metaspace.cpp 134.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
26
#include "memory/allocation.hpp"
27
#include "memory/binaryTreeDictionary.hpp"
28
#include "memory/freeList.hpp"
29 30 31
#include "memory/collectorPolicy.hpp"
#include "memory/filemap.hpp"
#include "memory/freeList.hpp"
32
#include "memory/gcLocker.hpp"
33
#include "memory/metachunk.hpp"
34
#include "memory/metaspace.hpp"
35
#include "memory/metaspaceGCThresholdUpdater.hpp"
36
#include "memory/metaspaceShared.hpp"
37
#include "memory/metaspaceTracer.hpp"
38 39
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
40
#include "runtime/atomic.inline.hpp"
41
#include "runtime/globals.hpp"
42
#include "runtime/init.hpp"
43
#include "runtime/java.hpp"
44
#include "runtime/mutex.hpp"
45
#include "runtime/orderAccess.hpp"
46
#include "services/memTracker.hpp"
47
#include "services/memoryService.hpp"
48 49 50
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"

51 52
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC

53 54
typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
55 56

// Set this constant to enable slow integrity checking of the free chunk lists
57 58
const bool metaspace_slow_verify = false;

59
size_t const allocation_from_dictionary_limit = 4 * K;
60 61 62

MetaWord* last_allocated = 0;

63
size_t Metaspace::_compressed_class_space_size;
64
const MetaspaceTracer* Metaspace::_tracer = NULL;
65

66 67
// Used in declarations in SpaceManager and ChunkManager
enum ChunkIndex {
68 69 70 71 72 73 74 75 76 77 78 79 80 81
  ZeroIndex = 0,
  SpecializedIndex = ZeroIndex,
  SmallIndex = SpecializedIndex + 1,
  MediumIndex = SmallIndex + 1,
  HumongousIndex = MediumIndex + 1,
  NumberOfFreeLists = 3,
  NumberOfInUseLists = 4
};

enum ChunkSizes {    // in words.
  ClassSpecializedChunk = 128,
  SpecializedChunk = 128,
  ClassSmallChunk = 256,
  SmallChunk = 512,
82
  ClassMediumChunk = 4 * K,
83
  MediumChunk = 8 * K
84 85 86
};

static ChunkIndex next_chunk_index(ChunkIndex i) {
87
  assert(i < NumberOfInUseLists, "Out of bound");
88 89 90
  return (ChunkIndex) (i+1);
}

91
volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
92 93 94
uint MetaspaceGC::_shrink_factor = 0;
bool MetaspaceGC::_should_concurrent_collect = false;

95
typedef class FreeList<Metachunk> ChunkList;
96 97

// Manages the global free lists of chunks.
98
class ChunkManager : public CHeapObj<mtInternal> {
99
  friend class TestVirtualSpaceNodeTest;
100 101

  // Free list of chunks of different sizes.
102
  //   SpecializedChunk
103 104 105
  //   SmallChunk
  //   MediumChunk
  //   HumongousChunk
106 107 108 109
  ChunkList _free_chunks[NumberOfFreeLists];

  //   HumongousChunk
  ChunkTreeDictionary _humongous_dictionary;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  // ChunkManager in all lists of this type
  size_t _free_chunks_total;
  size_t _free_chunks_count;

  void dec_free_chunks_total(size_t v) {
    assert(_free_chunks_count > 0 &&
             _free_chunks_total > 0,
             "About to go negative");
    Atomic::add_ptr(-1, &_free_chunks_count);
    jlong minus_v = (jlong) - (jlong) v;
    Atomic::add_ptr(minus_v, &_free_chunks_total);
  }

  // Debug support

  size_t sum_free_chunks();
  size_t sum_free_chunks_count();

  void locked_verify_free_chunks_total();
130 131 132 133 134
  void slow_locked_verify_free_chunks_total() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_total();
    }
  }
135
  void locked_verify_free_chunks_count();
136 137 138 139 140
  void slow_locked_verify_free_chunks_count() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_count();
    }
  }
141 142 143 144
  void verify_free_chunks_count();

 public:

145 146 147 148 149 150
  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
      : _free_chunks_total(0), _free_chunks_count(0) {
    _free_chunks[SpecializedIndex].set_size(specialized_size);
    _free_chunks[SmallIndex].set_size(small_size);
    _free_chunks[MediumIndex].set_size(medium_size);
  }
151 152 153 154

  // add or delete (return) a chunk to the global freelist.
  Metachunk* chunk_freelist_allocate(size_t word_size);

155 156 157 158
  // Map a size to a list index assuming that there are lists
  // for special, small, medium, and humongous chunks.
  static ChunkIndex list_index(size_t size);

159 160 161 162
  // Remove the chunk from its freelist.  It is
  // expected to be on one of the _free_chunks[] lists.
  void remove_chunk(Metachunk* chunk);

163 164 165 166
  // Add the simple linked list of chunks to the freelist of chunks
  // of type index.
  void return_chunks(ChunkIndex index, Metachunk* chunks);

167
  // Total of the space in the free chunks list
E
ehelin 已提交
168 169
  size_t free_chunks_total_words();
  size_t free_chunks_total_bytes();
170 171 172 173 174 175 176 177

  // Number of chunks in the free chunks list
  size_t free_chunks_count();

  void inc_free_chunks_total(size_t v, size_t count = 1) {
    Atomic::add_ptr(count, &_free_chunks_count);
    Atomic::add_ptr(v, &_free_chunks_total);
  }
178 179 180
  ChunkTreeDictionary* humongous_dictionary() {
    return &_humongous_dictionary;
  }
181 182 183 184 185 186

  ChunkList* free_chunks(ChunkIndex index);

  // Returns the list for the given chunk word size.
  ChunkList* find_free_chunks_list(size_t word_size);

187
  // Remove from a list by size.  Selects list based on size of chunk.
188 189
  Metachunk* free_chunks_get(size_t chunk_word_size);

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#define index_bounds_check(index)                                         \
  assert(index == SpecializedIndex ||                                     \
         index == SmallIndex ||                                           \
         index == MediumIndex ||                                          \
         index == HumongousIndex, err_msg("Bad index: %d", (int) index))

  size_t num_free_chunks(ChunkIndex index) const {
    index_bounds_check(index);

    if (index == HumongousIndex) {
      return _humongous_dictionary.total_free_blocks();
    }

    ssize_t count = _free_chunks[index].count();
    return count == -1 ? 0 : (size_t) count;
  }

  size_t size_free_chunks_in_bytes(ChunkIndex index) const {
    index_bounds_check(index);

    size_t word_size = 0;
    if (index == HumongousIndex) {
      word_size = _humongous_dictionary.total_size();
    } else {
      const size_t size_per_chunk_in_words = _free_chunks[index].size();
      word_size = size_per_chunk_in_words * num_free_chunks(index);
    }

    return word_size * BytesPerWord;
  }

  MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
    return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
                                         num_free_chunks(SmallIndex),
                                         num_free_chunks(MediumIndex),
                                         num_free_chunks(HumongousIndex),
                                         size_free_chunks_in_bytes(SpecializedIndex),
                                         size_free_chunks_in_bytes(SmallIndex),
                                         size_free_chunks_in_bytes(MediumIndex),
                                         size_free_chunks_in_bytes(HumongousIndex));
  }

232 233
  // Debug support
  void verify();
234 235 236 237 238
  void slow_verify() {
    if (metaspace_slow_verify) {
      verify();
    }
  }
239
  void locked_verify();
240 241 242 243 244
  void slow_locked_verify() {
    if (metaspace_slow_verify) {
      locked_verify();
    }
  }
245 246 247 248
  void verify_free_chunks_total();

  void locked_print_free_chunks(outputStream* st);
  void locked_print_sum_free_chunks(outputStream* st);
249

250
  void print_on(outputStream* st) const;
251 252 253 254 255
};

// Used to manage the free list of Metablocks (a block corresponds
// to the allocation of a quantum of metadata).
class BlockFreelist VALUE_OBJ_CLASS_SPEC {
256
  BlockTreeDictionary* _dictionary;
257

258 259 260 261
  // Only allocate and split from freelist if the size of the allocation
  // is at least 1/4th the size of the available block.
  const static int WasteMultiplier = 4;

262
  // Accessors
263
  BlockTreeDictionary* dictionary() const { return _dictionary; }
264 265 266 267 268 269

 public:
  BlockFreelist();
  ~BlockFreelist();

  // Get and return a block to the free list
270 271
  MetaWord* get_block(size_t word_size);
  void return_block(MetaWord* p, size_t word_size);
272

273 274
  size_t total_size() {
  if (dictionary() == NULL) {
275
    return 0;
276 277
  } else {
    return dictionary()->total_size();
278
  }
279
}
280 281 282 283

  void print_on(outputStream* st) const;
};

284
// A VirtualSpaceList node.
285 286 287 288 289 290 291 292 293 294 295
class VirtualSpaceNode : public CHeapObj<mtClass> {
  friend class VirtualSpaceList;

  // Link to next VirtualSpaceNode
  VirtualSpaceNode* _next;

  // total in the VirtualSpace
  MemRegion _reserved;
  ReservedSpace _rs;
  VirtualSpace _virtual_space;
  MetaWord* _top;
296 297
  // count of chunks contained in this VirtualSpace
  uintx _container_count;
298 299 300 301 302

  // Convenience functions to access the _virtual_space
  char* low()  const { return virtual_space()->low(); }
  char* high() const { return virtual_space()->high(); }

303 304 305 306
  // The first Metachunk will be allocated at the bottom of the
  // VirtualSpace
  Metachunk* first_chunk() { return (Metachunk*) bottom(); }

307 308
  // Committed but unused space in the virtual space
  size_t free_words_in_vs() const;
309 310 311
 public:

  VirtualSpaceNode(size_t byte_size);
312
  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
313 314
  ~VirtualSpaceNode();

315 316 317 318
  // Convenience functions for logical bottom and end
  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }

319 320
  bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }

321 322 323
  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }

324 325
  bool is_pre_committed() const { return _virtual_space.special(); }

326 327 328 329 330 331 332 333 334 335 336 337
  // address of next available space in _virtual_space;
  // Accessors
  VirtualSpaceNode* next() { return _next; }
  void set_next(VirtualSpaceNode* v) { _next = v; }

  void set_reserved(MemRegion const v) { _reserved = v; }
  void set_top(MetaWord* v) { _top = v; }

  // Accessors
  MemRegion* reserved() { return &_reserved; }
  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }

338
  // Returns true if "word_size" is available in the VirtualSpace
339
  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
340 341 342 343

  MetaWord* top() const { return _top; }
  void inc_top(size_t word_size) { _top += word_size; }

344
  uintx container_count() { return _container_count; }
345
  void inc_container_count();
346 347
  void dec_container_count();
#ifdef ASSERT
348
  uint container_count_slow();
349 350 351
  void verify_container_count();
#endif

352 353 354 355 356 357 358 359 360 361 362 363 364 365
  // used and capacity in this single entry in the list
  size_t used_words_in_vs() const;
  size_t capacity_words_in_vs() const;

  bool initialize();

  // get space from the virtual space
  Metachunk* take_from_committed(size_t chunk_word_size);

  // Allocate a chunk from the virtual space and return it.
  Metachunk* get_chunk_vs(size_t chunk_word_size);

  // Expands/shrinks the committed space in a virtual space.  Delegates
  // to Virtualspace
366
  bool expand_by(size_t min_words, size_t preferred_words);
367

368 369 370 371
  // In preparation for deleting this node, remove all the chunks
  // in the node from any freelist.
  void purge(ChunkManager* chunk_manager);

372 373 374 375 376 377 378
  // If an allocation doesn't fit in the current node a new node is created.
  // Allocate chunks out of the remaining committed space in this node
  // to avoid wasting that memory.
  // This always adds up because all the chunk sizes are multiples of
  // the smallest chunk size.
  void retire(ChunkManager* chunk_manager);

379
#ifdef ASSERT
380 381
  // Debug support
  void mangle();
382
#endif
383 384 385 386

  void print_on(outputStream* st) const;
};

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
#define assert_is_ptr_aligned(ptr, alignment) \
  assert(is_ptr_aligned(ptr, alignment),      \
    err_msg(PTR_FORMAT " is not aligned to "  \
      SIZE_FORMAT, ptr, alignment))

#define assert_is_size_aligned(size, alignment) \
  assert(is_size_aligned(size, alignment),      \
    err_msg(SIZE_FORMAT " is not aligned to "   \
       SIZE_FORMAT, size, alignment))


// Decide if large pages should be committed when the memory is reserved.
static bool should_commit_large_pages_when_reserving(size_t bytes) {
  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
    size_t words = bytes / BytesPerWord;
    bool is_class = false; // We never reserve large pages for the class space.
    if (MetaspaceGC::can_expand(words, is_class) &&
        MetaspaceGC::allowed_expansion() >= words) {
      return true;
    }
  }

  return false;
}

412
  // byte_size is the size of the associated virtualspace.
413 414
VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
  assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
415

416 417 418
  // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
  // configurable address, generally at the top of the Java heap so other
  // memory addresses don't conflict.
419
  if (DumpSharedSpaces) {
420 421 422 423
    bool large_pages = false; // No large pages when dumping the CDS archive.
    char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
424
    if (_rs.is_reserved()) {
425
      assert(shared_base == 0 || _rs.base() == shared_base, "should match");
426
    } else {
427
      // Get a mmap region anywhere if the SharedBaseAddress fails.
428
      _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
429 430 431
    }
    MetaspaceShared::set_shared_rs(&_rs);
  } else {
432 433 434
    bool large_pages = should_commit_large_pages_when_reserving(bytes);

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
435 436
  }

437 438 439 440 441 442 443 444
  if (_rs.is_reserved()) {
    assert(_rs.base() != NULL, "Catch if we get a NULL address");
    assert(_rs.size() != 0, "Catch if we get a 0 size");
    assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
    assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());

    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
  }
445 446
}

447 448 449 450
void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
451 452 453 454 455 456 457
    assert(chunk->is_tagged_free(), "Should be tagged free");
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    chunk_manager->remove_chunk(chunk);
    assert(chunk->next() == NULL &&
           chunk->prev() == NULL,
           "Was not removed from its list");
    chunk = (Metachunk*) next;
458 459 460 461 462 463 464 465 466 467 468 469 470
  }
}

