metaspace.cpp 133.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
26
#include "memory/allocation.hpp"
27
#include "memory/binaryTreeDictionary.hpp"
28
#include "memory/freeList.hpp"
29 30 31
#include "memory/collectorPolicy.hpp"
#include "memory/filemap.hpp"
#include "memory/freeList.hpp"
32
#include "memory/gcLocker.hpp"
33
#include "memory/metachunk.hpp"
34
#include "memory/metaspace.hpp"
35
#include "memory/metaspaceGCThresholdUpdater.hpp"
36
#include "memory/metaspaceShared.hpp"
37
#include "memory/metaspaceTracer.hpp"
38 39
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
40
#include "runtime/atomic.inline.hpp"
41
#include "runtime/globals.hpp"
42
#include "runtime/init.hpp"
43
#include "runtime/java.hpp"
44
#include "runtime/mutex.hpp"
45
#include "runtime/orderAccess.hpp"
46
#include "services/memTracker.hpp"
47
#include "services/memoryService.hpp"
48 49 50
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"

51 52
typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
53 54

// Set this constant to enable slow integrity checking of the free chunk lists
55 56
const bool metaspace_slow_verify = false;

57
size_t const allocation_from_dictionary_limit = 4 * K;
58 59 60

MetaWord* last_allocated = 0;

61
size_t Metaspace::_compressed_class_space_size;
62
const MetaspaceTracer* Metaspace::_tracer = NULL;
63

64 65
// Used in declarations in SpaceManager and ChunkManager
enum ChunkIndex {
66 67 68 69 70 71 72 73 74 75 76 77 78 79
  ZeroIndex = 0,
  SpecializedIndex = ZeroIndex,
  SmallIndex = SpecializedIndex + 1,
  MediumIndex = SmallIndex + 1,
  HumongousIndex = MediumIndex + 1,
  NumberOfFreeLists = 3,
  NumberOfInUseLists = 4
};

enum ChunkSizes {    // in words.
  ClassSpecializedChunk = 128,
  SpecializedChunk = 128,
  ClassSmallChunk = 256,
  SmallChunk = 512,
80
  ClassMediumChunk = 4 * K,
81
  MediumChunk = 8 * K
82 83 84
};

static ChunkIndex next_chunk_index(ChunkIndex i) {
85
  assert(i < NumberOfInUseLists, "Out of bound");
86 87 88
  return (ChunkIndex) (i+1);
}

89
volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
90 91 92
uint MetaspaceGC::_shrink_factor = 0;
bool MetaspaceGC::_should_concurrent_collect = false;

93
typedef class FreeList<Metachunk> ChunkList;
94 95

// Manages the global free lists of chunks.
96
class ChunkManager : public CHeapObj<mtInternal> {
97
  friend class TestVirtualSpaceNodeTest;
98 99

  // Free list of chunks of different sizes.
100
  //   SpecializedChunk
101 102 103
  //   SmallChunk
  //   MediumChunk
  //   HumongousChunk
104 105 106 107
  ChunkList _free_chunks[NumberOfFreeLists];

  //   HumongousChunk
  ChunkTreeDictionary _humongous_dictionary;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

  // ChunkManager in all lists of this type
  size_t _free_chunks_total;
  size_t _free_chunks_count;

  void dec_free_chunks_total(size_t v) {
    assert(_free_chunks_count > 0 &&
             _free_chunks_total > 0,
             "About to go negative");
    Atomic::add_ptr(-1, &_free_chunks_count);
    jlong minus_v = (jlong) - (jlong) v;
    Atomic::add_ptr(minus_v, &_free_chunks_total);
  }

  // Debug support

  size_t sum_free_chunks();
  size_t sum_free_chunks_count();

  void locked_verify_free_chunks_total();
128 129 130 131 132
  void slow_locked_verify_free_chunks_total() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_total();
    }
  }
133
  void locked_verify_free_chunks_count();
134 135 136 137 138
  void slow_locked_verify_free_chunks_count() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_count();
    }
  }
139 140 141 142
  void verify_free_chunks_count();

 public:

143 144 145 146 147 148
  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
      : _free_chunks_total(0), _free_chunks_count(0) {
    _free_chunks[SpecializedIndex].set_size(specialized_size);
    _free_chunks[SmallIndex].set_size(small_size);
    _free_chunks[MediumIndex].set_size(medium_size);
  }
149 150 151 152

  // add or delete (return) a chunk to the global freelist.
  Metachunk* chunk_freelist_allocate(size_t word_size);

153 154 155 156
  // Map a size to a list index assuming that there are lists
  // for special, small, medium, and humongous chunks.
  static ChunkIndex list_index(size_t size);

157 158 159 160
  // Remove the chunk from its freelist.  It is
  // expected to be on one of the _free_chunks[] lists.
  void remove_chunk(Metachunk* chunk);

161 162 163 164
  // Add the simple linked list of chunks to the freelist of chunks
  // of type index.
  void return_chunks(ChunkIndex index, Metachunk* chunks);

165
  // Total of the space in the free chunks list
E
ehelin 已提交
166 167
  size_t free_chunks_total_words();
  size_t free_chunks_total_bytes();
168 169 170 171 172 173 174 175

  // Number of chunks in the free chunks list
  size_t free_chunks_count();

  void inc_free_chunks_total(size_t v, size_t count = 1) {
    Atomic::add_ptr(count, &_free_chunks_count);
    Atomic::add_ptr(v, &_free_chunks_total);
  }
176 177 178
  ChunkTreeDictionary* humongous_dictionary() {
    return &_humongous_dictionary;
  }
179 180 181 182 183 184

  ChunkList* free_chunks(ChunkIndex index);

  // Returns the list for the given chunk word size.
  ChunkList* find_free_chunks_list(size_t word_size);

185
  // Remove from a list by size.  Selects list based on size of chunk.
186 187
  Metachunk* free_chunks_get(size_t chunk_word_size);

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#define index_bounds_check(index)                                         \
  assert(index == SpecializedIndex ||                                     \
         index == SmallIndex ||                                           \
         index == MediumIndex ||                                          \
         index == HumongousIndex, err_msg("Bad index: %d", (int) index))

  size_t num_free_chunks(ChunkIndex index) const {
    index_bounds_check(index);

    if (index == HumongousIndex) {
      return _humongous_dictionary.total_free_blocks();
    }

    ssize_t count = _free_chunks[index].count();
    return count == -1 ? 0 : (size_t) count;
  }

  size_t size_free_chunks_in_bytes(ChunkIndex index) const {
    index_bounds_check(index);

    size_t word_size = 0;
    if (index == HumongousIndex) {
      word_size = _humongous_dictionary.total_size();
    } else {
      const size_t size_per_chunk_in_words = _free_chunks[index].size();
      word_size = size_per_chunk_in_words * num_free_chunks(index);
    }

    return word_size * BytesPerWord;
  }

  MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
    return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
                                         num_free_chunks(SmallIndex),
                                         num_free_chunks(MediumIndex),
                                         num_free_chunks(HumongousIndex),
                                         size_free_chunks_in_bytes(SpecializedIndex),
                                         size_free_chunks_in_bytes(SmallIndex),
                                         size_free_chunks_in_bytes(MediumIndex),
                                         size_free_chunks_in_bytes(HumongousIndex));
  }

230 231
  // Debug support
  void verify();
232 233 234 235 236
  void slow_verify() {
    if (metaspace_slow_verify) {
      verify();
    }
  }
237
  void locked_verify();
238 239 240 241 242
  void slow_locked_verify() {
    if (metaspace_slow_verify) {
      locked_verify();
    }
  }
243 244 245 246
  void verify_free_chunks_total();

  void locked_print_free_chunks(outputStream* st);
  void locked_print_sum_free_chunks(outputStream* st);
247

248
  void print_on(outputStream* st) const;
249 250 251 252 253
};

// Used to manage the free list of Metablocks (a block corresponds
// to the allocation of a quantum of metadata).
class BlockFreelist VALUE_OBJ_CLASS_SPEC {
254
  BlockTreeDictionary* _dictionary;
255

256 257 258 259
  // Only allocate and split from freelist if the size of the allocation
  // is at least 1/4th the size of the available block.
  const static int WasteMultiplier = 4;

260
  // Accessors
261
  BlockTreeDictionary* dictionary() const { return _dictionary; }
262 263 264 265 266 267

 public:
  BlockFreelist();
  ~BlockFreelist();

  // Get and return a block to the free list
268 269
  MetaWord* get_block(size_t word_size);
  void return_block(MetaWord* p, size_t word_size);
270

271 272
  size_t total_size() {
  if (dictionary() == NULL) {
273
    return 0;
274 275
  } else {
    return dictionary()->total_size();
276
  }
277
}
278 279 280 281

  void print_on(outputStream* st) const;
};

282
// A VirtualSpaceList node.
283 284 285 286 287 288 289 290 291 292 293
class VirtualSpaceNode : public CHeapObj<mtClass> {
  friend class VirtualSpaceList;

  // Link to next VirtualSpaceNode
  VirtualSpaceNode* _next;

  // total in the VirtualSpace
  MemRegion _reserved;
  ReservedSpace _rs;
  VirtualSpace _virtual_space;
  MetaWord* _top;
294 295
  // count of chunks contained in this VirtualSpace
  uintx _container_count;
296 297 298 299 300

  // Convenience functions to access the _virtual_space
  char* low()  const { return virtual_space()->low(); }
  char* high() const { return virtual_space()->high(); }

301 302 303 304
  // The first Metachunk will be allocated at the bottom of the
  // VirtualSpace
  Metachunk* first_chunk() { return (Metachunk*) bottom(); }

305 306
  // Committed but unused space in the virtual space
  size_t free_words_in_vs() const;
307 308 309
 public:

  VirtualSpaceNode(size_t byte_size);
310
  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
311 312
  ~VirtualSpaceNode();

313 314 315 316
  // Convenience functions for logical bottom and end
  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }

317 318 319
  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }

320 321
  bool is_pre_committed() const { return _virtual_space.special(); }

322 323 324 325 326 327 328 329 330 331 332 333
  // address of next available space in _virtual_space;
  // Accessors
  VirtualSpaceNode* next() { return _next; }
  void set_next(VirtualSpaceNode* v) { _next = v; }

  void set_reserved(MemRegion const v) { _reserved = v; }
  void set_top(MetaWord* v) { _top = v; }

  // Accessors
  MemRegion* reserved() { return &_reserved; }
  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }

334
  // Returns true if "word_size" is available in the VirtualSpace
335
  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
336 337 338 339

  MetaWord* top() const { return _top; }
  void inc_top(size_t word_size) { _top += word_size; }

340
  uintx container_count() { return _container_count; }
341
  void inc_container_count();
342 343
  void dec_container_count();
#ifdef ASSERT
344
  uint container_count_slow();
345 346 347
  void verify_container_count();
#endif

348 349 350 351 352 353 354 355 356 357 358 359 360 361
  // used and capacity in this single entry in the list
  size_t used_words_in_vs() const;
  size_t capacity_words_in_vs() const;

  bool initialize();

  // get space from the virtual space
  Metachunk* take_from_committed(size_t chunk_word_size);

  // Allocate a chunk from the virtual space and return it.
  Metachunk* get_chunk_vs(size_t chunk_word_size);

  // Expands/shrinks the committed space in a virtual space.  Delegates
  // to Virtualspace
362
  bool expand_by(size_t min_words, size_t preferred_words);
363

364 365 366 367
  // In preparation for deleting this node, remove all the chunks
  // in the node from any freelist.
  void purge(ChunkManager* chunk_manager);

368 369 370 371 372 373 374
  // If an allocation doesn't fit in the current node a new node is created.
  // Allocate chunks out of the remaining committed space in this node
  // to avoid wasting that memory.
  // This always adds up because all the chunk sizes are multiples of
  // the smallest chunk size.
  void retire(ChunkManager* chunk_manager);

375
#ifdef ASSERT
376 377
  // Debug support
  void mangle();
378
#endif
379 380 381 382

  void print_on(outputStream* st) const;
};

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
#define assert_is_ptr_aligned(ptr, alignment) \
  assert(is_ptr_aligned(ptr, alignment),      \
    err_msg(PTR_FORMAT " is not aligned to "  \
      SIZE_FORMAT, ptr, alignment))

#define assert_is_size_aligned(size, alignment) \
  assert(is_size_aligned(size, alignment),      \
    err_msg(SIZE_FORMAT " is not aligned to "   \
       SIZE_FORMAT, size, alignment))


// Decide if large pages should be committed when the memory is reserved.
static bool should_commit_large_pages_when_reserving(size_t bytes) {
  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
    size_t words = bytes / BytesPerWord;
    bool is_class = false; // We never reserve large pages for the class space.
    if (MetaspaceGC::can_expand(words, is_class) &&
        MetaspaceGC::allowed_expansion() >= words) {
      return true;
    }
  }

  return false;
}

408
  // byte_size is the size of the associated virtualspace.
409 410
VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
  assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
411

412 413 414
  // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
  // configurable address, generally at the top of the Java heap so other
  // memory addresses don't conflict.
415
  if (DumpSharedSpaces) {
416 417 418 419
    bool large_pages = false; // No large pages when dumping the CDS archive.
    char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
420
    if (_rs.is_reserved()) {
421
      assert(shared_base == 0 || _rs.base() == shared_base, "should match");
422
    } else {
423
      // Get a mmap region anywhere if the SharedBaseAddress fails.
424
      _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
425 426 427
    }
    MetaspaceShared::set_shared_rs(&_rs);
  } else {
428 429 430
    bool large_pages = should_commit_large_pages_when_reserving(bytes);

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
431 432
  }

433 434 435 436 437 438 439 440
  if (_rs.is_reserved()) {
    assert(_rs.base() != NULL, "Catch if we get a NULL address");
    assert(_rs.size() != 0, "Catch if we get a 0 size");
    assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
    assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());

    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
  }
441 442
}

443 444 445 446
void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
447 448 449 450 451 452 453
    assert(chunk->is_tagged_free(), "Should be tagged free");
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    chunk_manager->remove_chunk(chunk);
    assert(chunk->next() == NULL &&
           chunk->prev() == NULL,
           "Was not removed from its list");
    chunk = (Metachunk*) next;
454 455 456 457 458 459 460 461 462 463 464 465 466
  }
}

