked_verify();
    }
  }
245 246 247 248
  void verify_free_chunks_total();

  void locked_print_free_chunks(outputStream* st);
  void locked_print_sum_free_chunks(outputStream* st);
249

250
  void print_on(outputStream* st) const;
251 252 253 254 255
};

// Used to manage the free list of Metablocks (a block corresponds
// to the allocation of a quantum of metadata).
class BlockFreelist VALUE_OBJ_CLASS_SPEC {
256
  BlockTreeDictionary* _dictionary;
257

258 259 260 261
  // Only allocate and split from freelist if the size of the allocation
  // is at least 1/4th the size of the available block.
  const static int WasteMultiplier = 4;

262
  // Accessors
263
  BlockTreeDictionary* dictionary() const { return _dictionary; }
264 265 266 267 268 269

 public:
  BlockFreelist();
  ~BlockFreelist();

  // Get and return a block to the free list
270 271
  MetaWord* get_block(size_t word_size);
  void return_block(MetaWord* p, size_t word_size);
272

273 274
  size_t total_size() {
  if (dictionary() == NULL) {
275
    return 0;
276 277
  } else {
    return dictionary()->total_size();
278
  }
279
}
280 281 282 283

  void print_on(outputStream* st) const;
};

284
// A VirtualSpaceList node.
285 286 287 288 289 290 291 292 293 294 295
class VirtualSpaceNode : public CHeapObj<mtClass> {
  friend class VirtualSpaceList;

  // Link to next VirtualSpaceNode
  VirtualSpaceNode* _next;

  // total in the VirtualSpace
  MemRegion _reserved;
  ReservedSpace _rs;
  VirtualSpace _virtual_space;
  MetaWord* _top;
296 297
  // count of chunks contained in this VirtualSpace
  uintx _container_count;
298 299 300 301 302

  // Convenience functions to access the _virtual_space
  char* low()  const { return virtual_space()->low(); }
  char* high() const { return virtual_space()->high(); }

303 304 305 306
  // The first Metachunk will be allocated at the bottom of the
  // VirtualSpace
  Metachunk* first_chunk() { return (Metachunk*) bottom(); }

307 308
  // Committed but unused space in the virtual space
  size_t free_words_in_vs() const;
309 310 311
 public:

  VirtualSpaceNode(size_t byte_size);
312
  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
313 314
  ~VirtualSpaceNode();

315 316 317 318
  // Convenience functions for logical bottom and end
  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }

319 320
  bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }

321 322 323
  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }

324 325
  bool is_pre_committed() const { return _virtual_space.special(); }

326 327 328 329 330 331 332 333 334 335 336 337
  // address of next available space in _virtual_space;
  // Accessors
  VirtualSpaceNode* next() { return _next; }
  void set_next(VirtualSpaceNode* v) { _next = v; }

  void set_reserved(MemRegion const v) { _reserved = v; }
  void set_top(MetaWord* v) { _top = v; }

  // Accessors
  MemRegion* reserved() { return &_reserved; }
  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }

338
  // Returns true if "word_size" is available in the VirtualSpace
339
  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
340 341 342 343

  MetaWord* top() const { return _top; }
  void inc_top(size_t word_size) { _top += word_size; }

344
  uintx container_count() { return _container_count; }
345
  void inc_container_count();
346 347
  void dec_container_count();
#ifdef ASSERT
348
  uint container_count_slow();
349 350 351
  void verify_container_count();
#endif

352 353 354 355 356 357 358 359 360 361 362 363 364 365
  // used and capacity in this single entry in the list
  size_t used_words_in_vs() const;
  size_t capacity_words_in_vs() const;

  bool initialize();

  // get space from the virtual space
  Metachunk* take_from_committed(size_t chunk_word_size);

  // Allocate a chunk from the virtual space and return it.
  Metachunk* get_chunk_vs(size_t chunk_word_size);

  // Expands/shrinks the committed space in a virtual space.  Delegates
  // to Virtualspace
366
  bool expand_by(size_t min_words, size_t preferred_words);
367

368 369 370 371
  // In preparation for deleting this node, remove all the chunks
  // in the node from any freelist.
  void purge(ChunkManager* chunk_manager);

372 373 374 375 376 377 378
  // If an allocation doesn't fit in the current node a new node is created.
  // Allocate chunks out of the remaining committed space in this node
  // to avoid wasting that memory.
  // This always adds up because all the chunk sizes are multiples of
  // the smallest chunk size.
  void retire(ChunkManager* chunk_manager);

379
#ifdef ASSERT
380 381
  // Debug support
  void mangle();
382
#endif
383 384 385 386

  void print_on(outputStream* st) const;
};

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
#define assert_is_ptr_aligned(ptr, alignment) \
  assert(is_ptr_aligned(ptr, alignment),      \
    err_msg(PTR_FORMAT " is not aligned to "  \
      SIZE_FORMAT, ptr, alignment))

#define assert_is_size_aligned(size, alignment) \
  assert(is_size_aligned(size, alignment),      \
    err_msg(SIZE_FORMAT " is not aligned to "   \
       SIZE_FORMAT, size, alignment))


// Decide if large pages should be committed when the memory is reserved.
static bool should_commit_large_pages_when_reserving(size_t bytes) {
  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
    size_t words = bytes / BytesPerWord;
    bool is_class = false; // We never reserve large pages for the class space.
    if (MetaspaceGC::can_expand(words, is_class) &&
        MetaspaceGC::allowed_expansion() >= words) {
      return true;
    }
  }

  return false;
}

412
  // byte_size is the size of the associated virtualspace.
413 414
VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
  assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
415

416
#if INCLUDE_CDS
417 418 419
  // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
  // configurable address, generally at the top of the Java heap so other
  // memory addresses don't conflict.
420
  if (DumpSharedSpaces) {
421 422 423 424
    bool large_pages = false; // No large pages when dumping the CDS archive.
    char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
425
    if (_rs.is_reserved()) {
426
      assert(shared_base == 0 || _rs.base() == shared_base, "should match");
427
    } else {
428
      // Get a mmap region anywhere if the SharedBaseAddress fails.
429
      _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
430 431
    }
    MetaspaceShared::set_shared_rs(&_rs);
432 433 434
  } else
#endif
  {
435 436 437
    bool large_pages = should_commit_large_pages_when_reserving(bytes);

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
438 439
  }

440 441 442 443 444 445 446 447
  if (_rs.is_reserved()) {
    assert(_rs.base() != NULL, "Catch if we get a NULL address");
    assert(_rs.size() != 0, "Catch if we get a 0 size");
    assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
    assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());

    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
  }
448 449
}

450 451 452 453
void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
454 455 456 457 458 459 460
    assert(chunk->is_tagged_free(), "Should be tagged free");
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    chunk_manager->remove_chunk(chunk);
    assert(chunk->next() == NULL &&
           chunk->prev() == NULL,
           "Was not removed from its list");
    chunk = (Metachunk*) next;
461 462 463 464 465 466 467 468 469 470 471 472 473
  }
}

#ifdef ASSERT
uint VirtualSpaceNode::container_count_slow() {
  uint count = 0;
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    // Don't count the chunks on the free lists.  Those are
    // still part of the VirtualSpaceNode but not currently
    // counted.
474
    if (!chunk->is_tagged_free()) {
475 476 477 478 479 480 481 482
      count++;
    }
    chunk = (Metachunk*) next;
  }
  return count;
}
#endif

483 484 485 486 487 488 489 490 491 492 493 494 495
// List of VirtualSpaces for metadata allocation.
class VirtualSpaceList : public CHeapObj<mtClass> {
  friend class VirtualSpaceNode;

  enum VirtualSpaceSizes {
    VirtualSpaceSize = 256 * K
  };

  // Head of the list
  VirtualSpaceNode* _virtual_space_list;
  // virtual space currently being used for allocations
  VirtualSpaceNode* _current_virtual_space;

496
  // Is this VirtualSpaceList used for the compressed class space
497 498
  bool _is_class;

499 500 501 502 503
  // Sum of reserved and committed memory in the virtual spaces
  size_t _reserved_words;
  size_t _committed_words;

  // Number of virtual spaces
504 505 506 507 508 509 510 511 512 513 514 515 516
  size_t _virtual_space_count;

  ~VirtualSpaceList();

  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }

  void set_virtual_space_list(VirtualSpaceNode* v) {
    _virtual_space_list = v;
  }
  void set_current_virtual_space(VirtualSpaceNode* v) {
    _current_virtual_space = v;
  }

517
  void link_vs(VirtualSpaceNode* new_entry);
518 519 520 521

  // Get another virtual space and add it to the list.  This
  // is typically prompted by a failed attempt to allocate a chunk
  // and is typically followed by the allocation of a chunk.
522
  bool create_new_virtual_space(size_t vs_word_size);
523

524 525 526 527
  // Chunk up the unused committed space in the current
  // virtual space and add the chunks to the free list.
  void retire_current_virtual_space();

528 529 530 531
 public:
  VirtualSpaceList(size_t word_size);
  VirtualSpaceList(ReservedSpace rs);

532 533
  size_t free_bytes();

534 535 536 537
  Metachunk* get_new_chunk(size_t word_size,
                           size_t grow_chunks_by_words,
                           size_t medium_chunk_bunch);

538 539 540
  bool expand_node_by(VirtualSpaceNode* node,
                      size_t min_words,
                      size_t preferred_words);
541

542 543
  bool expand_by(size_t min_words,
                 size_t preferred_words);
544 545 546 547 548 549 550

  VirtualSpaceNode* current_virtual_space() {
    return _current_virtual_space;
  }

  bool is_class() const { return _is_class; }

551
  bool initialization_succeeded() { return _virtual_space_list != NULL; }
552

553 554 555 556
  size_t reserved_words()  { return _reserved_words; }
  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
  size_t committed_words() { return _committed_words; }
  size_t committed_bytes() { return committed_words() * BytesPerWord; }
557

558 559 560 561
  void inc_reserved_words(size_t v);
  void dec_reserved_words(size_t v);
  void inc_committed_words(size_t v);
  void dec_committed_words(size_t v);
562 563 564
  void inc_virtual_space_count();
  void dec_virtual_space_count();

565 566
  bool contains(const void* ptr);

567
  // Unlink empty VirtualSpaceNodes and free it.
568
  void purge(ChunkManager* chunk_manager);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

  void print_on(outputStream* st) const;

  class VirtualSpaceListIterator : public StackObj {
    VirtualSpaceNode* _virtual_spaces;
   public:
    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
      _virtual_spaces(virtual_spaces) {}

    bool repeat() {
      return _virtual_spaces != NULL;
    }

    VirtualSpaceNode* get_next() {
      VirtualSpaceNode* result = _virtual_spaces;
      if (_virtual_spaces != NULL) {
        _virtual_spaces = _virtual_spaces->next();
      }
      return result;
    }
  };
};

class Metadebug : AllStatic {
  // Debugging support for Metaspaces
  static int _allocation_fail_alot_count;

 public:

  static void init_allocation_fail_alot_count();
#ifdef ASSERT
  static bool test_metadata_failure();
#endif
};

int Metadebug::_allocation_fail_alot_count = 0;

//  SpaceManager - used by Metaspace to handle allocations
class SpaceManager : public CHeapObj<mtClass> {
  friend class Metaspace;
  friend class Metadebug;

 private:
612

613
  // protects allocations
614 615
  Mutex* const _lock;

616 617 618
  // Type of metadata allocated.
  Metaspace::MetadataType _mdtype;

619 620 621
  // List of chunks in use by this SpaceManager.  Allocations
  // are done from the current chunk.  The list is used for deallocating
  // chunks when the SpaceManager is freed.
622
  Metachunk* _chunks_in_use[NumberOfInUseLists];
623 624
  Metachunk* _current_chunk;

625 626
  // Number of small chunks to allocate to a manager
  // If class space manager, small chunks are unlimited
627 628 629
  static uint const _small_chunk_limit;

  // Sum of all space in allocated chunks
630 631 632 633 634
  size_t _allocated_blocks_words;

  // Sum of all allocated chunks
  size_t _allocated_chunks_words;
  size_t _allocated_chunks_count;
635 636 637 638 639 640 641 642 643 644 645 646

  // Free lists of blocks are per SpaceManager since they
  // are assumed to be in chunks in use by the SpaceManager
  // and all chunks in use by a SpaceManager are freed when
  // the class loader using the SpaceManager is collected.
  BlockFreelist _block_freelists;

  // protects virtualspace and chunk expansions
  static const char*  _expand_lock_name;
  static const int    _expand_lock_rank;
  static Mutex* const _expand_lock;

647
 private:
648 649
  // Accessors
  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
650 651 652
  void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
    _chunks_in_use[index] = v;
  }
653 654 655 656 657

  BlockFreelist* block_freelists() const {
    return (BlockFreelist*) &_block_freelists;
  }

658
  Metaspace::MetadataType mdtype() { return _mdtype; }
659 660 661

  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
662 663 664 665 666 667 668 669 670 671

  Metachunk* current_chunk() const { return _current_chunk; }
  void set_current_chunk(Metachunk* v) {
    _current_chunk = v;
  }

  Metachunk* find_current_chunk(size_t word_size);

  // Add chunk to the list of chunks in use
  void add_chunk(Metachunk* v, bool make_current);
672
  void retire_current_chunk();
673 674 675

  Mutex* lock() const { return _lock; }

676 677 678 679 680
  const char* chunk_size_name(ChunkIndex index) const;

 protected:
  void initialize();

681
 public:
682
  SpaceManager(Metaspace::MetadataType mdtype,
683
               Mutex* lock);
684 685
  ~SpaceManager();

686 687
  enum ChunkMultiples {
    MediumChunkMultiple = 4
688 689
  };

690 691
  bool is_class() { return _mdtype == Metaspace::ClassType; }

692
  // Accessors
693 694 695 696 697 698
  size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
  size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
  size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
  size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }

  size_t smallest_chunk_size()  { return specialized_chunk_size(); }
699

700 701 702 703 704
  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
  size_t allocated_chunks_count() const { return _allocated_chunks_count; }