#ifdef ASSERT
uint VirtualSpaceNode::container_count_slow() {
  uint count = 0;
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    // Don't count the chunks on the free lists.  Those are
    // still part of the VirtualSpaceNode but not currently
    // counted.
471
    if (!chunk->is_tagged_free()) {
472 473 474 475 476 477 478 479
      count++;
    }
    chunk = (Metachunk*) next;
  }
  return count;
}
#endif

480 481 482 483 484 485 486 487 488 489 490 491 492
// List of VirtualSpaces for metadata allocation.
class VirtualSpaceList : public CHeapObj<mtClass> {
  friend class VirtualSpaceNode;

  enum VirtualSpaceSizes {
    VirtualSpaceSize = 256 * K
  };

  // Head of the list
  VirtualSpaceNode* _virtual_space_list;
  // virtual space currently being used for allocations
  VirtualSpaceNode* _current_virtual_space;

493
  // Is this VirtualSpaceList used for the compressed class space
494 495
  bool _is_class;

496 497 498 499 500
  // Sum of reserved and committed memory in the virtual spaces
  size_t _reserved_words;
  size_t _committed_words;

  // Number of virtual spaces
501 502 503 504 505 506 507 508 509 510 511 512 513
  size_t _virtual_space_count;

  ~VirtualSpaceList();

  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }

  void set_virtual_space_list(VirtualSpaceNode* v) {
    _virtual_space_list = v;
  }
  void set_current_virtual_space(VirtualSpaceNode* v) {
    _current_virtual_space = v;
  }

514
  void link_vs(VirtualSpaceNode* new_entry);
515 516 517 518

  // Get another virtual space and add it to the list.  This
  // is typically prompted by a failed attempt to allocate a chunk
  // and is typically followed by the allocation of a chunk.
519
  bool create_new_virtual_space(size_t vs_word_size);
520

521 522 523 524
  // Chunk up the unused committed space in the current
  // virtual space and add the chunks to the free list.
  void retire_current_virtual_space();

525 526 527 528
 public:
  VirtualSpaceList(size_t word_size);
  VirtualSpaceList(ReservedSpace rs);

529 530
  size_t free_bytes();

531 532 533 534
  Metachunk* get_new_chunk(size_t word_size,
                           size_t grow_chunks_by_words,
                           size_t medium_chunk_bunch);

535 536 537
  bool expand_node_by(VirtualSpaceNode* node,
                      size_t min_words,
                      size_t preferred_words);
538

539 540
  bool expand_by(size_t min_words,
                 size_t preferred_words);
541 542 543 544 545 546 547

  VirtualSpaceNode* current_virtual_space() {
    return _current_virtual_space;
  }

  bool is_class() const { return _is_class; }

548
  bool initialization_succeeded() { return _virtual_space_list != NULL; }
549

550 551 552 553
  size_t reserved_words()  { return _reserved_words; }
  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
  size_t committed_words() { return _committed_words; }
  size_t committed_bytes() { return committed_words() * BytesPerWord; }
554

555 556 557 558
  void inc_reserved_words(size_t v);
  void dec_reserved_words(size_t v);
  void inc_committed_words(size_t v);
  void dec_committed_words(size_t v);
559 560 561
  void inc_virtual_space_count();
  void dec_virtual_space_count();

562 563
  bool contains(const void* ptr);

564
  // Unlink empty VirtualSpaceNodes and free it.
565
  void purge(ChunkManager* chunk_manager);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

  void print_on(outputStream* st) const;

  class VirtualSpaceListIterator : public StackObj {
    VirtualSpaceNode* _virtual_spaces;
   public:
    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
      _virtual_spaces(virtual_spaces) {}

    bool repeat() {
      return _virtual_spaces != NULL;
    }

    VirtualSpaceNode* get_next() {
      VirtualSpaceNode* result = _virtual_spaces;
      if (_virtual_spaces != NULL) {
        _virtual_spaces = _virtual_spaces->next();
      }
      return result;
    }
  };
};

class Metadebug : AllStatic {
  // Debugging support for Metaspaces
  static int _allocation_fail_alot_count;

 public:

  static void init_allocation_fail_alot_count();
#ifdef ASSERT
  static bool test_metadata_failure();
#endif
};

int Metadebug::_allocation_fail_alot_count = 0;

//  SpaceManager - used by Metaspace to handle allocations
class SpaceManager : public CHeapObj<mtClass> {
  friend class Metaspace;
  friend class Metadebug;

 private:
609

610
  // protects allocations
611 612
  Mutex* const _lock;

613 614 615
  // Type of metadata allocated.
  Metaspace::MetadataType _mdtype;

616 617 618
  // List of chunks in use by this SpaceManager.  Allocations
  // are done from the current chunk.  The list is used for deallocating
  // chunks when the SpaceManager is freed.
619
  Metachunk* _chunks_in_use[NumberOfInUseLists];
620 621 622 623 624 625 626
  Metachunk* _current_chunk;

  // Number of small chunks to allocate to a manager
  // If class space manager, small chunks are unlimited
  static uint const _small_chunk_limit;

  // Sum of all space in allocated chunks
627 628 629 630 631
  size_t _allocated_blocks_words;

  // Sum of all allocated chunks
  size_t _allocated_chunks_words;
  size_t _allocated_chunks_count;
632 633 634 635 636 637 638 639 640 641 642 643

  // Free lists of blocks are per SpaceManager since they
  // are assumed to be in chunks in use by the SpaceManager
  // and all chunks in use by a SpaceManager are freed when
  // the class loader using the SpaceManager is collected.
  BlockFreelist _block_freelists;

  // protects virtualspace and chunk expansions
  static const char*  _expand_lock_name;
  static const int    _expand_lock_rank;
  static Mutex* const _expand_lock;

644
 private:
645 646
  // Accessors
  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
647 648 649
  void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
    _chunks_in_use[index] = v;
  }
650 651 652 653 654

  BlockFreelist* block_freelists() const {
    return (BlockFreelist*) &_block_freelists;
  }

655
  Metaspace::MetadataType mdtype() { return _mdtype; }
656 657 658

  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
659 660 661 662 663 664 665 666 667 668

  Metachunk* current_chunk() const { return _current_chunk; }
  void set_current_chunk(Metachunk* v) {
    _current_chunk = v;
  }

  Metachunk* find_current_chunk(size_t word_size);

  // Add chunk to the list of chunks in use
  void add_chunk(Metachunk* v, bool make_current);
669
  void retire_current_chunk();
670 671 672

  Mutex* lock() const { return _lock; }

673 674 675 676 677
  const char* chunk_size_name(ChunkIndex index) const;

 protected:
  void initialize();

678
 public:
679
  SpaceManager(Metaspace::MetadataType mdtype,
680
               Mutex* lock);
681 682
  ~SpaceManager();

683 684
  enum ChunkMultiples {
    MediumChunkMultiple = 4
685 686
  };

687 688
  bool is_class() { return _mdtype == Metaspace::ClassType; }

689
  // Accessors
690 691 692 693 694 695
  size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
  size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
  size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
  size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }

  size_t smallest_chunk_size()  { return specialized_chunk_size(); }
696

697 698 699 700 701
  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
  size_t allocated_chunks_count() const { return _allocated_chunks_count; }

702
  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
703 704 705

  static Mutex* expand_lock() { return _expand_lock; }

706 707 708 709 710 711 712 713 714 715 716 717
  // Increment the per Metaspace and global running sums for Metachunks
  // by the given size.  This is used when a Metachunk to added to
  // the in-use list.
  void inc_size_metrics(size_t words);
  // Increment the per Metaspace and global running sums Metablocks by the given
  // size.  This is used when a Metablock is allocated.
  void inc_used_metrics(size_t words);
  // Delete the portion of the running sums for this SpaceManager. That is,
  // the globals running sums for the Metachunks and Metablocks are
  // decremented for all the Metachunks in-use by this SpaceManager.
  void dec_total_from_size_metrics();

718 719 720 721 722
  // Set the sizes for the initial chunks.
  void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                               size_t* chunk_word_size,
                               size_t* class_chunk_word_size);

723 724 725 726 727 728 729 730 731
  size_t sum_capacity_in_chunks_in_use() const;
  size_t sum_used_in_chunks_in_use() const;
  size_t sum_free_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;

  size_t sum_count_in_chunks_in_use();
  size_t sum_count_in_chunks_in_use(ChunkIndex i);

732 733
  Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);

734 735 736 737 738
  // Block allocation and deallocation.
  // Allocates a block from the current chunk
  MetaWord* allocate(size_t word_size);

  // Helper for allocations
739
  MetaWord* allocate_work(size_t word_size);
740 741

  // Returns a block to the per manager freelist
742
  void deallocate(MetaWord* p, size_t word_size);
743 744 745 746 747 748 749 750

  // Based on the allocation size and a minimum chunk size,
  // returned chunk size (for expanding space for chunk allocation).
  size_t calc_chunk_size(size_t allocation_word_size);

  // Called when an allocation from the current chunk fails.
  // Gets a new chunk (may require getting a new virtual space),
  // and allocates from that chunk.
751
  MetaWord* grow_and_allocate(size_t word_size);
752

753 754 755
  // Notify memory usage to MemoryService.
  void track_metaspace_memory_usage();

756 757 758 759 760 761 762
  // debugging support.

  void dump(outputStream* const out) const;
  void print_on(outputStream* st) const;
  void locked_print_chunks_in_use_on(outputStream* st) const;

  void verify();
763
  void verify_chunk_size(Metachunk* chunk);
764
  NOT_PRODUCT(void mangle_freed_chunks();)
765
#ifdef ASSERT
766
  void verify_allocated_blocks_words();
767
#endif
768 769 770 771

  size_t get_raw_word_size(size_t word_size) {
    size_t byte_size = word_size * BytesPerWord;

772 773 774
    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
    raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());

775 776 777 778 779
    size_t raw_word_size = raw_bytes_size / BytesPerWord;
    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");

    return raw_word_size;
  }
780 781 782 783 784 785 786 787 788 789 790 791
};

uint const SpaceManager::_small_chunk_limit = 4;

const char* SpaceManager::_expand_lock_name =
  "SpaceManager chunk allocation lock";
const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
Mutex* const SpaceManager::_expand_lock =
  new Mutex(SpaceManager::_expand_lock_rank,
            SpaceManager::_expand_lock_name,
            Mutex::_allow_vm_block_flag);

792 793 794 795 796
void VirtualSpaceNode::inc_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count++;
  assert(_container_count == container_count_slow(),
         err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
797
                 " container_count_slow() " SIZE_FORMAT,
798 799 800 801 802 803 804 805 806 807 808 809
                 _container_count, container_count_slow()));
}

void VirtualSpaceNode::dec_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count--;
}

#ifdef ASSERT
void VirtualSpaceNode::verify_container_count() {
  assert(_container_count == container_count_slow(),
    err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
810
            " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
811 812 813
}
#endif

814 815 816 817 818 819 820 821 822 823 824 825 826
// BlockFreelist methods

BlockFreelist::BlockFreelist() : _dictionary(NULL) {}

BlockFreelist::~BlockFreelist() {
  if (_dictionary != NULL) {
    if (Verbose && TraceMetadataChunkAllocation) {
      _dictionary->print_free_lists(gclog_or_tty);
    }
    delete _dictionary;
  }
}

827
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
828
  Metablock* free_chunk = ::new (p) Metablock(word_size);
829
  if (dictionary() == NULL) {
830
   _dictionary = new BlockTreeDictionary();
831
  }
832
  dictionary()->return_chunk(free_chunk);
833 834
}

835
MetaWord* BlockFreelist::get_block(size_t word_size) {
836 837 838 839
  if (dictionary() == NULL) {
    return NULL;
  }

840
  if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
841
    // Dark matter.  Too small for dictionary.
842 843 844
    return NULL;
  }

845
  Metablock* free_block =
846
    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
847 848 849 850
  if (free_block == NULL) {
    return NULL;
  }

851 852 853 854 855 856 857 858 859
  const size_t block_size = free_block->size();
  if (block_size > WasteMultiplier * word_size) {
    return_block((MetaWord*)free_block, block_size);
    return NULL;
  }

  MetaWord* new_block = (MetaWord*)free_block;
  assert(block_size >= word_size, "Incorrect size of block from freelist");
  const size_t unused = block_size - word_size;
860
  if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
861 862 863 864
    return_block(new_block + word_size, unused);
  }

  return new_block;
865 866 867 868 869 870 871 872 873 874 875 876 877
}

void BlockFreelist::print_on(outputStream* st) const {
  if (dictionary() == NULL) {
    return;
  }
  dictionary()->print_free_lists(st);
}

// VirtualSpaceNode methods

VirtualSpaceNode::~VirtualSpaceNode() {
  _rs.release();
878 879 880 881
#ifdef ASSERT
  size_t word_size = sizeof(*this) / BytesPerWord;
  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
#endif
882 883 884 885 886 887 888 889 890 891 892
}

size_t VirtualSpaceNode::used_words_in_vs() const {
  return pointer_delta(top(), bottom(), sizeof(MetaWord));
}

// Space committed in the VirtualSpace
size_t VirtualSpaceNode::capacity_words_in_vs() const {
  return pointer_delta(end(), bottom(), sizeof(MetaWord));
}

893 894 895
size_t VirtualSpaceNode::free_words_in_vs() const {
  return pointer_delta(end(), top(), sizeof(MetaWord));
}
896 897 898 899 900 901 902 903 904

// Allocates the chunk from the virtual space only.
// This interface is also used internally for debugging.  Not all
// chunks removed here are necessarily used for allocation.
Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
  // Bottom of the new chunk
  MetaWord* chunk_limit = top();
  assert(chunk_limit != NULL, "Not safe to call this method");

905 906 907 908 909 910
  // The virtual spaces are always expanded by the
  // commit granularity to enforce the following condition.
  // Without this the is_available check will not work correctly.
  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
      "The committed memory doesn't match the expanded memory.");

911 912
  if (!is_available(chunk_word_size)) {
    if (TraceMetadataChunkAllocation) {
913
      gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
914
      // Dump some information about the virtual space that is nearly full
915
      print_on(gclog_or_tty);
916 917 918 919 920 921 922
    }
    return NULL;
  }

  // Take the space  (bump top on the current virtual space).
  inc_top(chunk_word_size);

923 924
  // Initialize the chunk
  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
925 926 927 928 929
  return result;
}