#ifdef ASSERT
uint VirtualSpaceNode::container_count_slow() {
  uint count = 0;
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    // Don't count the chunks on the free lists.  Those are
    // still part of the VirtualSpaceNode but not currently
    // counted.
467
    if (!chunk->is_tagged_free()) {
468 469 470 471 472 473 474 475
      count++;
    }
    chunk = (Metachunk*) next;
  }
  return count;
}
#endif

476 477 478 479 480 481 482 483 484 485 486 487 488
// List of VirtualSpaces for metadata allocation.
class VirtualSpaceList : public CHeapObj<mtClass> {
  friend class VirtualSpaceNode;

  enum VirtualSpaceSizes {
    VirtualSpaceSize = 256 * K
  };

  // Head of the list
  VirtualSpaceNode* _virtual_space_list;
  // virtual space currently being used for allocations
  VirtualSpaceNode* _current_virtual_space;

489
  // Is this VirtualSpaceList used for the compressed class space
490 491
  bool _is_class;

492 493 494 495 496
  // Sum of reserved and committed memory in the virtual spaces
  size_t _reserved_words;
  size_t _committed_words;

  // Number of virtual spaces
497 498 499 500 501 502 503 504 505 506 507 508 509
  size_t _virtual_space_count;

  ~VirtualSpaceList();

  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }

  void set_virtual_space_list(VirtualSpaceNode* v) {
    _virtual_space_list = v;
  }
  void set_current_virtual_space(VirtualSpaceNode* v) {
    _current_virtual_space = v;
  }

510
  void link_vs(VirtualSpaceNode* new_entry);
511 512 513 514

  // Get another virtual space and add it to the list.  This
  // is typically prompted by a failed attempt to allocate a chunk
  // and is typically followed by the allocation of a chunk.
515
  bool create_new_virtual_space(size_t vs_word_size);
516

517 518 519 520
  // Chunk up the unused committed space in the current
  // virtual space and add the chunks to the free list.
  void retire_current_virtual_space();

521 522 523 524
 public:
  VirtualSpaceList(size_t word_size);
  VirtualSpaceList(ReservedSpace rs);

525 526
  size_t free_bytes();

527 528 529 530
  Metachunk* get_new_chunk(size_t word_size,
                           size_t grow_chunks_by_words,
                           size_t medium_chunk_bunch);

531 532 533
  bool expand_node_by(VirtualSpaceNode* node,
                      size_t min_words,
                      size_t preferred_words);
534

535 536
  bool expand_by(size_t min_words,
                 size_t preferred_words);
537 538 539 540 541 542 543

  VirtualSpaceNode* current_virtual_space() {
    return _current_virtual_space;
  }

  bool is_class() const { return _is_class; }

544
  bool initialization_succeeded() { return _virtual_space_list != NULL; }
545

546 547 548 549
  size_t reserved_words()  { return _reserved_words; }
  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
  size_t committed_words() { return _committed_words; }
  size_t committed_bytes() { return committed_words() * BytesPerWord; }
550

551 552 553 554
  void inc_reserved_words(size_t v);
  void dec_reserved_words(size_t v);
  void inc_committed_words(size_t v);
  void dec_committed_words(size_t v);
555 556 557 558
  void inc_virtual_space_count();
  void dec_virtual_space_count();

  // Unlink empty VirtualSpaceNodes and free it.
559
  void purge(ChunkManager* chunk_manager);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

  void print_on(outputStream* st) const;

  class VirtualSpaceListIterator : public StackObj {
    VirtualSpaceNode* _virtual_spaces;
   public:
    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
      _virtual_spaces(virtual_spaces) {}

    bool repeat() {
      return _virtual_spaces != NULL;
    }

    VirtualSpaceNode* get_next() {
      VirtualSpaceNode* result = _virtual_spaces;
      if (_virtual_spaces != NULL) {
        _virtual_spaces = _virtual_spaces->next();
      }
      return result;
    }
  };
};

class Metadebug : AllStatic {
  // Debugging support for Metaspaces
  static int _allocation_fail_alot_count;

 public:

  static void init_allocation_fail_alot_count();
#ifdef ASSERT
  static bool test_metadata_failure();
#endif
};

int Metadebug::_allocation_fail_alot_count = 0;

//  SpaceManager - used by Metaspace to handle allocations
class SpaceManager : public CHeapObj<mtClass> {
  friend class Metaspace;
  friend class Metadebug;

 private:
603

604
  // protects allocations
605 606
  Mutex* const _lock;

607 608 609
  // Type of metadata allocated.
  Metaspace::MetadataType _mdtype;

610 611 612
  // List of chunks in use by this SpaceManager.  Allocations
  // are done from the current chunk.  The list is used for deallocating
  // chunks when the SpaceManager is freed.
613
  Metachunk* _chunks_in_use[NumberOfInUseLists];
614 615 616 617 618 619 620
  Metachunk* _current_chunk;

  // Number of small chunks to allocate to a manager
  // If class space manager, small chunks are unlimited
  static uint const _small_chunk_limit;

  // Sum of all space in allocated chunks
621 622 623 624 625
  size_t _allocated_blocks_words;

  // Sum of all allocated chunks
  size_t _allocated_chunks_words;
  size_t _allocated_chunks_count;
626 627 628 629 630 631 632 633 634 635 636 637

  // Free lists of blocks are per SpaceManager since they
  // are assumed to be in chunks in use by the SpaceManager
  // and all chunks in use by a SpaceManager are freed when
  // the class loader using the SpaceManager is collected.
  BlockFreelist _block_freelists;

  // protects virtualspace and chunk expansions
  static const char*  _expand_lock_name;
  static const int    _expand_lock_rank;
  static Mutex* const _expand_lock;

638
 private:
639 640
  // Accessors
  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
641 642 643 644 645
  void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
    // ensure lock-free iteration sees fully initialized node
    OrderAccess::storestore();
    _chunks_in_use[index] = v;
  }
646 647 648 649 650

  BlockFreelist* block_freelists() const {
    return (BlockFreelist*) &_block_freelists;
  }

651
  Metaspace::MetadataType mdtype() { return _mdtype; }
652 653 654

  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
655 656 657 658 659 660 661 662 663 664

  Metachunk* current_chunk() const { return _current_chunk; }
  void set_current_chunk(Metachunk* v) {
    _current_chunk = v;
  }

  Metachunk* find_current_chunk(size_t word_size);

  // Add chunk to the list of chunks in use
  void add_chunk(Metachunk* v, bool make_current);
665
  void retire_current_chunk();
666 667 668

  Mutex* lock() const { return _lock; }

669 670 671 672 673
  const char* chunk_size_name(ChunkIndex index) const;

 protected:
  void initialize();

674
 public:
675
  SpaceManager(Metaspace::MetadataType mdtype,
676
               Mutex* lock);
677 678
  ~SpaceManager();

679 680
  enum ChunkMultiples {
    MediumChunkMultiple = 4
681 682
  };

683 684
  bool is_class() { return _mdtype == Metaspace::ClassType; }

685
  // Accessors
686 687 688 689 690 691
  size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
  size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
  size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
  size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }

  size_t smallest_chunk_size()  { return specialized_chunk_size(); }
692

693 694 695 696 697
  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
  size_t allocated_chunks_count() const { return _allocated_chunks_count; }

698
  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
699 700 701

  static Mutex* expand_lock() { return _expand_lock; }

702 703 704 705 706 707 708 709 710 711 712 713
  // Increment the per Metaspace and global running sums for Metachunks
  // by the given size.  This is used when a Metachunk to added to
  // the in-use list.
  void inc_size_metrics(size_t words);
  // Increment the per Metaspace and global running sums Metablocks by the given
  // size.  This is used when a Metablock is allocated.
  void inc_used_metrics(size_t words);
  // Delete the portion of the running sums for this SpaceManager. That is,
  // the globals running sums for the Metachunks and Metablocks are
  // decremented for all the Metachunks in-use by this SpaceManager.
  void dec_total_from_size_metrics();

714 715 716 717 718
  // Set the sizes for the initial chunks.
  void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                               size_t* chunk_word_size,
                               size_t* class_chunk_word_size);

719 720 721 722 723 724 725 726 727
  size_t sum_capacity_in_chunks_in_use() const;
  size_t sum_used_in_chunks_in_use() const;
  size_t sum_free_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;

  size_t sum_count_in_chunks_in_use();
  size_t sum_count_in_chunks_in_use(ChunkIndex i);

728 729
  Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);

730 731 732 733 734
  // Block allocation and deallocation.
  // Allocates a block from the current chunk
  MetaWord* allocate(size_t word_size);

  // Helper for allocations
735
  MetaWord* allocate_work(size_t word_size);
736 737

  // Returns a block to the per manager freelist
738
  void deallocate(MetaWord* p, size_t word_size);
739 740 741 742 743 744 745 746

  // Based on the allocation size and a minimum chunk size,
  // returned chunk size (for expanding space for chunk allocation).
  size_t calc_chunk_size(size_t allocation_word_size);

  // Called when an allocation from the current chunk fails.
  // Gets a new chunk (may require getting a new virtual space),
  // and allocates from that chunk.
747
  MetaWord* grow_and_allocate(size_t word_size);
748

749 750 751
  // Notify memory usage to MemoryService.
  void track_metaspace_memory_usage();

752 753 754 755 756 757
  // debugging support.

  void dump(outputStream* const out) const;
  void print_on(outputStream* st) const;
  void locked_print_chunks_in_use_on(outputStream* st) const;

758 759
  bool contains(const void *ptr);

760
  void verify();
761
  void verify_chunk_size(Metachunk* chunk);
762
  NOT_PRODUCT(void mangle_freed_chunks();)
763
#ifdef ASSERT
764
  void verify_allocated_blocks_words();
765
#endif
766 767 768 769

  size_t get_raw_word_size(size_t word_size) {
    size_t byte_size = word_size * BytesPerWord;

770 771 772
    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
    raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());

773 774 775 776 777
    size_t raw_word_size = raw_bytes_size / BytesPerWord;
    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");

    return raw_word_size;
  }
778 779 780 781 782 783 784 785 786 787 788 789
};

uint const SpaceManager::_small_chunk_limit = 4;

const char* SpaceManager::_expand_lock_name =
  "SpaceManager chunk allocation lock";
const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
Mutex* const SpaceManager::_expand_lock =
  new Mutex(SpaceManager::_expand_lock_rank,
            SpaceManager::_expand_lock_name,
            Mutex::_allow_vm_block_flag);

790 791 792 793 794
void VirtualSpaceNode::inc_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count++;
  assert(_container_count == container_count_slow(),
         err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
795
                 " container_count_slow() " SIZE_FORMAT,
796 797 798 799 800 801 802 803 804 805 806 807
                 _container_count, container_count_slow()));
}

void VirtualSpaceNode::dec_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count--;
}

#ifdef ASSERT
void VirtualSpaceNode::verify_container_count() {
  assert(_container_count == container_count_slow(),
    err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
808
            " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
809 810 811
}
#endif

812 813 814 815 816 817 818 819 820 821 822 823 824
// BlockFreelist methods

BlockFreelist::BlockFreelist() : _dictionary(NULL) {}

BlockFreelist::~BlockFreelist() {
  if (_dictionary != NULL) {
    if (Verbose && TraceMetadataChunkAllocation) {
      _dictionary->print_free_lists(gclog_or_tty);
    }
    delete _dictionary;
  }
}

825
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
826
  Metablock* free_chunk = ::new (p) Metablock(word_size);
827
  if (dictionary() == NULL) {
828
   _dictionary = new BlockTreeDictionary();
829
  }
830
  dictionary()->return_chunk(free_chunk);
831 832
}

833
MetaWord* BlockFreelist::get_block(size_t word_size) {
834 835 836 837
  if (dictionary() == NULL) {
    return NULL;
  }

838
  if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
839
    // Dark matter.  Too small for dictionary.
840 841 842
    return NULL;
  }

843
  Metablock* free_block =
844
    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
845 846 847 848
  if (free_block == NULL) {
    return NULL;
  }

849 850 851 852 853 854 855 856 857
  const size_t block_size = free_block->size();
  if (block_size > WasteMultiplier * word_size) {
    return_block((MetaWord*)free_block, block_size);
    return NULL;
  }

  MetaWord* new_block = (MetaWord*)free_block;
  assert(block_size >= word_size, "Incorrect size of block from freelist");
  const size_t unused = block_size - word_size;
858
  if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
859 860 861 862
    return_block(new_block + word_size, unused);
  }

  return new_block;
863 864 865 866 867 868 869 870 871 872 873 874 875
}

void BlockFreelist::print_on(outputStream* st) const {
  if (dictionary() == NULL) {
    return;
  }
  dictionary()->print_free_lists(st);
}

// VirtualSpaceNode methods

VirtualSpaceNode::~VirtualSpaceNode() {
  _rs.release();
876 877 878 879
#ifdef ASSERT
  size_t word_size = sizeof(*this) / BytesPerWord;
  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
#endif
880 881 882 883 884 885 886 887 888 889 890
}

size_t VirtualSpaceNode::used_words_in_vs() const {
  return pointer_delta(top(), bottom(), sizeof(MetaWord));
}

// Space committed in the VirtualSpace
size_t VirtualSpaceNode::capacity_words_in_vs() const {
  return pointer_delta(end(), bottom(), sizeof(MetaWord));
}

891 892 893
size_t VirtualSpaceNode::free_words_in_vs() const {
  return pointer_delta(end(), top(), sizeof(MetaWord));
}
894 895 896 897 898 899 900 901 902

// Allocates the chunk from the virtual space only.
// This interface is also used internally for debugging.  Not all
// chunks removed here are necessarily used for allocation.
Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
  // Bottom of the new chunk
  MetaWord* chunk_limit = top();
  assert(chunk_limit != NULL, "Not safe to call this method");

903 904 905 906 907 908
  // The virtual spaces are always expanded by the
  // commit granularity to enforce the following condition.
  // Without this the is_available check will not work correctly.
  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
      "The committed memory doesn't match the expanded memory.");