705
  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
706 707 708

  static Mutex* expand_lock() { return _expand_lock; }

709 710 711 712 713 714 715 716 717 718 719 720
  // Increment the per Metaspace and global running sums for Metachunks
  // by the given size.  This is used when a Metachunk to added to
  // the in-use list.
  void inc_size_metrics(size_t words);
  // Increment the per Metaspace and global running sums Metablocks by the given
  // size.  This is used when a Metablock is allocated.
  void inc_used_metrics(size_t words);
  // Delete the portion of the running sums for this SpaceManager. That is,
  // the globals running sums for the Metachunks and Metablocks are
  // decremented for all the Metachunks in-use by this SpaceManager.
  void dec_total_from_size_metrics();

721 722 723 724 725
  // Set the sizes for the initial chunks.
  void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                               size_t* chunk_word_size,
                               size_t* class_chunk_word_size);

726 727 728 729 730 731 732 733 734
  size_t sum_capacity_in_chunks_in_use() const;
  size_t sum_used_in_chunks_in_use() const;
  size_t sum_free_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;

  size_t sum_count_in_chunks_in_use();
  size_t sum_count_in_chunks_in_use(ChunkIndex i);

735 736
  Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);

737 738 739 740 741
  // Block allocation and deallocation.
  // Allocates a block from the current chunk
  MetaWord* allocate(size_t word_size);

  // Helper for allocations
742
  MetaWord* allocate_work(size_t word_size);
743 744

  // Returns a block to the per manager freelist
745
  void deallocate(MetaWord* p, size_t word_size);
746 747 748 749 750 751 752 753

  // Based on the allocation size and a minimum chunk size,
  // returned chunk size (for expanding space for chunk allocation).
  size_t calc_chunk_size(size_t allocation_word_size);

  // Called when an allocation from the current chunk fails.
  // Gets a new chunk (may require getting a new virtual space),
  // and allocates from that chunk.
754
  MetaWord* grow_and_allocate(size_t word_size);
755

756 757 758
  // Notify memory usage to MemoryService.
  void track_metaspace_memory_usage();

759 760 761 762 763 764 765
  // debugging support.

  void dump(outputStream* const out) const;
  void print_on(outputStream* st) const;
  void locked_print_chunks_in_use_on(outputStream* st) const;

  void verify();
766
  void verify_chunk_size(Metachunk* chunk);
767
  NOT_PRODUCT(void mangle_freed_chunks();)
768
#ifdef ASSERT
769
  void verify_allocated_blocks_words();
770
#endif
771 772 773 774

  size_t get_raw_word_size(size_t word_size) {
    size_t byte_size = word_size * BytesPerWord;

775 776 777
    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
    raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());

778 779 780 781 782
    size_t raw_word_size = raw_bytes_size / BytesPerWord;
    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");

    return raw_word_size;
  }
783 784 785 786 787 788 789 790 791 792 793 794
};

uint const SpaceManager::_small_chunk_limit = 4;

const char* SpaceManager::_expand_lock_name =
  "SpaceManager chunk allocation lock";
const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
Mutex* const SpaceManager::_expand_lock =
  new Mutex(SpaceManager::_expand_lock_rank,
            SpaceManager::_expand_lock_name,
            Mutex::_allow_vm_block_flag);

795 796 797 798 799
void VirtualSpaceNode::inc_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count++;
  assert(_container_count == container_count_slow(),
         err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
800
                 " container_count_slow() " SIZE_FORMAT,
801 802 803 804 805 806 807 808 809 810 811 812
                 _container_count, container_count_slow()));
}

void VirtualSpaceNode::dec_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count--;
}

#ifdef ASSERT
void VirtualSpaceNode::verify_container_count() {
  assert(_container_count == container_count_slow(),
    err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
813
            " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
814 815 816
}
#endif

817 818 819 820 821 822 823 824 825 826 827 828 829
// BlockFreelist methods

BlockFreelist::BlockFreelist() : _dictionary(NULL) {}

BlockFreelist::~BlockFreelist() {
  if (_dictionary != NULL) {
    if (Verbose && TraceMetadataChunkAllocation) {
      _dictionary->print_free_lists(gclog_or_tty);
    }
    delete _dictionary;
  }
}

830
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
831
  Metablock* free_chunk = ::new (p) Metablock(word_size);
832
  if (dictionary() == NULL) {
833
   _dictionary = new BlockTreeDictionary();
834
  }
835
  dictionary()->return_chunk(free_chunk);
836 837
}

838
MetaWord* BlockFreelist::get_block(size_t word_size) {
839 840 841 842
  if (dictionary() == NULL) {
    return NULL;
  }

843
  if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
844
    // Dark matter.  Too small for dictionary.
845 846 847
    return NULL;
  }

848
  Metablock* free_block =
849
    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
850 851 852 853
  if (free_block == NULL) {
    return NULL;
  }

854 855 856 857 858 859 860 861 862
  const size_t block_size = free_block->size();
  if (block_size > WasteMultiplier * word_size) {
    return_block((MetaWord*)free_block, block_size);
    return NULL;
  }

  MetaWord* new_block = (MetaWord*)free_block;
  assert(block_size >= word_size, "Incorrect size of block from freelist");
  const size_t unused = block_size - word_size;
863
  if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
864 865 866 867
    return_block(new_block + word_size, unused);
  }

  return new_block;
868 869 870 871 872 873 874 875 876 877 878 879 880
}

void BlockFreelist::print_on(outputStream* st) const {
  if (dictionary() == NULL) {
    return;
  }
  dictionary()->print_free_lists(st);
}

// VirtualSpaceNode methods

VirtualSpaceNode::~VirtualSpaceNode() {
  _rs.release();
881 882 883 884
#ifdef ASSERT
  size_t word_size = sizeof(*this) / BytesPerWord;
  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
#endif
885 886 887 888 889 890 891 892 893 894 895
}

size_t VirtualSpaceNode::used_words_in_vs() const {
  return pointer_delta(top(), bottom(), sizeof(MetaWord));
}

// Space committed in the VirtualSpace
size_t VirtualSpaceNode::capacity_words_in_vs() const {
  return pointer_delta(end(), bottom(), sizeof(MetaWord));
}

896 897 898
size_t VirtualSpaceNode::free_words_in_vs() const {
  return pointer_delta(end(), top(), sizeof(MetaWord));
}
899 900 901 902 903 904 905 906 907

// Allocates the chunk from the virtual space only.
// This interface is also used internally for debugging.  Not all
// chunks removed here are necessarily used for allocation.
Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
  // Bottom of the new chunk
  MetaWord* chunk_limit = top();
  assert(chunk_limit != NULL, "Not safe to call this method");

908 909 910 911 912 913
  // The virtual spaces are always expanded by the
  // commit granularity to enforce the following condition.
  // Without this the is_available check will not work correctly.
  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
      "The committed memory doesn't match the expanded memory.");

914 915
  if (!is_available(chunk_word_size)) {
    if (TraceMetadataChunkAllocation) {
916
      gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
917
      // Dump some information about the virtual space that is nearly full
918
      print_on(gclog_or_tty);
919 920 921 922 923 924 925
    }
    return NULL;
  }

  // Take the space  (bump top on the current virtual space).
  inc_top(chunk_word_size);

926 927
  // Initialize the chunk
  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
928 929 930 931 932
  return result;
}


// Expand the virtual space (commit more of the reserved space)
933 934 935 936 937 938 939 940
bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
  size_t min_bytes = min_words * BytesPerWord;
  size_t preferred_bytes = preferred_words * BytesPerWord;

  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();

  if (uncommitted < min_bytes) {
    return false;
941
  }
942 943 944 945 946 947

  size_t commit = MIN2(preferred_bytes, uncommitted);
  bool result = virtual_space()->expand_by(commit, false);

  assert(result, "Failed to commit memory");

948 949 950 951 952
  return result;
}

Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
953 954 955 956 957
  Metachunk* result = take_from_committed(chunk_word_size);
  if (result != NULL) {
    inc_container_count();
  }
  return result;
958 959 960 961 962 963 964 965
}

bool VirtualSpaceNode::initialize() {

  if (!_rs.is_reserved()) {
    return false;
  }

966 967 968 969 970 971 972 973 974 975 976 977 978
  // These are necessary restriction to make sure that the virtual space always
  // grows in steps of Metaspace::commit_alignment(). If both base and size are
  // aligned only the middle alignment of the VirtualSpace is used.
  assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
  assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());

  // ReservedSpaces marked as special will have the entire memory
  // pre-committed. Setting a committed size will make sure that
  // committed_size and actual_committed_size agrees.
  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;

  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
                                            Metaspace::commit_alignment());
979
  if (result) {
980 981 982
    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
        "Checking that the pre-committed memory was registered by the VirtualSpace");

983 984 985 986
    set_top((MetaWord*)virtual_space()->low());
    set_reserved(MemRegion((HeapWord*)_rs.base(),
                 (HeapWord*)(_rs.base() + _rs.size())));

987 988 989 990 991 992 993 994
    assert(reserved()->start() == (HeapWord*) _rs.base(),
      err_msg("Reserved start was not set properly " PTR_FORMAT
        " != " PTR_FORMAT, reserved()->start(), _rs.base()));
    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
      err_msg("Reserved size was not set properly " SIZE_FORMAT
        " != " SIZE_FORMAT, reserved()->word_size(),
        _rs.size() / BytesPerWord));
  }
995 996 997 998 999 1000 1001 1002 1003 1004 1005

  return result;
}

void VirtualSpaceNode::print_on(outputStream* st) const {
  size_t used = used_words_in_vs();
  size_t capacity = capacity_words_in_vs();
  VirtualSpace* vs = virtual_space();
  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
           "[" PTR_FORMAT ", " PTR_FORMAT ", "
           PTR_FORMAT ", " PTR_FORMAT ")",
1006 1007
           vs, capacity / K,
           capacity == 0 ? 0 : used * 100 / capacity,
1008 1009 1010 1011
           bottom(), top(), end(),
           vs->high_boundary());
}

1012
#ifdef ASSERT
1013 1014 1015 1016
void VirtualSpaceNode::mangle() {
  size_t word_size = capacity_words_in_vs();
  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
}
1017
#endif // ASSERT
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

// VirtualSpaceList methods
// Space allocated from the VirtualSpace

VirtualSpaceList::~VirtualSpaceList() {
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    delete vsl;
  }
}

1030
void VirtualSpaceList::inc_reserved_words(size_t v) {
1031
  assert_lock_strong(SpaceManager::expand_lock());
1032
  _reserved_words = _reserved_words + v;
1033
}
1034
void VirtualSpaceList::dec_reserved_words(size_t v) {
1035
  assert_lock_strong(SpaceManager::expand_lock());
1036 1037 1038
  _reserved_words = _reserved_words - v;
}

1039 1040 1041 1042 1043 1044
#define assert_committed_below_limit()                             \
  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize,      \
      err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
              " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
          MetaspaceAux::committed_bytes(), MaxMetaspaceSize));

1045 1046 1047
void VirtualSpaceList::inc_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words + v;
1048 1049

  assert_committed_below_limit();
1050 1051 1052 1053
}
void VirtualSpaceList::dec_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words - v;
1054 1055

  assert_committed_below_limit();
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

void VirtualSpaceList::inc_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count++;
}
void VirtualSpaceList::dec_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count--;
}

void ChunkManager::remove_chunk(Metachunk* chunk) {
  size_t word_size = chunk->word_size();
  ChunkIndex index = list_index(word_size);
  if (index != HumongousIndex) {
    free_chunks(index)->remove_chunk(chunk);
  } else {
    humongous_dictionary()->remove_chunk(chunk);
  }

  // Chunk is being removed from the chunks free list.
1077
  dec_free_chunks_total(chunk->word_size());
1078 1079 1080 1081 1082
}

// Walk the list of VirtualSpaceNodes and delete
// nodes with a 0 container_count.  Remove Metachunks in
// the node from their respective freelists.
1083
void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1084
  assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
  assert_lock_strong(SpaceManager::expand_lock());
  // Don't use a VirtualSpaceListIterator because this
  // list is being changed and a straightforward use of an iterator is not safe.
  VirtualSpaceNode* purged_vsl = NULL;
  VirtualSpaceNode* prev_vsl = virtual_space_list();
  VirtualSpaceNode* next_vsl = prev_vsl;
  while (next_vsl != NULL) {
    VirtualSpaceNode* vsl = next_vsl;
    next_vsl = vsl->next();
    // Don't free the current virtual space since it will likely
    // be needed soon.
    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
      // Unlink it from the list
      if (prev_vsl == vsl) {
1099 1100
        // This is the case of the current node being the first node.
        assert(vsl == virtual_space_list(), "Expected to be the first node");
1101 1102 1103 1104 1105
        set_virtual_space_list(vsl->next());
      } else {
        prev_vsl->set_next(vsl->next());
      }

1106
      vsl->purge(chunk_manager);
1107 1108
      dec_reserved_words(vsl->reserved_words());
      dec_committed_words(vsl->committed_words());
1109 1110 1111 1112 1113 1114 1115 1116 1117
      dec_virtual_space_count();
      purged_vsl = vsl;
      delete vsl;
    } else {
      prev_vsl = vsl;
    }
  }
#ifdef ASSERT
  if (purged_vsl != NULL) {
1118 1119
    // List should be stable enough to use an iterator here.
    VirtualSpaceListIterator iter(virtual_space_list());
1120 1121 1122 1123 1124 1125 1126 1127
    while (iter.repeat()) {
      VirtualSpaceNode* vsl = iter.get_next();
      assert(vsl != purged_vsl, "Purge of vsl failed");
    }
  }
#endif
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

// This function looks at the mmap regions in the metaspace without locking.
// The chunks are added with store ordering and not deleted except for at
// unloading time during a safepoint.
bool VirtualSpaceList::contains(const void* ptr) {
  // List should be stable enough to use an iterator here because removing virtual
  // space nodes is only allowed at a safepoint.
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsn = iter.get_next();
    if (vsn->contains(ptr)) {
      return true;
    }
  }
  return false;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
void VirtualSpaceList::retire_current_virtual_space() {
  assert_lock_strong(SpaceManager::expand_lock());