// Expand the virtual space (commit more of the reserved space)
930 931 932 933 934 935 936 937
bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
  size_t min_bytes = min_words * BytesPerWord;
  size_t preferred_bytes = preferred_words * BytesPerWord;

  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();

  if (uncommitted < min_bytes) {
    return false;
938
  }
939 940 941 942 943 944

  size_t commit = MIN2(preferred_bytes, uncommitted);
  bool result = virtual_space()->expand_by(commit, false);

  assert(result, "Failed to commit memory");

945 946 947 948 949
  return result;
}

Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
950 951 952 953 954
  Metachunk* result = take_from_committed(chunk_word_size);
  if (result != NULL) {
    inc_container_count();
  }
  return result;
955 956 957 958 959 960 961 962
}

bool VirtualSpaceNode::initialize() {

  if (!_rs.is_reserved()) {
    return false;
  }

963 964 965 966 967 968 969 970 971 972 973 974 975
  // These are necessary restriction to make sure that the virtual space always
  // grows in steps of Metaspace::commit_alignment(). If both base and size are
  // aligned only the middle alignment of the VirtualSpace is used.
  assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
  assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());

  // ReservedSpaces marked as special will have the entire memory
  // pre-committed. Setting a committed size will make sure that
  // committed_size and actual_committed_size agrees.
  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;

  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
                                            Metaspace::commit_alignment());
976
  if (result) {
977 978 979
    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
        "Checking that the pre-committed memory was registered by the VirtualSpace");

980 981 982 983
    set_top((MetaWord*)virtual_space()->low());
    set_reserved(MemRegion((HeapWord*)_rs.base(),
                 (HeapWord*)(_rs.base() + _rs.size())));

984 985 986 987 988 989 990 991
    assert(reserved()->start() == (HeapWord*) _rs.base(),
      err_msg("Reserved start was not set properly " PTR_FORMAT
        " != " PTR_FORMAT, reserved()->start(), _rs.base()));
    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
      err_msg("Reserved size was not set properly " SIZE_FORMAT
        " != " SIZE_FORMAT, reserved()->word_size(),
        _rs.size() / BytesPerWord));
  }
992 993 994 995 996 997 998 999 1000 1001 1002

  return result;
}

void VirtualSpaceNode::print_on(outputStream* st) const {
  size_t used = used_words_in_vs();
  size_t capacity = capacity_words_in_vs();
  VirtualSpace* vs = virtual_space();
  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
           "[" PTR_FORMAT ", " PTR_FORMAT ", "
           PTR_FORMAT ", " PTR_FORMAT ")",
1003 1004
           vs, capacity / K,
           capacity == 0 ? 0 : used * 100 / capacity,
1005 1006 1007 1008
           bottom(), top(), end(),
           vs->high_boundary());
}

1009
#ifdef ASSERT
1010 1011 1012 1013
void VirtualSpaceNode::mangle() {
  size_t word_size = capacity_words_in_vs();
  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
}
1014
#endif // ASSERT
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

// VirtualSpaceList methods
// Space allocated from the VirtualSpace

VirtualSpaceList::~VirtualSpaceList() {
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    delete vsl;
  }
}

1027
void VirtualSpaceList::inc_reserved_words(size_t v) {
1028
  assert_lock_strong(SpaceManager::expand_lock());
1029
  _reserved_words = _reserved_words + v;
1030
}
1031
void VirtualSpaceList::dec_reserved_words(size_t v) {
1032
  assert_lock_strong(SpaceManager::expand_lock());
1033 1034 1035
  _reserved_words = _reserved_words - v;
}

1036 1037 1038 1039 1040 1041
#define assert_committed_below_limit()                             \
  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize,      \
      err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
              " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
          MetaspaceAux::committed_bytes(), MaxMetaspaceSize));

1042 1043 1044
void VirtualSpaceList::inc_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words + v;
1045 1046

  assert_committed_below_limit();
1047 1048 1049 1050
}
void VirtualSpaceList::dec_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words - v;
1051 1052

  assert_committed_below_limit();
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
}

void VirtualSpaceList::inc_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count++;
}
void VirtualSpaceList::dec_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count--;
}

void ChunkManager::remove_chunk(Metachunk* chunk) {
  size_t word_size = chunk->word_size();
  ChunkIndex index = list_index(word_size);
  if (index != HumongousIndex) {
    free_chunks(index)->remove_chunk(chunk);
  } else {
    humongous_dictionary()->remove_chunk(chunk);
  }

  // Chunk is being removed from the chunks free list.
1074
  dec_free_chunks_total(chunk->word_size());
1075 1076 1077 1078 1079
}

// Walk the list of VirtualSpaceNodes and delete
// nodes with a 0 container_count.  Remove Metachunks in
// the node from their respective freelists.
1080
void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1081
  assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  assert_lock_strong(SpaceManager::expand_lock());
  // Don't use a VirtualSpaceListIterator because this
  // list is being changed and a straightforward use of an iterator is not safe.
  VirtualSpaceNode* purged_vsl = NULL;
  VirtualSpaceNode* prev_vsl = virtual_space_list();
  VirtualSpaceNode* next_vsl = prev_vsl;
  while (next_vsl != NULL) {
    VirtualSpaceNode* vsl = next_vsl;
    next_vsl = vsl->next();
    // Don't free the current virtual space since it will likely
    // be needed soon.
    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
      // Unlink it from the list
      if (prev_vsl == vsl) {
1096 1097
        // This is the case of the current node being the first node.
        assert(vsl == virtual_space_list(), "Expected to be the first node");
1098 1099 1100 1101 1102
        set_virtual_space_list(vsl->next());
      } else {
        prev_vsl->set_next(vsl->next());
      }

1103
      vsl->purge(chunk_manager);
1104 1105
      dec_reserved_words(vsl->reserved_words());
      dec_committed_words(vsl->committed_words());
1106 1107 1108 1109 1110 1111 1112 1113 1114
      dec_virtual_space_count();
      purged_vsl = vsl;
      delete vsl;
    } else {
      prev_vsl = vsl;
    }
  }
#ifdef ASSERT
  if (purged_vsl != NULL) {
1115 1116
    // List should be stable enough to use an iterator here.
    VirtualSpaceListIterator iter(virtual_space_list());
1117 1118 1119 1120 1121 1122 1123 1124
    while (iter.repeat()) {
      VirtualSpaceNode* vsl = iter.get_next();
      assert(vsl != purged_vsl, "Purge of vsl failed");
    }
  }
#endif
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

// This function looks at the mmap regions in the metaspace without locking.
// The chunks are added with store ordering and not deleted except for at
// unloading time during a safepoint.
bool VirtualSpaceList::contains(const void* ptr) {
  // List should be stable enough to use an iterator here because removing virtual
  // space nodes is only allowed at a safepoint.
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsn = iter.get_next();
    if (vsn->contains(ptr)) {
      return true;
    }
  }
  return false;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
void VirtualSpaceList::retire_current_virtual_space() {
  assert_lock_strong(SpaceManager::expand_lock());

  VirtualSpaceNode* vsn = current_virtual_space();

  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
                                  Metaspace::chunk_manager_metadata();

  vsn->retire(cm);
}

void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
    ChunkIndex index = (ChunkIndex)i;
    size_t chunk_size = chunk_manager->free_chunks(index)->size();

    while (free_words_in_vs() >= chunk_size) {
      DEBUG_ONLY(verify_container_count();)
      Metachunk* chunk = get_chunk_vs(chunk_size);
      assert(chunk != NULL, "allocation should have been successful");

      chunk_manager->return_chunks(index, chunk);
      chunk_manager->inc_free_chunks_total(chunk_size);
      DEBUG_ONLY(verify_container_count();)
    }
  }
  assert(free_words_in_vs() == 0, "should be empty now");
}

1171
VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1172 1173 1174
                                   _is_class(false),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1175 1176
                                   _reserved_words(0),
                                   _committed_words(0),
1177 1178 1179
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
1180
  create_new_virtual_space(word_size);
1181 1182 1183 1184 1185 1186
}

VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
                                   _is_class(true),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1187 1188
                                   _reserved_words(0),
                                   _committed_words(0),
1189 1190 1191 1192 1193
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
  bool succeeded = class_entry->initialize();
1194 1195 1196
  if (succeeded) {
    link_vs(class_entry);
  }
1197 1198
}

1199 1200 1201 1202
size_t VirtualSpaceList::free_bytes() {
  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
}

1203
// Allocate another meta virtual space and add it to the list.
1204
bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1205
  assert_lock_strong(SpaceManager::expand_lock());
1206 1207 1208 1209 1210 1211 1212 1213

  if (is_class()) {
    assert(false, "We currently don't support more than one VirtualSpace for"
                  " the compressed class space. The initialization of the"
                  " CCS uses another code path and should not hit this path.");
    return false;
  }

1214
  if (vs_word_size == 0) {
1215
    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1216 1217
    return false;
  }
1218

1219 1220
  // Reserve the space
  size_t vs_byte_size = vs_word_size * BytesPerWord;
1221
  assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1222 1223 1224 1225 1226 1227 1228

  // Allocate the meta virtual space and initialize it.
  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
  if (!new_entry->initialize()) {
    delete new_entry;
    return false;
  } else {
1229 1230
    assert(new_entry->reserved_words() == vs_word_size,
        "Reserved memory size differs from requested memory size");
1231 1232
    // ensure lock-free iteration sees fully initialized node
    OrderAccess::storestore();
1233
    link_vs(new_entry);
1234 1235 1236 1237
    return true;
  }
}

1238
void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1239 1240 1241 1242 1243 1244
  if (virtual_space_list() == NULL) {
      set_virtual_space_list(new_entry);
  } else {
    current_virtual_space()->set_next(new_entry);
  }
  set_current_virtual_space(new_entry);
1245 1246
  inc_reserved_words(new_entry->reserved_words());
  inc_committed_words(new_entry->committed_words());
1247 1248 1249 1250 1251 1252
  inc_virtual_space_count();
#ifdef ASSERT
  new_entry->mangle();
#endif
  if (TraceMetavirtualspaceAllocation && Verbose) {
    VirtualSpaceNode* vsl = current_virtual_space();
1253
    vsl->print_on(gclog_or_tty);
1254 1255 1256
  }
}

1257 1258 1259
bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
                                      size_t min_words,
                                      size_t preferred_words) {
1260 1261
  size_t before = node->committed_words();

1262
  bool result = node->expand_by(min_words, preferred_words);
1263 1264 1265 1266

  size_t after = node->committed_words();

  // after and before can be the same if the memory was pre-committed.
1267
  assert(after >= before, "Inconsistency");
1268 1269 1270 1271 1272
  inc_committed_words(after - before);

  return result;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
  assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
  assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
  assert(min_words <= preferred_words, "Invalid arguments");

  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
    return  false;
  }

  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
  if (allowed_expansion_words < min_words) {
    return false;
  }

  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);

  // Commit more memory from the the current virtual space.
  bool vs_expanded = expand_node_by(current_virtual_space(),
                                    min_words,
                                    max_expansion_words);
  if (vs_expanded) {
    return true;
  }
1296
  retire_current_virtual_space();
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

  // Get another virtual space.
  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
  grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());

  if (create_new_virtual_space(grow_vs_words)) {
    if (current_virtual_space()->is_pre_committed()) {
      // The memory was pre-committed, so we are done here.
      assert(min_words <= current_virtual_space()->committed_words(),
          "The new VirtualSpace was pre-committed, so it"
          "should be large enough to fit the alloc request.");
      return true;
    }

    return expand_node_by(current_virtual_space(),
                          min_words,
                          max_expansion_words);
  }

  return false;
}

1319
Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1320 1321
                                           size_t grow_chunks_by_words,
                                           size_t medium_chunk_bunch) {
1322

1323 1324
  // Allocate a chunk out of the current virtual space.
  Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1325

1326 1327
  if (next != NULL) {
    return next;
1328 1329
  }

1330 1331
  // The expand amount is currently only determined by the requested sizes
  // and not how much committed memory is left in the current virtual space.
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
  size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
  if (min_word_size >= preferred_word_size) {
    // Can happen when humongous chunks are allocated.
    preferred_word_size = min_word_size;
  }

  bool expanded = expand_by(min_word_size, preferred_word_size);
  if (expanded) {
    next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
    assert(next != NULL, "The allocation was expected to succeed after the expansion");
  }

   return next;
1347 1348
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
void VirtualSpaceList::print_on(outputStream* st) const {
  if (TraceMetadataChunkAllocation && Verbose) {
    VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* node = iter.get_next();
      node->print_on(st);
    }
  }
}

// MetaspaceGC methods

// VM_CollectForMetadataAllocation is the vm operation used to GC.
// Within the VM operation after the GC the attempt to allocate the metadata
// should succeed.  If the GC did not free enough space for the metaspace
// allocation, the HWM is increased so that another virtualspace will be
// allocated for the metadata.  With perm gen the increase in the perm
// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
// metaspace policy uses those as the small and large steps for the HWM.
//
// After the GC the compute_new_size() for MetaspaceGC is called to
// resize the capacity of the metaspaces.  The current implementation
1371
// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1372
// to resize the Java heap by some GC's.  New flags can be implemented
1373
// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1374
// free space is desirable in the metaspace capacity to decide how much
1375
// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1376 1377 1378 1379 1380 1381
// free space is desirable in the metaspace capacity before decreasing
// the HWM.