909 910
  if (!is_available(chunk_word_size)) {
    if (TraceMetadataChunkAllocation) {
911
      gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
912
      // Dump some information about the virtual space that is nearly full
913
      print_on(gclog_or_tty);
914 915 916 917 918 919 920
    }
    return NULL;
  }

  // Take the space  (bump top on the current virtual space).
  inc_top(chunk_word_size);

921 922
  // Initialize the chunk
  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
923 924 925 926 927
  return result;
}


// Expand the virtual space (commit more of the reserved space)
928 929 930 931 932 933 934 935
bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
  size_t min_bytes = min_words * BytesPerWord;
  size_t preferred_bytes = preferred_words * BytesPerWord;

  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();

  if (uncommitted < min_bytes) {
    return false;
936
  }
937 938 939 940 941 942

  size_t commit = MIN2(preferred_bytes, uncommitted);
  bool result = virtual_space()->expand_by(commit, false);

  assert(result, "Failed to commit memory");

943 944 945 946 947
  return result;
}

Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
948 949 950 951 952
  Metachunk* result = take_from_committed(chunk_word_size);
  if (result != NULL) {
    inc_container_count();
  }
  return result;
953 954 955 956 957 958 959 960
}

bool VirtualSpaceNode::initialize() {

  if (!_rs.is_reserved()) {
    return false;
  }

961 962 963 964 965 966 967 968 969 970 971 972 973
  // These are necessary restriction to make sure that the virtual space always
  // grows in steps of Metaspace::commit_alignment(). If both base and size are
  // aligned only the middle alignment of the VirtualSpace is used.
  assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
  assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());

  // ReservedSpaces marked as special will have the entire memory
  // pre-committed. Setting a committed size will make sure that
  // committed_size and actual_committed_size agrees.
  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;

  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
                                            Metaspace::commit_alignment());
974
  if (result) {
975 976 977
    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
        "Checking that the pre-committed memory was registered by the VirtualSpace");

978 979 980 981
    set_top((MetaWord*)virtual_space()->low());
    set_reserved(MemRegion((HeapWord*)_rs.base(),
                 (HeapWord*)(_rs.base() + _rs.size())));

982 983 984 985 986 987 988 989
    assert(reserved()->start() == (HeapWord*) _rs.base(),
      err_msg("Reserved start was not set properly " PTR_FORMAT
        " != " PTR_FORMAT, reserved()->start(), _rs.base()));
    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
      err_msg("Reserved size was not set properly " SIZE_FORMAT
        " != " SIZE_FORMAT, reserved()->word_size(),
        _rs.size() / BytesPerWord));
  }
990 991 992 993 994 995 996 997 998 999 1000

  return result;
}

void VirtualSpaceNode::print_on(outputStream* st) const {
  size_t used = used_words_in_vs();
  size_t capacity = capacity_words_in_vs();
  VirtualSpace* vs = virtual_space();
  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
           "[" PTR_FORMAT ", " PTR_FORMAT ", "
           PTR_FORMAT ", " PTR_FORMAT ")",
1001 1002
           vs, capacity / K,
           capacity == 0 ? 0 : used * 100 / capacity,
1003 1004 1005 1006
           bottom(), top(), end(),
           vs->high_boundary());
}

1007
#ifdef ASSERT
1008 1009 1010 1011
void VirtualSpaceNode::mangle() {
  size_t word_size = capacity_words_in_vs();
  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
}
1012
#endif // ASSERT
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

// VirtualSpaceList methods
// Space allocated from the VirtualSpace

VirtualSpaceList::~VirtualSpaceList() {
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    delete vsl;
  }
}

1025
void VirtualSpaceList::inc_reserved_words(size_t v) {
1026
  assert_lock_strong(SpaceManager::expand_lock());
1027
  _reserved_words = _reserved_words + v;
1028
}
1029
void VirtualSpaceList::dec_reserved_words(size_t v) {
1030
  assert_lock_strong(SpaceManager::expand_lock());
1031 1032 1033
  _reserved_words = _reserved_words - v;
}

1034 1035 1036 1037 1038 1039
#define assert_committed_below_limit()                             \
  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize,      \
      err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
              " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
          MetaspaceAux::committed_bytes(), MaxMetaspaceSize));

1040 1041 1042
void VirtualSpaceList::inc_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words + v;
1043 1044

  assert_committed_below_limit();
1045 1046 1047 1048
}
void VirtualSpaceList::dec_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words - v;
1049 1050

  assert_committed_below_limit();
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
}

void VirtualSpaceList::inc_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count++;
}
void VirtualSpaceList::dec_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count--;
}

void ChunkManager::remove_chunk(Metachunk* chunk) {
  size_t word_size = chunk->word_size();
  ChunkIndex index = list_index(word_size);
  if (index != HumongousIndex) {
    free_chunks(index)->remove_chunk(chunk);
  } else {
    humongous_dictionary()->remove_chunk(chunk);
  }

  // Chunk is being removed from the chunks free list.
1072
  dec_free_chunks_total(chunk->word_size());
1073 1074 1075 1076 1077
}

// Walk the list of VirtualSpaceNodes and delete
// nodes with a 0 container_count.  Remove Metachunks in
// the node from their respective freelists.
1078
void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
  assert_lock_strong(SpaceManager::expand_lock());
  // Don't use a VirtualSpaceListIterator because this
  // list is being changed and a straightforward use of an iterator is not safe.
  VirtualSpaceNode* purged_vsl = NULL;
  VirtualSpaceNode* prev_vsl = virtual_space_list();
  VirtualSpaceNode* next_vsl = prev_vsl;
  while (next_vsl != NULL) {
    VirtualSpaceNode* vsl = next_vsl;
    next_vsl = vsl->next();
    // Don't free the current virtual space since it will likely
    // be needed soon.
    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
      // Unlink it from the list
      if (prev_vsl == vsl) {
1093 1094
        // This is the case of the current node being the first node.
        assert(vsl == virtual_space_list(), "Expected to be the first node");
1095 1096 1097 1098 1099
        set_virtual_space_list(vsl->next());
      } else {
        prev_vsl->set_next(vsl->next());
      }

1100
      vsl->purge(chunk_manager);
1101 1102
      dec_reserved_words(vsl->reserved_words());
      dec_committed_words(vsl->committed_words());
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
      dec_virtual_space_count();
      purged_vsl = vsl;
      delete vsl;
    } else {
      prev_vsl = vsl;
    }
  }
#ifdef ASSERT
  if (purged_vsl != NULL) {
  // List should be stable enough to use an iterator here.
  VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* vsl = iter.get_next();
      assert(vsl != purged_vsl, "Purge of vsl failed");
    }
  }
#endif
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
void VirtualSpaceList::retire_current_virtual_space() {
  assert_lock_strong(SpaceManager::expand_lock());

  VirtualSpaceNode* vsn = current_virtual_space();

  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
                                  Metaspace::chunk_manager_metadata();

  vsn->retire(cm);
}

void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
    ChunkIndex index = (ChunkIndex)i;
    size_t chunk_size = chunk_manager->free_chunks(index)->size();

    while (free_words_in_vs() >= chunk_size) {
      DEBUG_ONLY(verify_container_count();)
      Metachunk* chunk = get_chunk_vs(chunk_size);
      assert(chunk != NULL, "allocation should have been successful");

      chunk_manager->return_chunks(index, chunk);
      chunk_manager->inc_free_chunks_total(chunk_size);
      DEBUG_ONLY(verify_container_count();)
    }
  }
  assert(free_words_in_vs() == 0, "should be empty now");
}

1151
VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1152 1153 1154
                                   _is_class(false),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1155 1156
                                   _reserved_words(0),
                                   _committed_words(0),
1157 1158 1159
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
1160
  create_new_virtual_space(word_size);
1161 1162 1163 1164 1165 1166
}

VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
                                   _is_class(true),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1167 1168
                                   _reserved_words(0),
                                   _committed_words(0),
1169 1170 1171 1172 1173
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
  bool succeeded = class_entry->initialize();
1174 1175 1176
  if (succeeded) {
    link_vs(class_entry);
  }
1177 1178
}

1179 1180 1181 1182
size_t VirtualSpaceList::free_bytes() {
  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
}

1183
// Allocate another meta virtual space and add it to the list.
1184
bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1185
  assert_lock_strong(SpaceManager::expand_lock());
1186 1187 1188 1189 1190 1191 1192 1193

  if (is_class()) {
    assert(false, "We currently don't support more than one VirtualSpace for"
                  " the compressed class space. The initialization of the"
                  " CCS uses another code path and should not hit this path.");
    return false;
  }

1194
  if (vs_word_size == 0) {
1195
    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1196 1197
    return false;
  }
1198

1199 1200
  // Reserve the space
  size_t vs_byte_size = vs_word_size * BytesPerWord;
1201
  assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1202 1203 1204 1205 1206 1207 1208

  // Allocate the meta virtual space and initialize it.
  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
  if (!new_entry->initialize()) {
    delete new_entry;
    return false;
  } else {
1209 1210
    assert(new_entry->reserved_words() == vs_word_size,
        "Reserved memory size differs from requested memory size");
1211
    link_vs(new_entry);
1212 1213 1214 1215
    return true;
  }
}

1216
void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1217 1218 1219 1220 1221 1222
  if (virtual_space_list() == NULL) {
      set_virtual_space_list(new_entry);
  } else {
    current_virtual_space()->set_next(new_entry);
  }
  set_current_virtual_space(new_entry);
1223 1224
  inc_reserved_words(new_entry->reserved_words());
  inc_committed_words(new_entry->committed_words());
1225 1226 1227 1228 1229 1230
  inc_virtual_space_count();
#ifdef ASSERT
  new_entry->mangle();
#endif
  if (TraceMetavirtualspaceAllocation && Verbose) {
    VirtualSpaceNode* vsl = current_virtual_space();
1231
    vsl->print_on(gclog_or_tty);
1232 1233 1234
  }
}

1235 1236 1237
bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
                                      size_t min_words,
                                      size_t preferred_words) {
1238 1239
  size_t before = node->committed_words();

1240
  bool result = node->expand_by(min_words, preferred_words);
1241 1242 1243 1244

  size_t after = node->committed_words();

  // after and before can be the same if the memory was pre-committed.
1245
  assert(after >= before, "Inconsistency");
1246 1247 1248 1249 1250
  inc_committed_words(after - before);

  return result;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
  assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
  assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
  assert(min_words <= preferred_words, "Invalid arguments");

  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
    return  false;
  }

  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
  if (allowed_expansion_words < min_words) {
    return false;
  }

  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);

  // Commit more memory from the the current virtual space.
  bool vs_expanded = expand_node_by(current_virtual_space(),
                                    min_words,
                                    max_expansion_words);
  if (vs_expanded) {
    return true;
  }
1274
  retire_current_virtual_space();
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

  // Get another virtual space.
  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
  grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());

  if (create_new_virtual_space(grow_vs_words)) {
    if (current_virtual_space()->is_pre_committed()) {
      // The memory was pre-committed, so we are done here.
      assert(min_words <= current_virtual_space()->committed_words(),
          "The new VirtualSpace was pre-committed, so it"
          "should be large enough to fit the alloc request.");
      return true;
    }

    return expand_node_by(current_virtual_space(),
                          min_words,
                          max_expansion_words);
  }

  return false;
}

1297
Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1298 1299
                                           size_t grow_chunks_by_words,
                                           size_t medium_chunk_bunch) {
1300

1301 1302
  // Allocate a chunk out of the current virtual space.
  Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1303

1304 1305
  if (next != NULL) {
    return next;
1306 1307
  }

1308 1309
  // The expand amount is currently only determined by the requested sizes
  // and not how much committed memory is left in the current virtual space.
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
  size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
  size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
  if (min_word_size >= preferred_word_size) {
    // Can happen when humongous chunks are allocated.
    preferred_word_size = min_word_size;
  }

  bool expanded = expand_by(min_word_size, preferred_word_size);
  if (expanded) {
    next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
    assert(next != NULL, "The allocation was expected to succeed after the expansion");
  }

   return next;
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
void VirtualSpaceList::print_on(outputStream* st) const {
  if (TraceMetadataChunkAllocation && Verbose) {
    VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* node = iter.get_next();
      node->print_on(st);
    }
  }
}

// MetaspaceGC methods

// VM_CollectForMetadataAllocation is the vm operation used to GC.
// Within the VM operation after the GC the attempt to allocate the metadata
// should succeed.  If the GC did not free enough space for the metaspace
// allocation, the HWM is increased so that another virtualspace will be
// allocated for the metadata.  With perm gen the increase in the perm
// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
// metaspace policy uses those as the small and large steps for the HWM.
//
// After the GC the compute_new_size() for MetaspaceGC is called to
// resize the capacity of the metaspaces.  The current implementation
1349
// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1350
// to resize the Java heap by some GC's.  New flags can be implemented
1351
// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1352
// free space is desirable in the metaspace capacity to decide how much
1353
// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1354 1355 1356 1357 1358 1359
// free space is desirable in the metaspace capacity before decreasing
// the HWM.