  VirtualSpaceNode* vsn = current_virtual_space();

  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
                                  Metaspace::chunk_manager_metadata();

  vsn->retire(cm);
}

void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
    ChunkIndex index = (ChunkIndex)i;
    size_t chunk_size = chunk_manager->free_chunks(index)->size();

    while (free_words_in_vs() >= chunk_size) {
      DEBUG_ONLY(verify_container_count();)
      Metachunk* chunk = get_chunk_vs(chunk_size);
      assert(chunk != NULL, "allocation should have been successful");

      chunk_manager->return_chunks(index, chunk);
      chunk_manager->inc_free_chunks_total(chunk_size);
      DEBUG_ONLY(verify_container_count();)
    }
  }
  assert(free_words_in_vs() == 0, "should be empty now");
}

1174
VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1175 1176 1177
                                   _is_class(false),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1178 1179
                                   _reserved_words(0),
                                   _committed_words(0),
1180 1181 1182
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
1183
  create_new_virtual_space(word_size);
1184 1185 1186 1187 1188 1189
}

VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
                                   _is_class(true),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1190 1191
                                   _reserved_words(0),
                                   _committed_words(0),
1192 1193 1194 1195 1196
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
  bool succeeded = class_entry->initialize();
1197 1198 1199
  if (succeeded) {
    link_vs(class_entry);
  }
1200 1201
}

1202 1203 1204 1205
size_t VirtualSpaceList::free_bytes() {
  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
}

1206
// Allocate another meta virtual space and add it to the list.
1207
bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1208
  assert_lock_strong(SpaceManager::expand_lock());
1209 1210 1211 1212 1213 1214 1215 1216

  if (is_class()) {
    assert(false, "We currently don't support more than one VirtualSpace for"
                  " the compressed class space. The initialization of the"
                  " CCS uses another code path and should not hit this path.");
    return false;
  }

1217
  if (vs_word_size == 0) {
1218
    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1219 1220
    return false;
  }
1221

1222 1223
  // Reserve the space
  size_t vs_byte_size = vs_word_size * BytesPerWord;
1224
  assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1225 1226 1227 1228 1229 1230 1231

  // Allocate the meta virtual space and initialize it.
  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
  if (!new_entry->initialize()) {
    delete new_entry;
    return false;
  } else {
1232 1233
    assert(new_entry->reserved_words() == vs_word_size,
        "Reserved memory size differs from requested memory size");
1234 1235
    // ensure lock-free iteration sees fully initialized node
    OrderAccess::storestore();
1236
    link_vs(new_entry);
1237 1238 1239 1240
    return true;
  }
}

1241
void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1242 1243 1244 1245 1246 1247
  if (virtual_space_list() == NULL) {
      set_virtual_space_list(new_entry);
  } else {
    current_virtual_space()->set_next(new_entry);
  }
  set_current_virtual_space(new_entry);
1248 1249
  inc_reserved_words(new_entry->reserved_words());
  inc_committed_words(new_entry->committed_words());
1250 1251 1252 1253 1254 1255
  inc_virtual_space_count();
#ifdef ASSERT
  new_entry->mangle();
#endif
  if (TraceMetavirtualspaceAllocation && Verbose) {
    VirtualSpaceNode* vsl = current_virtual_space();
1256
    vsl->print_on(gclog_or_tty);
1257 1258 1259
  }
}

1260 1261 1262
bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
                                      size_t min_words,
                                      size_t preferred_words) {
1263 1264
  size_t before = node->committed_words();

1265
  bool result = node->expand_by(min_words, preferred_words);
1266 1267 1268 1269

  size_t after = node->committed_words();

  // after and before can be the same if the memory was pre-committed.
1270
  assert(after >= before, "Inconsistency");
1271 1272 1273 1274 1275
  inc_committed_words(after - before);

  return result;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
  assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
  assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
  assert(min_words <= preferred_words, "Invalid arguments");

  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
    return  false;
  }

  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
  if (allowed_expansion_words < min_words) {
    return false;
  }

  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);

  // Commit more memory from the the current virtual space.
  bool vs_expanded = expand_node_by(current_virtual_space(),
                                    min_words,
                                    max_expansion_words);
  if (vs_expanded) {
    return true;
  }
1299
  retire_current_virtual_space();
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

  // Get another virtual space.
  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
  grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());

  if (create_new_virtual_space(grow_vs_words)) {
    if (current_virtual_space()->is_pre_committed()) {
      // The memory was pre-committed, so we are done here.
      assert(min_words <= current_virtual_space()->committed_words(),
          "The new VirtualSpace was pre-committed, so it"
          "should be large enough to fit the alloc request.");
      return true;
    }

    return expand_node_by(current_virtual_space(),
                          min_words,
                          max_expansion_words);
  }

  return false;
}

1322
Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1323 1324
                                           size_t grow_chunks_by_words,
                                           size_t medium_chunk_bunch) {
1325

1326 1327
  // Allocate a chunk out of the current virtual space.
  Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1328

1329 1330
  if (next != NULL) {
    return next;
1331 1332
  }

1333 1334
  // The expand amount is currently only determined by the requested sizes
  // and not how much committed memory is left in the current virtual space.
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
  size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
  size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
  if (min_word_size >= preferred_word_size) {
    // Can happen when humongous chunks are allocated.
    preferred_word_size = min_word_size;
  }

  bool expanded = expand_by(min_word_size, preferred_word_size);
  if (expanded) {
    next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
    assert(next != NULL, "The allocation was expected to succeed after the expansion");
  }

   return next;
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
void VirtualSpaceList::print_on(outputStream* st) const {
  if (TraceMetadataChunkAllocation && Verbose) {
    VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* node = iter.get_next();
      node->print_on(st);
    }
  }
}

// MetaspaceGC methods

// VM_CollectForMetadataAllocation is the vm operation used to GC.
// Within the VM operation after the GC the attempt to allocate the metadata
// should succeed.  If the GC did not free enough space for the metaspace
// allocation, the HWM is increased so that another virtualspace will be
// allocated for the metadata.  With perm gen the increase in the perm
// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
// metaspace policy uses those as the small and large steps for the HWM.
//
// After the GC the compute_new_size() for MetaspaceGC is called to
// resize the capacity of the metaspaces.  The current implementation
1374
// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1375
// to resize the Java heap by some GC's.  New flags can be implemented
1376
// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1377
// free space is desirable in the metaspace capacity to decide how much
1378
// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1379 1380 1381 1382 1383 1384
// free space is desirable in the metaspace capacity before decreasing
// the HWM.

// Calculate the amount to increase the high water mark (HWM).
// Increase by a minimum amount (MinMetaspaceExpansion) so that
// another expansion is not requested too soon.  If that is not
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
// If that is still not enough, expand by the size of the allocation
// plus some.
size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
  size_t min_delta = MinMetaspaceExpansion;
  size_t max_delta = MaxMetaspaceExpansion;
  size_t delta = align_size_up(bytes, Metaspace::commit_alignment());

  if (delta <= min_delta) {
    delta = min_delta;
  } else if (delta <= max_delta) {
1396 1397 1398
    // Don't want to hit the high water mark on the next
    // allocation so make the delta greater than just enough
    // for this allocation.
1399 1400 1401 1402 1403
    delta = max_delta;
  } else {
    // This allocation is large but the next ones are probably not
    // so increase by the minimum.
    delta = delta + min_delta;
1404
  }
1405 1406 1407 1408

  assert_is_size_aligned(delta, Metaspace::commit_alignment());

  return delta;
1409 1410
}

1411 1412 1413 1414 1415
size_t MetaspaceGC::capacity_until_GC() {
  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
  assert(value >= MetaspaceSize, "Not initialied properly?");
  return value;
}
1416

1417
bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
1418 1419
  assert_is_size_aligned(v, Metaspace::commit_alignment());

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  size_t capacity_until_GC = (size_t) _capacity_until_GC;
  size_t new_value = capacity_until_GC + v;

  if (new_value < capacity_until_GC) {
    // The addition wrapped around, set new_value to aligned max value.
    new_value = align_size_down(max_uintx, Metaspace::commit_alignment());
  }

  intptr_t expected = (intptr_t) capacity_until_GC;
  intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);

  if (expected != actual) {
    return false;
  }

  if (new_cap_until_GC != NULL) {
    *new_cap_until_GC = new_value;
  }
  if (old_cap_until_GC != NULL) {
    *old_cap_until_GC = capacity_until_GC;
  }
  return true;
1442 1443 1444 1445 1446 1447 1448 1449
}

size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
void MetaspaceGC::initialize() {
  // Set the high-water mark to MaxMetapaceSize during VM initializaton since
  // we can't do a GC during initialization.
  _capacity_until_GC = MaxMetaspaceSize;
}

void MetaspaceGC::post_initialize() {
  // Reset the high-water mark once the VM initialization is done.
  _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
}

1461 1462 1463 1464 1465
bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
  // Check if the compressed class space is full.
  if (is_class && Metaspace::using_class_space()) {
    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1466 1467
      return false;
    }
1468 1469
  }

1470 1471 1472 1473 1474
  // Check if the user has imposed a limit on the metaspace memory.
  size_t committed_bytes = MetaspaceAux::committed_bytes();
  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
    return false;
  }
1475

1476 1477 1478 1479 1480 1481
  return true;
}

size_t MetaspaceGC::allowed_expansion() {
  size_t committed_bytes = MetaspaceAux::committed_bytes();
  size_t capacity_until_gc = capacity_until_GC();
1482

1483 1484 1485
  assert(capacity_until_gc >= committed_bytes,
        err_msg("capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
                capacity_until_gc, committed_bytes));
1486

1487
  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1488 1489
  size_t left_until_GC = capacity_until_gc - committed_bytes;
  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1490

1491 1492
  return left_to_commit / BytesPerWord;
}
1493 1494 1495 1496 1497 1498

void MetaspaceGC::compute_new_size() {
  assert(_shrink_factor <= 100, "invalid shrink factor");
  uint current_shrink_factor = _shrink_factor;
  _shrink_factor = 0;

1499 1500 1501 1502 1503 1504 1505 1506 1507
  // Using committed_bytes() for used_after_gc is an overestimation, since the
  // chunk free lists are included in committed_bytes() and the memory in an
  // un-fragmented chunk free list is available for future allocations.
  // However, if the chunk free lists becomes fragmented, then the memory may
  // not be available for future allocations and the memory is therefore "in use".
  // Including the chunk free lists in the definition of "in use" is therefore
  // necessary. Not including the chunk free lists can cause capacity_until_GC to
  // shrink below committed_bytes() and this has caused serious bugs in the past.
  const size_t used_after_gc = MetaspaceAux::committed_bytes();
1508
  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1509

1510
  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;

  const double min_tmp = used_after_gc / maximum_used_percentage;
  size_t minimum_desired_capacity =
    (size_t)MIN2(min_tmp, double(max_uintx));
  // Don't shrink less than the initial generation size
  minimum_desired_capacity = MAX2(minimum_desired_capacity,
                                  MetaspaceSize);

  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
    gclog_or_tty->print_cr("  "
                  "  minimum_free_percentage: %6.2f"
                  "  maximum_used_percentage: %6.2f",
                  minimum_free_percentage,
                  maximum_used_percentage);
    gclog_or_tty->print_cr("  "
1528 1529
                  "   used_after_gc       : %6.1fKB",
                  used_after_gc / (double) K);
1530 1531 1532
  }


1533
  size_t shrink_bytes = 0;
1534 1535 1536 1537
  if (capacity_until_GC < minimum_desired_capacity) {
    // If we have less capacity below the metaspace HWM, then
    // increment the HWM.
    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1538
    expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1539 1540
    // Don't expand unless it's significant
    if (expand_bytes >= MinMetaspaceExpansion) {
1541 1542 1543 1544
      size_t new_capacity_until_GC = 0;
      bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
      assert(succeeded, "Should always succesfully increment HWM when at safepoint");

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
      Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
                                               new_capacity_until_GC,
                                               MetaspaceGCThresholdUpdater::ComputeNewSize);
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("    expanding:"
                      "  minimum_desired_capacity: %6.1fKB"
                      "  expand_bytes: %6.1fKB"
                      "  MinMetaspaceExpansion: %6.1fKB"
                      "  new metaspace HWM:  %6.1fKB",
                      minimum_desired_capacity / (double) K,
                      expand_bytes / (double) K,
                      MinMetaspaceExpansion / (double) K,
                      new_capacity_until_GC / (double) K);
      }
1559 1560 1561 1562 1563 1564
    }
    return;
  }

  // No expansion, now see if we want to shrink
  // We would never want to shrink more than this
1565 1566 1567
  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
  assert(max_shrink_bytes >= 0, err_msg("max_shrink_bytes " SIZE_FORMAT,
    max_shrink_bytes));
1568 1569

  // Should shrinking be considered?
1570 1571
  if (MaxMetaspaceFreeRatio < 100) {
    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1572 1573 1574 1575 1576
    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
    const double max_tmp = used_after_gc / minimum_used_percentage;
    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
    maximum_desired_capacity = MAX2(maximum_desired_capacity,
                                    MetaspaceSize);
1577
    if (PrintGCDetails && Verbose) {
1578 1579 1580 1581 1582 1583
      gclog_or_tty->print_cr("  "
                             "  maximum_free_percentage: %6.2f"
                             "  minimum_used_percentage: %6.2f",
                             maximum_free_percentage,
                             minimum_used_percentage);
      gclog_or_tty->print_cr("  "
1584 1585
                             "  minimum_desired_capacity: %6.1fKB"
                             "  maximum_desired_capacity: %6.1fKB",
1586 1587 1588 1589 1590 1591 1592 1593 1594
                             minimum_desired_capacity / (double) K,
                             maximum_desired_capacity / (double) K);
    }

    assert(minimum_desired_capacity <= maximum_desired_capacity,
           "sanity check");

    if (capacity_until_GC > maximum_desired_capacity) {
      // Capacity too large, compute shrinking size
1595
      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1596 1597 1598 1599 1600 1601
      // We don't want shrink all the way back to initSize if people call
      // System.gc(), because some programs do that between "phases" and then
      // we'd just have to grow the heap up again for the next phase.  So we
      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
      // on the third call, and 100% by the fourth call.  But if we recompute
      // size without shrinking, it goes back to 0%.
1602
      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1603 1604 1605

      shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());