// Calculate the amount to increase the high water mark (HWM).
// Increase by a minimum amount (MinMetaspaceExpansion) so that
// another expansion is not requested too soon.  If that is not
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
// If that is still not enough, expand by the size of the allocation
// plus some.
size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
  size_t min_delta = MinMetaspaceExpansion;
  size_t max_delta = MaxMetaspaceExpansion;
  size_t delta = align_size_up(bytes, Metaspace::commit_alignment());

  if (delta <= min_delta) {
    delta = min_delta;
  } else if (delta <= max_delta) {
1393 1394 1395
    // Don't want to hit the high water mark on the next
    // allocation so make the delta greater than just enough
    // for this allocation.
1396 1397 1398 1399 1400
    delta = max_delta;
  } else {
    // This allocation is large but the next ones are probably not
    // so increase by the minimum.
    delta = delta + min_delta;
1401
  }
1402 1403 1404 1405

  assert_is_size_aligned(delta, Metaspace::commit_alignment());

  return delta;
1406 1407
}

1408 1409 1410 1411 1412
size_t MetaspaceGC::capacity_until_GC() {
  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
  assert(value >= MetaspaceSize, "Not initialied properly?");
  return value;
}
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
size_t MetaspaceGC::inc_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(v, &_capacity_until_GC);
}

size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
void MetaspaceGC::initialize() {
  // Set the high-water mark to MaxMetapaceSize during VM initializaton since
  // we can't do a GC during initialization.
  _capacity_until_GC = MaxMetaspaceSize;
}

void MetaspaceGC::post_initialize() {
  // Reset the high-water mark once the VM initialization is done.
  _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
}

1437 1438 1439 1440 1441
bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
  // Check if the compressed class space is full.
  if (is_class && Metaspace::using_class_space()) {
    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1442 1443
      return false;
    }
1444 1445
  }

1446 1447 1448 1449 1450
  // Check if the user has imposed a limit on the metaspace memory.
  size_t committed_bytes = MetaspaceAux::committed_bytes();
  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
    return false;
  }
1451

1452 1453 1454 1455 1456 1457
  return true;
}

size_t MetaspaceGC::allowed_expansion() {
  size_t committed_bytes = MetaspaceAux::committed_bytes();
  size_t capacity_until_gc = capacity_until_GC();
1458

1459 1460 1461
  assert(capacity_until_gc >= committed_bytes,
        err_msg("capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
                capacity_until_gc, committed_bytes));
1462

1463
  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1464 1465
  size_t left_until_GC = capacity_until_gc - committed_bytes;
  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1466

1467 1468
  return left_to_commit / BytesPerWord;
}
1469 1470 1471 1472 1473 1474

void MetaspaceGC::compute_new_size() {
  assert(_shrink_factor <= 100, "invalid shrink factor");
  uint current_shrink_factor = _shrink_factor;
  _shrink_factor = 0;

1475 1476 1477 1478 1479 1480 1481 1482 1483
  // Using committed_bytes() for used_after_gc is an overestimation, since the
  // chunk free lists are included in committed_bytes() and the memory in an
  // un-fragmented chunk free list is available for future allocations.
  // However, if the chunk free lists becomes fragmented, then the memory may
  // not be available for future allocations and the memory is therefore "in use".
  // Including the chunk free lists in the definition of "in use" is therefore
  // necessary. Not including the chunk free lists can cause capacity_until_GC to
  // shrink below committed_bytes() and this has caused serious bugs in the past.
  const size_t used_after_gc = MetaspaceAux::committed_bytes();
1484
  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1485

1486
  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;

  const double min_tmp = used_after_gc / maximum_used_percentage;
  size_t minimum_desired_capacity =
    (size_t)MIN2(min_tmp, double(max_uintx));
  // Don't shrink less than the initial generation size
  minimum_desired_capacity = MAX2(minimum_desired_capacity,
                                  MetaspaceSize);

  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
    gclog_or_tty->print_cr("  "
                  "  minimum_free_percentage: %6.2f"
                  "  maximum_used_percentage: %6.2f",
                  minimum_free_percentage,
                  maximum_used_percentage);
    gclog_or_tty->print_cr("  "
1504 1505
                  "   used_after_gc       : %6.1fKB",
                  used_after_gc / (double) K);
1506 1507 1508
  }


1509
  size_t shrink_bytes = 0;
1510 1511 1512 1513
  if (capacity_until_GC < minimum_desired_capacity) {
    // If we have less capacity below the metaspace HWM, then
    // increment the HWM.
    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1514
    expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1515 1516
    // Don't expand unless it's significant
    if (expand_bytes >= MinMetaspaceExpansion) {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
      size_t new_capacity_until_GC = MetaspaceGC::inc_capacity_until_GC(expand_bytes);
      Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
                                               new_capacity_until_GC,
                                               MetaspaceGCThresholdUpdater::ComputeNewSize);
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("    expanding:"
                      "  minimum_desired_capacity: %6.1fKB"
                      "  expand_bytes: %6.1fKB"
                      "  MinMetaspaceExpansion: %6.1fKB"
                      "  new metaspace HWM:  %6.1fKB",
                      minimum_desired_capacity / (double) K,
                      expand_bytes / (double) K,
                      MinMetaspaceExpansion / (double) K,
                      new_capacity_until_GC / (double) K);
      }
1532 1533 1534 1535 1536 1537
    }
    return;
  }

  // No expansion, now see if we want to shrink
  // We would never want to shrink more than this
1538 1539 1540
  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
  assert(max_shrink_bytes >= 0, err_msg("max_shrink_bytes " SIZE_FORMAT,
    max_shrink_bytes));
1541 1542

  // Should shrinking be considered?
1543 1544
  if (MaxMetaspaceFreeRatio < 100) {
    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1545 1546 1547 1548 1549
    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
    const double max_tmp = used_after_gc / minimum_used_percentage;
    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
    maximum_desired_capacity = MAX2(maximum_desired_capacity,
                                    MetaspaceSize);
1550
    if (PrintGCDetails && Verbose) {
1551 1552 1553 1554 1555 1556
      gclog_or_tty->print_cr("  "
                             "  maximum_free_percentage: %6.2f"
                             "  minimum_used_percentage: %6.2f",
                             maximum_free_percentage,
                             minimum_used_percentage);
      gclog_or_tty->print_cr("  "
1557 1558
                             "  minimum_desired_capacity: %6.1fKB"
                             "  maximum_desired_capacity: %6.1fKB",
1559 1560 1561 1562 1563 1564 1565 1566 1567
                             minimum_desired_capacity / (double) K,
                             maximum_desired_capacity / (double) K);
    }

    assert(minimum_desired_capacity <= maximum_desired_capacity,
           "sanity check");

    if (capacity_until_GC > maximum_desired_capacity) {
      // Capacity too large, compute shrinking size
1568
      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1569 1570 1571 1572 1573 1574
      // We don't want shrink all the way back to initSize if people call
      // System.gc(), because some programs do that between "phases" and then
      // we'd just have to grow the heap up again for the next phase.  So we
      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
      // on the third call, and 100% by the fourth call.  But if we recompute
      // size without shrinking, it goes back to 0%.
1575
      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1576 1577 1578

      shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());

1579
      assert(shrink_bytes <= max_shrink_bytes,
1580
        err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1581
          shrink_bytes, max_shrink_bytes));
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
      if (current_shrink_factor == 0) {
        _shrink_factor = 10;
      } else {
        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
      }
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("  "
                      "  shrinking:"
                      "  initSize: %.1fK"
                      "  maximum_desired_capacity: %.1fK",
                      MetaspaceSize / (double) K,
                      maximum_desired_capacity / (double) K);
        gclog_or_tty->print_cr("  "
1595
                      "  shrink_bytes: %.1fK"
1596 1597 1598
                      "  current_shrink_factor: %d"
                      "  new shrink factor: %d"
                      "  MinMetaspaceExpansion: %.1fK",
1599
                      shrink_bytes / (double) K,
1600 1601 1602 1603 1604 1605 1606 1607
                      current_shrink_factor,
                      _shrink_factor,
                      MinMetaspaceExpansion / (double) K);
      }
    }
  }

  // Don't shrink unless it's significant
1608 1609
  if (shrink_bytes >= MinMetaspaceExpansion &&
      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1610 1611 1612 1613
    size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
    Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
                                             new_capacity_until_GC,
                                             MetaspaceGCThresholdUpdater::ComputeNewSize);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
  }
}

// Metadebug methods

void Metadebug::init_allocation_fail_alot_count() {
  if (MetadataAllocationFailALot) {
    _allocation_fail_alot_count =
      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
  }
}

#ifdef ASSERT
bool Metadebug::test_metadata_failure() {
  if (MetadataAllocationFailALot &&
      Threads::is_vm_complete()) {
    if (_allocation_fail_alot_count > 0) {
      _allocation_fail_alot_count--;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("Metadata allocation failing for "
                               "MetadataAllocationFailALot");
      }
      init_allocation_fail_alot_count();
      return true;
    }
  }
  return false;
}
#endif

// ChunkManager methods

E
ehelin 已提交
1647
size_t ChunkManager::free_chunks_total_words() {
1648 1649 1650
  return _free_chunks_total;
}

E
ehelin 已提交
1651 1652
size_t ChunkManager::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
1653 1654 1655 1656 1657 1658 1659 1660 1661
}

size_t ChunkManager::free_chunks_count() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
    // This lock is only needed in debug because the verification
    // of the _free_chunks_totals walks the list of free chunks
1662
    slow_locked_verify_free_chunks_count();
1663 1664
  }
#endif
1665
  return _free_chunks_count;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

void ChunkManager::locked_verify_free_chunks_total() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks() == _free_chunks_total,
    err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_total,
           sum_free_chunks()));
}

void ChunkManager::verify_free_chunks_total() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_total();
}

void ChunkManager::locked_verify_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks_count() == _free_chunks_count,
    err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_count,
           sum_free_chunks_count()));
}

void ChunkManager::verify_free_chunks_count() {
#ifdef ASSERT
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_count();
#endif
}

void ChunkManager::verify() {
1699 1700 1701
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify();
1702 1703 1704 1705
}

void ChunkManager::locked_verify() {
  locked_verify_free_chunks_count();
1706
  locked_verify_free_chunks_total();
1707 1708 1709 1710
}

void ChunkManager::locked_print_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1711
  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1712 1713 1714 1715 1716
                _free_chunks_total, _free_chunks_count);
}

void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1717
  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
                sum_free_chunks(), sum_free_chunks_count());
}
ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
  return &_free_chunks[index];
}

// These methods that sum the free chunk lists are used in printing
// methods that are used in product builds.
size_t ChunkManager::sum_free_chunks() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t result = 0;
1729
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1730 1731 1732 1733 1734 1735
    ChunkList* list = free_chunks(i);

    if (list == NULL) {
      continue;
    }

1736
    result = result + list->count() * list->size();
1737
  }
1738
  result = result + humongous_dictionary()->total_size();
1739 1740 1741 1742 1743 1744
  return result;
}

size_t ChunkManager::sum_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t count = 0;
1745
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1746 1747 1748 1749
    ChunkList* list = free_chunks(i);
    if (list == NULL) {
      continue;
    }
1750
    count = count + list->count();
1751
  }
1752
  count = count + humongous_dictionary()->total_free_blocks();
1753 1754 1755 1756
  return count;
}

ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1757 1758 1759
  ChunkIndex index = list_index(word_size);
  assert(index < HumongousIndex, "No humongous list");
  return free_chunks(index);
1760 1761 1762 1763 1764
}

Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

1765
  slow_locked_verify();
1766

1767
  Metachunk* chunk = NULL;
1768
  if (list_index(word_size) != HumongousIndex) {
1769 1770
    ChunkList* free_list = find_free_chunks_list(word_size);
    assert(free_list != NULL, "Sanity check");
1771

1772 1773 1774 1775 1776
    chunk = free_list->head();

    if (chunk == NULL) {
      return NULL;
    }
1777 1778

    // Remove the chunk as the head of the list.
1779
    free_list->remove_chunk(chunk);
1780

1781
    if (TraceMetadataChunkAllocation && Verbose) {
1782 1783 1784
      gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
                             PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
                             free_list, chunk, chunk->word_size());
1785 1786
    }
  } else {
1787 1788 1789 1790
    chunk = humongous_dictionary()->get_chunk(
      word_size,
      FreeBlockDictionary<Metachunk>::atLeast);

1791
    if (chunk == NULL) {
1792
      return NULL;
1793
    }
1794 1795 1796 1797 1798 1799 1800 1801

    if (TraceMetadataHumongousAllocation) {
      size_t waste = chunk->word_size() - word_size;
      gclog_or_tty->print_cr("Free list allocate humongous chunk size "
                             SIZE_FORMAT " for requested size " SIZE_FORMAT
                             " waste " SIZE_FORMAT,
                             chunk->word_size(), word_size, waste);
    }
1802
  }
1803

1804
  // Chunk is being removed from the chunks free list.
1805
  dec_free_chunks_total(chunk->word_size());
1806

1807 1808 1809
  // Remove it from the links to this freelist
  chunk->set_next(NULL);
  chunk->set_prev(NULL);
1810 1811 1812
#ifdef ASSERT
  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
  // work.
1813
  chunk->set_is_tagged_free(false);
1814
#endif
1815 1816
  chunk->container()->inc_container_count();

1817
  slow_locked_verify();
1818 1819 1820 1821 1822
  return chunk;
}

Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
1823
  slow_locked_verify();
1824 1825 1826 1827 1828 1829 1830

  // Take from the beginning of the list
  Metachunk* chunk = free_chunks_get(word_size);
  if (chunk == NULL) {
    return NULL;
  }

1831 1832 1833
  assert((word_size <= chunk->word_size()) ||
         list_index(chunk->word_size() == HumongousIndex),
         "Non-humongous variable sized chunk");
1834
  if (TraceMetadataChunkAllocation) {
1835 1836 1837
    size_t list_count;
    if (list_index(word_size) < HumongousIndex) {
      ChunkList* list = find_free_chunks_list(word_size);
1838
      list_count = list->count();
1839 1840 1841
    } else {
      list_count = humongous_dictionary()->total_count();
    }
1842 1843 1844 1845
    gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
                        PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
                        this, chunk, chunk->word_size(), list_count);
    locked_print_free_chunks(gclog_or_tty);
1846 1847 1848 1849 1850
  }

  return chunk;
}

1851
void ChunkManager::print_on(outputStream* out) const {
1852
  if (PrintFLSStatistics != 0) {
1853
    const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1854 1855 1856
  }
}

1857 1858
// SpaceManager methods

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                                           size_t* chunk_word_size,
                                           size_t* class_chunk_word_size) {
  switch (type) {
  case Metaspace::BootMetaspaceType:
    *chunk_word_size = Metaspace::first_chunk_word_size();
    *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
    break;
  case Metaspace::ROMetaspaceType:
    *chunk_word_size = SharedReadOnlySize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::ReadWriteMetaspaceType:
    *chunk_word_size = SharedReadWriteSize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::AnonymousMetaspaceType:
  case Metaspace::ReflectionMetaspaceType:
    *chunk_word_size = SpecializedChunk;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  default:
    *chunk_word_size = SmallChunk;
    *class_chunk_word_size = ClassSmallChunk;
    break;
  }
1885
  assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1886 1887
    err_msg("Initial chunks sizes bad: data  " SIZE_FORMAT
            " class " SIZE_FORMAT,
1888
            *chunk_word_size, *class_chunk_word_size));
1889 1890
}