// Calculate the amount to increase the high water mark (HWM).
// Increase by a minimum amount (MinMetaspaceExpansion) so that
// another expansion is not requested too soon.  If that is not
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
// If that is still not enough, expand by the size of the allocation
// plus some.
size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
  size_t min_delta = MinMetaspaceExpansion;
  size_t max_delta = MaxMetaspaceExpansion;
  size_t delta = align_size_up(bytes, Metaspace::commit_alignment());

  if (delta <= min_delta) {
    delta = min_delta;
  } else if (delta <= max_delta) {
1371 1372 1373
    // Don't want to hit the high water mark on the next
    // allocation so make the delta greater than just enough
    // for this allocation.
1374 1375 1376 1377 1378
    delta = max_delta;
  } else {
    // This allocation is large but the next ones are probably not
    // so increase by the minimum.
    delta = delta + min_delta;
1379
  }
1380 1381 1382 1383

  assert_is_size_aligned(delta, Metaspace::commit_alignment());

  return delta;
1384 1385
}

1386 1387 1388 1389 1390
size_t MetaspaceGC::capacity_until_GC() {
  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
  assert(value >= MetaspaceSize, "Not initialied properly?");
  return value;
}
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
size_t MetaspaceGC::inc_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(v, &_capacity_until_GC);
}

size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
}

bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
  // Check if the compressed class space is full.
  if (is_class && Metaspace::using_class_space()) {
    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1409 1410
      return false;
    }
1411 1412
  }

1413 1414 1415 1416 1417
  // Check if the user has imposed a limit on the metaspace memory.
  size_t committed_bytes = MetaspaceAux::committed_bytes();
  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
    return false;
  }
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
  return true;
}

size_t MetaspaceGC::allowed_expansion() {
  size_t committed_bytes = MetaspaceAux::committed_bytes();

  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;

  // Always grant expansion if we are initiating the JVM,
  // or if the GC_locker is preventing GCs.
  if (!is_init_completed() || GC_locker::is_active_and_needs_gc()) {
    return left_until_max / BytesPerWord;
1431 1432
  }

1433
  size_t capacity_until_gc = capacity_until_GC();
1434

1435 1436
  if (capacity_until_gc <= committed_bytes) {
    return 0;
1437 1438
  }

1439 1440
  size_t left_until_GC = capacity_until_gc - committed_bytes;
  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1441

1442 1443
  return left_to_commit / BytesPerWord;
}
1444 1445 1446 1447 1448 1449

void MetaspaceGC::compute_new_size() {
  assert(_shrink_factor <= 100, "invalid shrink factor");
  uint current_shrink_factor = _shrink_factor;
  _shrink_factor = 0;

1450 1451
  const size_t used_after_gc = MetaspaceAux::allocated_capacity_bytes();
  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1452

1453
  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;

  const double min_tmp = used_after_gc / maximum_used_percentage;
  size_t minimum_desired_capacity =
    (size_t)MIN2(min_tmp, double(max_uintx));
  // Don't shrink less than the initial generation size
  minimum_desired_capacity = MAX2(minimum_desired_capacity,
                                  MetaspaceSize);

  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
    gclog_or_tty->print_cr("  "
                  "  minimum_free_percentage: %6.2f"
                  "  maximum_used_percentage: %6.2f",
                  minimum_free_percentage,
                  maximum_used_percentage);
    gclog_or_tty->print_cr("  "
1471 1472
                  "   used_after_gc       : %6.1fKB",
                  used_after_gc / (double) K);
1473 1474 1475
  }


1476
  size_t shrink_bytes = 0;
1477 1478 1479 1480
  if (capacity_until_GC < minimum_desired_capacity) {
    // If we have less capacity below the metaspace HWM, then
    // increment the HWM.
    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1481
    expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1482 1483
    // Don't expand unless it's significant
    if (expand_bytes >= MinMetaspaceExpansion) {
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
      size_t new_capacity_until_GC = MetaspaceGC::inc_capacity_until_GC(expand_bytes);
      Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
                                               new_capacity_until_GC,
                                               MetaspaceGCThresholdUpdater::ComputeNewSize);
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("    expanding:"
                      "  minimum_desired_capacity: %6.1fKB"
                      "  expand_bytes: %6.1fKB"
                      "  MinMetaspaceExpansion: %6.1fKB"
                      "  new metaspace HWM:  %6.1fKB",
                      minimum_desired_capacity / (double) K,
                      expand_bytes / (double) K,
                      MinMetaspaceExpansion / (double) K,
                      new_capacity_until_GC / (double) K);
      }
1499 1500 1501 1502 1503 1504
    }
    return;
  }

  // No expansion, now see if we want to shrink
  // We would never want to shrink more than this
1505 1506 1507
  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
  assert(max_shrink_bytes >= 0, err_msg("max_shrink_bytes " SIZE_FORMAT,
    max_shrink_bytes));
1508 1509

  // Should shrinking be considered?
1510 1511
  if (MaxMetaspaceFreeRatio < 100) {
    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1512 1513 1514 1515 1516
    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
    const double max_tmp = used_after_gc / minimum_used_percentage;
    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
    maximum_desired_capacity = MAX2(maximum_desired_capacity,
                                    MetaspaceSize);
1517
    if (PrintGCDetails && Verbose) {
1518 1519 1520 1521 1522 1523
      gclog_or_tty->print_cr("  "
                             "  maximum_free_percentage: %6.2f"
                             "  minimum_used_percentage: %6.2f",
                             maximum_free_percentage,
                             minimum_used_percentage);
      gclog_or_tty->print_cr("  "
1524 1525
                             "  minimum_desired_capacity: %6.1fKB"
                             "  maximum_desired_capacity: %6.1fKB",
1526 1527 1528 1529 1530 1531 1532 1533 1534
                             minimum_desired_capacity / (double) K,
                             maximum_desired_capacity / (double) K);
    }

    assert(minimum_desired_capacity <= maximum_desired_capacity,
           "sanity check");

    if (capacity_until_GC > maximum_desired_capacity) {
      // Capacity too large, compute shrinking size
1535
      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1536 1537 1538 1539 1540 1541
      // We don't want shrink all the way back to initSize if people call
      // System.gc(), because some programs do that between "phases" and then
      // we'd just have to grow the heap up again for the next phase.  So we
      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
      // on the third call, and 100% by the fourth call.  But if we recompute
      // size without shrinking, it goes back to 0%.
1542
      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1543 1544 1545

      shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());

1546
      assert(shrink_bytes <= max_shrink_bytes,
1547
        err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1548
          shrink_bytes, max_shrink_bytes));
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
      if (current_shrink_factor == 0) {
        _shrink_factor = 10;
      } else {
        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
      }
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("  "
                      "  shrinking:"
                      "  initSize: %.1fK"
                      "  maximum_desired_capacity: %.1fK",
                      MetaspaceSize / (double) K,
                      maximum_desired_capacity / (double) K);
        gclog_or_tty->print_cr("  "
1562
                      "  shrink_bytes: %.1fK"
1563 1564 1565
                      "  current_shrink_factor: %d"
                      "  new shrink factor: %d"
                      "  MinMetaspaceExpansion: %.1fK",
1566
                      shrink_bytes / (double) K,
1567 1568 1569 1570 1571 1572 1573 1574
                      current_shrink_factor,
                      _shrink_factor,
                      MinMetaspaceExpansion / (double) K);
      }
    }
  }

  // Don't shrink unless it's significant
1575 1576
  if (shrink_bytes >= MinMetaspaceExpansion &&
      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1577 1578 1579 1580
    size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
    Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
                                             new_capacity_until_GC,
                                             MetaspaceGCThresholdUpdater::ComputeNewSize);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
  }
}

// Metadebug methods

void Metadebug::init_allocation_fail_alot_count() {
  if (MetadataAllocationFailALot) {
    _allocation_fail_alot_count =
      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
  }
}

#ifdef ASSERT
bool Metadebug::test_metadata_failure() {
  if (MetadataAllocationFailALot &&
      Threads::is_vm_complete()) {
    if (_allocation_fail_alot_count > 0) {
      _allocation_fail_alot_count--;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("Metadata allocation failing for "
                               "MetadataAllocationFailALot");
      }
      init_allocation_fail_alot_count();
      return true;
    }
  }
  return false;
}
#endif

// ChunkManager methods

E
ehelin 已提交
1614
size_t ChunkManager::free_chunks_total_words() {
1615 1616 1617
  return _free_chunks_total;
}

E
ehelin 已提交
1618 1619
size_t ChunkManager::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
1620 1621 1622 1623 1624 1625 1626 1627 1628
}

size_t ChunkManager::free_chunks_count() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
    // This lock is only needed in debug because the verification
    // of the _free_chunks_totals walks the list of free chunks
1629
    slow_locked_verify_free_chunks_count();
1630 1631
  }
#endif
1632
  return _free_chunks_count;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
}

void ChunkManager::locked_verify_free_chunks_total() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks() == _free_chunks_total,
    err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_total,
           sum_free_chunks()));
}

void ChunkManager::verify_free_chunks_total() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_total();
}

void ChunkManager::locked_verify_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks_count() == _free_chunks_count,
    err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_count,
           sum_free_chunks_count()));
}

void ChunkManager::verify_free_chunks_count() {
#ifdef ASSERT
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_count();
#endif
}

void ChunkManager::verify() {
1666 1667 1668
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify();
1669 1670 1671 1672
}

void ChunkManager::locked_verify() {
  locked_verify_free_chunks_count();
1673
  locked_verify_free_chunks_total();
1674 1675 1676 1677
}

void ChunkManager::locked_print_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1678
  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1679 1680 1681 1682 1683
                _free_chunks_total, _free_chunks_count);
}

void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1684
  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
                sum_free_chunks(), sum_free_chunks_count());
}
ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
  return &_free_chunks[index];
}

// These methods that sum the free chunk lists are used in printing
// methods that are used in product builds.
size_t ChunkManager::sum_free_chunks() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t result = 0;
1696
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1697 1698 1699 1700 1701 1702
    ChunkList* list = free_chunks(i);

    if (list == NULL) {
      continue;
    }

1703
    result = result + list->count() * list->size();
1704
  }
1705
  result = result + humongous_dictionary()->total_size();
1706 1707 1708 1709 1710 1711
  return result;
}

size_t ChunkManager::sum_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t count = 0;
1712
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1713 1714 1715 1716
    ChunkList* list = free_chunks(i);
    if (list == NULL) {
      continue;
    }
1717
    count = count + list->count();
1718
  }
1719
  count = count + humongous_dictionary()->total_free_blocks();
1720 1721 1722 1723
  return count;
}

ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1724 1725 1726
  ChunkIndex index = list_index(word_size);
  assert(index < HumongousIndex, "No humongous list");
  return free_chunks(index);
1727 1728 1729 1730 1731
}

Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

1732
  slow_locked_verify();
1733

1734
  Metachunk* chunk = NULL;
1735
  if (list_index(word_size) != HumongousIndex) {
1736 1737
    ChunkList* free_list = find_free_chunks_list(word_size);
    assert(free_list != NULL, "Sanity check");
1738

1739 1740 1741 1742 1743
    chunk = free_list->head();

    if (chunk == NULL) {
      return NULL;
    }
1744 1745

    // Remove the chunk as the head of the list.
1746
    free_list->remove_chunk(chunk);
1747

1748
    if (TraceMetadataChunkAllocation && Verbose) {
1749 1750 1751
      gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
                             PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
                             free_list, chunk, chunk->word_size());
1752 1753
    }
  } else {
1754 1755 1756 1757
    chunk = humongous_dictionary()->get_chunk(
      word_size,
      FreeBlockDictionary<Metachunk>::atLeast);

1758
    if (chunk == NULL) {
1759
      return NULL;
1760
    }
1761 1762 1763 1764 1765 1766 1767 1768

    if (TraceMetadataHumongousAllocation) {
      size_t waste = chunk->word_size() - word_size;
      gclog_or_tty->print_cr("Free list allocate humongous chunk size "
                             SIZE_FORMAT " for requested size " SIZE_FORMAT
                             " waste " SIZE_FORMAT,
                             chunk->word_size(), word_size, waste);
    }
1769
  }
1770

1771
  // Chunk is being removed from the chunks free list.
1772
  dec_free_chunks_total(chunk->word_size());
1773

1774 1775 1776
  // Remove it from the links to this freelist
  chunk->set_next(NULL);
  chunk->set_prev(NULL);
1777 1778 1779
#ifdef ASSERT
  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
  // work.
1780
  chunk->set_is_tagged_free(false);
1781
#endif
1782 1783
  chunk->container()->inc_container_count();

1784
  slow_locked_verify();
1785 1786 1787 1788 1789
  return chunk;
}

Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
1790
  slow_locked_verify();
1791 1792 1793 1794 1795 1796 1797

  // Take from the beginning of the list
  Metachunk* chunk = free_chunks_get(word_size);
  if (chunk == NULL) {
    return NULL;
  }

1798 1799 1800
  assert((word_size <= chunk->word_size()) ||
         list_index(chunk->word_size() == HumongousIndex),
         "Non-humongous variable sized chunk");
1801
  if (TraceMetadataChunkAllocation) {
1802 1803 1804
    size_t list_count;
    if (list_index(word_size) < HumongousIndex) {
      ChunkList* list = find_free_chunks_list(word_size);
1805
      list_count = list->count();
1806 1807 1808
    } else {
      list_count = humongous_dictionary()->total_count();
    }
1809 1810 1811 1812
    gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
                        PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
                        this, chunk, chunk->word_size(), list_count);
    locked_print_free_chunks(gclog_or_tty);
1813 1814 1815 1816 1817
  }

  return chunk;
}

1818
void ChunkManager::print_on(outputStream* out) const {
1819
  if (PrintFLSStatistics != 0) {
1820
    const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1821 1822 1823
  }
}

1824 1825
// SpaceManager methods

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                                           size_t* chunk_word_size,
                                           size_t* class_chunk_word_size) {
  switch (type) {
  case Metaspace::BootMetaspaceType:
    *chunk_word_size = Metaspace::first_chunk_word_size();
    *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
    break;
  case Metaspace::ROMetaspaceType:
    *chunk_word_size = SharedReadOnlySize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::ReadWriteMetaspaceType:
    *chunk_word_size = SharedReadWriteSize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::AnonymousMetaspaceType:
  case Metaspace::ReflectionMetaspaceType:
    *chunk_word_size = SpecializedChunk;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  default:
    *chunk_word_size = SmallChunk;
    *class_chunk_word_size = ClassSmallChunk;
    break;
  }
1852
  assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1853 1854
    err_msg("Initial chunks sizes bad: data  " SIZE_FORMAT
            " class " SIZE_FORMAT,
1855
            *chunk_word_size, *class_chunk_word_size));
1856 1857
}

1858 1859 1860
size_t SpaceManager::sum_free_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t free = 0;
1861
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      free += chunk->free_word_size();
      chunk = chunk->next();
    }
  }
  return free;
}

size_t SpaceManager::sum_waste_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t result = 0;
1874
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1875 1876
   result += sum_waste_in_chunks_in_use(i);
  }
1877

