metaspace.cpp 130.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
26
#include "memory/allocation.hpp"
27
#include "memory/binaryTreeDictionary.hpp"
28
#include "memory/freeList.hpp"
29 30 31
#include "memory/collectorPolicy.hpp"
#include "memory/filemap.hpp"
#include "memory/freeList.hpp"
32
#include "memory/gcLocker.hpp"
33
#include "memory/metachunk.hpp"
34 35 36 37
#include "memory/metaspace.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
38
#include "runtime/atomic.inline.hpp"
39
#include "runtime/globals.hpp"
40
#include "runtime/init.hpp"
41
#include "runtime/java.hpp"
42
#include "runtime/mutex.hpp"
43
#include "runtime/orderAccess.hpp"
44
#include "services/memTracker.hpp"
45
#include "services/memoryService.hpp"
46 47 48
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"

49 50
typedef BinaryTreeDictionary<Metablock, FreeList> BlockTreeDictionary;
typedef BinaryTreeDictionary<Metachunk, FreeList> ChunkTreeDictionary;
51 52

// Set this constant to enable slow integrity checking of the free chunk lists
53 54
const bool metaspace_slow_verify = false;

55
size_t const allocation_from_dictionary_limit = 4 * K;
56 57 58

MetaWord* last_allocated = 0;

59
size_t Metaspace::_compressed_class_space_size;
60

61 62
// Used in declarations in SpaceManager and ChunkManager
enum ChunkIndex {
63 64 65 66 67 68 69 70 71 72 73 74 75 76
  ZeroIndex = 0,
  SpecializedIndex = ZeroIndex,
  SmallIndex = SpecializedIndex + 1,
  MediumIndex = SmallIndex + 1,
  HumongousIndex = MediumIndex + 1,
  NumberOfFreeLists = 3,
  NumberOfInUseLists = 4
};

enum ChunkSizes {    // in words.
  ClassSpecializedChunk = 128,
  SpecializedChunk = 128,
  ClassSmallChunk = 256,
  SmallChunk = 512,
77
  ClassMediumChunk = 4 * K,
78
  MediumChunk = 8 * K
79 80 81
};

static ChunkIndex next_chunk_index(ChunkIndex i) {
82
  assert(i < NumberOfInUseLists, "Out of bound");
83 84 85
  return (ChunkIndex) (i+1);
}

86
volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
87 88 89
uint MetaspaceGC::_shrink_factor = 0;
bool MetaspaceGC::_should_concurrent_collect = false;

90
typedef class FreeList<Metachunk> ChunkList;
91 92

// Manages the global free lists of chunks.
93
class ChunkManager : public CHeapObj<mtInternal> {
94
  friend class TestVirtualSpaceNodeTest;
95 96

  // Free list of chunks of different sizes.
97
  //   SpecializedChunk
98 99 100
  //   SmallChunk
  //   MediumChunk
  //   HumongousChunk
101 102 103 104
  ChunkList _free_chunks[NumberOfFreeLists];

  //   HumongousChunk
  ChunkTreeDictionary _humongous_dictionary;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

  // ChunkManager in all lists of this type
  size_t _free_chunks_total;
  size_t _free_chunks_count;

  void dec_free_chunks_total(size_t v) {
    assert(_free_chunks_count > 0 &&
             _free_chunks_total > 0,
             "About to go negative");
    Atomic::add_ptr(-1, &_free_chunks_count);
    jlong minus_v = (jlong) - (jlong) v;
    Atomic::add_ptr(minus_v, &_free_chunks_total);
  }

  // Debug support

  size_t sum_free_chunks();
  size_t sum_free_chunks_count();

  void locked_verify_free_chunks_total();
125 126 127 128 129
  void slow_locked_verify_free_chunks_total() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_total();
    }
  }
130
  void locked_verify_free_chunks_count();
131 132 133 134 135
  void slow_locked_verify_free_chunks_count() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_count();
    }
  }
136 137 138 139
  void verify_free_chunks_count();

 public:

140 141 142 143 144 145
  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
      : _free_chunks_total(0), _free_chunks_count(0) {
    _free_chunks[SpecializedIndex].set_size(specialized_size);
    _free_chunks[SmallIndex].set_size(small_size);
    _free_chunks[MediumIndex].set_size(medium_size);
  }
146 147 148 149

  // add or delete (return) a chunk to the global freelist.
  Metachunk* chunk_freelist_allocate(size_t word_size);

150 151 152 153
  // Map a size to a list index assuming that there are lists
  // for special, small, medium, and humongous chunks.
  static ChunkIndex list_index(size_t size);

154 155 156 157
  // Remove the chunk from its freelist.  It is
  // expected to be on one of the _free_chunks[] lists.
  void remove_chunk(Metachunk* chunk);

158 159 160 161
  // Add the simple linked list of chunks to the freelist of chunks
  // of type index.
  void return_chunks(ChunkIndex index, Metachunk* chunks);

162
  // Total of the space in the free chunks list
E
ehelin 已提交
163 164
  size_t free_chunks_total_words();
  size_t free_chunks_total_bytes();
165 166 167 168 169 170 171 172

  // Number of chunks in the free chunks list
  size_t free_chunks_count();

  void inc_free_chunks_total(size_t v, size_t count = 1) {
    Atomic::add_ptr(count, &_free_chunks_count);
    Atomic::add_ptr(v, &_free_chunks_total);
  }
173 174 175
  ChunkTreeDictionary* humongous_dictionary() {
    return &_humongous_dictionary;
  }
176 177 178 179 180 181

  ChunkList* free_chunks(ChunkIndex index);

  // Returns the list for the given chunk word size.
  ChunkList* find_free_chunks_list(size_t word_size);

182
  // Remove from a list by size.  Selects list based on size of chunk.
183 184 185 186
  Metachunk* free_chunks_get(size_t chunk_word_size);

  // Debug support
  void verify();
187 188 189 190 191
  void slow_verify() {
    if (metaspace_slow_verify) {
      verify();
    }
  }
192
  void locked_verify();
193 194 195 196 197
  void slow_locked_verify() {
    if (metaspace_slow_verify) {
      locked_verify();
    }
  }
198 199 200 201
  void verify_free_chunks_total();

  void locked_print_free_chunks(outputStream* st);
  void locked_print_sum_free_chunks(outputStream* st);
202

203
  void print_on(outputStream* st) const;
204 205 206 207 208
};

// Used to manage the free list of Metablocks (a block corresponds
// to the allocation of a quantum of metadata).
class BlockFreelist VALUE_OBJ_CLASS_SPEC {
209
  BlockTreeDictionary* _dictionary;
210

211 212 213 214
  // Only allocate and split from freelist if the size of the allocation
  // is at least 1/4th the size of the available block.
  const static int WasteMultiplier = 4;

215
  // Accessors
216
  BlockTreeDictionary* dictionary() const { return _dictionary; }
217 218 219 220 221 222

 public:
  BlockFreelist();
  ~BlockFreelist();

  // Get and return a block to the free list
223 224
  MetaWord* get_block(size_t word_size);
  void return_block(MetaWord* p, size_t word_size);
225

226 227
  size_t total_size() {
  if (dictionary() == NULL) {
228
    return 0;
229 230
  } else {
    return dictionary()->total_size();
231
  }
232
}
233 234 235 236

  void print_on(outputStream* st) const;
};

237
// A VirtualSpaceList node.
238 239 240 241 242 243 244 245 246 247 248
class VirtualSpaceNode : public CHeapObj<mtClass> {
  friend class VirtualSpaceList;

  // Link to next VirtualSpaceNode
  VirtualSpaceNode* _next;

  // total in the VirtualSpace
  MemRegion _reserved;
  ReservedSpace _rs;
  VirtualSpace _virtual_space;
  MetaWord* _top;
249 250
  // count of chunks contained in this VirtualSpace
  uintx _container_count;
251 252 253 254 255

  // Convenience functions to access the _virtual_space
  char* low()  const { return virtual_space()->low(); }
  char* high() const { return virtual_space()->high(); }