1891 1892 1893
size_t SpaceManager::sum_free_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t free = 0;
1894
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      free += chunk->free_word_size();
      chunk = chunk->next();
    }
  }
  return free;
}

size_t SpaceManager::sum_waste_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t result = 0;
1907
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1908 1909
   result += sum_waste_in_chunks_in_use(i);
  }
1910

1911 1912 1913 1914 1915 1916 1917 1918
  return result;
}

size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
  size_t result = 0;
  Metachunk* chunk = chunks_in_use(index);
  // Count the free space in all the chunk but not the
  // current chunk from which allocations are still being done.
1919 1920
  while (chunk != NULL) {
    if (chunk != current_chunk()) {
1921
      result += chunk->free_word_size();
1922
    }
1923
    chunk = chunk->next();
1924 1925 1926 1927 1928
  }
  return result;
}

size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
  // For CMS use "allocated_chunks_words()" which does not need the
  // Metaspace lock.  For the other collectors sum over the
  // lists.  Use both methods as a check that "allocated_chunks_words()"
  // is correct.  That is, sum_capacity_in_chunks() is too expensive
  // to use in the product and allocated_chunks_words() should be used
  // but allow for  checking that allocated_chunks_words() returns the same
  // value as sum_capacity_in_chunks_in_use() which is the definitive
  // answer.
  if (UseConcMarkSweepGC) {
    return allocated_chunks_words();
  } else {
    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
    size_t sum = 0;
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
      Metachunk* chunk = chunks_in_use(i);
      while (chunk != NULL) {
1945
        sum += chunk->word_size();
1946 1947
        chunk = chunk->next();
      }
1948 1949
    }
  return sum;
1950
  }
1951 1952 1953 1954
}

size_t SpaceManager::sum_count_in_chunks_in_use() {
  size_t count = 0;
1955
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1956 1957
    count = count + sum_count_in_chunks_in_use(i);
  }
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
  return count;
}

size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(i);
  while (chunk != NULL) {
    count++;
    chunk = chunk->next();
  }
  return count;
}


size_t SpaceManager::sum_used_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t used = 0;
1976
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      used += chunk->used_word_size();
      chunk = chunk->next();
    }
  }
  return used;
}

void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {

1988 1989 1990 1991 1992 1993 1994 1995
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
    Metachunk* chunk = chunks_in_use(i);
    st->print("SpaceManager: %s " PTR_FORMAT,
                 chunk_size_name(i), chunk);
    if (chunk != NULL) {
      st->print_cr(" free " SIZE_FORMAT,
                   chunk->free_word_size());
    } else {
1996
      st->cr();
1997 1998
    }
  }
1999

2000 2001
  chunk_manager()->locked_print_free_chunks(st);
  chunk_manager()->locked_print_sum_free_chunks(st);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
}

size_t SpaceManager::calc_chunk_size(size_t word_size) {

  // Decide between a small chunk and a medium chunk.  Up to
  // _small_chunk_limit small chunks can be allocated but
  // once a medium chunk has been allocated, no more small
  // chunks will be allocated.
  size_t chunk_word_size;
  if (chunks_in_use(MediumIndex) == NULL &&
2012
      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2013 2014 2015
    chunk_word_size = (size_t) small_chunk_size();
    if (word_size + Metachunk::overhead() > small_chunk_size()) {
      chunk_word_size = medium_chunk_size();
2016 2017
    }
  } else {
2018
    chunk_word_size = medium_chunk_size();
2019 2020
  }

2021 2022 2023
  // Might still need a humongous chunk.  Enforce
  // humongous allocations sizes to be aligned up to
  // the smallest chunk size.
2024 2025
  size_t if_humongous_sized_chunk =
    align_size_up(word_size + Metachunk::overhead(),
2026
                  smallest_chunk_size());
2027
  chunk_word_size =
2028
    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2029

2030 2031 2032 2033 2034
  assert(!SpaceManager::is_humongous(word_size) ||
         chunk_word_size == if_humongous_sized_chunk,
         err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
                 " chunk_word_size " SIZE_FORMAT,
                 word_size, chunk_word_size));
2035 2036 2037 2038 2039 2040
  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(word_size)) {
    gclog_or_tty->print_cr("Metadata humongous allocation:");
    gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
    gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
                           chunk_word_size);
2041
    gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
2042 2043 2044 2045 2046
                           Metachunk::overhead());
  }
  return chunk_word_size;
}

2047 2048 2049 2050 2051 2052 2053 2054 2055
void SpaceManager::track_metaspace_memory_usage() {
  if (is_init_completed()) {
    if (is_class()) {
      MemoryService::track_compressed_class_memory_usage();
    }
    MemoryService::track_metaspace_memory_usage();
  }
}

2056
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2057 2058 2059 2060 2061 2062 2063 2064
  assert(vs_list()->current_virtual_space() != NULL,
         "Should have been set");
  assert(current_chunk() == NULL ||
         current_chunk()->allocate(word_size) == NULL,
         "Don't need to expand");
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  if (TraceMetadataChunkAllocation && Verbose) {
2065 2066 2067 2068 2069 2070
    size_t words_left = 0;
    size_t words_used = 0;
    if (current_chunk() != NULL) {
      words_left = current_chunk()->free_word_size();
      words_used = current_chunk()->used_word_size();
    }
2071
    gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2072 2073 2074
                           " words " SIZE_FORMAT " words used " SIZE_FORMAT
                           " words left",
                            word_size, words_used, words_left);
2075 2076 2077 2078
  }

  // Get another chunk out of the virtual space
  size_t grow_chunks_by_words = calc_chunk_size(word_size);
2079
  Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2080

2081 2082
  MetaWord* mem = NULL;

2083 2084 2085 2086 2087
  // If a chunk was available, add it to the in-use chunk list
  // and do an allocation from it.
  if (next != NULL) {
    // Add to this manager's list of chunks in use.
    add_chunk(next, false);
2088
    mem = next->allocate(word_size);
2089
  }
2090

2091 2092 2093
  // Track metaspace memory usage statistic.
  track_metaspace_memory_usage();

2094
  return mem;
2095 2096 2097 2098
}

void SpaceManager::print_on(outputStream* st) const {

2099
  for (ChunkIndex i = ZeroIndex;
2100
       i < NumberOfInUseLists ;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
       i = next_chunk_index(i) ) {
    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
                 chunks_in_use(i),
                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
  }
  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
               " Humongous " SIZE_FORMAT,
               sum_waste_in_chunks_in_use(SmallIndex),
               sum_waste_in_chunks_in_use(MediumIndex),
               sum_waste_in_chunks_in_use(HumongousIndex));
2111 2112 2113 2114 2115
  // block free lists
  if (block_freelists() != NULL) {
    st->print_cr("total in block free lists " SIZE_FORMAT,
      block_freelists()->total_size());
  }
2116 2117
}

2118
SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2119
                           Mutex* lock) :
2120
  _mdtype(mdtype),
2121 2122 2123
  _allocated_blocks_words(0),
  _allocated_chunks_words(0),
  _allocated_chunks_count(0),
2124 2125 2126 2127 2128
  _lock(lock)
{
  initialize();
}

2129 2130 2131 2132 2133 2134 2135
void SpaceManager::inc_size_metrics(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  // Total of allocated Metachunks and allocated Metachunks count
  // for each SpaceManager
  _allocated_chunks_words = _allocated_chunks_words + words;
  _allocated_chunks_count++;
  // Global total of capacity in allocated Metachunks
2136
  MetaspaceAux::inc_capacity(mdtype(), words);
2137 2138 2139 2140 2141
  // Global total of allocated Metablocks.
  // used_words_slow() includes the overhead in each
  // Metachunk so include it in the used when the
  // Metachunk is first added (so only added once per
  // Metachunk).
2142
  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2143 2144 2145 2146 2147 2148
}

void SpaceManager::inc_used_metrics(size_t words) {
  // Add to the per SpaceManager total
  Atomic::add_ptr(words, &_allocated_blocks_words);
  // Add to the global total
2149
  MetaspaceAux::inc_used(mdtype(), words);
2150 2151 2152
}

void SpaceManager::dec_total_from_size_metrics() {
2153 2154
  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2155
  // Also deduct the overhead per Metachunk
2156
  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2157 2158
}

2159
void SpaceManager::initialize() {
2160
  Metadebug::init_allocation_fail_alot_count();
2161
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2162 2163 2164 2165 2166 2167 2168 2169
    _chunks_in_use[i] = NULL;
  }
  _current_chunk = NULL;
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
  }
}

2170 2171 2172 2173 2174 2175 2176 2177 2178
void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
  if (chunks == NULL) {
    return;
  }
  ChunkList* list = free_chunks(index);
  assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* cur = chunks;

2179
  // This returns chunks one at a time.  If a new
2180 2181 2182 2183
  // class List can be created that is a base class
  // of FreeList then something like FreeList::prepend()
  // can be used in place of this loop
  while (cur != NULL) {
2184 2185
    assert(cur->container() != NULL, "Container should have been set");
    cur->container()->dec_container_count();
2186 2187 2188
    // Capture the next link before it is changed
    // by the call to return_chunk_at_head();
    Metachunk* next = cur->next();
2189
    DEBUG_ONLY(cur->set_is_tagged_free(true);)
2190 2191 2192 2193 2194
    list->return_chunk_at_head(cur);
    cur = next;
  }
}

2195
SpaceManager::~SpaceManager() {
2196
  // This call this->_lock which can't be done while holding expand_lock()
2197 2198 2199 2200
  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
    err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
            " allocated_chunks_words() " SIZE_FORMAT,
            sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2201

2202 2203 2204
  MutexLockerEx fcl(SpaceManager::expand_lock(),
                    Mutex::_no_safepoint_check_flag);

2205
  chunk_manager()->slow_locked_verify();
2206

2207 2208
  dec_total_from_size_metrics();

2209 2210 2211 2212 2213
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
    locked_print_chunks_in_use_on(gclog_or_tty);
  }

2214 2215
  // Do not mangle freed Metachunks.  The chunk size inside Metachunks
  // is during the freeing of a VirtualSpaceNodes.
2216

2217 2218
  // Have to update before the chunks_in_use lists are emptied
  // below.
2219 2220
  chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
                                         sum_count_in_chunks_in_use());
2221 2222 2223 2224

  // Add all the chunks in use by this space manager
  // to the global list of free chunks.

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
  // Follow each list of chunks-in-use and add them to the
  // free lists.  Each list is NULL terminated.

  for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("returned %d %s chunks to freelist",
                             sum_count_in_chunks_in_use(i),
                             chunk_size_name(i));
    }
    Metachunk* chunks = chunks_in_use(i);
2235
    chunk_manager()->return_chunks(i, chunks);
2236 2237 2238
    set_chunks_in_use(i, NULL);
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("updated freelist count %d %s",
2239
                             chunk_manager()->free_chunks(i)->count(),
2240 2241 2242
                             chunk_size_name(i));
    }
    assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2243 2244
  }

2245 2246 2247 2248
  // The medium chunk case may be optimized by passing the head and
  // tail of the medium chunk list to add_at_head().  The tail is often
  // the current chunk but there are probably exceptions.

2249
  // Humongous chunks
2250 2251 2252 2253 2254 2255
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
                            sum_count_in_chunks_in_use(HumongousIndex),
                            chunk_size_name(HumongousIndex));
    gclog_or_tty->print("Humongous chunk dictionary: ");
  }
2256 2257 2258
  // Humongous chunks are never the current chunk.
  Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);

2259 2260
  while (humongous_chunks != NULL) {
#ifdef ASSERT
2261
    humongous_chunks->set_is_tagged_free(true);
2262
#endif
2263 2264 2265 2266 2267 2268 2269
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
                          humongous_chunks,
                          humongous_chunks->word_size());
    }
    assert(humongous_chunks->word_size() == (size_t)
           align_size_up(humongous_chunks->word_size(),
2270
                             smallest_chunk_size()),
2271
           err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2272
                   " granularity %d",
2273
                   humongous_chunks->word_size(), smallest_chunk_size()));
2274
    Metachunk* next_humongous_chunks = humongous_chunks->next();
2275
    humongous_chunks->container()->dec_container_count();
2276
    chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2277
    humongous_chunks = next_humongous_chunks;
2278
  }
2279
  if (TraceMetadataChunkAllocation && Verbose) {
2280
    gclog_or_tty->cr();
2281
    gclog_or_tty->print_cr("updated dictionary count %d %s",
2282
                     chunk_manager()->humongous_dictionary()->total_count(),
2283 2284
                     chunk_size_name(HumongousIndex));
  }
2285
  chunk_manager()->slow_locked_verify();
2286 2287
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
  switch (index) {
    case SpecializedIndex:
      return "Specialized";
    case SmallIndex:
      return "Small";
    case MediumIndex:
      return "Medium";
    case HumongousIndex:
      return "Humongous";
    default:
      return NULL;
  }
}

ChunkIndex ChunkManager::list_index(size_t size) {
  switch (size) {
    case SpecializedChunk:
      assert(SpecializedChunk == ClassSpecializedChunk,
             "Need branch for ClassSpecializedChunk");
      return SpecializedIndex;
    case SmallChunk:
    case ClassSmallChunk:
      return SmallIndex;
    case MediumChunk:
    case ClassMediumChunk:
      return MediumIndex;
    default:
2316
      assert(size > MediumChunk || size > ClassMediumChunk,
2317 2318 2319 2320 2321
             "Not a humongous chunk");
      return HumongousIndex;
  }
}

2322
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2323
  assert_lock_strong(_lock);
2324
  size_t raw_word_size = get_raw_word_size(word_size);
2325
  size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2326
  assert(raw_word_size >= min_size,
2327
         err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2328
  block_freelists()->return_block(p, raw_word_size);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
}

// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {

  assert(new_chunk != NULL, "Should not be NULL");
  assert(new_chunk->next() == NULL, "Should not be on a list");

  new_chunk->reset_empty();

  // Find the correct list and and set the current
  // chunk for that list.
2341
  ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2342