1606
      assert(shrink_bytes <= max_shrink_bytes,
1607
        err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1608
          shrink_bytes, max_shrink_bytes));
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
      if (current_shrink_factor == 0) {
        _shrink_factor = 10;
      } else {
        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
      }
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("  "
                      "  shrinking:"
                      "  initSize: %.1fK"
                      "  maximum_desired_capacity: %.1fK",
                      MetaspaceSize / (double) K,
                      maximum_desired_capacity / (double) K);
        gclog_or_tty->print_cr("  "
1622
                      "  shrink_bytes: %.1fK"
1623 1624 1625
                      "  current_shrink_factor: %d"
                      "  new shrink factor: %d"
                      "  MinMetaspaceExpansion: %.1fK",
1626
                      shrink_bytes / (double) K,
1627 1628 1629 1630 1631 1632 1633 1634
                      current_shrink_factor,
                      _shrink_factor,
                      MinMetaspaceExpansion / (double) K);
      }
    }
  }

  // Don't shrink unless it's significant
1635 1636
  if (shrink_bytes >= MinMetaspaceExpansion &&
      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1637 1638 1639 1640
    size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
    Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
                                             new_capacity_until_GC,
                                             MetaspaceGCThresholdUpdater::ComputeNewSize);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
  }
}

// Metadebug methods

void Metadebug::init_allocation_fail_alot_count() {
  if (MetadataAllocationFailALot) {
    _allocation_fail_alot_count =
      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
  }
}

#ifdef ASSERT
bool Metadebug::test_metadata_failure() {
  if (MetadataAllocationFailALot &&
      Threads::is_vm_complete()) {
    if (_allocation_fail_alot_count > 0) {
      _allocation_fail_alot_count--;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("Metadata allocation failing for "
                               "MetadataAllocationFailALot");
      }
      init_allocation_fail_alot_count();
      return true;
    }
  }
  return false;
}
#endif

// ChunkManager methods

E
ehelin 已提交
1674
size_t ChunkManager::free_chunks_total_words() {
1675 1676 1677
  return _free_chunks_total;
}

E
ehelin 已提交
1678 1679
size_t ChunkManager::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
1680 1681 1682 1683 1684 1685 1686 1687 1688
}

size_t ChunkManager::free_chunks_count() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
    // This lock is only needed in debug because the verification
    // of the _free_chunks_totals walks the list of free chunks
1689
    slow_locked_verify_free_chunks_count();
1690 1691
  }
#endif
1692
  return _free_chunks_count;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
}

void ChunkManager::locked_verify_free_chunks_total() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks() == _free_chunks_total,
    err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_total,
           sum_free_chunks()));
}

void ChunkManager::verify_free_chunks_total() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_total();
}

void ChunkManager::locked_verify_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks_count() == _free_chunks_count,
    err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_count,
           sum_free_chunks_count()));
}

void ChunkManager::verify_free_chunks_count() {
#ifdef ASSERT
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_count();
#endif
}

void ChunkManager::verify() {
1726 1727 1728
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify();
1729 1730 1731 1732
}

void ChunkManager::locked_verify() {
  locked_verify_free_chunks_count();
1733
  locked_verify_free_chunks_total();
1734 1735 1736 1737
}

void ChunkManager::locked_print_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1738
  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1739 1740 1741 1742 1743
                _free_chunks_total, _free_chunks_count);
}

void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1744
  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
                sum_free_chunks(), sum_free_chunks_count());
}
ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
  return &_free_chunks[index];
}

// These methods that sum the free chunk lists are used in printing
// methods that are used in product builds.
size_t ChunkManager::sum_free_chunks() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t result = 0;
1756
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1757 1758 1759 1760 1761 1762
    ChunkList* list = free_chunks(i);

    if (list == NULL) {
      continue;
    }

1763
    result = result + list->count() * list->size();
1764
  }
1765
  result = result + humongous_dictionary()->total_size();
1766 1767 1768 1769 1770 1771
  return result;
}

size_t ChunkManager::sum_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t count = 0;
1772
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1773 1774 1775 1776
    ChunkList* list = free_chunks(i);
    if (list == NULL) {
      continue;
    }
1777
    count = count + list->count();
1778
  }
1779
  count = count + humongous_dictionary()->total_free_blocks();
1780 1781 1782 1783
  return count;
}

ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1784 1785 1786
  ChunkIndex index = list_index(word_size);
  assert(index < HumongousIndex, "No humongous list");
  return free_chunks(index);
1787 1788 1789 1790 1791
}

Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

1792
  slow_locked_verify();
1793

1794
  Metachunk* chunk = NULL;
1795
  if (list_index(word_size) != HumongousIndex) {
1796 1797
    ChunkList* free_list = find_free_chunks_list(word_size);
    assert(free_list != NULL, "Sanity check");
1798

1799 1800 1801 1802 1803
    chunk = free_list->head();

    if (chunk == NULL) {
      return NULL;
    }
1804 1805

    // Remove the chunk as the head of the list.
1806
    free_list->remove_chunk(chunk);
1807

1808
    if (TraceMetadataChunkAllocation && Verbose) {
1809 1810 1811
      gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
                             PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
                             free_list, chunk, chunk->word_size());
1812 1813
    }
  } else {
1814 1815 1816 1817
    chunk = humongous_dictionary()->get_chunk(
      word_size,
      FreeBlockDictionary<Metachunk>::atLeast);

1818
    if (chunk == NULL) {
1819
      return NULL;
1820
    }
1821 1822 1823 1824 1825 1826 1827 1828

    if (TraceMetadataHumongousAllocation) {
      size_t waste = chunk->word_size() - word_size;
      gclog_or_tty->print_cr("Free list allocate humongous chunk size "
                             SIZE_FORMAT " for requested size " SIZE_FORMAT
                             " waste " SIZE_FORMAT,
                             chunk->word_size(), word_size, waste);
    }
1829
  }
1830

1831
  // Chunk is being removed from the chunks free list.
1832
  dec_free_chunks_total(chunk->word_size());
1833

1834 1835 1836
  // Remove it from the links to this freelist
  chunk->set_next(NULL);
  chunk->set_prev(NULL);
1837 1838 1839
#ifdef ASSERT
  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
  // work.
1840
  chunk->set_is_tagged_free(false);
1841
#endif
1842 1843
  chunk->container()->inc_container_count();

1844
  slow_locked_verify();
1845 1846 1847 1848 1849
  return chunk;
}

Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
1850
  slow_locked_verify();
1851 1852 1853 1854 1855 1856 1857

  // Take from the beginning of the list
  Metachunk* chunk = free_chunks_get(word_size);
  if (chunk == NULL) {
    return NULL;
  }

1858 1859 1860
  assert((word_size <= chunk->word_size()) ||
         list_index(chunk->word_size() == HumongousIndex),
         "Non-humongous variable sized chunk");
1861
  if (TraceMetadataChunkAllocation) {
1862 1863 1864
    size_t list_count;
    if (list_index(word_size) < HumongousIndex) {
      ChunkList* list = find_free_chunks_list(word_size);
1865
      list_count = list->count();
1866 1867 1868
    } else {
      list_count = humongous_dictionary()->total_count();
    }
1869 1870 1871 1872
    gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
                        PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
                        this, chunk, chunk->word_size(), list_count);
    locked_print_free_chunks(gclog_or_tty);
1873 1874 1875 1876 1877
  }

  return chunk;
}

1878
void ChunkManager::print_on(outputStream* out) const {
1879
  if (PrintFLSStatistics != 0) {
1880
    const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1881 1882 1883
  }
}

1884 1885
// SpaceManager methods

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                                           size_t* chunk_word_size,
                                           size_t* class_chunk_word_size) {
  switch (type) {
  case Metaspace::BootMetaspaceType:
    *chunk_word_size = Metaspace::first_chunk_word_size();
    *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
    break;
  case Metaspace::ROMetaspaceType:
    *chunk_word_size = SharedReadOnlySize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::ReadWriteMetaspaceType:
    *chunk_word_size = SharedReadWriteSize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::AnonymousMetaspaceType:
  case Metaspace::ReflectionMetaspaceType:
    *chunk_word_size = SpecializedChunk;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  default:
    *chunk_word_size = SmallChunk;
    *class_chunk_word_size = ClassSmallChunk;
    break;
  }
1912
  assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1913 1914
    err_msg("Initial chunks sizes bad: data  " SIZE_FORMAT
            " class " SIZE_FORMAT,
1915
            *chunk_word_size, *class_chunk_word_size));
1916 1917
}

1918 1919 1920
size_t SpaceManager::sum_free_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t free = 0;
1921
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      free += chunk->free_word_size();
      chunk = chunk->next();
    }
  }
  return free;
}

size_t SpaceManager::sum_waste_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t result = 0;
1934
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1935 1936
   result += sum_waste_in_chunks_in_use(i);
  }
1937

1938 1939 1940 1941 1942 1943 1944 1945
  return result;
}

size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
  size_t result = 0;
  Metachunk* chunk = chunks_in_use(index);
  // Count the free space in all the chunk but not the
  // current chunk from which allocations are still being done.
1946 1947
  while (chunk != NULL) {
    if (chunk != current_chunk()) {
1948
      result += chunk->free_word_size();
1949
    }
1950
    chunk = chunk->next();
1951 1952 1953 1954 1955
  }
  return result;
}

size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
  // For CMS use "allocated_chunks_words()" which does not need the
  // Metaspace lock.  For the other collectors sum over the
  // lists.  Use both methods as a check that "allocated_chunks_words()"
  // is correct.  That is, sum_capacity_in_chunks() is too expensive
  // to use in the product and allocated_chunks_words() should be used
  // but allow for  checking that allocated_chunks_words() returns the same
  // value as sum_capacity_in_chunks_in_use() which is the definitive
  // answer.
  if (UseConcMarkSweepGC) {
    return allocated_chunks_words();
  } else {
    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
    size_t sum = 0;
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
      Metachunk* chunk = chunks_in_use(i);
      while (chunk != NULL) {
1972
        sum += chunk->word_size();
1973 1974
        chunk = chunk->next();
      }
1975 1976
    }
  return sum;
1977
  }
1978 1979 1980 1981
}

size_t SpaceManager::sum_count_in_chunks_in_use() {
  size_t count = 0;
1982
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1983 1984
    count = count + sum_count_in_chunks_in_use(i);
  }
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
  return count;
}

size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(i);
  while (chunk != NULL) {
    count++;
    chunk = chunk->next();
  }
  return count;
}


size_t SpaceManager::sum_used_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t used = 0;
2003
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      used += chunk->used_word_size();
      chunk = chunk->next();
    }
  }
  return used;
}

void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {

2015 2016 2017 2018 2019 2020 2021 2022
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
    Metachunk* chunk = chunks_in_use(i);
    st->print("SpaceManager: %s " PTR_FORMAT,
                 chunk_size_name(i), chunk);
    if (chunk != NULL) {
      st->print_cr(" free " SIZE_FORMAT,
                   chunk->free_word_size());
    } else {
2023
      st->cr();
2024 2025
    }
  }
2026

2027 2028
  chunk_manager()->locked_print_free_chunks(st);
  chunk_manager()->locked_print_sum_free_chunks(st);
2029 2030 2031 2032 2033
}

size_t SpaceManager::calc_chunk_size(size_t word_size) {

  // Decide between a small chunk and a medium chunk.  Up to
2034 2035 2036
  // _small_chunk_limit small chunks can be allocated but
  // once a medium chunk has been allocated, no more small
  // chunks will be allocated.
2037 2038
  size_t chunk_word_size;
  if (chunks_in_use(MediumIndex) == NULL &&
2039
      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2040 2041 2042
    chunk_word_size = (size_t) small_chunk_size();
    if (word_size + Metachunk::overhead() > small_chunk_size()) {
      chunk_word_size = medium_chunk_size();
2043 2044
    }
  } else {
2045
    chunk_word_size = medium_chunk_size();
2046 2047
  }

2048 2049 2050
  // Might still need a humongous chunk.  Enforce
  // humongous allocations sizes to be aligned up to
  // the smallest chunk size.
2051 2052
  size_t if_humongous_sized_chunk =
    align_size_up(word_size + Metachunk::overhead(),
2053
                  smallest_chunk_size());
2054
  chunk_word_size =
2055
    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2056

2057 2058 2059 2060 2061
  assert(!SpaceManager::is_humongous(word_size) ||
         chunk_word_size == if_humongous_sized_chunk,
         err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
                 " chunk_word_size " SIZE_FORMAT,
                 word_size, chunk_word_size));
2062 2063 2064 2065 2066 2067
  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(word_size)) {
    gclog_or_tty->print_cr("Metadata humongous allocation:");
    gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
    gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
                           chunk_word_size);
2068
    gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
2069 2070 2071 2072 2073
                           Metachunk::overhead());
  }
  return chunk_word_size;
}

2074 2075 2076 2077 2078 2079 2080 2081 2082
void SpaceManager::track_metaspace_memory_usage() {
  if (is_init_completed()) {
    if (is_class()) {
      MemoryService::track_compressed_class_memory_usage();
    }
    MemoryService::track_metaspace_memory_usage();
  }
}

2083
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2084 2085 2086 2087 2088 2089 2090 2091
  assert(vs_list()->current_virtual_space() != NULL,
         "Should have been set");
  assert(current_chunk() == NULL ||
         current_chunk()->allocate(word_size) == NULL,
         "Don't need to expand");
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  if (TraceMetadataChunkAllocation && Verbose) {
2092 2093 2094 2095 2096 2097
    size_t words_left = 0;
    size_t words_used = 0;
    if (current_chunk() != NULL) {
      words_left = current_chunk()->free_word_size();
      words_used = current_chunk()->used_word_size();
    }
2098
    gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2099 2100 2101
                           " words " SIZE_FORMAT " words used " SIZE_FORMAT
                           " words left",
                            word_size, words_used, words_left);
2102 2103
  }