1878 1879 1880 1881 1882 1883 1884 1885
  return result;
}

size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
  size_t result = 0;
  Metachunk* chunk = chunks_in_use(index);
  // Count the free space in all the chunk but not the
  // current chunk from which allocations are still being done.
1886 1887
  while (chunk != NULL) {
    if (chunk != current_chunk()) {
1888
      result += chunk->free_word_size();
1889
    }
1890
    chunk = chunk->next();
1891 1892 1893 1894 1895
  }
  return result;
}

size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
  // For CMS use "allocated_chunks_words()" which does not need the
  // Metaspace lock.  For the other collectors sum over the
  // lists.  Use both methods as a check that "allocated_chunks_words()"
  // is correct.  That is, sum_capacity_in_chunks() is too expensive
  // to use in the product and allocated_chunks_words() should be used
  // but allow for  checking that allocated_chunks_words() returns the same
  // value as sum_capacity_in_chunks_in_use() which is the definitive
  // answer.
  if (UseConcMarkSweepGC) {
    return allocated_chunks_words();
  } else {
    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
    size_t sum = 0;
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
      Metachunk* chunk = chunks_in_use(i);
      while (chunk != NULL) {
1912
        sum += chunk->word_size();
1913 1914
        chunk = chunk->next();
      }
1915 1916
    }
  return sum;
1917
  }
1918 1919 1920 1921
}

size_t SpaceManager::sum_count_in_chunks_in_use() {
  size_t count = 0;
1922
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1923 1924
    count = count + sum_count_in_chunks_in_use(i);
  }
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
  return count;
}

size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(i);
  while (chunk != NULL) {
    count++;
    chunk = chunk->next();
  }
  return count;
}


size_t SpaceManager::sum_used_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t used = 0;
1943
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      used += chunk->used_word_size();
      chunk = chunk->next();
    }
  }
  return used;
}

void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
    Metachunk* chunk = chunks_in_use(i);
    st->print("SpaceManager: %s " PTR_FORMAT,
                 chunk_size_name(i), chunk);
    if (chunk != NULL) {
      st->print_cr(" free " SIZE_FORMAT,
                   chunk->free_word_size());
    } else {
      st->print_cr("");
    }
  }
1966

1967 1968
  chunk_manager()->locked_print_free_chunks(st);
  chunk_manager()->locked_print_sum_free_chunks(st);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

size_t SpaceManager::calc_chunk_size(size_t word_size) {

  // Decide between a small chunk and a medium chunk.  Up to
  // _small_chunk_limit small chunks can be allocated but
  // once a medium chunk has been allocated, no more small
  // chunks will be allocated.
  size_t chunk_word_size;
  if (chunks_in_use(MediumIndex) == NULL &&
1979
      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
1980 1981 1982
    chunk_word_size = (size_t) small_chunk_size();
    if (word_size + Metachunk::overhead() > small_chunk_size()) {
      chunk_word_size = medium_chunk_size();
1983 1984
    }
  } else {
1985
    chunk_word_size = medium_chunk_size();
1986 1987
  }

1988 1989 1990
  // Might still need a humongous chunk.  Enforce
  // humongous allocations sizes to be aligned up to
  // the smallest chunk size.
1991 1992
  size_t if_humongous_sized_chunk =
    align_size_up(word_size + Metachunk::overhead(),
1993
                  smallest_chunk_size());
1994
  chunk_word_size =
1995
    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
1996

1997 1998 1999 2000 2001
  assert(!SpaceManager::is_humongous(word_size) ||
         chunk_word_size == if_humongous_sized_chunk,
         err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
                 " chunk_word_size " SIZE_FORMAT,
                 word_size, chunk_word_size));
2002 2003 2004 2005 2006 2007
  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(word_size)) {
    gclog_or_tty->print_cr("Metadata humongous allocation:");
    gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
    gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
                           chunk_word_size);
2008
    gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
2009 2010 2011 2012 2013
                           Metachunk::overhead());
  }
  return chunk_word_size;
}

2014 2015 2016 2017 2018 2019 2020 2021 2022
void SpaceManager::track_metaspace_memory_usage() {
  if (is_init_completed()) {
    if (is_class()) {
      MemoryService::track_compressed_class_memory_usage();
    }
    MemoryService::track_metaspace_memory_usage();
  }
}

2023
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2024 2025 2026 2027 2028 2029 2030 2031
  assert(vs_list()->current_virtual_space() != NULL,
         "Should have been set");
  assert(current_chunk() == NULL ||
         current_chunk()->allocate(word_size) == NULL,
         "Don't need to expand");
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  if (TraceMetadataChunkAllocation && Verbose) {
2032 2033 2034 2035 2036 2037
    size_t words_left = 0;
    size_t words_used = 0;
    if (current_chunk() != NULL) {
      words_left = current_chunk()->free_word_size();
      words_used = current_chunk()->used_word_size();
    }
2038
    gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2039 2040 2041
                           " words " SIZE_FORMAT " words used " SIZE_FORMAT
                           " words left",
                            word_size, words_used, words_left);
2042 2043 2044 2045
  }

  // Get another chunk out of the virtual space
  size_t grow_chunks_by_words = calc_chunk_size(word_size);
2046
  Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2047

2048 2049
  MetaWord* mem = NULL;

2050 2051 2052 2053 2054
  // If a chunk was available, add it to the in-use chunk list
  // and do an allocation from it.
  if (next != NULL) {
    // Add to this manager's list of chunks in use.
    add_chunk(next, false);
2055
    mem = next->allocate(word_size);
2056
  }
2057

2058 2059 2060
  // Track metaspace memory usage statistic.
  track_metaspace_memory_usage();

2061
  return mem;
2062 2063 2064 2065
}

void SpaceManager::print_on(outputStream* st) const {

2066
  for (ChunkIndex i = ZeroIndex;
2067
       i < NumberOfInUseLists ;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
       i = next_chunk_index(i) ) {
    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
                 chunks_in_use(i),
                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
  }
  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
               " Humongous " SIZE_FORMAT,
               sum_waste_in_chunks_in_use(SmallIndex),
               sum_waste_in_chunks_in_use(MediumIndex),
               sum_waste_in_chunks_in_use(HumongousIndex));
2078 2079 2080 2081 2082
  // block free lists
  if (block_freelists() != NULL) {
    st->print_cr("total in block free lists " SIZE_FORMAT,
      block_freelists()->total_size());
  }
2083 2084
}

2085
SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2086
                           Mutex* lock) :
2087
  _mdtype(mdtype),
2088 2089 2090
  _allocated_blocks_words(0),
  _allocated_chunks_words(0),
  _allocated_chunks_count(0),
2091 2092 2093 2094 2095
  _lock(lock)
{
  initialize();
}

2096 2097 2098 2099 2100 2101 2102
void SpaceManager::inc_size_metrics(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  // Total of allocated Metachunks and allocated Metachunks count
  // for each SpaceManager
  _allocated_chunks_words = _allocated_chunks_words + words;
  _allocated_chunks_count++;
  // Global total of capacity in allocated Metachunks
2103
  MetaspaceAux::inc_capacity(mdtype(), words);
2104 2105 2106 2107 2108
  // Global total of allocated Metablocks.
  // used_words_slow() includes the overhead in each
  // Metachunk so include it in the used when the
  // Metachunk is first added (so only added once per
  // Metachunk).
2109
  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2110 2111 2112 2113 2114 2115
}

void SpaceManager::inc_used_metrics(size_t words) {
  // Add to the per SpaceManager total
  Atomic::add_ptr(words, &_allocated_blocks_words);
  // Add to the global total
2116
  MetaspaceAux::inc_used(mdtype(), words);
2117 2118 2119
}

void SpaceManager::dec_total_from_size_metrics() {
2120 2121
  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2122
  // Also deduct the overhead per Metachunk
2123
  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2124 2125
}

2126
void SpaceManager::initialize() {
2127
  Metadebug::init_allocation_fail_alot_count();
2128
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2129 2130 2131 2132 2133 2134 2135 2136
    _chunks_in_use[i] = NULL;
  }
  _current_chunk = NULL;
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
  }
}

2137 2138 2139 2140 2141 2142 2143 2144 2145
void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
  if (chunks == NULL) {
    return;
  }
  ChunkList* list = free_chunks(index);
  assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* cur = chunks;

2146
  // This returns chunks one at a time.  If a new
2147 2148 2149 2150
  // class List can be created that is a base class
  // of FreeList then something like FreeList::prepend()
  // can be used in place of this loop
  while (cur != NULL) {
2151 2152
    assert(cur->container() != NULL, "Container should have been set");
    cur->container()->dec_container_count();
2153 2154 2155
    // Capture the next link before it is changed
    // by the call to return_chunk_at_head();
    Metachunk* next = cur->next();
2156
    DEBUG_ONLY(cur->set_is_tagged_free(true);)
2157 2158 2159 2160 2161
    list->return_chunk_at_head(cur);
    cur = next;
  }
}

2162
SpaceManager::~SpaceManager() {
2163
  // This call this->_lock which can't be done while holding expand_lock()
2164 2165 2166 2167
  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
    err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
            " allocated_chunks_words() " SIZE_FORMAT,
            sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2168

2169 2170 2171
  MutexLockerEx fcl(SpaceManager::expand_lock(),
                    Mutex::_no_safepoint_check_flag);

2172
  chunk_manager()->slow_locked_verify();
2173

2174 2175
  dec_total_from_size_metrics();

2176 2177 2178 2179 2180
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
    locked_print_chunks_in_use_on(gclog_or_tty);
  }

2181 2182
  // Do not mangle freed Metachunks.  The chunk size inside Metachunks
  // is during the freeing of a VirtualSpaceNodes.
2183

2184 2185
  // Have to update before the chunks_in_use lists are emptied
  // below.
2186 2187
  chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
                                         sum_count_in_chunks_in_use());
2188 2189 2190 2191

  // Add all the chunks in use by this space manager
  // to the global list of free chunks.

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  // Follow each list of chunks-in-use and add them to the
  // free lists.  Each list is NULL terminated.

  for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("returned %d %s chunks to freelist",
                             sum_count_in_chunks_in_use(i),
                             chunk_size_name(i));
    }
    Metachunk* chunks = chunks_in_use(i);
2202
    chunk_manager()->return_chunks(i, chunks);
2203 2204 2205
    set_chunks_in_use(i, NULL);
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("updated freelist count %d %s",
2206
                             chunk_manager()->free_chunks(i)->count(),
2207 2208 2209
                             chunk_size_name(i));
    }
    assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2210 2211
  }

2212 2213 2214 2215
  // The medium chunk case may be optimized by passing the head and
  // tail of the medium chunk list to add_at_head().  The tail is often
  // the current chunk but there are probably exceptions.

2216
  // Humongous chunks
2217 2218 2219 2220 2221 2222
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
                            sum_count_in_chunks_in_use(HumongousIndex),
                            chunk_size_name(HumongousIndex));
    gclog_or_tty->print("Humongous chunk dictionary: ");
  }
2223 2224 2225
  // Humongous chunks are never the current chunk.
  Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);

2226 2227
  while (humongous_chunks != NULL) {
#ifdef ASSERT
2228
    humongous_chunks->set_is_tagged_free(true);
2229
#endif
2230 2231 2232 2233 2234 2235 2236
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
                          humongous_chunks,
                          humongous_chunks->word_size());
    }
    assert(humongous_chunks->word_size() == (size_t)
           align_size_up(humongous_chunks->word_size(),
2237
                             smallest_chunk_size()),
2238
           err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2239
                   " granularity %d",
2240
                   humongous_chunks->word_size(), smallest_chunk_size()));
2241
    Metachunk* next_humongous_chunks = humongous_chunks->next();
2242
    humongous_chunks->container()->dec_container_count();
2243
    chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2244
    humongous_chunks = next_humongous_chunks;
2245
  }
2246 2247 2248
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("updated dictionary count %d %s",
2249
                     chunk_manager()->humongous_dictionary()->total_count(),
2250 2251
                     chunk_size_name(HumongousIndex));
  }
2252
  chunk_manager()->slow_locked_verify();
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
  switch (index) {
    case SpecializedIndex:
      return "Specialized";
    case SmallIndex:
      return "Small";
    case MediumIndex:
      return "Medium";
    case HumongousIndex:
      return "Humongous";
    default:
      return NULL;
  }
}

ChunkIndex ChunkManager::list_index(size_t size) {
  switch (size) {
    case SpecializedChunk:
      assert(SpecializedChunk == ClassSpecializedChunk,
             "Need branch for ClassSpecializedChunk");
      return SpecializedIndex;
    case SmallChunk:
    case ClassSmallChunk:
      return SmallIndex;
    case MediumChunk:
    case ClassMediumChunk:
      return MediumIndex;
    default:
2283
      assert(size > MediumChunk || size > ClassMediumChunk,
2284 2285 2286 2287 2288
             "Not a humongous chunk");
      return HumongousIndex;
  }
}

2289
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2290
  assert_lock_strong(_lock);
2291
  size_t raw_word_size = get_raw_word_size(word_size);
2292
  size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2293
  assert(raw_word_size >= min_size,
2294
         err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2295
  block_freelists()->return_block(p, raw_word_size);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
}

// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {

  assert(new_chunk != NULL, "Should not be NULL");
  assert(new_chunk->next() == NULL, "Should not be on a list");

  new_chunk->reset_empty();

  // Find the correct list and and set the current
  // chunk for that list.
2308
  ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2309

2310
  if (index != HumongousIndex) {
2311
    retire_current_chunk();
2312
    set_current_chunk(new_chunk);
2313 2314 2315
    new_chunk->set_next(chunks_in_use(index));
    set_chunks_in_use(index, new_chunk);
  } else {
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
    // For null class loader data and DumpSharedSpaces, the first chunk isn't
    // small, so small will be null.  Link this first chunk as the current
    // chunk.
    if (make_current) {
      // Set as the current chunk but otherwise treat as a humongous chunk.
      set_current_chunk(new_chunk);
    }
    // Link at head.  The _current_chunk only points to a humongous chunk for
    // the null class loader metaspace (class and data virtual space managers)
    // any humongous chunks so will not point to the tail
    // of the humongous chunks list.
    new_chunk->set_next(chunks_in_use(HumongousIndex));
    set_chunks_in_use(HumongousIndex, new_chunk);

2330
    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2331 2332
  }

2333 2334 2335
  // Add to the running sum of capacity
  inc_size_metrics(new_chunk->word_size());