256 257 258 259
  // The first Metachunk will be allocated at the bottom of the
  // VirtualSpace
  Metachunk* first_chunk() { return (Metachunk*) bottom(); }

260 261
  // Committed but unused space in the virtual space
  size_t free_words_in_vs() const;
262 263 264
 public:

  VirtualSpaceNode(size_t byte_size);
265
  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
266 267
  ~VirtualSpaceNode();

268 269 270 271
  // Convenience functions for logical bottom and end
  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }

272 273 274
  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }

275 276
  bool is_pre_committed() const { return _virtual_space.special(); }

277 278 279 280 281 282 283 284 285 286 287 288
  // address of next available space in _virtual_space;
  // Accessors
  VirtualSpaceNode* next() { return _next; }
  void set_next(VirtualSpaceNode* v) { _next = v; }

  void set_reserved(MemRegion const v) { _reserved = v; }
  void set_top(MetaWord* v) { _top = v; }

  // Accessors
  MemRegion* reserved() { return &_reserved; }
  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }

289
  // Returns true if "word_size" is available in the VirtualSpace
290
  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
291 292 293 294

  MetaWord* top() const { return _top; }
  void inc_top(size_t word_size) { _top += word_size; }

295
  uintx container_count() { return _container_count; }
296
  void inc_container_count();
297 298
  void dec_container_count();
#ifdef ASSERT
299
  uint container_count_slow();
300 301 302
  void verify_container_count();
#endif

303 304 305 306 307 308 309 310 311 312 313 314 315 316
  // used and capacity in this single entry in the list
  size_t used_words_in_vs() const;
  size_t capacity_words_in_vs() const;

  bool initialize();

  // get space from the virtual space
  Metachunk* take_from_committed(size_t chunk_word_size);

  // Allocate a chunk from the virtual space and return it.
  Metachunk* get_chunk_vs(size_t chunk_word_size);

  // Expands/shrinks the committed space in a virtual space.  Delegates
  // to Virtualspace
317
  bool expand_by(size_t min_words, size_t preferred_words);
318

319 320 321 322
  // In preparation for deleting this node, remove all the chunks
  // in the node from any freelist.
  void purge(ChunkManager* chunk_manager);

323 324 325 326 327 328 329
  // If an allocation doesn't fit in the current node a new node is created.
  // Allocate chunks out of the remaining committed space in this node
  // to avoid wasting that memory.
  // This always adds up because all the chunk sizes are multiples of
  // the smallest chunk size.
  void retire(ChunkManager* chunk_manager);

330
#ifdef ASSERT
331 332
  // Debug support
  void mangle();
333
#endif
334 335 336 337

  void print_on(outputStream* st) const;
};

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#define assert_is_ptr_aligned(ptr, alignment) \
  assert(is_ptr_aligned(ptr, alignment),      \
    err_msg(PTR_FORMAT " is not aligned to "  \
      SIZE_FORMAT, ptr, alignment))

#define assert_is_size_aligned(size, alignment) \
  assert(is_size_aligned(size, alignment),      \
    err_msg(SIZE_FORMAT " is not aligned to "   \
       SIZE_FORMAT, size, alignment))


// Decide if large pages should be committed when the memory is reserved.
static bool should_commit_large_pages_when_reserving(size_t bytes) {
  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
    size_t words = bytes / BytesPerWord;
    bool is_class = false; // We never reserve large pages for the class space.
    if (MetaspaceGC::can_expand(words, is_class) &&
        MetaspaceGC::allowed_expansion() >= words) {
      return true;
    }
  }

  return false;
}

363
  // byte_size is the size of the associated virtualspace.
364 365
VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
  assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
366

367 368 369
  // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
  // configurable address, generally at the top of the Java heap so other
  // memory addresses don't conflict.
370
  if (DumpSharedSpaces) {
371 372 373 374
    bool large_pages = false; // No large pages when dumping the CDS archive.
    char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
375
    if (_rs.is_reserved()) {
376
      assert(shared_base == 0 || _rs.base() == shared_base, "should match");
377
    } else {
378
      // Get a mmap region anywhere if the SharedBaseAddress fails.
379
      _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
380 381 382
    }
    MetaspaceShared::set_shared_rs(&_rs);
  } else {
383 384 385
    bool large_pages = should_commit_large_pages_when_reserving(bytes);