2104
  // Get another chunk out of the virtual space
2105
  size_t grow_chunks_by_words = calc_chunk_size(word_size);
2106
  Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2107

2108 2109
  MetaWord* mem = NULL;

2110 2111 2112 2113 2114
  // If a chunk was available, add it to the in-use chunk list
  // and do an allocation from it.
  if (next != NULL) {
    // Add to this manager's list of chunks in use.
    add_chunk(next, false);
2115
    mem = next->allocate(word_size);
2116
  }
2117

2118 2119 2120
  // Track metaspace memory usage statistic.
  track_metaspace_memory_usage();

2121
  return mem;
2122 2123 2124 2125
}

void SpaceManager::print_on(outputStream* st) const {

2126
  for (ChunkIndex i = ZeroIndex;
2127
       i < NumberOfInUseLists ;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
       i = next_chunk_index(i) ) {
    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
                 chunks_in_use(i),
                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
  }
  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
               " Humongous " SIZE_FORMAT,
               sum_waste_in_chunks_in_use(SmallIndex),
               sum_waste_in_chunks_in_use(MediumIndex),
               sum_waste_in_chunks_in_use(HumongousIndex));
2138 2139 2140 2141 2142
  // block free lists
  if (block_freelists() != NULL) {
    st->print_cr("total in block free lists " SIZE_FORMAT,
      block_freelists()->total_size());
  }
2143 2144
}

2145
SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2146
                           Mutex* lock) :
2147
  _mdtype(mdtype),
2148 2149 2150
  _allocated_blocks_words(0),
  _allocated_chunks_words(0),
  _allocated_chunks_count(0),
2151 2152 2153 2154 2155
  _lock(lock)
{
  initialize();
}

2156 2157 2158 2159 2160 2161 2162
void SpaceManager::inc_size_metrics(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  // Total of allocated Metachunks and allocated Metachunks count
  // for each SpaceManager
  _allocated_chunks_words = _allocated_chunks_words + words;
  _allocated_chunks_count++;
  // Global total of capacity in allocated Metachunks
2163
  MetaspaceAux::inc_capacity(mdtype(), words);
2164 2165 2166 2167 2168
  // Global total of allocated Metablocks.
  // used_words_slow() includes the overhead in each
  // Metachunk so include it in the used when the
  // Metachunk is first added (so only added once per
  // Metachunk).
2169
  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2170 2171 2172 2173 2174 2175
}

void SpaceManager::inc_used_metrics(size_t words) {
  // Add to the per SpaceManager total
  Atomic::add_ptr(words, &_allocated_blocks_words);
  // Add to the global total
2176
  MetaspaceAux::inc_used(mdtype(), words);
2177 2178 2179
}

void SpaceManager::dec_total_from_size_metrics() {
2180 2181
  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2182
  // Also deduct the overhead per Metachunk
2183
  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2184 2185
}

2186
void SpaceManager::initialize() {
2187
  Metadebug::init_allocation_fail_alot_count();
2188
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2189 2190 2191 2192 2193 2194 2195 2196
    _chunks_in_use[i] = NULL;
  }
  _current_chunk = NULL;
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
  }
}

2197 2198 2199 2200 2201 2202 2203 2204 2205
void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
  if (chunks == NULL) {
    return;
  }
  ChunkList* list = free_chunks(index);
  assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* cur = chunks;

2206
  // This returns chunks one at a time.  If a new
2207 2208 2209 2210
  // class List can be created that is a base class
  // of FreeList then something like FreeList::prepend()
  // can be used in place of this loop
  while (cur != NULL) {
2211 2212
    assert(cur->container() != NULL, "Container should have been set");
    cur->container()->dec_container_count();
2213 2214 2215
    // Capture the next link before it is changed
    // by the call to return_chunk_at_head();
    Metachunk* next = cur->next();
2216
    DEBUG_ONLY(cur->set_is_tagged_free(true);)
2217 2218 2219 2220 2221
    list->return_chunk_at_head(cur);
    cur = next;
  }
}

2222
SpaceManager::~SpaceManager() {
2223
  // This call this->_lock which can't be done while holding expand_lock()
2224 2225 2226 2227
  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
    err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
            " allocated_chunks_words() " SIZE_FORMAT,
            sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2228

2229 2230 2231
  MutexLockerEx fcl(SpaceManager::expand_lock(),
                    Mutex::_no_safepoint_check_flag);

2232
  chunk_manager()->slow_locked_verify();
2233

2234 2235
  dec_total_from_size_metrics();

2236 2237 2238 2239 2240
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
    locked_print_chunks_in_use_on(gclog_or_tty);
  }

2241 2242
  // Do not mangle freed Metachunks.  The chunk size inside Metachunks
  // is during the freeing of a VirtualSpaceNodes.
2243

2244 2245
  // Have to update before the chunks_in_use lists are emptied
  // below.
2246 2247
  chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
                                         sum_count_in_chunks_in_use());
2248 2249 2250 2251

  // Add all the chunks in use by this space manager
  // to the global list of free chunks.

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
  // Follow each list of chunks-in-use and add them to the
  // free lists.  Each list is NULL terminated.

  for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("returned %d %s chunks to freelist",
                             sum_count_in_chunks_in_use(i),
                             chunk_size_name(i));
    }
    Metachunk* chunks = chunks_in_use(i);
2262
    chunk_manager()->return_chunks(i, chunks);
2263 2264 2265
    set_chunks_in_use(i, NULL);
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("updated freelist count %d %s",
2266
                             chunk_manager()->free_chunks(i)->count(),
2267 2268 2269
                             chunk_size_name(i));
    }
    assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2270 2271
  }

2272 2273 2274 2275
  // The medium chunk case may be optimized by passing the head and
  // tail of the medium chunk list to add_at_head().  The tail is often
  // the current chunk but there are probably exceptions.

2276
  // Humongous chunks
2277 2278 2279 2280 2281 2282
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
                            sum_count_in_chunks_in_use(HumongousIndex),
                            chunk_size_name(HumongousIndex));
    gclog_or_tty->print("Humongous chunk dictionary: ");
  }
2283 2284 2285
  // Humongous chunks are never the current chunk.
  Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);

2286 2287
  while (humongous_chunks != NULL) {
#ifdef ASSERT
2288
    humongous_chunks->set_is_tagged_free(true);
2289
#endif
2290 2291 2292 2293 2294 2295 2296
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
                          humongous_chunks,
                          humongous_chunks->word_size());
    }
    assert(humongous_chunks->word_size() == (size_t)
           align_size_up(humongous_chunks->word_size(),
2297
                             smallest_chunk_size()),
2298
           err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2299
                   " granularity %d",
2300
                   humongous_chunks->word_size(), smallest_chunk_size()));
2301
    Metachunk* next_humongous_chunks = humongous_chunks->next();
2302
    humongous_chunks->container()->dec_container_count();
2303
    chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2304
    humongous_chunks = next_humongous_chunks;
2305
  }
2306
  if (TraceMetadataChunkAllocation && Verbose) {
2307
    gclog_or_tty->cr();
2308
    gclog_or_tty->print_cr("updated dictionary count %d %s",
2309
                     chunk_manager()->humongous_dictionary()->total_count(),
2310 2311
                     chunk_size_name(HumongousIndex));
  }
2312
  chunk_manager()->slow_locked_verify();
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
  switch (index) {
    case SpecializedIndex:
      return "Specialized";
    case SmallIndex:
      return "Small";
    case MediumIndex:
      return "Medium";
    case HumongousIndex:
      return "Humongous";
    default:
      return NULL;
  }
}

ChunkIndex ChunkManager::list_index(size_t size) {
  switch (size) {
    case SpecializedChunk:
      assert(SpecializedChunk == ClassSpecializedChunk,
             "Need branch for ClassSpecializedChunk");
      return SpecializedIndex;
    case SmallChunk:
    case ClassSmallChunk:
      return SmallIndex;
    case MediumChunk:
    case ClassMediumChunk:
      return MediumIndex;
    default:
2343
      assert(size > MediumChunk || size > ClassMediumChunk,
2344 2345 2346 2347 2348
             "Not a humongous chunk");
      return HumongousIndex;
  }
}

2349
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2350
  assert_lock_strong(_lock);
2351
  size_t raw_word_size = get_raw_word_size(word_size);
2352
  size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2353
  assert(raw_word_size >= min_size,
2354
         err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2355
  block_freelists()->return_block(p, raw_word_size);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
}

// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {

  assert(new_chunk != NULL, "Should not be NULL");
  assert(new_chunk->next() == NULL, "Should not be on a list");

  new_chunk->reset_empty();

  // Find the correct list and and set the current
  // chunk for that list.
2368
  ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2369

2370
  if (index != HumongousIndex) {
2371
    retire_current_chunk();
2372
    set_current_chunk(new_chunk);
2373 2374 2375
    new_chunk->set_next(chunks_in_use(index));
    set_chunks_in_use(index, new_chunk);
  } else {
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
    // For null class loader data and DumpSharedSpaces, the first chunk isn't
    // small, so small will be null.  Link this first chunk as the current
    // chunk.
    if (make_current) {
      // Set as the current chunk but otherwise treat as a humongous chunk.
      set_current_chunk(new_chunk);
    }
    // Link at head.  The _current_chunk only points to a humongous chunk for
    // the null class loader metaspace (class and data virtual space managers)
    // any humongous chunks so will not point to the tail
    // of the humongous chunks list.
    new_chunk->set_next(chunks_in_use(HumongousIndex));
    set_chunks_in_use(HumongousIndex, new_chunk);

2390
    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2391 2392
  }

2393 2394 2395
  // Add to the running sum of capacity
  inc_size_metrics(new_chunk->word_size());

2396 2397 2398 2399 2400
  assert(new_chunk->is_empty(), "Not ready for reuse");
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
                        sum_count_in_chunks_in_use());
    new_chunk->print_on(gclog_or_tty);
2401
    chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2402 2403 2404
  }
}

2405 2406 2407
void SpaceManager::retire_current_chunk() {
  if (current_chunk() != NULL) {
    size_t remaining_words = current_chunk()->free_word_size();
2408
    if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2409 2410 2411 2412 2413 2414
      block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
      inc_used_metrics(remaining_words);
    }
  }
}

2415 2416
Metachunk* SpaceManager::get_new_chunk(size_t word_size,
                                       size_t grow_chunks_by_words) {
2417 2418
  // Get a chunk from the chunk freelist
  Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2419

2420 2421 2422 2423 2424
  if (next == NULL) {
    next = vs_list()->get_new_chunk(word_size,
                                    grow_chunks_by_words,
                                    medium_chunk_bunch());
  }
2425

S
stefank 已提交
2426
  if (TraceMetadataHumongousAllocation && next != NULL &&
2427
      SpaceManager::is_humongous(next->word_size())) {
S
stefank 已提交
2428 2429
    gclog_or_tty->print_cr("  new humongous chunk word size "
                           PTR_FORMAT, next->word_size());
2430 2431 2432 2433 2434
  }

  return next;
}

2435 2436 2437
MetaWord* SpaceManager::allocate(size_t word_size) {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);

2438
  size_t raw_word_size = get_raw_word_size(word_size);
2439
  BlockFreelist* fl =  block_freelists();
2440
  MetaWord* p = NULL;
2441 2442 2443 2444 2445
  // Allocation from the dictionary is expensive in the sense that
  // the dictionary has to be searched for a size.  Don't allocate
  // from the dictionary until it starts to get fat.  Is this
  // a reasonable policy?  Maybe an skinny dictionary is fast enough
  // for allocations.  Do some profiling.  JJJ
2446 2447
  if (fl->total_size() > allocation_from_dictionary_limit) {
    p = fl->get_block(raw_word_size);
2448
  }
2449 2450
  if (p == NULL) {
    p = allocate_work(raw_word_size);
2451 2452
  }

2453
  return p;
2454 2455 2456 2457
}

// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
2458
MetaWord* SpaceManager::allocate_work(size_t word_size) {
2459 2460 2461 2462 2463 2464 2465
  assert_lock_strong(_lock);
#ifdef ASSERT
  if (Metadebug::test_metadata_failure()) {
    return NULL;
  }
#endif
  // Is there space in the current chunk?
2466
  MetaWord* result = NULL;
2467 2468 2469 2470 2471 2472

  // For DumpSharedSpaces, only allocate out of the current chunk which is
  // never null because we gave it the size we wanted.   Caller reports out
  // of memory if this returns null.
  if (DumpSharedSpaces) {
    assert(current_chunk() != NULL, "should never happen");
2473
    inc_used_metrics(word_size);
2474 2475
    return current_chunk()->allocate(word_size); // caller handles null result
  }
2476

2477 2478 2479 2480 2481 2482 2483
  if (current_chunk() != NULL) {
    result = current_chunk()->allocate(word_size);
  }

  if (result == NULL) {
    result = grow_and_allocate(word_size);
  }
2484 2485

  if (result != NULL) {
2486
    inc_used_metrics(word_size);
2487 2488
    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
           "Head of the list is being allocated");
2489 2490 2491 2492 2493 2494 2495 2496 2497
  }

  return result;
}

void SpaceManager::verify() {
  // If there are blocks in the dictionary, then
  // verfication of chunks does not work since
  // being in the dictionary alters a chunk.
2498
  if (block_freelists()->total_size() == 0) {
2499
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2500 2501 2502
      Metachunk* curr = chunks_in_use(i);
      while (curr != NULL) {
        curr->verify();
2503
        verify_chunk_size(curr);
2504 2505 2506 2507 2508 2509
        curr = curr->next();
      }
    }
  }
}

2510 2511
void SpaceManager::verify_chunk_size(Metachunk* chunk) {
  assert(is_humongous(chunk->word_size()) ||
2512 2513 2514
         chunk->word_size() == medium_chunk_size() ||
         chunk->word_size() == small_chunk_size() ||
         chunk->word_size() == specialized_chunk_size(),
2515 2516 2517 2518
         "Chunk size is wrong");
  return;
}