2336 2337 2338 2339 2340
  assert(new_chunk->is_empty(), "Not ready for reuse");
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
                        sum_count_in_chunks_in_use());
    new_chunk->print_on(gclog_or_tty);
2341
    chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2342 2343 2344
  }
}

2345 2346 2347
void SpaceManager::retire_current_chunk() {
  if (current_chunk() != NULL) {
    size_t remaining_words = current_chunk()->free_word_size();
2348
    if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2349 2350 2351 2352 2353 2354
      block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
      inc_used_metrics(remaining_words);
    }
  }
}

2355 2356
Metachunk* SpaceManager::get_new_chunk(size_t word_size,
                                       size_t grow_chunks_by_words) {
2357 2358
  // Get a chunk from the chunk freelist
  Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2359

2360 2361 2362 2363 2364
  if (next == NULL) {
    next = vs_list()->get_new_chunk(word_size,
                                    grow_chunks_by_words,
                                    medium_chunk_bunch());
  }
2365

S
stefank 已提交
2366
  if (TraceMetadataHumongousAllocation && next != NULL &&
2367
      SpaceManager::is_humongous(next->word_size())) {
S
stefank 已提交
2368 2369
    gclog_or_tty->print_cr("  new humongous chunk word size "
                           PTR_FORMAT, next->word_size());
2370 2371 2372 2373 2374
  }

  return next;
}

2375 2376 2377
MetaWord* SpaceManager::allocate(size_t word_size) {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);

2378
  size_t raw_word_size = get_raw_word_size(word_size);
2379
  BlockFreelist* fl =  block_freelists();
2380
  MetaWord* p = NULL;
2381 2382 2383 2384 2385
  // Allocation from the dictionary is expensive in the sense that
  // the dictionary has to be searched for a size.  Don't allocate
  // from the dictionary until it starts to get fat.  Is this
  // a reasonable policy?  Maybe an skinny dictionary is fast enough
  // for allocations.  Do some profiling.  JJJ
2386 2387
  if (fl->total_size() > allocation_from_dictionary_limit) {
    p = fl->get_block(raw_word_size);
2388
  }
2389 2390
  if (p == NULL) {
    p = allocate_work(raw_word_size);
2391 2392
  }

2393
  return p;
2394 2395 2396 2397
}

// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
2398
MetaWord* SpaceManager::allocate_work(size_t word_size) {
2399 2400 2401 2402 2403 2404 2405
  assert_lock_strong(_lock);
#ifdef ASSERT
  if (Metadebug::test_metadata_failure()) {
    return NULL;
  }
#endif
  // Is there space in the current chunk?
2406
  MetaWord* result = NULL;
2407 2408 2409 2410 2411 2412

  // For DumpSharedSpaces, only allocate out of the current chunk which is
  // never null because we gave it the size we wanted.   Caller reports out
  // of memory if this returns null.
  if (DumpSharedSpaces) {
    assert(current_chunk() != NULL, "should never happen");
2413
    inc_used_metrics(word_size);
2414 2415
    return current_chunk()->allocate(word_size); // caller handles null result
  }
2416

2417 2418 2419 2420 2421 2422 2423
  if (current_chunk() != NULL) {
    result = current_chunk()->allocate(word_size);
  }

  if (result == NULL) {
    result = grow_and_allocate(word_size);
  }
2424 2425

  if (result != NULL) {
2426
    inc_used_metrics(word_size);
2427 2428
    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
           "Head of the list is being allocated");
2429 2430 2431 2432 2433
  }

  return result;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
// This function looks at the chunks in the metaspace without locking.
// The chunks are added with store ordering and not deleted except for at
// unloading time.
bool SpaceManager::contains(const void *ptr) {
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i))
  {
    Metachunk* curr = chunks_in_use(i);
    while (curr != NULL) {
      if (curr->contains(ptr)) return true;
      curr = curr->next();
    }
  }
  return false;
}

2449 2450 2451 2452
void SpaceManager::verify() {
  // If there are blocks in the dictionary, then
  // verfication of chunks does not work since
  // being in the dictionary alters a chunk.
2453
  if (block_freelists()->total_size() == 0) {
2454
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2455 2456 2457
      Metachunk* curr = chunks_in_use(i);
      while (curr != NULL) {
        curr->verify();
2458
        verify_chunk_size(curr);
2459 2460 2461 2462 2463 2464
        curr = curr->next();
      }
    }
  }
}

2465 2466
void SpaceManager::verify_chunk_size(Metachunk* chunk) {
  assert(is_humongous(chunk->word_size()) ||
2467 2468 2469
         chunk->word_size() == medium_chunk_size() ||
         chunk->word_size() == small_chunk_size() ||
         chunk->word_size() == specialized_chunk_size(),
2470 2471 2472 2473
         "Chunk size is wrong");
  return;
}

2474
#ifdef ASSERT
2475
void SpaceManager::verify_allocated_blocks_words() {
2476
  // Verification is only guaranteed at a safepoint.
2477 2478 2479
  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
    "Verification can fail if the applications is running");
  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2480 2481
    err_msg("allocation total is not consistent " SIZE_FORMAT
            " vs " SIZE_FORMAT,
2482
            allocated_blocks_words(), sum_used_in_chunks_in_use()));
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
}

#endif

void SpaceManager::dump(outputStream* const out) const {
  size_t curr_total = 0;
  size_t waste = 0;
  uint i = 0;
  size_t used = 0;
  size_t capacity = 0;

  // Add up statistics for all chunks in this SpaceManager.
2495
  for (ChunkIndex index = ZeroIndex;
2496
       index < NumberOfInUseLists;
2497 2498 2499 2500 2501 2502 2503 2504
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      out->print("%d) ", i++);
      curr->print_on(out);
      curr_total += curr->word_size();
      used += curr->used_word_size();
2505
      capacity += curr->word_size();
2506 2507 2508 2509
      waste += curr->free_word_size() + curr->overhead();;
    }
  }

S
stefank 已提交
2510 2511 2512 2513
  if (TraceMetadataChunkAllocation && Verbose) {
    block_freelists()->print_on(out);
  }

2514
  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2515 2516 2517 2518 2519 2520 2521 2522
  // Free space isn't wasted.
  waste -= free;

  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
}

2523
#ifndef PRODUCT
2524
void SpaceManager::mangle_freed_chunks() {
2525
  for (ChunkIndex index = ZeroIndex;
2526
       index < NumberOfInUseLists;
2527 2528 2529 2530 2531 2532 2533 2534
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      curr->mangle();
    }
  }
}
2535
#endif // PRODUCT
2536 2537 2538

// MetaspaceAux

2539

2540 2541
size_t MetaspaceAux::_allocated_capacity_words[] = {0, 0};
size_t MetaspaceAux::_allocated_used_words[] = {0, 0};
2542

2543 2544 2545 2546 2547
size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->free_bytes();
}

2548
size_t MetaspaceAux::free_bytes() {
2549
  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2550 2551
}

2552
void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2553
  assert_lock_strong(SpaceManager::expand_lock());
2554
  assert(words <= allocated_capacity_words(mdtype),
2555
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2556 2557 2558
            " is greater than _allocated_capacity_words[%u] " SIZE_FORMAT,
            words, mdtype, allocated_capacity_words(mdtype)));
  _allocated_capacity_words[mdtype] -= words;
2559 2560
}

2561
void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2562 2563
  assert_lock_strong(SpaceManager::expand_lock());
  // Needs to be atomic
2564
  _allocated_capacity_words[mdtype] += words;
2565 2566
}

2567 2568
void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
  assert(words <= allocated_used_words(mdtype),
2569
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2570 2571
            " is greater than _allocated_used_words[%u] " SIZE_FORMAT,
            words, mdtype, allocated_used_words(mdtype)));
2572 2573 2574 2575 2576
  // For CMS deallocation of the Metaspaces occurs during the
  // sweep which is a concurrent phase.  Protection by the expand_lock()
  // is not enough since allocation is on a per Metaspace basis
  // and protected by the Metaspace lock.
  jlong minus_words = (jlong) - (jlong) words;
2577
  Atomic::add_ptr(minus_words, &_allocated_used_words[mdtype]);
2578 2579
}

2580
void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2581 2582 2583 2584
  // _allocated_used_words tracks allocations for
  // each piece of metadata.  Those allocations are
  // generally done concurrently by different application
  // threads so must be done atomically.
2585
  Atomic::add_ptr(words, &_allocated_used_words[mdtype]);
2586 2587 2588
}

size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2589 2590 2591 2592
  size_t used = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
2593
    // Sum allocated_blocks_words for each metaspace
2594
    if (msp != NULL) {
2595
      used += msp->used_words_slow(mdtype);
2596 2597 2598 2599 2600
    }
  }
  return used * BytesPerWord;
}

E
ehelin 已提交
2601
size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2602 2603 2604 2605 2606
  size_t free = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
E
ehelin 已提交
2607
      free += msp->free_words_slow(mdtype);
2608 2609 2610 2611 2612
    }
  }
  return free * BytesPerWord;
}

2613
size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2614 2615 2616
  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
    return 0;
  }
2617 2618 2619
  // Don't count the space in the freelists.  That space will be
  // added to the capacity calculation as needed.
  size_t capacity = 0;
2620 2621 2622 2623
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2624
      capacity += msp->capacity_words_slow(mdtype);
2625 2626 2627 2628 2629
    }
  }
  return capacity * BytesPerWord;
}

E
ehelin 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
size_t MetaspaceAux::capacity_bytes_slow() {
#ifdef PRODUCT
  // Use allocated_capacity_bytes() in PRODUCT instead of this function.
  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
#endif
  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
  assert(allocated_capacity_bytes() == class_capacity + non_class_capacity,
      err_msg("bad accounting: allocated_capacity_bytes() " SIZE_FORMAT
        " class_capacity + non_class_capacity " SIZE_FORMAT
        " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
        allocated_capacity_bytes(), class_capacity + non_class_capacity,
        class_capacity, non_class_capacity));

  return class_capacity + non_class_capacity;
}

size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2648
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2649 2650 2651 2652 2653 2654
  return list == NULL ? 0 : list->reserved_bytes();
}

size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->committed_bytes();
2655 2656
}

E
ehelin 已提交
2657
size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2658

E
ehelin 已提交
2659
size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2660 2661
  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
  if (chunk_manager == NULL) {
2662 2663
    return 0;
  }
2664 2665
  chunk_manager->slow_verify();
  return chunk_manager->free_chunks_total_words();
2666 2667
}

E
ehelin 已提交
2668 2669
size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
  return free_chunks_total_words(mdtype) * BytesPerWord;
2670 2671
}

E
ehelin 已提交
2672 2673 2674
size_t MetaspaceAux::free_chunks_total_words() {
  return free_chunks_total_words(Metaspace::ClassType) +
         free_chunks_total_words(Metaspace::NonClassType);
2675 2676
}

E
ehelin 已提交
2677 2678
size_t MetaspaceAux::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
2679 2680
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
  return Metaspace::get_chunk_manager(mdtype) != NULL;
}

MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
  if (!has_chunk_free_list(mdtype)) {
    return MetaspaceChunkFreeListSummary();
  }

  const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
  return cm->chunk_free_list_summary();
}

2694 2695 2696 2697 2698
void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
  gclog_or_tty->print(", [Metaspace:");
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
2699
                        "("  SIZE_FORMAT ")",
2700
                        prev_metadata_used,
2701
                        allocated_used_bytes(),
E
ehelin 已提交
2702
                        reserved_bytes());
2703 2704 2705
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
2706
                        "("  SIZE_FORMAT "K)",
E
ehelin 已提交
2707 2708 2709
                        prev_metadata_used/K,
                        allocated_used_bytes()/K,
                        reserved_bytes()/K);
2710 2711 2712 2713 2714 2715 2716 2717 2718
  }

  gclog_or_tty->print("]");
}

// This is printed when PrintGCDetails
void MetaspaceAux::print_on(outputStream* out) {
  Metaspace::MetadataType nct = Metaspace::NonClassType;

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
  out->print_cr(" Metaspace       "
                "used "      SIZE_FORMAT "K, "
                "capacity "  SIZE_FORMAT "K, "
                "committed " SIZE_FORMAT "K, "
                "reserved "  SIZE_FORMAT "K",
                allocated_used_bytes()/K,
                allocated_capacity_bytes()/K,
                committed_bytes()/K,
                reserved_bytes()/K);

2729 2730 2731
  if (Metaspace::using_class_space()) {
    Metaspace::MetadataType ct = Metaspace::ClassType;
    out->print_cr("  class space    "
2732 2733 2734 2735
                  "used "      SIZE_FORMAT "K, "
                  "capacity "  SIZE_FORMAT "K, "
                  "committed " SIZE_FORMAT "K, "
                  "reserved "  SIZE_FORMAT "K",
2736
                  allocated_used_bytes(ct)/K,
2737 2738
                  allocated_capacity_bytes(ct)/K,
                  committed_bytes(ct)/K,
E
ehelin 已提交
2739
                  reserved_bytes(ct)/K);
2740
  }
2741 2742 2743 2744 2745
}

// Print information for class space and data space separately.
// This is almost the same as above.
void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
E
ehelin 已提交
2746
  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2747 2748
  size_t capacity_bytes = capacity_bytes_slow(mdtype);
  size_t used_bytes = used_bytes_slow(mdtype);
E
ehelin 已提交
2749
  size_t free_bytes = free_bytes_slow(mdtype);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
  size_t used_and_free = used_bytes + free_bytes +
                           free_chunks_capacity_bytes;
  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
             "K + unused in chunks " SIZE_FORMAT "K  + "
             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
             "K  capacity in allocated chunks " SIZE_FORMAT "K",
             used_bytes / K,
             free_bytes / K,
             free_chunks_capacity_bytes / K,
             used_and_free / K,
             capacity_bytes / K);
2761 2762
  // Accounting can only be correct if we got the values during a safepoint
  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2763 2764
}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
// Print total fragmentation for class metaspaces
void MetaspaceAux::print_class_waste(outputStream* out) {
  assert(Metaspace::using_class_space(), "class metaspace not used");
  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
    }
  }
  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                "large count " SIZE_FORMAT,
                cls_specialized_count, cls_specialized_waste,
                cls_small_count, cls_small_waste,
                cls_medium_count, cls_medium_waste, cls_humongous_count);
}
2791