    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
386 387
  }

388 389 390 391 392 393 394 395
  if (_rs.is_reserved()) {
    assert(_rs.base() != NULL, "Catch if we get a NULL address");
    assert(_rs.size() != 0, "Catch if we get a 0 size");
    assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
    assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());

    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
  }
396 397
}

398 399 400 401
void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
402 403 404 405 406 407 408
    assert(chunk->is_tagged_free(), "Should be tagged free");
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    chunk_manager->remove_chunk(chunk);
    assert(chunk->next() == NULL &&
           chunk->prev() == NULL,
           "Was not removed from its list");
    chunk = (Metachunk*) next;
409 410 411 412 413 414 415 416 417 418 419 420 421
  }
}

#ifdef ASSERT
uint VirtualSpaceNode::container_count_slow() {
  uint count = 0;
  Metachunk* chunk = first_chunk();
  Metachunk* invalid_chunk = (Metachunk*) top();
  while (chunk < invalid_chunk ) {
    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
    // Don't count the chunks on the free lists.  Those are
    // still part of the VirtualSpaceNode but not currently
    // counted.
422
    if (!chunk->is_tagged_free()) {
423 424 425 426 427 428 429 430
      count++;
    }
    chunk = (Metachunk*) next;
  }
  return count;
}
#endif

431 432 433 434 435 436 437 438 439 440 441 442 443
// List of VirtualSpaces for metadata allocation.
class VirtualSpaceList : public CHeapObj<mtClass> {
  friend class VirtualSpaceNode;

  enum VirtualSpaceSizes {
    VirtualSpaceSize = 256 * K
  };

  // Head of the list
  VirtualSpaceNode* _virtual_space_list;
  // virtual space currently being used for allocations
  VirtualSpaceNode* _current_virtual_space;

444
  // Is this VirtualSpaceList used for the compressed class space
445 446
  bool _is_class;

447 448 449 450 451
  // Sum of reserved and committed memory in the virtual spaces
  size_t _reserved_words;
  size_t _committed_words;

  // Number of virtual spaces
452 453 454 455 456 457 458 459 460 461 462 463 464
  size_t _virtual_space_count;

  ~VirtualSpaceList();

  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }

  void set_virtual_space_list(VirtualSpaceNode* v) {
    _virtual_space_list = v;
  }
  void set_current_virtual_space(VirtualSpaceNode* v) {
    _current_virtual_space = v;
  }

465
  void link_vs(VirtualSpaceNode* new_entry);
466 467 468 469

  // Get another virtual space and add it to the list.  This
  // is typically prompted by a failed attempt to allocate a chunk
  // and is typically followed by the allocation of a chunk.
470
  bool create_new_virtual_space(size_t vs_word_size);
471

472 473 474 475
  // Chunk up the unused committed space in the current
  // virtual space and add the chunks to the free list.
  void retire_current_virtual_space();

476 477 478 479
 public:
  VirtualSpaceList(size_t word_size);
  VirtualSpaceList(ReservedSpace rs);

480 481
  size_t free_bytes();

482 483 484 485
  Metachunk* get_new_chunk(size_t word_size,
                           size_t grow_chunks_by_words,
                           size_t medium_chunk_bunch);

486 487 488
  bool expand_node_by(VirtualSpaceNode* node,
                      size_t min_words,
                      size_t preferred_words);
489

490 491
  bool expand_by(size_t min_words,
                 size_t preferred_words);
492 493 494 495 496 497 498

  VirtualSpaceNode* current_virtual_space() {
    return _current_virtual_space;
  }

  bool is_class() const { return _is_class; }

499
  bool initialization_succeeded() { return _virtual_space_list != NULL; }
500

501 502 503 504
  size_t reserved_words()  { return _reserved_words; }
  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
  size_t committed_words() { return _committed_words; }
  size_t committed_bytes() { return committed_words() * BytesPerWord; }
505