2519
#ifdef ASSERT
2520
void SpaceManager::verify_allocated_blocks_words() {
2521
  // Verification is only guaranteed at a safepoint.
2522 2523 2524
  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
    "Verification can fail if the applications is running");
  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2525 2526
    err_msg("allocation total is not consistent " SIZE_FORMAT
            " vs " SIZE_FORMAT,
2527
            allocated_blocks_words(), sum_used_in_chunks_in_use()));
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
}

#endif

void SpaceManager::dump(outputStream* const out) const {
  size_t curr_total = 0;
  size_t waste = 0;
  uint i = 0;
  size_t used = 0;
  size_t capacity = 0;

  // Add up statistics for all chunks in this SpaceManager.
2540
  for (ChunkIndex index = ZeroIndex;
2541
       index < NumberOfInUseLists;
2542 2543 2544 2545 2546 2547 2548 2549
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      out->print("%d) ", i++);
      curr->print_on(out);
      curr_total += curr->word_size();
      used += curr->used_word_size();
2550
      capacity += curr->word_size();
2551 2552 2553 2554
      waste += curr->free_word_size() + curr->overhead();;
    }
  }

S
stefank 已提交
2555 2556 2557 2558
  if (TraceMetadataChunkAllocation && Verbose) {
    block_freelists()->print_on(out);
  }

2559
  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2560 2561 2562 2563 2564 2565 2566 2567
  // Free space isn't wasted.
  waste -= free;

  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
}

2568
#ifndef PRODUCT
2569
void SpaceManager::mangle_freed_chunks() {
2570
  for (ChunkIndex index = ZeroIndex;
2571
       index < NumberOfInUseLists;
2572 2573 2574 2575 2576 2577 2578 2579
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      curr->mangle();
    }
  }
}
2580
#endif // PRODUCT
2581 2582 2583

// MetaspaceAux

2584

2585 2586
size_t MetaspaceAux::_capacity_words[] = {0, 0};
size_t MetaspaceAux::_used_words[] = {0, 0};
2587

2588 2589 2590 2591 2592
size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->free_bytes();
}

2593
size_t MetaspaceAux::free_bytes() {
2594
  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2595 2596
}

2597
void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2598
  assert_lock_strong(SpaceManager::expand_lock());
2599
  assert(words <= capacity_words(mdtype),
2600
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2601 2602 2603
            " is greater than _capacity_words[%u] " SIZE_FORMAT,
            words, mdtype, capacity_words(mdtype)));
  _capacity_words[mdtype] -= words;
2604 2605
}

2606
void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2607 2608
  assert_lock_strong(SpaceManager::expand_lock());
  // Needs to be atomic
2609
  _capacity_words[mdtype] += words;
2610 2611
}

2612
void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2613
  assert(words <= used_words(mdtype),
2614
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2615 2616
            " is greater than _used_words[%u] " SIZE_FORMAT,
            words, mdtype, used_words(mdtype)));
2617 2618 2619 2620 2621
  // For CMS deallocation of the Metaspaces occurs during the
  // sweep which is a concurrent phase.  Protection by the expand_lock()
  // is not enough since allocation is on a per Metaspace basis
  // and protected by the Metaspace lock.
  jlong minus_words = (jlong) - (jlong) words;
2622
  Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2623 2624
}

2625
void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2626
  // _used_words tracks allocations for
2627 2628 2629
  // each piece of metadata.  Those allocations are
  // generally done concurrently by different application
  // threads so must be done atomically.
2630
  Atomic::add_ptr(words, &_used_words[mdtype]);
2631 2632 2633
}

size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2634 2635 2636 2637
  size_t used = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
2638
    // Sum allocated_blocks_words for each metaspace
2639
    if (msp != NULL) {
2640
      used += msp->used_words_slow(mdtype);
2641 2642 2643 2644 2645
    }
  }
  return used * BytesPerWord;
}

E
ehelin 已提交
2646
size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2647 2648 2649 2650 2651
  size_t free = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
E
ehelin 已提交
2652
      free += msp->free_words_slow(mdtype);
2653 2654 2655 2656 2657
    }
  }
  return free * BytesPerWord;
}

2658
size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2659 2660 2661
  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
    return 0;
  }
2662 2663 2664
  // Don't count the space in the freelists.  That space will be
  // added to the capacity calculation as needed.
  size_t capacity = 0;
2665 2666 2667 2668
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2669
      capacity += msp->capacity_words_slow(mdtype);
2670 2671 2672 2673 2674
    }
  }
  return capacity * BytesPerWord;
}

E
ehelin 已提交
2675 2676
size_t MetaspaceAux::capacity_bytes_slow() {
#ifdef PRODUCT
2677
  // Use capacity_bytes() in PRODUCT instead of this function.
E
ehelin 已提交
2678 2679 2680 2681
  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
#endif
  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2682 2683
  assert(capacity_bytes() == class_capacity + non_class_capacity,
      err_msg("bad accounting: capacity_bytes() " SIZE_FORMAT
E
ehelin 已提交
2684 2685
        " class_capacity + non_class_capacity " SIZE_FORMAT
        " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2686
        capacity_bytes(), class_capacity + non_class_capacity,
E
ehelin 已提交
2687 2688 2689 2690 2691 2692
        class_capacity, non_class_capacity));

  return class_capacity + non_class_capacity;
}

size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2693
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2694 2695 2696 2697 2698 2699
  return list == NULL ? 0 : list->reserved_bytes();
}

size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->committed_bytes();
2700 2701
}

E
ehelin 已提交
2702
size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2703

E
ehelin 已提交
2704
size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2705 2706
  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
  if (chunk_manager == NULL) {
2707 2708
    return 0;
  }
2709 2710
  chunk_manager->slow_verify();
  return chunk_manager->free_chunks_total_words();
2711 2712
}

E
ehelin 已提交
2713 2714
size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
  return free_chunks_total_words(mdtype) * BytesPerWord;
2715 2716
}

E
ehelin 已提交
2717 2718 2719
size_t MetaspaceAux::free_chunks_total_words() {
  return free_chunks_total_words(Metaspace::ClassType) +
         free_chunks_total_words(Metaspace::NonClassType);
2720 2721
}

E
ehelin 已提交
2722 2723
size_t MetaspaceAux::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
2724 2725
}

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
  return Metaspace::get_chunk_manager(mdtype) != NULL;
}

MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
  if (!has_chunk_free_list(mdtype)) {
    return MetaspaceChunkFreeListSummary();
  }

  const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
  return cm->chunk_free_list_summary();
}

2739 2740 2741 2742 2743
void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
  gclog_or_tty->print(", [Metaspace:");
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
2744
                        "("  SIZE_FORMAT ")",
2745
                        prev_metadata_used,
2746
                        used_bytes(),
E
ehelin 已提交
2747
                        reserved_bytes());
2748 2749 2750
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
2751
                        "("  SIZE_FORMAT "K)",
E
ehelin 已提交
2752
                        prev_metadata_used/K,
2753
                        used_bytes()/K,
E
ehelin 已提交
2754
                        reserved_bytes()/K);
2755 2756 2757 2758 2759 2760 2761 2762 2763
  }

  gclog_or_tty->print("]");
}

// This is printed when PrintGCDetails
void MetaspaceAux::print_on(outputStream* out) {
  Metaspace::MetadataType nct = Metaspace::NonClassType;

2764 2765 2766 2767 2768
  out->print_cr(" Metaspace       "
                "used "      SIZE_FORMAT "K, "
                "capacity "  SIZE_FORMAT "K, "
                "committed " SIZE_FORMAT "K, "
                "reserved "  SIZE_FORMAT "K",
2769 2770
                used_bytes()/K,
                capacity_bytes()/K,
2771 2772 2773
                committed_bytes()/K,
                reserved_bytes()/K);

2774 2775 2776
  if (Metaspace::using_class_space()) {
    Metaspace::MetadataType ct = Metaspace::ClassType;
    out->print_cr("  class space    "
2777 2778 2779 2780
                  "used "      SIZE_FORMAT "K, "
                  "capacity "  SIZE_FORMAT "K, "
                  "committed " SIZE_FORMAT "K, "
                  "reserved "  SIZE_FORMAT "K",
2781 2782
                  used_bytes(ct)/K,
                  capacity_bytes(ct)/K,
2783
                  committed_bytes(ct)/K,
E
ehelin 已提交
2784
                  reserved_bytes(ct)/K);
2785
  }
2786 2787 2788 2789 2790
}

// Print information for class space and data space separately.
// This is almost the same as above.
void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
E
ehelin 已提交
2791
  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2792 2793
  size_t capacity_bytes = capacity_bytes_slow(mdtype);
  size_t used_bytes = used_bytes_slow(mdtype);
E
ehelin 已提交
2794
  size_t free_bytes = free_bytes_slow(mdtype);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
  size_t used_and_free = used_bytes + free_bytes +
                           free_chunks_capacity_bytes;
  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
             "K + unused in chunks " SIZE_FORMAT "K  + "
             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
             "K  capacity in allocated chunks " SIZE_FORMAT "K",
             used_bytes / K,
             free_bytes / K,
             free_chunks_capacity_bytes / K,
             used_and_free / K,
             capacity_bytes / K);
2806 2807
  // Accounting can only be correct if we got the values during a safepoint
  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
// Print total fragmentation for class metaspaces
void MetaspaceAux::print_class_waste(outputStream* out) {
  assert(Metaspace::using_class_space(), "class metaspace not used");
  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
    }
  }
  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                "large count " SIZE_FORMAT,
                cls_specialized_count, cls_specialized_waste,
                cls_small_count, cls_small_waste,
                cls_medium_count, cls_medium_waste, cls_humongous_count);
}
2836

2837 2838
// Print total fragmentation for data and class metaspaces separately
void MetaspaceAux::print_waste(outputStream* out) {
2839 2840
  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2841 2842 2843 2844 2845

  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2846 2847
      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2848
      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2849
      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2850
      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2851
      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2852
      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2853 2854 2855
    }
  }
  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2856 2857
  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2858 2859
                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                        "large count " SIZE_FORMAT,
2860
             specialized_count, specialized_waste, small_count,
2861
             small_waste, medium_count, medium_waste, humongous_count);
2862 2863 2864
  if (Metaspace::using_class_space()) {
    print_class_waste(out);
  }
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
}

// Dump global metaspace things from the end of ClassLoaderDataGraph
void MetaspaceAux::dump(outputStream* out) {
  out->print_cr("All Metaspace:");
  out->print("data space: "); print_on(out, Metaspace::NonClassType);
  out->print("class space: "); print_on(out, Metaspace::ClassType);
  print_waste(out);
}

2875
void MetaspaceAux::verify_free_chunks() {
2876
  Metaspace::chunk_manager_metadata()->verify();
2877
  if (Metaspace::using_class_space()) {
2878
    Metaspace::chunk_manager_class()->verify();
2879
  }
2880 2881
}

2882 2883
void MetaspaceAux::verify_capacity() {
#ifdef ASSERT
2884
  size_t running_sum_capacity_bytes = capacity_bytes();
2885
  // For purposes of the running sum of capacity, verify against capacity
2886 2887
  size_t capacity_in_use_bytes = capacity_bytes_slow();
  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2888
    err_msg("capacity_words() * BytesPerWord " SIZE_FORMAT
2889 2890
            " capacity_bytes_slow()" SIZE_FORMAT,
            running_sum_capacity_bytes, capacity_in_use_bytes));
2891 2892 2893 2894
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2895 2896
    assert(capacity_bytes(i) == capacity_in_use_bytes,
      err_msg("capacity_bytes(%u) " SIZE_FORMAT
2897
              " capacity_bytes_slow(%u)" SIZE_FORMAT,
2898
              i, capacity_bytes(i), i, capacity_in_use_bytes));
2899
  }
2900 2901 2902 2903 2904
#endif
}

void MetaspaceAux::verify_used() {
#ifdef ASSERT
2905
  size_t running_sum_used_bytes = used_bytes();
2906
  // For purposes of the running sum of used, verify against used
2907
  size_t used_in_use_bytes = used_bytes_slow();
2908 2909
  assert(used_bytes() == used_in_use_bytes,
    err_msg("used_bytes() " SIZE_FORMAT
2910
            " used_bytes_slow()" SIZE_FORMAT,
2911
            used_bytes(), used_in_use_bytes));
2912 2913 2914 2915
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t used_in_use_bytes = used_bytes_slow(i);
2916 2917
    assert(used_bytes(i) == used_in_use_bytes,
      err_msg("used_bytes(%u) " SIZE_FORMAT
2918
              " used_bytes_slow(%u)" SIZE_FORMAT,
2919
              i, used_bytes(i), i, used_in_use_bytes));
2920
  }
2921 2922 2923 2924 2925 2926 2927 2928 2929
#endif
}

void MetaspaceAux::verify_metrics() {
  verify_capacity();
  verify_used();
}


2930 2931 2932
// Metaspace methods

size_t Metaspace::_first_chunk_word_size = 0;
2933
size_t Metaspace::_first_class_chunk_word_size = 0;
2934

2935 2936 2937
size_t Metaspace::_commit_alignment = 0;
size_t Metaspace::_reserve_alignment = 0;

2938 2939
Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
  initialize(lock, type);
2940 2941 2942 2943
}

Metaspace::~Metaspace() {
  delete _vsm;
2944 2945 2946
  if (using_class_space()) {
    delete _class_vsm;
  }
2947 2948 2949 2950 2951
}

VirtualSpaceList* Metaspace::_space_list = NULL;
VirtualSpaceList* Metaspace::_class_space_list = NULL;

2952 2953 2954
ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
ChunkManager* Metaspace::_chunk_manager_class = NULL;

2955 2956
#define VIRTUALSPACEMULTIPLIER 2

2957
#ifdef _LP64
2958 2959
static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);