2343
  if (index != HumongousIndex) {
2344
    retire_current_chunk();
2345
    set_current_chunk(new_chunk);
2346 2347 2348
    new_chunk->set_next(chunks_in_use(index));
    set_chunks_in_use(index, new_chunk);
  } else {
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
    // For null class loader data and DumpSharedSpaces, the first chunk isn't
    // small, so small will be null.  Link this first chunk as the current
    // chunk.
    if (make_current) {
      // Set as the current chunk but otherwise treat as a humongous chunk.
      set_current_chunk(new_chunk);
    }
    // Link at head.  The _current_chunk only points to a humongous chunk for
    // the null class loader metaspace (class and data virtual space managers)
    // any humongous chunks so will not point to the tail
    // of the humongous chunks list.
    new_chunk->set_next(chunks_in_use(HumongousIndex));
    set_chunks_in_use(HumongousIndex, new_chunk);

2363
    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2364 2365
  }

2366 2367 2368
  // Add to the running sum of capacity
  inc_size_metrics(new_chunk->word_size());

2369 2370 2371 2372 2373
  assert(new_chunk->is_empty(), "Not ready for reuse");
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
                        sum_count_in_chunks_in_use());
    new_chunk->print_on(gclog_or_tty);
2374
    chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2375 2376 2377
  }
}

2378 2379 2380
void SpaceManager::retire_current_chunk() {
  if (current_chunk() != NULL) {
    size_t remaining_words = current_chunk()->free_word_size();
2381
    if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2382 2383 2384 2385 2386 2387
      block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
      inc_used_metrics(remaining_words);
    }
  }
}

2388 2389
Metachunk* SpaceManager::get_new_chunk(size_t word_size,
                                       size_t grow_chunks_by_words) {
2390 2391
  // Get a chunk from the chunk freelist
  Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2392

2393 2394 2395 2396 2397
  if (next == NULL) {
    next = vs_list()->get_new_chunk(word_size,
                                    grow_chunks_by_words,
                                    medium_chunk_bunch());
  }
2398

S
stefank 已提交
2399
  if (TraceMetadataHumongousAllocation && next != NULL &&
2400
      SpaceManager::is_humongous(next->word_size())) {
S
stefank 已提交
2401 2402
    gclog_or_tty->print_cr("  new humongous chunk word size "
                           PTR_FORMAT, next->word_size());
2403 2404 2405 2406 2407
  }

  return next;
}

2408 2409 2410
MetaWord* SpaceManager::allocate(size_t word_size) {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);

2411
  size_t raw_word_size = get_raw_word_size(word_size);
2412
  BlockFreelist* fl =  block_freelists();
2413
  MetaWord* p = NULL;
2414 2415 2416 2417 2418
  // Allocation from the dictionary is expensive in the sense that
  // the dictionary has to be searched for a size.  Don't allocate
  // from the dictionary until it starts to get fat.  Is this
  // a reasonable policy?  Maybe an skinny dictionary is fast enough
  // for allocations.  Do some profiling.  JJJ
2419 2420
  if (fl->total_size() > allocation_from_dictionary_limit) {
    p = fl->get_block(raw_word_size);
2421
  }
2422 2423
  if (p == NULL) {
    p = allocate_work(raw_word_size);
2424 2425
  }

2426
  return p;
2427 2428 2429 2430
}

// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
2431
MetaWord* SpaceManager::allocate_work(size_t word_size) {
2432 2433 2434 2435 2436 2437 2438
  assert_lock_strong(_lock);
#ifdef ASSERT
  if (Metadebug::test_metadata_failure()) {
    return NULL;
  }
#endif
  // Is there space in the current chunk?
2439
  MetaWord* result = NULL;
2440 2441 2442 2443 2444 2445

  // For DumpSharedSpaces, only allocate out of the current chunk which is
  // never null because we gave it the size we wanted.   Caller reports out
  // of memory if this returns null.
  if (DumpSharedSpaces) {
    assert(current_chunk() != NULL, "should never happen");
2446
    inc_used_metrics(word_size);
2447 2448
    return current_chunk()->allocate(word_size); // caller handles null result
  }
2449

2450 2451 2452 2453 2454 2455 2456
  if (current_chunk() != NULL) {
    result = current_chunk()->allocate(word_size);
  }

  if (result == NULL) {
    result = grow_and_allocate(word_size);
  }
2457 2458

  if (result != NULL) {
2459
    inc_used_metrics(word_size);
2460 2461
    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
           "Head of the list is being allocated");
2462 2463 2464 2465 2466 2467 2468 2469 2470
  }

  return result;
}

void SpaceManager::verify() {
  // If there are blocks in the dictionary, then
  // verfication of chunks does not work since
  // being in the dictionary alters a chunk.
2471
  if (block_freelists()->total_size() == 0) {
2472
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2473 2474 2475
      Metachunk* curr = chunks_in_use(i);
      while (curr != NULL) {
        curr->verify();
2476
        verify_chunk_size(curr);
2477 2478 2479 2480 2481 2482
        curr = curr->next();
      }
    }
  }
}

2483 2484
void SpaceManager::verify_chunk_size(Metachunk* chunk) {
  assert(is_humongous(chunk->word_size()) ||
2485 2486 2487
         chunk->word_size() == medium_chunk_size() ||
         chunk->word_size() == small_chunk_size() ||
         chunk->word_size() == specialized_chunk_size(),
2488 2489 2490 2491
         "Chunk size is wrong");
  return;
}

2492
#ifdef ASSERT
2493
void SpaceManager::verify_allocated_blocks_words() {
2494
  // Verification is only guaranteed at a safepoint.
2495 2496 2497
  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
    "Verification can fail if the applications is running");
  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2498 2499
    err_msg("allocation total is not consistent " SIZE_FORMAT
            " vs " SIZE_FORMAT,
2500
            allocated_blocks_words(), sum_used_in_chunks_in_use()));
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
}

#endif

void SpaceManager::dump(outputStream* const out) const {
  size_t curr_total = 0;
  size_t waste = 0;
  uint i = 0;
  size_t used = 0;
  size_t capacity = 0;

  // Add up statistics for all chunks in this SpaceManager.
2513
  for (ChunkIndex index = ZeroIndex;
2514
       index < NumberOfInUseLists;
2515 2516 2517 2518 2519 2520 2521 2522
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      out->print("%d) ", i++);
      curr->print_on(out);
      curr_total += curr->word_size();
      used += curr->used_word_size();
2523
      capacity += curr->word_size();
2524 2525 2526 2527
      waste += curr->free_word_size() + curr->overhead();;
    }
  }

S
stefank 已提交
2528 2529 2530 2531
  if (TraceMetadataChunkAllocation && Verbose) {
    block_freelists()->print_on(out);
  }

2532
  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2533 2534 2535 2536 2537 2538 2539 2540
  // Free space isn't wasted.
  waste -= free;

  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
}

2541
#ifndef PRODUCT
2542
void SpaceManager::mangle_freed_chunks() {
2543
  for (ChunkIndex index = ZeroIndex;
2544
       index < NumberOfInUseLists;
2545 2546 2547 2548 2549 2550 2551 2552
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      curr->mangle();
    }
  }
}
2553
#endif // PRODUCT
2554 2555 2556

// MetaspaceAux

2557

2558 2559
size_t MetaspaceAux::_capacity_words[] = {0, 0};
size_t MetaspaceAux::_used_words[] = {0, 0};
2560

2561 2562 2563 2564 2565
size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->free_bytes();
}

2566
size_t MetaspaceAux::free_bytes() {
2567
  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2568 2569
}

2570
void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2571
  assert_lock_strong(SpaceManager::expand_lock());
2572
  assert(words <= capacity_words(mdtype),
2573
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2574 2575 2576
            " is greater than _capacity_words[%u] " SIZE_FORMAT,
            words, mdtype, capacity_words(mdtype)));
  _capacity_words[mdtype] -= words;
2577 2578
}

2579
void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2580 2581
  assert_lock_strong(SpaceManager::expand_lock());
  // Needs to be atomic
2582
  _capacity_words[mdtype] += words;
2583 2584
}

2585
void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2586
  assert(words <= used_words(mdtype),
2587
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2588 2589
            " is greater than _used_words[%u] " SIZE_FORMAT,
            words, mdtype, used_words(mdtype)));
2590 2591 2592 2593 2594
  // For CMS deallocation of the Metaspaces occurs during the
  // sweep which is a concurrent phase.  Protection by the expand_lock()
  // is not enough since allocation is on a per Metaspace basis
  // and protected by the Metaspace lock.
  jlong minus_words = (jlong) - (jlong) words;
2595
  Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2596 2597
}

2598
void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2599
  // _used_words tracks allocations for
2600 2601 2602
  // each piece of metadata.  Those allocations are
  // generally done concurrently by different application
  // threads so must be done atomically.
2603
  Atomic::add_ptr(words, &_used_words[mdtype]);
2604 2605 2606
}

size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2607 2608 2609 2610
  size_t used = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
2611
    // Sum allocated_blocks_words for each metaspace
2612
    if (msp != NULL) {
2613
      used += msp->used_words_slow(mdtype);
2614 2615 2616 2617 2618
    }
  }
  return used * BytesPerWord;
}

E
ehelin 已提交
2619
size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2620 2621 2622 2623 2624
  size_t free = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
E
ehelin 已提交
2625
      free += msp->free_words_slow(mdtype);
2626 2627 2628 2629 2630
    }
  }
  return free * BytesPerWord;
}

2631
size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2632 2633 2634
  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
    return 0;
  }
2635 2636 2637
  // Don't count the space in the freelists.  That space will be
  // added to the capacity calculation as needed.
  size_t capacity = 0;
2638 2639 2640 2641
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2642
      capacity += msp->capacity_words_slow(mdtype);
2643 2644 2645 2646 2647
    }
  }
  return capacity * BytesPerWord;
}

E
ehelin 已提交
2648 2649
size_t MetaspaceAux::capacity_bytes_slow() {
#ifdef PRODUCT
2650
  // Use capacity_bytes() in PRODUCT instead of this function.
E
ehelin 已提交
2651 2652 2653 2654
  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
#endif
  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2655 2656
  assert(capacity_bytes() == class_capacity + non_class_capacity,
      err_msg("bad accounting: capacity_bytes() " SIZE_FORMAT
E
ehelin 已提交
2657 2658
        " class_capacity + non_class_capacity " SIZE_FORMAT
        " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2659
        capacity_bytes(), class_capacity + non_class_capacity,
E
ehelin 已提交
2660 2661 2662 2663 2664 2665
        class_capacity, non_class_capacity));

  return class_capacity + non_class_capacity;
}

size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2666
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2667 2668 2669 2670 2671 2672
  return list == NULL ? 0 : list->reserved_bytes();
}

size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->committed_bytes();
2673 2674
}

E
ehelin 已提交
2675
size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2676

E
ehelin 已提交
2677
size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2678 2679
  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
  if (chunk_manager == NULL) {
2680 2681
    return 0;
  }
2682 2683
  chunk_manager->slow_verify();
  return chunk_manager->free_chunks_total_words();
2684 2685
}

E
ehelin 已提交
2686 2687
size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
  return free_chunks_total_words(mdtype) * BytesPerWord;
2688 2689
}

E
ehelin 已提交
2690 2691 2692
size_t MetaspaceAux::free_chunks_total_words() {
  return free_chunks_total_words(Metaspace::ClassType) +
         free_chunks_total_words(Metaspace::NonClassType);
2693 2694
}

E
ehelin 已提交
2695 2696
size_t MetaspaceAux::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
2697 2698
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
  return Metaspace::get_chunk_manager(mdtype) != NULL;
}

MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
  if (!has_chunk_free_list(mdtype)) {
    return MetaspaceChunkFreeListSummary();
  }

  const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
  return cm->chunk_free_list_summary();
}

2712 2713 2714 2715 2716
void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
  gclog_or_tty->print(", [Metaspace:");
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
2717
                        "("  SIZE_FORMAT ")",
2718
                        prev_metadata_used,
2719
                        used_bytes(),
E
ehelin 已提交
2720
                        reserved_bytes());
2721 2722 2723
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
2724
                        "("  SIZE_FORMAT "K)",
E
ehelin 已提交
2725
                        prev_metadata_used/K,
2726
                        used_bytes()/K,
E
ehelin 已提交
2727
                        reserved_bytes()/K);
2728 2729 2730 2731 2732 2733 2734 2735 2736
  }

  gclog_or_tty->print("]");
}

// This is printed when PrintGCDetails
void MetaspaceAux::print_on(outputStream* out) {
  Metaspace::MetadataType nct = Metaspace::NonClassType;

2737 2738 2739 2740 2741
  out->print_cr(" Metaspace       "
                "used "      SIZE_FORMAT "K, "
                "capacity "  SIZE_FORMAT "K, "
                "committed " SIZE_FORMAT "K, "
                "reserved "  SIZE_FORMAT "K",
2742 2743
                used_bytes()/K,
                capacity_bytes()/K,
2744 2745 2746
                committed_bytes()/K,
                reserved_bytes()/K);

2747 2748 2749
  if (Metaspace::using_class_space()) {
    Metaspace::MetadataType ct = Metaspace::ClassType;
    out->print_cr("  class space    "
2750 2751 2752 2753
                  "used "      SIZE_FORMAT "K, "
                  "capacity "  SIZE_FORMAT "K, "
                  "committed " SIZE_FORMAT "K, "
                  "reserved "  SIZE_FORMAT "K",
2754 2755
                  used_bytes(ct)/K,
                  capacity_bytes(ct)/K,
2756
                  committed_bytes(ct)/K,
E
ehelin 已提交
2757
                  reserved_bytes(ct)/K);
2758
  }
2759 2760 2761 2762 2763
}

// Print information for class space and data space separately.
// This is almost the same as above.
void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
E
ehelin 已提交
2764
  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2765 2766
  size_t capacity_bytes = capacity_bytes_slow(mdtype);
  size_t used_bytes = used_bytes_slow(mdtype);
E
ehelin 已提交
2767
  size_t free_bytes = free_bytes_slow(mdtype);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
  size_t used_and_free = used_bytes + free_bytes +
                           free_chunks_capacity_bytes;
  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
             "K + unused in chunks " SIZE_FORMAT "K  + "
             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
             "K  capacity in allocated chunks " SIZE_FORMAT "K",
             used_bytes / K,
             free_bytes / K,
             free_chunks_capacity_bytes / K,
             used_and_free / K,
             capacity_bytes / K);
2779 2780
  // Accounting can only be correct if we got the values during a safepoint
  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2781 2782
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
// Print total fragmentation for class metaspaces
void MetaspaceAux::print_class_waste(outputStream* out) {
  assert(Metaspace::using_class_space(), "class metaspace not used");
  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
    }
  }
  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                "large count " SIZE_FORMAT,
                cls_specialized_count, cls_specialized_waste,
                cls_small_count, cls_small_waste,
                cls_medium_count, cls_medium_waste, cls_humongous_count);
}
2809