2792 2793
// Print total fragmentation for data and class metaspaces separately
void MetaspaceAux::print_waste(outputStream* out) {
2794 2795
  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2796 2797 2798 2799 2800

  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2801 2802
      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2803
      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2804
      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2805
      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2806
      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2807
      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2808 2809 2810
    }
  }
  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2811 2812
  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2813 2814
                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                        "large count " SIZE_FORMAT,
2815
             specialized_count, specialized_waste, small_count,
2816
             small_waste, medium_count, medium_waste, humongous_count);
2817 2818 2819
  if (Metaspace::using_class_space()) {
    print_class_waste(out);
  }
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
}

// Dump global metaspace things from the end of ClassLoaderDataGraph
void MetaspaceAux::dump(outputStream* out) {
  out->print_cr("All Metaspace:");
  out->print("data space: "); print_on(out, Metaspace::NonClassType);
  out->print("class space: "); print_on(out, Metaspace::ClassType);
  print_waste(out);
}

2830
void MetaspaceAux::verify_free_chunks() {
2831
  Metaspace::chunk_manager_metadata()->verify();
2832
  if (Metaspace::using_class_space()) {
2833
    Metaspace::chunk_manager_class()->verify();
2834
  }
2835 2836
}

2837 2838 2839
void MetaspaceAux::verify_capacity() {
#ifdef ASSERT
  size_t running_sum_capacity_bytes = allocated_capacity_bytes();
2840
  // For purposes of the running sum of capacity, verify against capacity
2841 2842 2843 2844 2845
  size_t capacity_in_use_bytes = capacity_bytes_slow();
  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
    err_msg("allocated_capacity_words() * BytesPerWord " SIZE_FORMAT
            " capacity_bytes_slow()" SIZE_FORMAT,
            running_sum_capacity_bytes, capacity_in_use_bytes));
2846 2847 2848 2849 2850 2851 2852 2853 2854
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
    assert(allocated_capacity_bytes(i) == capacity_in_use_bytes,
      err_msg("allocated_capacity_bytes(%u) " SIZE_FORMAT
              " capacity_bytes_slow(%u)" SIZE_FORMAT,
              i, allocated_capacity_bytes(i), i, capacity_in_use_bytes));
  }
2855 2856 2857 2858 2859 2860
#endif
}

void MetaspaceAux::verify_used() {
#ifdef ASSERT
  size_t running_sum_used_bytes = allocated_used_bytes();
2861
  // For purposes of the running sum of used, verify against used
2862 2863 2864
  size_t used_in_use_bytes = used_bytes_slow();
  assert(allocated_used_bytes() == used_in_use_bytes,
    err_msg("allocated_used_bytes() " SIZE_FORMAT
2865
            " used_bytes_slow()" SIZE_FORMAT,
2866
            allocated_used_bytes(), used_in_use_bytes));
2867 2868 2869 2870 2871 2872 2873 2874 2875
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t used_in_use_bytes = used_bytes_slow(i);
    assert(allocated_used_bytes(i) == used_in_use_bytes,
      err_msg("allocated_used_bytes(%u) " SIZE_FORMAT
              " used_bytes_slow(%u)" SIZE_FORMAT,
              i, allocated_used_bytes(i), i, used_in_use_bytes));
  }
2876 2877 2878 2879 2880 2881 2882 2883 2884
#endif
}

void MetaspaceAux::verify_metrics() {
  verify_capacity();
  verify_used();
}


2885 2886 2887
// Metaspace methods

size_t Metaspace::_first_chunk_word_size = 0;
2888
size_t Metaspace::_first_class_chunk_word_size = 0;
2889

2890 2891 2892
size_t Metaspace::_commit_alignment = 0;
size_t Metaspace::_reserve_alignment = 0;

2893 2894
Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
  initialize(lock, type);
2895 2896 2897 2898
}

Metaspace::~Metaspace() {
  delete _vsm;
2899 2900 2901
  if (using_class_space()) {
    delete _class_vsm;
  }
2902 2903 2904 2905 2906
}

VirtualSpaceList* Metaspace::_space_list = NULL;
VirtualSpaceList* Metaspace::_class_space_list = NULL;

2907 2908 2909
ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
ChunkManager* Metaspace::_chunk_manager_class = NULL;

2910 2911
#define VIRTUALSPACEMULTIPLIER 2

2912
#ifdef _LP64
2913 2914
static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);

2915 2916 2917 2918 2919 2920 2921 2922 2923
void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
  // narrow_klass_base is the lower of the metaspace base and the cds base
  // (if cds is enabled).  The narrow_klass_shift depends on the distance
  // between the lower base and higher address.
  address lower_base;
  address higher_address;
  if (UseSharedSpaces) {
    higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2924
                          (address)(metaspace_base + compressed_class_space_size()));
2925 2926
    lower_base = MIN2(metaspace_base, cds_base);
  } else {
2927
    higher_address = metaspace_base + compressed_class_space_size();
2928
    lower_base = metaspace_base;
2929 2930 2931 2932 2933 2934

    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
    // If compressed class space fits in lower 32G, we don't need a base.
    if (higher_address <= (address)klass_encoding_max) {
      lower_base = 0; // effectively lower base is zero.
    }
2935
  }
2936

2937
  Universe::set_narrow_klass_base(lower_base);
2938

2939
  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
    Universe::set_narrow_klass_shift(0);
  } else {
    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
  }
}

// Return TRUE if the specified metaspace_base and cds_base are close enough
// to work with compressed klass pointers.
bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2951
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2952 2953
  address lower_base = MIN2((address)metaspace_base, cds_base);
  address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2954
                                (address)(metaspace_base + compressed_class_space_size()));
2955
  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
2956 2957 2958 2959 2960
}

// Try to allocate the metaspace at the requested addr.
void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
  assert(using_class_space(), "called improperly");
2961
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2962
  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
2963
         "Metaspace size is too big");
2964 2965 2966
  assert_is_ptr_aligned(requested_addr, _reserve_alignment);
  assert_is_ptr_aligned(cds_base, _reserve_alignment);
  assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
2967 2968 2969

  // Don't use large pages for the class space.
  bool large_pages = false;
2970

2971
  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
2972 2973 2974
                                             _reserve_alignment,
                                             large_pages,
                                             requested_addr, 0);
2975 2976
  if (!metaspace_rs.is_reserved()) {
    if (UseSharedSpaces) {
2977 2978
      size_t increment = align_size_up(1*G, _reserve_alignment);

2979 2980 2981 2982
      // Keep trying to allocate the metaspace, increasing the requested_addr
      // by 1GB each time, until we reach an address that will no longer allow
      // use of CDS with compressed klass pointers.
      char *addr = requested_addr;
2983 2984 2985
      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
        addr = addr + increment;
2986
        metaspace_rs = ReservedSpace(compressed_class_space_size(),
2987
                                     _reserve_alignment, large_pages, addr, 0);
2988 2989 2990 2991 2992
      }
    }

    // If no successful allocation then try to allocate the space anywhere.  If
    // that fails then OOM doom.  At this point we cannot try allocating the
2993 2994 2995
    // metaspace as if UseCompressedClassPointers is off because too much
    // initialization has happened that depends on UseCompressedClassPointers.
    // So, UseCompressedClassPointers cannot be turned off at this point.
2996
    if (!metaspace_rs.is_reserved()) {
2997
      metaspace_rs = ReservedSpace(compressed_class_space_size(),
2998
                                   _reserve_alignment, large_pages);
2999 3000
      if (!metaspace_rs.is_reserved()) {
        vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
3001
                                              compressed_class_space_size()));
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
      }
    }
  }

  // If we got here then the metaspace got allocated.
  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);

  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
    FileMapInfo::stop_sharing_and_unmap(
        "Could not allocate metaspace at a compatible address");
  }

  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
                                  UseSharedSpaces ? (address)cds_base : 0);

  initialize_class_space(metaspace_rs);

  if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
    gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
                            Universe::narrow_klass_base(), Universe::narrow_klass_shift());
3023 3024
    gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
                           compressed_class_space_size(), metaspace_rs.base(), requested_addr);
3025 3026 3027
  }
}

3028
// For UseCompressedClassPointers the class space is reserved above the top of
3029 3030 3031
// the Java heap.  The argument passed in is at the base of the compressed space.
void Metaspace::initialize_class_space(ReservedSpace rs) {
  // The reserved space size may be bigger because of alignment, esp with UseLargePages
3032 3033
  assert(rs.size() >= CompressedClassSpaceSize,
         err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
3034 3035
  assert(using_class_space(), "Must be using class space");
  _class_space_list = new VirtualSpaceList(rs);
3036
  _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3037 3038 3039 3040

  if (!_class_space_list->initialization_succeeded()) {
    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
  }
3041 3042 3043 3044
}

#endif

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
void Metaspace::ergo_initialize() {
  if (DumpSharedSpaces) {
    // Using large pages when dumping the shared archive is currently not implemented.
    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
  }

  size_t page_size = os::vm_page_size();
  if (UseLargePages && UseLargePagesInMetaspace) {
    page_size = os::large_page_size();
  }

  _commit_alignment  = page_size;
  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());

  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
  // override if MaxMetaspaceSize was set on the command line or not.
  // This information is needed later to conform to the specification of the
  // java.lang.management.MemoryUsage API.
  //
  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
  // globals.hpp to the aligned value, but this is not possible, since the
  // alignment depends on other flags being parsed.
3067
  MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3068 3069 3070 3071 3072

  if (MetaspaceSize > MaxMetaspaceSize) {
    MetaspaceSize = MaxMetaspaceSize;
  }

3073
  MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3074 3075 3076 3077 3078 3079 3080

  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");

  if (MetaspaceSize < 256*K) {
    vm_exit_during_initialization("Too small initial Metaspace size");
  }

3081 3082
  MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
  MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3083

3084
  CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3085
  set_compressed_class_space_size(CompressedClassSpaceSize);
3086 3087
}

3088 3089 3090
void Metaspace::global_initialize() {
  // Initialize the alignment for shared spaces.
  int max_alignment = os::vm_page_size();
3091 3092
  size_t cds_total = 0;

3093 3094 3095
  MetaspaceShared::set_max_alignment(max_alignment);

  if (DumpSharedSpaces) {
3096
    SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3097
    SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3098 3099
    SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
    SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3100 3101 3102 3103

    // Initialize with the sum of the shared space sizes.  The read-only
    // and read write metaspace chunks will be allocated out of this and the
    // remainder is the misc code and data chunks.
3104
    cds_total = FileMapInfo::shared_spaces_size();
3105
    cds_total = align_size_up(cds_total, _reserve_alignment);
3106
    _space_list = new VirtualSpaceList(cds_total/wordSize);
3107
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3108

3109 3110 3111 3112
    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to dump shared archive.", NULL);
    }

3113
#ifdef _LP64
3114
    if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3115 3116 3117
      vm_exit_during_initialization("Unable to dump shared archive.",
          err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
                  SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3118 3119
                  "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
                  cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3120 3121
    }

3122 3123
    // Set the compressed klass pointer base so that decoding of these pointers works
    // properly when creating the shared archive.
3124 3125
    assert(UseCompressedOops && UseCompressedClassPointers,
      "UseCompressedOops and UseCompressedClassPointers must be set");
3126 3127 3128 3129 3130 3131 3132 3133 3134
    Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
    if (TraceMetavirtualspaceAllocation && Verbose) {
      gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
                             _space_list->current_virtual_space()->bottom());
    }

    Universe::set_narrow_klass_shift(0);
#endif

3135 3136 3137 3138
  } else {
    // If using shared space, open the file that contains the shared space
    // and map in the memory before initializing the rest of metaspace (so
    // the addresses don't conflict)
3139
    address cds_address = NULL;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    if (UseSharedSpaces) {
      FileMapInfo* mapinfo = new FileMapInfo();
      memset(mapinfo, 0, sizeof(FileMapInfo));

      // Open the shared archive file, read and validate the header. If
      // initialization fails, shared spaces [UseSharedSpaces] are
      // disabled and the file is closed.
      // Map in spaces now also
      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
        FileMapInfo::set_current_info(mapinfo);
3150 3151
        cds_total = FileMapInfo::shared_spaces_size();
        cds_address = (address)mapinfo->region_base(0);
3152 3153 3154 3155
      } else {
        assert(!mapinfo->is_open() && !UseSharedSpaces,
               "archive file not closed or shared spaces not disabled.");
      }
3156 3157 3158
    }

#ifdef _LP64
3159
    // If UseCompressedClassPointers is set then allocate the metaspace area
3160 3161 3162
    // above the heap and above the CDS area (if it exists).
    if (using_class_space()) {
      if (UseSharedSpaces) {
3163 3164 3165
        char* cds_end = (char*)(cds_address + cds_total);
        cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3166
      } else {
3167 3168
        char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(base, 0);
3169
      }
3170
    }
3171
#endif
3172

3173
    // Initialize these before initializing the VirtualSpaceList
3174
    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3175 3176 3177 3178 3179
    _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
    // Make the first class chunk bigger than a medium chunk so it's not put
    // on the medium chunk list.   The next chunk will be small and progress
    // from there.  This size calculated by -version.
    _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3180
                                       (CompressedClassSpaceSize/BytesPerWord)*2);
3181
    _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3182 3183
    // Arbitrarily set the initial virtual space to a multiple
    // of the boot class loader size.
3184 3185 3186
    size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
    word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());

3187 3188
    // Initialize the list of virtual spaces.
    _space_list = new VirtualSpaceList(word_size);
3189
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3190 3191 3192 3193

    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
    }
3194
  }
3195 3196

  MetaspaceGC::initialize();
3197
  _tracer = new MetaspaceTracer();
3198 3199 3200 3201 3202 3203 3204 3205 3206
}

Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
                                               size_t chunk_word_size,
                                               size_t chunk_bunch) {
  // Get a chunk from the chunk freelist
  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
  if (chunk != NULL) {
    return chunk;
3207
  }
3208

3209
  return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3210 3211
}

3212
void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3213 3214 3215

  assert(space_list() != NULL,
    "Metadata VirtualSpaceList has not been initialized");
3216 3217
  assert(chunk_manager_metadata() != NULL,
    "Metadata ChunkManager has not been initialized");
3218