2960 2961 2962 2963 2964 2965 2966
void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
  // narrow_klass_base is the lower of the metaspace base and the cds base
  // (if cds is enabled).  The narrow_klass_shift depends on the distance
  // between the lower base and higher address.
  address lower_base;
  address higher_address;
2967
#if INCLUDE_CDS
2968 2969
  if (UseSharedSpaces) {
    higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2970
                          (address)(metaspace_base + compressed_class_space_size()));
2971
    lower_base = MIN2(metaspace_base, cds_base);
2972 2973 2974
  } else
#endif
  {
2975
    higher_address = metaspace_base + compressed_class_space_size();
2976
    lower_base = metaspace_base;
2977 2978 2979 2980 2981 2982

    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
    // If compressed class space fits in lower 32G, we don't need a base.
    if (higher_address <= (address)klass_encoding_max) {
      lower_base = 0; // effectively lower base is zero.
    }
2983
  }
2984

2985
  Universe::set_narrow_klass_base(lower_base);
2986

2987
  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2988 2989 2990 2991 2992 2993 2994
    Universe::set_narrow_klass_shift(0);
  } else {
    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
  }
}

2995
#if INCLUDE_CDS
2996 2997 2998 2999
// Return TRUE if the specified metaspace_base and cds_base are close enough
// to work with compressed klass pointers.
bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
3000
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3001 3002
  address lower_base = MIN2((address)metaspace_base, cds_base);
  address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3003
                                (address)(metaspace_base + compressed_class_space_size()));
3004
  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
3005
}
3006
#endif
3007 3008 3009 3010

// Try to allocate the metaspace at the requested addr.
void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
  assert(using_class_space(), "called improperly");
3011
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3012
  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
3013
         "Metaspace size is too big");
3014 3015 3016
  assert_is_ptr_aligned(requested_addr, _reserve_alignment);
  assert_is_ptr_aligned(cds_base, _reserve_alignment);
  assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
3017 3018 3019

  // Don't use large pages for the class space.
  bool large_pages = false;
3020

3021
  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
3022 3023 3024
                                             _reserve_alignment,
                                             large_pages,
                                             requested_addr, 0);
3025
  if (!metaspace_rs.is_reserved()) {
3026
#if INCLUDE_CDS
3027
    if (UseSharedSpaces) {
3028 3029
      size_t increment = align_size_up(1*G, _reserve_alignment);

3030 3031 3032 3033
      // Keep trying to allocate the metaspace, increasing the requested_addr
      // by 1GB each time, until we reach an address that will no longer allow
      // use of CDS with compressed klass pointers.
      char *addr = requested_addr;
3034 3035 3036
      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
        addr = addr + increment;
3037
        metaspace_rs = ReservedSpace(compressed_class_space_size(),
3038
                                     _reserve_alignment, large_pages, addr, 0);
3039 3040
      }
    }
3041
#endif
3042 3043
    // If no successful allocation then try to allocate the space anywhere.  If
    // that fails then OOM doom.  At this point we cannot try allocating the
3044 3045 3046
    // metaspace as if UseCompressedClassPointers is off because too much
    // initialization has happened that depends on UseCompressedClassPointers.
    // So, UseCompressedClassPointers cannot be turned off at this point.
3047
    if (!metaspace_rs.is_reserved()) {
3048
      metaspace_rs = ReservedSpace(compressed_class_space_size(),
3049
                                   _reserve_alignment, large_pages);
3050 3051
      if (!metaspace_rs.is_reserved()) {
        vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
3052
                                              compressed_class_space_size()));
3053 3054 3055 3056 3057 3058 3059
      }
    }
  }

  // If we got here then the metaspace got allocated.
  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);

3060
#if INCLUDE_CDS
3061 3062 3063 3064 3065
  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
    FileMapInfo::stop_sharing_and_unmap(
        "Could not allocate metaspace at a compatible address");
  }
3066
#endif
3067 3068 3069 3070 3071 3072 3073 3074
  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
                                  UseSharedSpaces ? (address)cds_base : 0);

  initialize_class_space(metaspace_rs);

  if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
    gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
                            Universe::narrow_klass_base(), Universe::narrow_klass_shift());
3075 3076
    gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
                           compressed_class_space_size(), metaspace_rs.base(), requested_addr);
3077 3078 3079
  }
}

3080
// For UseCompressedClassPointers the class space is reserved above the top of
3081 3082 3083
// the Java heap.  The argument passed in is at the base of the compressed space.
void Metaspace::initialize_class_space(ReservedSpace rs) {
  // The reserved space size may be bigger because of alignment, esp with UseLargePages
3084 3085
  assert(rs.size() >= CompressedClassSpaceSize,
         err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
3086 3087
  assert(using_class_space(), "Must be using class space");
  _class_space_list = new VirtualSpaceList(rs);
3088
  _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3089 3090 3091 3092

  if (!_class_space_list->initialization_succeeded()) {
    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
  }
3093 3094 3095 3096
}

#endif

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
void Metaspace::ergo_initialize() {
  if (DumpSharedSpaces) {
    // Using large pages when dumping the shared archive is currently not implemented.
    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
  }

  size_t page_size = os::vm_page_size();
  if (UseLargePages && UseLargePagesInMetaspace) {
    page_size = os::large_page_size();
  }

  _commit_alignment  = page_size;
  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());

  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
  // override if MaxMetaspaceSize was set on the command line or not.
  // This information is needed later to conform to the specification of the
  // java.lang.management.MemoryUsage API.
  //
  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
  // globals.hpp to the aligned value, but this is not possible, since the
  // alignment depends on other flags being parsed.
3119
  MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3120 3121 3122 3123 3124

  if (MetaspaceSize > MaxMetaspaceSize) {
    MetaspaceSize = MaxMetaspaceSize;
  }

3125
  MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3126 3127 3128 3129 3130 3131 3132

  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");

  if (MetaspaceSize < 256*K) {
    vm_exit_during_initialization("Too small initial Metaspace size");
  }

3133 3134
  MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
  MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3135

3136
  CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3137
  set_compressed_class_space_size(CompressedClassSpaceSize);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

  // Initial virtual space size will be calculated at global_initialize()
  uintx min_metaspace_sz =
      VIRTUALSPACEMULTIPLIER * InitialBootClassLoaderMetaspaceSize;
  if (UseCompressedClassPointers) {
    if ((min_metaspace_sz + CompressedClassSpaceSize) >  MaxMetaspaceSize) {
      if (min_metaspace_sz >= MaxMetaspaceSize) {
        vm_exit_during_initialization("MaxMetaspaceSize is too small.");
      } else {
        FLAG_SET_ERGO(uintx, CompressedClassSpaceSize,
                      MaxMetaspaceSize - min_metaspace_sz);
      }
    }
  } else if (min_metaspace_sz >= MaxMetaspaceSize) {
    FLAG_SET_ERGO(uintx, InitialBootClassLoaderMetaspaceSize,
                  min_metaspace_sz);
  }

3156 3157
}

3158
void Metaspace::global_initialize() {
3159 3160
  MetaspaceGC::initialize();

3161
  // Initialize the alignment for shared spaces.
3162
  int max_alignment = os::vm_allocation_granularity();
3163 3164
  size_t cds_total = 0;

3165 3166 3167
  MetaspaceShared::set_max_alignment(max_alignment);

  if (DumpSharedSpaces) {
3168
#if INCLUDE_CDS
3169 3170
    MetaspaceShared::estimate_regions_size();

3171
    SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3172
    SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3173 3174
    SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
    SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    // the min_misc_code_size estimate is based on MetaspaceShared::generate_vtable_methods()
    uintx min_misc_code_size = align_size_up(
      (MetaspaceShared::num_virtuals * MetaspaceShared::vtbl_list_size) *
        (sizeof(void*) + MetaspaceShared::vtbl_method_size) + MetaspaceShared::vtbl_common_code_size,
          max_alignment);

    if (SharedMiscCodeSize < min_misc_code_size) {
      report_out_of_shared_space(SharedMiscCode);
    }

3186 3187 3188
    // Initialize with the sum of the shared space sizes.  The read-only
    // and read write metaspace chunks will be allocated out of this and the
    // remainder is the misc code and data chunks.
3189
    cds_total = FileMapInfo::shared_spaces_size();
3190
    cds_total = align_size_up(cds_total, _reserve_alignment);
3191
    _space_list = new VirtualSpaceList(cds_total/wordSize);
3192
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3193

3194 3195 3196 3197
    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to dump shared archive.", NULL);
    }

3198
#ifdef _LP64
3199
    if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3200 3201 3202
      vm_exit_during_initialization("Unable to dump shared archive.",
          err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
                  SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3203 3204
                  "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
                  cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3205 3206
    }

3207 3208
    // Set the compressed klass pointer base so that decoding of these pointers works
    // properly when creating the shared archive.
3209 3210
    assert(UseCompressedOops && UseCompressedClassPointers,
      "UseCompressedOops and UseCompressedClassPointers must be set");
3211 3212 3213 3214 3215 3216 3217
    Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
    if (TraceMetavirtualspaceAllocation && Verbose) {
      gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
                             _space_list->current_virtual_space()->bottom());
    }

    Universe::set_narrow_klass_shift(0);
3218 3219
#endif // _LP64
#endif // INCLUDE_CDS
3220
  } else {
3221
#if INCLUDE_CDS
3222 3223 3224
    // If using shared space, open the file that contains the shared space
    // and map in the memory before initializing the rest of metaspace (so
    // the addresses don't conflict)
3225
    address cds_address = NULL;
3226 3227 3228 3229 3230 3231 3232 3233
    if (UseSharedSpaces) {
      FileMapInfo* mapinfo = new FileMapInfo();

      // Open the shared archive file, read and validate the header. If
      // initialization fails, shared spaces [UseSharedSpaces] are
      // disabled and the file is closed.
      // Map in spaces now also
      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3234 3235
        cds_total = FileMapInfo::shared_spaces_size();
        cds_address = (address)mapinfo->region_base(0);
3236 3237 3238 3239
      } else {
        assert(!mapinfo->is_open() && !UseSharedSpaces,
               "archive file not closed or shared spaces not disabled.");
      }
3240
    }
3241
#endif // INCLUDE_CDS
3242
#ifdef _LP64
3243
    // If UseCompressedClassPointers is set then allocate the metaspace area
3244 3245 3246
    // above the heap and above the CDS area (if it exists).
    if (using_class_space()) {
      if (UseSharedSpaces) {
3247
#if INCLUDE_CDS
3248 3249 3250
        char* cds_end = (char*)(cds_address + cds_total);
        cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3251
#endif
3252
      } else {
3253 3254
        char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(base, 0);
3255
      }
3256
    }
3257
#endif // _LP64
3258

3259
    // Initialize these before initializing the VirtualSpaceList
3260
    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3261 3262 3263 3264 3265
    _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
    // Make the first class chunk bigger than a medium chunk so it's not put
    // on the medium chunk list.   The next chunk will be small and progress
    // from there.  This size calculated by -version.
    _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3266
                                       (CompressedClassSpaceSize/BytesPerWord)*2);
3267
    _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3268 3269
    // Arbitrarily set the initial virtual space to a multiple
    // of the boot class loader size.
3270 3271 3272
    size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
    word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());

3273 3274
    // Initialize the list of virtual spaces.
    _space_list = new VirtualSpaceList(word_size);
3275
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3276 3277 3278 3279

    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
    }
3280
  }
3281

3282
  _tracer = new MetaspaceTracer();
3283 3284
}

3285 3286 3287 3288
void Metaspace::post_initialize() {
  MetaspaceGC::post_initialize();
}

3289 3290 3291 3292 3293 3294 3295
Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
                                               size_t chunk_word_size,
                                               size_t chunk_bunch) {
  // Get a chunk from the chunk freelist
  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
  if (chunk != NULL) {
    return chunk;
3296
  }
3297

3298
  return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3299 3300
}

3301
void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3302 3303 3304

  assert(space_list() != NULL,
    "Metadata VirtualSpaceList has not been initialized");
3305 3306
  assert(chunk_manager_metadata() != NULL,
    "Metadata ChunkManager has not been initialized");
3307

3308
  _vsm = new SpaceManager(NonClassType, lock);
3309 3310 3311
  if (_vsm == NULL) {
    return;
  }
3312 3313
  size_t word_size;
  size_t class_word_size;
3314
  vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3315

3316
  if (using_class_space()) {
3317 3318 3319 3320
  assert(class_space_list() != NULL,
    "Class VirtualSpaceList has not been initialized");
  assert(chunk_manager_class() != NULL,
    "Class ChunkManager has not been initialized");
3321

3322
    // Allocate SpaceManager for classes.
3323
    _class_vsm = new SpaceManager(ClassType, lock);
3324 3325 3326
    if (_class_vsm == NULL) {
      return;
    }
3327 3328 3329 3330 3331
  }

  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  // Allocate chunk for metadata objects
3332 3333 3334
  Metachunk* new_chunk = get_initialization_chunk(NonClassType,
                                                  word_size,
                                                  vsm()->medium_chunk_bunch());
3335 3336 3337 3338 3339 3340 3341
  assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
  if (new_chunk != NULL) {
    // Add to this manager's list of chunks in use and current_chunk().
    vsm()->add_chunk(new_chunk, true);
  }

  // Allocate chunk for class metadata objects
3342
  if (using_class_space()) {
3343 3344 3345
    Metachunk* class_chunk = get_initialization_chunk(ClassType,
                                                      class_word_size,
                                                      class_vsm()->medium_chunk_bunch());
3346 3347 3348
    if (class_chunk != NULL) {
      class_vsm()->add_chunk(class_chunk, true);
    }
3349
  }
3350 3351 3352

  _alloc_record_head = NULL;
  _alloc_record_tail = NULL;
3353 3354
}

3355 3356 3357 3358 3359
size_t Metaspace::align_word_size_up(size_t word_size) {
  size_t byte_size = word_size * wordSize;
  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
}

3360 3361
MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
  // DumpSharedSpaces doesn't use class metadata area (yet)
3362
  // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3363
  if (is_class_space_allocation(mdtype)) {
3364
    return  class_vsm()->allocate(word_size);
3365
  } else {
3366
    return  vsm()->allocate(word_size);
3367 3368 3369
  }
}