2810 2811
// Print total fragmentation for data and class metaspaces separately
void MetaspaceAux::print_waste(outputStream* out) {
2812 2813
  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2814 2815 2816 2817 2818

  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2819 2820
      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2821
      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2822
      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2823
      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2824
      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2825
      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2826 2827 2828
    }
  }
  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2829 2830
  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2831 2832
                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                        "large count " SIZE_FORMAT,
2833
             specialized_count, specialized_waste, small_count,
2834
             small_waste, medium_count, medium_waste, humongous_count);
2835 2836 2837
  if (Metaspace::using_class_space()) {
    print_class_waste(out);
  }
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
}

// Dump global metaspace things from the end of ClassLoaderDataGraph
void MetaspaceAux::dump(outputStream* out) {
  out->print_cr("All Metaspace:");
  out->print("data space: "); print_on(out, Metaspace::NonClassType);
  out->print("class space: "); print_on(out, Metaspace::ClassType);
  print_waste(out);
}

2848
void MetaspaceAux::verify_free_chunks() {
2849
  Metaspace::chunk_manager_metadata()->verify();
2850
  if (Metaspace::using_class_space()) {
2851
    Metaspace::chunk_manager_class()->verify();
2852
  }
2853 2854
}

2855 2856
void MetaspaceAux::verify_capacity() {
#ifdef ASSERT
2857
  size_t running_sum_capacity_bytes = capacity_bytes();
2858
  // For purposes of the running sum of capacity, verify against capacity
2859 2860
  size_t capacity_in_use_bytes = capacity_bytes_slow();
  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2861
    err_msg("capacity_words() * BytesPerWord " SIZE_FORMAT
2862 2863
            " capacity_bytes_slow()" SIZE_FORMAT,
            running_sum_capacity_bytes, capacity_in_use_bytes));
2864 2865 2866 2867
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2868 2869
    assert(capacity_bytes(i) == capacity_in_use_bytes,
      err_msg("capacity_bytes(%u) " SIZE_FORMAT
2870
              " capacity_bytes_slow(%u)" SIZE_FORMAT,
2871
              i, capacity_bytes(i), i, capacity_in_use_bytes));
2872
  }
2873 2874 2875 2876 2877
#endif
}

void MetaspaceAux::verify_used() {
#ifdef ASSERT
2878
  size_t running_sum_used_bytes = used_bytes();
2879
  // For purposes of the running sum of used, verify against used
2880
  size_t used_in_use_bytes = used_bytes_slow();
2881 2882
  assert(used_bytes() == used_in_use_bytes,
    err_msg("used_bytes() " SIZE_FORMAT
2883
            " used_bytes_slow()" SIZE_FORMAT,
2884
            used_bytes(), used_in_use_bytes));
2885 2886 2887 2888
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t used_in_use_bytes = used_bytes_slow(i);
2889 2890
    assert(used_bytes(i) == used_in_use_bytes,
      err_msg("used_bytes(%u) " SIZE_FORMAT
2891
              " used_bytes_slow(%u)" SIZE_FORMAT,
2892
              i, used_bytes(i), i, used_in_use_bytes));
2893
  }
2894 2895 2896 2897 2898 2899 2900 2901 2902
#endif
}

void MetaspaceAux::verify_metrics() {
  verify_capacity();
  verify_used();
}


2903 2904 2905
// Metaspace methods

size_t Metaspace::_first_chunk_word_size = 0;
2906
size_t Metaspace::_first_class_chunk_word_size = 0;
2907

2908 2909 2910
size_t Metaspace::_commit_alignment = 0;
size_t Metaspace::_reserve_alignment = 0;

2911 2912
Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
  initialize(lock, type);
2913 2914 2915 2916
}

Metaspace::~Metaspace() {
  delete _vsm;
2917 2918 2919
  if (using_class_space()) {
    delete _class_vsm;
  }
2920 2921 2922 2923 2924
}

VirtualSpaceList* Metaspace::_space_list = NULL;
VirtualSpaceList* Metaspace::_class_space_list = NULL;

2925 2926 2927
ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
ChunkManager* Metaspace::_chunk_manager_class = NULL;

2928 2929
#define VIRTUALSPACEMULTIPLIER 2

2930
#ifdef _LP64
2931 2932
static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);

2933 2934 2935 2936 2937 2938 2939 2940 2941
void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
  // narrow_klass_base is the lower of the metaspace base and the cds base
  // (if cds is enabled).  The narrow_klass_shift depends on the distance
  // between the lower base and higher address.
  address lower_base;
  address higher_address;
  if (UseSharedSpaces) {
    higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2942
                          (address)(metaspace_base + compressed_class_space_size()));
2943 2944
    lower_base = MIN2(metaspace_base, cds_base);
  } else {
2945
    higher_address = metaspace_base + compressed_class_space_size();
2946
    lower_base = metaspace_base;
2947 2948 2949 2950 2951 2952

    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
    // If compressed class space fits in lower 32G, we don't need a base.
    if (higher_address <= (address)klass_encoding_max) {
      lower_base = 0; // effectively lower base is zero.
    }
2953
  }
2954

2955
  Universe::set_narrow_klass_base(lower_base);
2956

2957
  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
    Universe::set_narrow_klass_shift(0);
  } else {
    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
  }
}

// Return TRUE if the specified metaspace_base and cds_base are close enough
// to work with compressed klass pointers.
bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2969
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2970 2971
  address lower_base = MIN2((address)metaspace_base, cds_base);
  address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2972
                                (address)(metaspace_base + compressed_class_space_size()));
2973
  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
2974 2975 2976 2977 2978
}

// Try to allocate the metaspace at the requested addr.
void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
  assert(using_class_space(), "called improperly");
2979
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2980
  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
2981
         "Metaspace size is too big");
2982 2983 2984
  assert_is_ptr_aligned(requested_addr, _reserve_alignment);
  assert_is_ptr_aligned(cds_base, _reserve_alignment);
  assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
2985 2986 2987

  // Don't use large pages for the class space.
  bool large_pages = false;
2988

2989
  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
2990 2991 2992
                                             _reserve_alignment,
                                             large_pages,
                                             requested_addr, 0);
2993 2994
  if (!metaspace_rs.is_reserved()) {
    if (UseSharedSpaces) {
2995 2996
      size_t increment = align_size_up(1*G, _reserve_alignment);

2997 2998 2999 3000
      // Keep trying to allocate the metaspace, increasing the requested_addr
      // by 1GB each time, until we reach an address that will no longer allow
      // use of CDS with compressed klass pointers.
      char *addr = requested_addr;
3001 3002 3003
      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
        addr = addr + increment;
3004
        metaspace_rs = ReservedSpace(compressed_class_space_size(),
3005
                                     _reserve_alignment, large_pages, addr, 0);
3006 3007 3008 3009 3010
      }
    }

    // If no successful allocation then try to allocate the space anywhere.  If
    // that fails then OOM doom.  At this point we cannot try allocating the
3011 3012 3013
    // metaspace as if UseCompressedClassPointers is off because too much
    // initialization has happened that depends on UseCompressedClassPointers.
    // So, UseCompressedClassPointers cannot be turned off at this point.
3014
    if (!metaspace_rs.is_reserved()) {
3015
      metaspace_rs = ReservedSpace(compressed_class_space_size(),
3016
                                   _reserve_alignment, large_pages);
3017 3018
      if (!metaspace_rs.is_reserved()) {
        vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
3019
                                              compressed_class_space_size()));
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
      }
    }
  }

  // If we got here then the metaspace got allocated.
  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);

  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
    FileMapInfo::stop_sharing_and_unmap(
        "Could not allocate metaspace at a compatible address");
  }

  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
                                  UseSharedSpaces ? (address)cds_base : 0);

  initialize_class_space(metaspace_rs);

  if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
    gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
                            Universe::narrow_klass_base(), Universe::narrow_klass_shift());
3041 3042
    gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
                           compressed_class_space_size(), metaspace_rs.base(), requested_addr);
3043 3044 3045
  }
}

3046
// For UseCompressedClassPointers the class space is reserved above the top of
3047 3048 3049
// the Java heap.  The argument passed in is at the base of the compressed space.
void Metaspace::initialize_class_space(ReservedSpace rs) {
  // The reserved space size may be bigger because of alignment, esp with UseLargePages
3050 3051
  assert(rs.size() >= CompressedClassSpaceSize,
         err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
3052 3053
  assert(using_class_space(), "Must be using class space");
  _class_space_list = new VirtualSpaceList(rs);
3054
  _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3055 3056 3057 3058

  if (!_class_space_list->initialization_succeeded()) {
    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
  }
3059 3060 3061 3062
}

#endif

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
void Metaspace::ergo_initialize() {
  if (DumpSharedSpaces) {
    // Using large pages when dumping the shared archive is currently not implemented.
    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
  }

  size_t page_size = os::vm_page_size();
  if (UseLargePages && UseLargePagesInMetaspace) {
    page_size = os::large_page_size();
  }

  _commit_alignment  = page_size;
  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());

  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
  // override if MaxMetaspaceSize was set on the command line or not.
  // This information is needed later to conform to the specification of the
  // java.lang.management.MemoryUsage API.
  //
  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
  // globals.hpp to the aligned value, but this is not possible, since the
  // alignment depends on other flags being parsed.
3085
  MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3086 3087 3088 3089 3090

  if (MetaspaceSize > MaxMetaspaceSize) {
    MetaspaceSize = MaxMetaspaceSize;
  }

3091
  MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3092 3093 3094 3095 3096 3097 3098

  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");

  if (MetaspaceSize < 256*K) {
    vm_exit_during_initialization("Too small initial Metaspace size");
  }

3099 3100
  MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
  MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3101

3102
  CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3103
  set_compressed_class_space_size(CompressedClassSpaceSize);
3104 3105
}

3106
void Metaspace::global_initialize() {
3107 3108
  MetaspaceGC::initialize();

3109 3110
  // Initialize the alignment for shared spaces.
  int max_alignment = os::vm_page_size();
3111 3112
  size_t cds_total = 0;

3113 3114 3115
  MetaspaceShared::set_max_alignment(max_alignment);

  if (DumpSharedSpaces) {
3116
    SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3117
    SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3118 3119
    SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
    SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3120 3121 3122 3123

    // Initialize with the sum of the shared space sizes.  The read-only
    // and read write metaspace chunks will be allocated out of this and the
    // remainder is the misc code and data chunks.
3124
    cds_total = FileMapInfo::shared_spaces_size();
3125
    cds_total = align_size_up(cds_total, _reserve_alignment);
3126
    _space_list = new VirtualSpaceList(cds_total/wordSize);
3127
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3128

3129 3130 3131 3132
    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to dump shared archive.", NULL);
    }

3133
#ifdef _LP64
3134
    if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3135 3136 3137
      vm_exit_during_initialization("Unable to dump shared archive.",
          err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
                  SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3138 3139
                  "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
                  cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3140 3141
    }

3142 3143
    // Set the compressed klass pointer base so that decoding of these pointers works
    // properly when creating the shared archive.
3144 3145
    assert(UseCompressedOops && UseCompressedClassPointers,
      "UseCompressedOops and UseCompressedClassPointers must be set");
3146 3147 3148 3149 3150 3151 3152 3153 3154
    Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
    if (TraceMetavirtualspaceAllocation && Verbose) {
      gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
                             _space_list->current_virtual_space()->bottom());
    }

    Universe::set_narrow_klass_shift(0);
#endif

3155 3156 3157 3158
  } else {
    // If using shared space, open the file that contains the shared space
    // and map in the memory before initializing the rest of metaspace (so
    // the addresses don't conflict)
3159
    address cds_address = NULL;
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
    if (UseSharedSpaces) {
      FileMapInfo* mapinfo = new FileMapInfo();
      memset(mapinfo, 0, sizeof(FileMapInfo));

      // Open the shared archive file, read and validate the header. If
      // initialization fails, shared spaces [UseSharedSpaces] are
      // disabled and the file is closed.
      // Map in spaces now also
      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
        FileMapInfo::set_current_info(mapinfo);
3170 3171
        cds_total = FileMapInfo::shared_spaces_size();
        cds_address = (address)mapinfo->region_base(0);
3172 3173 3174 3175
      } else {
        assert(!mapinfo->is_open() && !UseSharedSpaces,
               "archive file not closed or shared spaces not disabled.");
      }
3176 3177 3178
    }

#ifdef _LP64
3179
    // If UseCompressedClassPointers is set then allocate the metaspace area
3180 3181 3182
    // above the heap and above the CDS area (if it exists).
    if (using_class_space()) {
      if (UseSharedSpaces) {
3183 3184 3185
        char* cds_end = (char*)(cds_address + cds_total);
        cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3186
      } else {
3187 3188
        char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(base, 0);
3189
      }
3190
    }
3191
#endif
3192

3193
    // Initialize these before initializing the VirtualSpaceList
3194
    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3195 3196 3197 3198 3199
    _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
    // Make the first class chunk bigger than a medium chunk so it's not put
    // on the medium chunk list.   The next chunk will be small and progress
    // from there.  This size calculated by -version.
    _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3200
                                       (CompressedClassSpaceSize/BytesPerWord)*2);
3201
    _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3202 3203
    // Arbitrarily set the initial virtual space to a multiple
    // of the boot class loader size.
3204 3205 3206
    size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
    word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());

3207 3208
    // Initialize the list of virtual spaces.
    _space_list = new VirtualSpaceList(word_size);
3209
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3210 3211 3212 3213

    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
    }
3214
  }
3215

3216
  _tracer = new MetaspaceTracer();
3217 3218
}

3219 3220 3221 3222
void Metaspace::post_initialize() {
  MetaspaceGC::post_initialize();
}

3223 3224 3225 3226 3227 3228 3229
Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
                                               size_t chunk_word_size,
                                               size_t chunk_bunch) {
  // Get a chunk from the chunk freelist
  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
  if (chunk != NULL) {
    return chunk;
3230
  }
3231