3219
  _vsm = new SpaceManager(NonClassType, lock);
3220 3221 3222
  if (_vsm == NULL) {
    return;
  }
3223 3224
  size_t word_size;
  size_t class_word_size;
3225
  vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3226

3227
  if (using_class_space()) {
3228 3229 3230 3231
  assert(class_space_list() != NULL,
    "Class VirtualSpaceList has not been initialized");
  assert(chunk_manager_class() != NULL,
    "Class ChunkManager has not been initialized");
3232

3233
    // Allocate SpaceManager for classes.
3234
    _class_vsm = new SpaceManager(ClassType, lock);
3235 3236 3237
    if (_class_vsm == NULL) {
      return;
    }
3238 3239 3240 3241 3242
  }

  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  // Allocate chunk for metadata objects
3243 3244 3245
  Metachunk* new_chunk = get_initialization_chunk(NonClassType,
                                                  word_size,
                                                  vsm()->medium_chunk_bunch());
3246 3247 3248 3249 3250 3251 3252
  assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
  if (new_chunk != NULL) {
    // Add to this manager's list of chunks in use and current_chunk().
    vsm()->add_chunk(new_chunk, true);
  }

  // Allocate chunk for class metadata objects
3253
  if (using_class_space()) {
3254 3255 3256
    Metachunk* class_chunk = get_initialization_chunk(ClassType,
                                                      class_word_size,
                                                      class_vsm()->medium_chunk_bunch());
3257 3258 3259
    if (class_chunk != NULL) {
      class_vsm()->add_chunk(class_chunk, true);
    }
3260
  }
3261 3262 3263

  _alloc_record_head = NULL;
  _alloc_record_tail = NULL;
3264 3265
}

3266 3267 3268 3269 3270
size_t Metaspace::align_word_size_up(size_t word_size) {
  size_t byte_size = word_size * wordSize;
  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
}

3271 3272
MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
  // DumpSharedSpaces doesn't use class metadata area (yet)
3273
  // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3274
  if (is_class_space_allocation(mdtype)) {
3275
    return  class_vsm()->allocate(word_size);
3276
  } else {
3277
    return  vsm()->allocate(word_size);
3278 3279 3280
  }
}

3281
MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3282 3283 3284 3285
  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
  assert(delta_bytes > 0, "Must be");

  size_t after_inc = MetaspaceGC::inc_capacity_until_GC(delta_bytes);
3286 3287

  // capacity_until_GC might be updated concurrently, must calculate previous value.
3288 3289
  size_t before_inc = after_inc - delta_bytes;

3290 3291
  tracer()->report_gc_threshold(before_inc, after_inc,
                                MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3292 3293
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3294
        " to " SIZE_FORMAT, before_inc, after_inc);
3295
  }
3296

3297
  return allocate(word_size, mdtype);
3298 3299
}

3300 3301 3302 3303 3304 3305 3306
// Space allocated in the Metaspace.  This may
// be across several metadata virtual spaces.
char* Metaspace::bottom() const {
  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
  return (char*)vsm()->current_chunk()->bottom();
}

3307
size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3308 3309 3310 3311 3312
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
  }
3313 3314
}

E
ehelin 已提交
3315
size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3316 3317 3318 3319 3320
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_free_in_chunks_in_use();
  }
3321 3322 3323 3324 3325 3326 3327
}

// Space capacity in the Metaspace.  It includes
// space in the list of chunks from which allocations
// have been made. Don't include space in the global freelist and
// in the space available in the dictionary which
// is already counted in some chunk.
3328
size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3329 3330 3331 3332 3333
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_capacity_in_chunks_in_use();
  }
3334 3335
}

3336 3337 3338 3339 3340 3341 3342 3343
size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
  return used_words_slow(mdtype) * BytesPerWord;
}

size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
  return capacity_words_slow(mdtype) * BytesPerWord;
}

3344 3345 3346
void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
  if (SafepointSynchronize::is_at_safepoint()) {
    assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3347
    // Don't take Heap_lock
3348
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3349
    if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3350 3351 3352 3353 3354 3355
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3356 3357
    if (is_class && using_class_space()) {
      class_vsm()->deallocate(ptr, word_size);
3358
    } else {
3359
      vsm()->deallocate(ptr, word_size);
3360 3361
    }
  } else {
3362
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3363

3364
    if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3365 3366 3367 3368 3369 3370
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3371
    if (is_class && using_class_space()) {
3372
      class_vsm()->deallocate(ptr, word_size);
3373
    } else {
3374
      vsm()->deallocate(ptr, word_size);
3375 3376 3377 3378
    }
  }
}

3379

3380
MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3381
                              bool read_only, MetaspaceObj::Type type, TRAPS) {
3382 3383 3384 3385 3386 3387 3388
  if (HAS_PENDING_EXCEPTION) {
    assert(false, "Should not allocate with exception pending");
    return NULL;  // caller does a CHECK_NULL too
  }

  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
        "ClassLoaderData::the_null_class_loader_data() should have been used.");
3389

3390 3391 3392 3393
  // Allocate in metaspaces without taking out a lock, because it deadlocks
  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
  // to revisit this for application class data sharing.
  if (DumpSharedSpaces) {
3394 3395
    assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
    Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3396
    MetaWord* result = space->allocate(word_size, NonClassType);
3397 3398 3399
    if (result == NULL) {
      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
    }
3400 3401 3402 3403 3404 3405 3406

    space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));

    // Zero initialize.
    Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

    return result;
3407 3408
  }

3409 3410 3411 3412
  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;

  // Try to allocate metadata.
  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3413 3414

  if (result == NULL) {
3415 3416
    tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);

3417 3418 3419
    // Allocation failed.
    if (is_init_completed()) {
      // Only start a GC if the bootstrapping has completed.
3420

3421 3422 3423
      // Try to clean out some memory and retry.
      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
          loader_data, word_size, mdtype);
3424 3425
    }
  }
3426 3427

  if (result == NULL) {
3428
    report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3429 3430
  }

3431 3432 3433 3434
  // Zero initialize.
  Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

  return result;
3435 3436
}

3437 3438 3439 3440 3441
size_t Metaspace::class_chunk_size(size_t word_size) {
  assert(using_class_space(), "Has to use class space");
  return class_vsm()->calc_chunk_size(word_size);
}

3442 3443 3444
void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
  tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
  // If result is still null, we are out of memory.
  if (Verbose && TraceMetadataChunkAllocation) {
    gclog_or_tty->print_cr("Metaspace allocation failed for size "
        SIZE_FORMAT, word_size);
    if (loader_data->metaspace_or_null() != NULL) {
      loader_data->dump(gclog_or_tty);
    }
    MetaspaceAux::dump(gclog_or_tty);
  }

3455 3456 3457 3458 3459 3460 3461 3462 3463
  bool out_of_compressed_class_space = false;
  if (is_class_space_allocation(mdtype)) {
    Metaspace* metaspace = loader_data->metaspace_non_null();
    out_of_compressed_class_space =
      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
      CompressedClassSpaceSize;
  }

3464
  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3465 3466 3467
  const char* space_string = out_of_compressed_class_space ?
    "Compressed class space" : "Metaspace";

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
  report_java_out_of_memory(space_string);

  if (JvmtiExport::should_post_resource_exhausted()) {
    JvmtiExport::post_resource_exhausted(
        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
        space_string);
  }

  if (!is_init_completed()) {
    vm_exit_during_initialization("OutOfMemoryError", space_string);
  }

3480
  if (out_of_compressed_class_space) {
3481 3482 3483 3484 3485 3486
    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
  } else {
    THROW_OOP(Universe::out_of_memory_error_metaspace());
  }
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
  switch (mdtype) {
    case Metaspace::ClassType: return "Class";
    case Metaspace::NonClassType: return "Metadata";
    default:
      assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
      return NULL;
  }
}

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
  assert(DumpSharedSpaces, "sanity");

  AllocRecord *rec = new AllocRecord((address)ptr, type, (int)word_size * HeapWordSize);
  if (_alloc_record_head == NULL) {
    _alloc_record_head = _alloc_record_tail = rec;
  } else {
    _alloc_record_tail->_next = rec;
    _alloc_record_tail = rec;
  }
}

void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
  assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");

  address last_addr = (address)bottom();

  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
    address ptr = rec->_ptr;
    if (last_addr < ptr) {
      closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
    }
    closure->doit(ptr, rec->_type, rec->_byte_size);
    last_addr = ptr + rec->_byte_size;
  }

  address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
  if (last_addr < top) {
    closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
  }
}

3529 3530 3531 3532
void Metaspace::purge(MetadataType mdtype) {
  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
}

3533 3534 3535
void Metaspace::purge() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
3536
  purge(NonClassType);
3537
  if (using_class_space()) {
3538
    purge(ClassType);
3539
  }
3540 3541
}

3542 3543 3544
void Metaspace::print_on(outputStream* out) const {
  // Print both class virtual space counts and metaspace.
  if (Verbose) {
3545 3546
    vsm()->print_on(out);
    if (using_class_space()) {
3547
      class_vsm()->print_on(out);
3548
    }
3549 3550 3551
  }
}

3552 3553 3554 3555
bool Metaspace::contains(const void* ptr) {
  if (vsm()->contains(ptr)) return true;
  if (using_class_space()) {
    return class_vsm()->contains(ptr);
3556
  }
3557
  return false;
3558 3559 3560 3561
}

void Metaspace::verify() {
  vsm()->verify();
3562 3563 3564
  if (using_class_space()) {
    class_vsm()->verify();
  }
3565 3566 3567 3568 3569
}

void Metaspace::dump(outputStream* const out) const {
  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
  vsm()->dump(out);
3570 3571 3572 3573
  if (using_class_space()) {
    out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
    class_vsm()->dump(out);
  }
3574
}
3575 3576 3577 3578 3579

/////////////// Unit tests ///////////////

#ifndef PRODUCT

3580
class TestMetaspaceAuxTest : AllStatic {
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
 public:
  static void test_reserved() {
    size_t reserved = MetaspaceAux::reserved_bytes();

    assert(reserved > 0, "assert");

    size_t committed  = MetaspaceAux::committed_bytes();
    assert(committed <= reserved, "assert");

    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
    assert(reserved_metadata > 0, "assert");
    assert(reserved_metadata <= reserved, "assert");

    if (UseCompressedClassPointers) {
      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
      assert(reserved_class > 0, "assert");
      assert(reserved_class < reserved, "assert");
    }
  }

  static void test_committed() {
    size_t committed = MetaspaceAux::committed_bytes();

    assert(committed > 0, "assert");

    size_t reserved  = MetaspaceAux::reserved_bytes();
    assert(committed <= reserved, "assert");

    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
    assert(committed_metadata > 0, "assert");
    assert(committed_metadata <= committed, "assert");

    if (UseCompressedClassPointers) {
      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
      assert(committed_class > 0, "assert");
      assert(committed_class < committed, "assert");
    }
  }

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
  static void test_virtual_space_list_large_chunk() {
    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
    // vm_allocation_granularity aligned on Windows.
    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
    large_size += (os::vm_page_size()/BytesPerWord);
    vs_list->get_new_chunk(large_size, large_size, 0);
  }

3630 3631 3632
  static void test() {
    test_reserved();
    test_committed();
3633
    test_virtual_space_list_large_chunk();
3634 3635 3636
  }
};

3637 3638
void TestMetaspaceAux_test() {
  TestMetaspaceAuxTest::test();
3639 3640
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
class TestVirtualSpaceNodeTest {
  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
                                          size_t& num_small_chunks,
                                          size_t& num_specialized_chunks) {
    num_medium_chunks = words_left / MediumChunk;
    words_left = words_left % MediumChunk;

    num_small_chunks = words_left / SmallChunk;
    words_left = words_left % SmallChunk;
    // how many specialized chunks can we get?
    num_specialized_chunks = words_left / SpecializedChunk;
    assert(words_left % SpecializedChunk == 0, "should be nothing left");
  }

 public:
  static void test() {
    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    const size_t vsn_test_size_words = MediumChunk  * 4;
    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;

    // The chunk sizes must be multiples of eachother, or this will fail
    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);

    { // No committed memory in VSN
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
    }

    { // All of VSN is committed, half is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
      vsn.get_chunk_vs(MediumChunk);
      vsn.get_chunk_vs(MediumChunk);
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
    }

    { // 4 pages of VSN is committed, some is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
      assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
      vsn.initialize();
      vsn.expand_by(page_chunks, page_chunks);
      vsn.get_chunk_vs(SmallChunk);
      vsn.get_chunk_vs(SpecializedChunk);
      vsn.retire(&cm);

      // committed - used = words left to retire
      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;

      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

    { // Half of VSN is committed, a humongous chunk is used
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
      vsn.retire(&cm);

      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

  }
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795

#define assert_is_available_positive(word_size) \
  assert(vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

#define assert_is_available_negative(word_size) \
  assert(!vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

  static void test_is_available_positive() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available accepts the committed size.
    assert_is_available_positive(commit_word_size);

    // Check that is_available accepts half the committed size.
    size_t expand_word_size = commit_word_size / 2;
    assert_is_available_positive(expand_word_size);
  }

  static void test_is_available_negative() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available doesn't accept a too large size.
    size_t two_times_commit_word_size = commit_word_size * 2;
    assert_is_available_negative(two_times_commit_word_size);
  }

  static void test_is_available_overflow() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Calculate a size that will overflow the virtual space size.
    void* virtual_space_max = (void*)(uintptr_t)-1;
    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
    size_t overflow_size = bottom_to_max + BytesPerWord;
    size_t overflow_word_size = overflow_size / BytesPerWord;

    // Check that is_available can handle the overflow.
    assert_is_available_negative(overflow_word_size);
  }

  static void test_is_available() {
    TestVirtualSpaceNodeTest::test_is_available_positive();
    TestVirtualSpaceNodeTest::test_is_available_negative();
    TestVirtualSpaceNodeTest::test_is_available_overflow();
  }
3796 3797 3798 3799
};

void TestVirtualSpaceNode_test() {
  TestVirtualSpaceNodeTest::test();
3800
  TestVirtualSpaceNodeTest::test_is_available();
3801 3802
}

3803
#endif