3370
MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3371 3372 3373
  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
  assert(delta_bytes > 0, "Must be");

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
  size_t before = 0;
  size_t after = 0;
  MetaWord* res;
  bool incremented;

  // Each thread increments the HWM at most once. Even if the thread fails to increment
  // the HWM, an allocation is still attempted. This is because another thread must then
  // have incremented the HWM and therefore the allocation might still succeed.
  do {
    incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
    res = allocate(word_size, mdtype);
  } while (!incremented && res == NULL);

  if (incremented) {
    tracer()->report_gc_threshold(before, after,
                                  MetaspaceGCThresholdUpdater::ExpandAndAllocate);
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
          " to " SIZE_FORMAT, before, after);
    }
3394
  }
3395

3396
  return res;
3397 3398
}

3399 3400 3401 3402 3403 3404 3405
// Space allocated in the Metaspace.  This may
// be across several metadata virtual spaces.
char* Metaspace::bottom() const {
  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
  return (char*)vsm()->current_chunk()->bottom();
}

3406
size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3407 3408 3409 3410 3411
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
  }
3412 3413
}

E
ehelin 已提交
3414
size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3415 3416 3417 3418 3419
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_free_in_chunks_in_use();
  }
3420 3421 3422 3423 3424 3425 3426
}

// Space capacity in the Metaspace.  It includes
// space in the list of chunks from which allocations
// have been made. Don't include space in the global freelist and
// in the space available in the dictionary which
// is already counted in some chunk.
3427
size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3428 3429 3430 3431 3432
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_capacity_in_chunks_in_use();
  }
3433 3434
}

3435 3436 3437 3438 3439 3440 3441 3442
size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
  return used_words_slow(mdtype) * BytesPerWord;
}

size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
  return capacity_words_slow(mdtype) * BytesPerWord;
}

3443 3444
void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
  if (SafepointSynchronize::is_at_safepoint()) {
3445 3446 3447 3448
    if (DumpSharedSpaces && PrintSharedSpaces) {
      record_deallocation(ptr, vsm()->get_raw_word_size(word_size));
    }

3449
    assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3450
    // Don't take Heap_lock
3451
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3452
    if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3453 3454 3455 3456 3457 3458
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3459 3460
    if (is_class && using_class_space()) {
      class_vsm()->deallocate(ptr, word_size);
3461
    } else {
3462
      vsm()->deallocate(ptr, word_size);
3463 3464
    }
  } else {
3465
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3466

3467
    if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3468 3469 3470 3471 3472 3473
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3474
    if (is_class && using_class_space()) {
3475
      class_vsm()->deallocate(ptr, word_size);
3476
    } else {
3477
      vsm()->deallocate(ptr, word_size);
3478 3479 3480 3481
    }
  }
}

3482

3483
MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3484
                              bool read_only, MetaspaceObj::Type type, TRAPS) {
3485 3486 3487 3488 3489 3490 3491
  if (HAS_PENDING_EXCEPTION) {
    assert(false, "Should not allocate with exception pending");
    return NULL;  // caller does a CHECK_NULL too
  }

  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
        "ClassLoaderData::the_null_class_loader_data() should have been used.");
3492

3493 3494 3495 3496
  // Allocate in metaspaces without taking out a lock, because it deadlocks
  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
  // to revisit this for application class data sharing.
  if (DumpSharedSpaces) {
3497 3498
    assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
    Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3499
    MetaWord* result = space->allocate(word_size, NonClassType);
3500 3501 3502
    if (result == NULL) {
      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
    }
3503 3504 3505
    if (PrintSharedSpaces) {
      space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));
    }
3506 3507 3508 3509 3510

    // Zero initialize.
    Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

    return result;
3511 3512
  }

3513 3514 3515 3516
  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;

  // Try to allocate metadata.
  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3517 3518

  if (result == NULL) {
3519 3520
    tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);

3521 3522 3523
    // Allocation failed.
    if (is_init_completed()) {
      // Only start a GC if the bootstrapping has completed.
3524

3525 3526 3527
      // Try to clean out some memory and retry.
      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
          loader_data, word_size, mdtype);
3528 3529
    }
  }
3530 3531

  if (result == NULL) {
3532
    report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3533 3534
  }

3535 3536 3537 3538
  // Zero initialize.
  Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

  return result;
3539 3540
}

3541 3542 3543 3544 3545
size_t Metaspace::class_chunk_size(size_t word_size) {
  assert(using_class_space(), "Has to use class space");
  return class_vsm()->calc_chunk_size(word_size);
}

3546 3547 3548
void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
  tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
  // If result is still null, we are out of memory.
  if (Verbose && TraceMetadataChunkAllocation) {
    gclog_or_tty->print_cr("Metaspace allocation failed for size "
        SIZE_FORMAT, word_size);
    if (loader_data->metaspace_or_null() != NULL) {
      loader_data->dump(gclog_or_tty);
    }
    MetaspaceAux::dump(gclog_or_tty);
  }

3559 3560 3561 3562 3563 3564 3565 3566 3567
  bool out_of_compressed_class_space = false;
  if (is_class_space_allocation(mdtype)) {
    Metaspace* metaspace = loader_data->metaspace_non_null();
    out_of_compressed_class_space =
      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
      CompressedClassSpaceSize;
  }

3568
  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3569 3570 3571
  const char* space_string = out_of_compressed_class_space ?
    "Compressed class space" : "Metaspace";

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
  report_java_out_of_memory(space_string);

  if (JvmtiExport::should_post_resource_exhausted()) {
    JvmtiExport::post_resource_exhausted(
        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
        space_string);
  }

  if (!is_init_completed()) {
    vm_exit_during_initialization("OutOfMemoryError", space_string);
  }

3584
  if (out_of_compressed_class_space) {
3585 3586 3587 3588 3589 3590
    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
  } else {
    THROW_OOP(Universe::out_of_memory_error_metaspace());
  }
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
  switch (mdtype) {
    case Metaspace::ClassType: return "Class";
    case Metaspace::NonClassType: return "Metadata";
    default:
      assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
      return NULL;
  }
}

3601 3602 3603
void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
  assert(DumpSharedSpaces, "sanity");

3604 3605 3606
  int byte_size = (int)word_size * HeapWordSize;
  AllocRecord *rec = new AllocRecord((address)ptr, type, byte_size);

3607 3608
  if (_alloc_record_head == NULL) {
    _alloc_record_head = _alloc_record_tail = rec;
3609
  } else if (_alloc_record_tail->_ptr + _alloc_record_tail->_byte_size == (address)ptr) {
3610 3611
    _alloc_record_tail->_next = rec;
    _alloc_record_tail = rec;
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
  } else {
    // slow linear search, but this doesn't happen that often, and only when dumping
    for (AllocRecord *old = _alloc_record_head; old; old = old->_next) {
      if (old->_ptr == ptr) {
        assert(old->_type == MetaspaceObj::DeallocatedType, "sanity");
        int remain_bytes = old->_byte_size - byte_size;
        assert(remain_bytes >= 0, "sanity");
        old->_type = type;

        if (remain_bytes == 0) {
          delete(rec);
        } else {
          address remain_ptr = address(ptr) + byte_size;
          rec->_ptr = remain_ptr;
          rec->_byte_size = remain_bytes;
          rec->_type = MetaspaceObj::DeallocatedType;
          rec->_next = old->_next;
          old->_byte_size = byte_size;
          old->_next = rec;
        }
        return;
      }
    }
    assert(0, "reallocating a freed pointer that was not recorded");
  }
}

void Metaspace::record_deallocation(void* ptr, size_t word_size) {
  assert(DumpSharedSpaces, "sanity");

  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
    if (rec->_ptr == ptr) {
      assert(rec->_byte_size == (int)word_size * HeapWordSize, "sanity");
      rec->_type = MetaspaceObj::DeallocatedType;
      return;
    }
3648
  }
3649 3650

  assert(0, "deallocating a pointer that was not recorded");
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
}

void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
  assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");

  address last_addr = (address)bottom();

  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
    address ptr = rec->_ptr;
    if (last_addr < ptr) {
      closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
    }
    closure->doit(ptr, rec->_type, rec->_byte_size);
    last_addr = ptr + rec->_byte_size;
  }

  address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
  if (last_addr < top) {
    closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
  }
}

3673 3674 3675 3676
void Metaspace::purge(MetadataType mdtype) {
  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
}

3677 3678 3679
void Metaspace::purge() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
3680
  purge(NonClassType);
3681
  if (using_class_space()) {
3682
    purge(ClassType);
3683
  }
3684 3685
}

3686 3687 3688
void Metaspace::print_on(outputStream* out) const {
  // Print both class virtual space counts and metaspace.
  if (Verbose) {
3689 3690
    vsm()->print_on(out);
    if (using_class_space()) {
3691
      class_vsm()->print_on(out);
3692
    }
3693 3694 3695
  }
}

3696
bool Metaspace::contains(const void* ptr) {
3697 3698
  if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
    return true;
3699
  }
3700 3701 3702 3703 3704 3705

  if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
     return true;
  }

  return get_space_list(NonClassType)->contains(ptr);
3706 3707 3708 3709
}

void Metaspace::verify() {
  vsm()->verify();
3710 3711 3712
  if (using_class_space()) {
    class_vsm()->verify();
  }
3713 3714 3715 3716 3717
}

void Metaspace::dump(outputStream* const out) const {
  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
  vsm()->dump(out);
3718 3719 3720 3721
  if (using_class_space()) {
    out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
    class_vsm()->dump(out);
  }
3722
}
3723 3724 3725 3726 3727

/////////////// Unit tests ///////////////

#ifndef PRODUCT

3728
class TestMetaspaceAuxTest : AllStatic {
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
 public:
  static void test_reserved() {
    size_t reserved = MetaspaceAux::reserved_bytes();

    assert(reserved > 0, "assert");

    size_t committed  = MetaspaceAux::committed_bytes();
    assert(committed <= reserved, "assert");

    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
    assert(reserved_metadata > 0, "assert");
    assert(reserved_metadata <= reserved, "assert");

    if (UseCompressedClassPointers) {
      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
      assert(reserved_class > 0, "assert");
      assert(reserved_class < reserved, "assert");
    }
  }

  static void test_committed() {
    size_t committed = MetaspaceAux::committed_bytes();

    assert(committed > 0, "assert");

    size_t reserved  = MetaspaceAux::reserved_bytes();
    assert(committed <= reserved, "assert");

    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
    assert(committed_metadata > 0, "assert");
    assert(committed_metadata <= committed, "assert");

    if (UseCompressedClassPointers) {
      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
      assert(committed_class > 0, "assert");
      assert(committed_class < committed, "assert");
    }
  }

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
  static void test_virtual_space_list_large_chunk() {
    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
    // vm_allocation_granularity aligned on Windows.
    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
    large_size += (os::vm_page_size()/BytesPerWord);
    vs_list->get_new_chunk(large_size, large_size, 0);
  }

3778 3779 3780
  static void test() {
    test_reserved();
    test_committed();
3781
    test_virtual_space_list_large_chunk();
3782 3783 3784
  }
};

3785 3786
void TestMetaspaceAux_test() {
  TestMetaspaceAuxTest::test();
3787 3788
}

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
class TestVirtualSpaceNodeTest {
  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
                                          size_t& num_small_chunks,
                                          size_t& num_specialized_chunks) {
    num_medium_chunks = words_left / MediumChunk;
    words_left = words_left % MediumChunk;

    num_small_chunks = words_left / SmallChunk;
    words_left = words_left % SmallChunk;
    // how many specialized chunks can we get?
    num_specialized_chunks = words_left / SpecializedChunk;
    assert(words_left % SpecializedChunk == 0, "should be nothing left");
  }

 public:
  static void test() {
    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    const size_t vsn_test_size_words = MediumChunk  * 4;
    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;

    // The chunk sizes must be multiples of eachother, or this will fail
    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);

    { // No committed memory in VSN
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
    }

    { // All of VSN is committed, half is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
      vsn.get_chunk_vs(MediumChunk);
      vsn.get_chunk_vs(MediumChunk);
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
    }

    { // 4 pages of VSN is committed, some is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
      assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
      vsn.initialize();
      vsn.expand_by(page_chunks, page_chunks);
      vsn.get_chunk_vs(SmallChunk);
      vsn.get_chunk_vs(SpecializedChunk);
      vsn.retire(&cm);

      // committed - used = words left to retire
      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;

      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

    { // Half of VSN is committed, a humongous chunk is used
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
      vsn.retire(&cm);

      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

  }
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943

#define assert_is_available_positive(word_size) \
  assert(vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

#define assert_is_available_negative(word_size) \
  assert(!vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

  static void test_is_available_positive() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available accepts the committed size.
    assert_is_available_positive(commit_word_size);

    // Check that is_available accepts half the committed size.
    size_t expand_word_size = commit_word_size / 2;
    assert_is_available_positive(expand_word_size);
  }

  static void test_is_available_negative() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available doesn't accept a too large size.
    size_t two_times_commit_word_size = commit_word_size * 2;
    assert_is_available_negative(two_times_commit_word_size);
  }

  static void test_is_available_overflow() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Calculate a size that will overflow the virtual space size.
    void* virtual_space_max = (void*)(uintptr_t)-1;
    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
    size_t overflow_size = bottom_to_max + BytesPerWord;
    size_t overflow_word_size = overflow_size / BytesPerWord;

    // Check that is_available can handle the overflow.
    assert_is_available_negative(overflow_word_size);
  }

  static void test_is_available() {
    TestVirtualSpaceNodeTest::test_is_available_positive();
    TestVirtualSpaceNodeTest::test_is_available_negative();
    TestVirtualSpaceNodeTest::test_is_available_overflow();
  }
3944 3945 3946 3947
};

void TestVirtualSpaceNode_test() {
  TestVirtualSpaceNodeTest::test();
3948
  TestVirtualSpaceNodeTest::test_is_available();
3949
}
3950
#endif