3232
  return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3233 3234
}

3235
void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3236 3237 3238

  assert(space_list() != NULL,
    "Metadata VirtualSpaceList has not been initialized");
3239 3240
  assert(chunk_manager_metadata() != NULL,
    "Metadata ChunkManager has not been initialized");
3241

3242
  _vsm = new SpaceManager(NonClassType, lock);
3243 3244 3245
  if (_vsm == NULL) {
    return;
  }
3246 3247
  size_t word_size;
  size_t class_word_size;
3248
  vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3249

3250
  if (using_class_space()) {
3251 3252 3253 3254
  assert(class_space_list() != NULL,
    "Class VirtualSpaceList has not been initialized");
  assert(chunk_manager_class() != NULL,
    "Class ChunkManager has not been initialized");
3255

3256
    // Allocate SpaceManager for classes.
3257
    _class_vsm = new SpaceManager(ClassType, lock);
3258 3259 3260
    if (_class_vsm == NULL) {
      return;
    }
3261 3262 3263 3264 3265
  }

  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  // Allocate chunk for metadata objects
3266 3267 3268
  Metachunk* new_chunk = get_initialization_chunk(NonClassType,
                                                  word_size,
                                                  vsm()->medium_chunk_bunch());
3269 3270 3271 3272 3273 3274 3275
  assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
  if (new_chunk != NULL) {
    // Add to this manager's list of chunks in use and current_chunk().
    vsm()->add_chunk(new_chunk, true);
  }

  // Allocate chunk for class metadata objects
3276
  if (using_class_space()) {
3277 3278 3279
    Metachunk* class_chunk = get_initialization_chunk(ClassType,
                                                      class_word_size,
                                                      class_vsm()->medium_chunk_bunch());
3280 3281 3282
    if (class_chunk != NULL) {
      class_vsm()->add_chunk(class_chunk, true);
    }
3283
  }
3284 3285 3286

  _alloc_record_head = NULL;
  _alloc_record_tail = NULL;
3287 3288
}

3289 3290 3291 3292 3293
size_t Metaspace::align_word_size_up(size_t word_size) {
  size_t byte_size = word_size * wordSize;
  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
}

3294 3295
MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
  // DumpSharedSpaces doesn't use class metadata area (yet)
3296
  // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3297
  if (is_class_space_allocation(mdtype)) {
3298
    return  class_vsm()->allocate(word_size);
3299
  } else {
3300
    return  vsm()->allocate(word_size);
3301 3302 3303
  }
}

3304
MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3305 3306 3307 3308
  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
  assert(delta_bytes > 0, "Must be");

  size_t after_inc = MetaspaceGC::inc_capacity_until_GC(delta_bytes);
3309 3310

  // capacity_until_GC might be updated concurrently, must calculate previous value.
3311 3312
  size_t before_inc = after_inc - delta_bytes;

3313 3314
  tracer()->report_gc_threshold(before_inc, after_inc,
                                MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3315 3316
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3317
        " to " SIZE_FORMAT, before_inc, after_inc);
3318
  }
3319

3320
  return allocate(word_size, mdtype);
3321 3322
}

3323 3324 3325 3326 3327 3328 3329
// Space allocated in the Metaspace.  This may
// be across several metadata virtual spaces.
char* Metaspace::bottom() const {
  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
  return (char*)vsm()->current_chunk()->bottom();
}

3330
size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3331 3332 3333 3334 3335
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
  }
3336 3337
}

E
ehelin 已提交
3338
size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3339 3340 3341 3342 3343
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_free_in_chunks_in_use();
  }
3344 3345 3346 3347 3348 3349 3350
}

// Space capacity in the Metaspace.  It includes
// space in the list of chunks from which allocations
// have been made. Don't include space in the global freelist and
// in the space available in the dictionary which
// is already counted in some chunk.
3351
size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3352 3353 3354 3355 3356
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_capacity_in_chunks_in_use();
  }
3357 3358
}

3359 3360 3361 3362 3363 3364 3365 3366
size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
  return used_words_slow(mdtype) * BytesPerWord;
}

size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
  return capacity_words_slow(mdtype) * BytesPerWord;
}

3367 3368 3369
void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
  if (SafepointSynchronize::is_at_safepoint()) {
    assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3370
    // Don't take Heap_lock
3371
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3372
    if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3373 3374 3375 3376 3377 3378
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3379 3380
    if (is_class && using_class_space()) {
      class_vsm()->deallocate(ptr, word_size);
3381
    } else {
3382
      vsm()->deallocate(ptr, word_size);
3383 3384
    }
  } else {
3385
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3386

3387
    if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3388 3389 3390 3391 3392 3393
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3394
    if (is_class && using_class_space()) {
3395
      class_vsm()->deallocate(ptr, word_size);
3396
    } else {
3397
      vsm()->deallocate(ptr, word_size);
3398 3399 3400 3401
    }
  }
}

3402

3403
MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3404
                              bool read_only, MetaspaceObj::Type type, TRAPS) {
3405 3406 3407 3408 3409 3410 3411
  if (HAS_PENDING_EXCEPTION) {
    assert(false, "Should not allocate with exception pending");
    return NULL;  // caller does a CHECK_NULL too
  }

  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
        "ClassLoaderData::the_null_class_loader_data() should have been used.");
3412

3413 3414 3415 3416
  // Allocate in metaspaces without taking out a lock, because it deadlocks
  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
  // to revisit this for application class data sharing.
  if (DumpSharedSpaces) {
3417 3418
    assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
    Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3419
    MetaWord* result = space->allocate(word_size, NonClassType);
3420 3421 3422
    if (result == NULL) {
      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
    }
3423 3424 3425 3426 3427 3428 3429

    space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));

    // Zero initialize.
    Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

    return result;
3430 3431
  }

3432 3433 3434 3435
  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;

  // Try to allocate metadata.
  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3436 3437

  if (result == NULL) {
3438 3439
    tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);

3440 3441 3442
    // Allocation failed.
    if (is_init_completed()) {
      // Only start a GC if the bootstrapping has completed.
3443

3444 3445 3446
      // Try to clean out some memory and retry.
      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
          loader_data, word_size, mdtype);
3447 3448
    }
  }
3449 3450

  if (result == NULL) {
3451
    report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3452 3453
  }

3454 3455 3456 3457
  // Zero initialize.
  Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

  return result;
3458 3459
}

3460 3461 3462 3463 3464
size_t Metaspace::class_chunk_size(size_t word_size) {
  assert(using_class_space(), "Has to use class space");
  return class_vsm()->calc_chunk_size(word_size);
}

3465 3466 3467
void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
  tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
  // If result is still null, we are out of memory.
  if (Verbose && TraceMetadataChunkAllocation) {
    gclog_or_tty->print_cr("Metaspace allocation failed for size "
        SIZE_FORMAT, word_size);
    if (loader_data->metaspace_or_null() != NULL) {
      loader_data->dump(gclog_or_tty);
    }
    MetaspaceAux::dump(gclog_or_tty);
  }

3478 3479 3480 3481 3482 3483 3484 3485 3486
  bool out_of_compressed_class_space = false;
  if (is_class_space_allocation(mdtype)) {
    Metaspace* metaspace = loader_data->metaspace_non_null();
    out_of_compressed_class_space =
      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
      CompressedClassSpaceSize;
  }

3487
  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3488 3489 3490
  const char* space_string = out_of_compressed_class_space ?
    "Compressed class space" : "Metaspace";

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
  report_java_out_of_memory(space_string);

  if (JvmtiExport::should_post_resource_exhausted()) {
    JvmtiExport::post_resource_exhausted(
        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
        space_string);
  }

  if (!is_init_completed()) {
    vm_exit_during_initialization("OutOfMemoryError", space_string);
  }

3503
  if (out_of_compressed_class_space) {
3504 3505 3506 3507 3508 3509
    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
  } else {
    THROW_OOP(Universe::out_of_memory_error_metaspace());
  }
}

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
  switch (mdtype) {
    case Metaspace::ClassType: return "Class";
    case Metaspace::NonClassType: return "Metadata";
    default:
      assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
      return NULL;
  }
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
  assert(DumpSharedSpaces, "sanity");

  AllocRecord *rec = new AllocRecord((address)ptr, type, (int)word_size * HeapWordSize);
  if (_alloc_record_head == NULL) {
    _alloc_record_head = _alloc_record_tail = rec;
  } else {
    _alloc_record_tail->_next = rec;
    _alloc_record_tail = rec;
  }
}

void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
  assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");

  address last_addr = (address)bottom();

  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
    address ptr = rec->_ptr;
    if (last_addr < ptr) {
      closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
    }
    closure->doit(ptr, rec->_type, rec->_byte_size);
    last_addr = ptr + rec->_byte_size;
  }

  address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
  if (last_addr < top) {
    closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
  }
}

3552 3553 3554 3555
void Metaspace::purge(MetadataType mdtype) {
  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
}

3556 3557 3558
void Metaspace::purge() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
3559
  purge(NonClassType);
3560
  if (using_class_space()) {
3561
    purge(ClassType);
3562
  }
3563 3564
}

3565 3566 3567
void Metaspace::print_on(outputStream* out) const {
  // Print both class virtual space counts and metaspace.
  if (Verbose) {
3568 3569
    vsm()->print_on(out);
    if (using_class_space()) {
3570
      class_vsm()->print_on(out);
3571
    }
3572 3573 3574
  }
}

3575
bool Metaspace::contains(const void* ptr) {
3576 3577
  if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
    return true;
3578
  }
3579 3580 3581 3582 3583 3584

  if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
     return true;
  }

  return get_space_list(NonClassType)->contains(ptr);
3585 3586 3587 3588
}

void Metaspace::verify() {
  vsm()->verify();
3589 3590 3591
  if (using_class_space()) {
    class_vsm()->verify();
  }
3592 3593 3594 3595 3596
}

void Metaspace::dump(outputStream* const out) const {
  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
  vsm()->dump(out);
3597 3598 3599 3600
  if (using_class_space()) {
    out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
    class_vsm()->dump(out);
  }
3601
}
3602 3603 3604 3605 3606

/////////////// Unit tests ///////////////

#ifndef PRODUCT

3607
class TestMetaspaceAuxTest : AllStatic {
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
 public:
  static void test_reserved() {
    size_t reserved = MetaspaceAux::reserved_bytes();

    assert(reserved > 0, "assert");

    size_t committed  = MetaspaceAux::committed_bytes();
    assert(committed <= reserved, "assert");

    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
    assert(reserved_metadata > 0, "assert");
    assert(reserved_metadata <= reserved, "assert");

    if (UseCompressedClassPointers) {
      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
      assert(reserved_class > 0, "assert");
      assert(reserved_class < reserved, "assert");
    }
  }

  static void test_committed() {
    size_t committed = MetaspaceAux::committed_bytes();

    assert(committed > 0, "assert");

    size_t reserved  = MetaspaceAux::reserved_bytes();
    assert(committed <= reserved, "assert");

    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
    assert(committed_metadata > 0, "assert");
    assert(committed_metadata <= committed, "assert");

    if (UseCompressedClassPointers) {
      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
      assert(committed_class > 0, "assert");
      assert(committed_class < committed, "assert");
    }
  }

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
  static void test_virtual_space_list_large_chunk() {
    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
    // vm_allocation_granularity aligned on Windows.
    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
    large_size += (os::vm_page_size()/BytesPerWord);
    vs_list->get_new_chunk(large_size, large_size, 0);
  }

3657 3658 3659
  static void test() {
    test_reserved();
    test_committed();
3660
    test_virtual_space_list_large_chunk();
3661 3662 3663
  }
};

3664 3665
void TestMetaspaceAux_test() {
  TestMetaspaceAuxTest::test();
3666 3667
}

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
class TestVirtualSpaceNodeTest {
  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
                                          size_t& num_small_chunks,
                                          size_t& num_specialized_chunks) {
    num_medium_chunks = words_left / MediumChunk;
    words_left = words_left % MediumChunk;

    num_small_chunks = words_left / SmallChunk;
    words_left = words_left % SmallChunk;
    // how many specialized chunks can we get?
    num_specialized_chunks = words_left / SpecializedChunk;
    assert(words_left % SpecializedChunk == 0, "should be nothing left");
  }

 public:
  static void test() {
    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    const size_t vsn_test_size_words = MediumChunk  * 4;
    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;

    // The chunk sizes must be multiples of eachother, or this will fail
    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);

    { // No committed memory in VSN
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
    }

    { // All of VSN is committed, half is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
      vsn.get_chunk_vs(MediumChunk);
      vsn.get_chunk_vs(MediumChunk);
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
    }

    { // 4 pages of VSN is committed, some is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
      assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
      vsn.initialize();
      vsn.expand_by(page_chunks, page_chunks);
      vsn.get_chunk_vs(SmallChunk);
      vsn.get_chunk_vs(SpecializedChunk);
      vsn.retire(&cm);

      // committed - used = words left to retire
      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;

      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

    { // Half of VSN is committed, a humongous chunk is used
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
      vsn.retire(&cm);

      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

  }
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822

#define assert_is_available_positive(word_size) \
  assert(vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

#define assert_is_available_negative(word_size) \
  assert(!vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

  static void test_is_available_positive() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available accepts the committed size.
    assert_is_available_positive(commit_word_size);

    // Check that is_available accepts half the committed size.
    size_t expand_word_size = commit_word_size / 2;
    assert_is_available_positive(expand_word_size);
  }

  static void test_is_available_negative() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available doesn't accept a too large size.
    size_t two_times_commit_word_size = commit_word_size * 2;
    assert_is_available_negative(two_times_commit_word_size);
  }

  static void test_is_available_overflow() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Calculate a size that will overflow the virtual space size.
    void* virtual_space_max = (void*)(uintptr_t)-1;
    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
    size_t overflow_size = bottom_to_max + BytesPerWord;
    size_t overflow_word_size = overflow_size / BytesPerWord;

    // Check that is_available can handle the overflow.
    assert_is_available_negative(overflow_word_size);
  }

  static void test_is_available() {
    TestVirtualSpaceNodeTest::test_is_available_positive();
    TestVirtualSpaceNodeTest::test_is_available_negative();
    TestVirtualSpaceNodeTest::test_is_available_overflow();
  }
3823 3824 3825 3826
};

void TestVirtualSpaceNode_test() {
  TestVirtualSpaceNodeTest::test();
3827
  TestVirtualSpaceNodeTest::test_is_available();
3828
}
3829
#endif