506 507 508 509
  void inc_reserved_words(size_t v);
  void dec_reserved_words(size_t v);
  void inc_committed_words(size_t v);
  void dec_committed_words(size_t v);
510 511 512 513
  void inc_virtual_space_count();
  void dec_virtual_space_count();

  // Unlink empty VirtualSpaceNodes and free it.
514
  void purge(ChunkManager* chunk_manager);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

  bool contains(const void *ptr);

  void print_on(outputStream* st) const;

  class VirtualSpaceListIterator : public StackObj {
    VirtualSpaceNode* _virtual_spaces;
   public:
    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
      _virtual_spaces(virtual_spaces) {}

    bool repeat() {
      return _virtual_spaces != NULL;
    }

    VirtualSpaceNode* get_next() {
      VirtualSpaceNode* result = _virtual_spaces;
      if (_virtual_spaces != NULL) {
        _virtual_spaces = _virtual_spaces->next();
      }
      return result;
    }
  };
};

class Metadebug : AllStatic {
  // Debugging support for Metaspaces
  static int _allocation_fail_alot_count;

 public:

  static void init_allocation_fail_alot_count();
#ifdef ASSERT
  static bool test_metadata_failure();
#endif
};

int Metadebug::_allocation_fail_alot_count = 0;

//  SpaceManager - used by Metaspace to handle allocations
class SpaceManager : public CHeapObj<mtClass> {
  friend class Metaspace;
  friend class Metadebug;

 private:
560

561 562 563
  // protects allocations and contains.
  Mutex* const _lock;

564 565 566
  // Type of metadata allocated.
  Metaspace::MetadataType _mdtype;

567 568 569
  // List of chunks in use by this SpaceManager.  Allocations
  // are done from the current chunk.  The list is used for deallocating
  // chunks when the SpaceManager is freed.
570
  Metachunk* _chunks_in_use[NumberOfInUseLists];
571 572 573 574 575 576 577
  Metachunk* _current_chunk;

  // Number of small chunks to allocate to a manager
  // If class space manager, small chunks are unlimited
  static uint const _small_chunk_limit;

  // Sum of all space in allocated chunks
578 579 580 581 582
  size_t _allocated_blocks_words;

  // Sum of all allocated chunks
  size_t _allocated_chunks_words;
  size_t _allocated_chunks_count;
583 584 585 586 587 588 589 590 591 592 593 594

  // Free lists of blocks are per SpaceManager since they
  // are assumed to be in chunks in use by the SpaceManager
  // and all chunks in use by a SpaceManager are freed when
  // the class loader using the SpaceManager is collected.
  BlockFreelist _block_freelists;

  // protects virtualspace and chunk expansions
  static const char*  _expand_lock_name;
  static const int    _expand_lock_rank;
  static Mutex* const _expand_lock;

595
 private:
596 597 598 599 600 601 602 603
  // Accessors
  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
  void set_chunks_in_use(ChunkIndex index, Metachunk* v) { _chunks_in_use[index] = v; }

  BlockFreelist* block_freelists() const {
    return (BlockFreelist*) &_block_freelists;
  }

604
  Metaspace::MetadataType mdtype() { return _mdtype; }
605 606 607

  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
608 609 610 611 612 613 614 615 616 617

  Metachunk* current_chunk() const { return _current_chunk; }
  void set_current_chunk(Metachunk* v) {
    _current_chunk = v;
  }

  Metachunk* find_current_chunk(size_t word_size);

  // Add chunk to the list of chunks in use
  void add_chunk(Metachunk* v, bool make_current);
618
  void retire_current_chunk();
619 620 621

  Mutex* lock() const { return _lock; }

622 623 624 625 626
  const char* chunk_size_name(ChunkIndex index) const;

 protected:
  void initialize();

627
 public:
628
  SpaceManager(Metaspace::MetadataType mdtype,
629
               Mutex* lock);
630 631
  ~SpaceManager();

632 633
  enum ChunkMultiples {
    MediumChunkMultiple = 4
634 635
  };

636 637
  bool is_class() { return _mdtype == Metaspace::ClassType; }

638
  // Accessors
639 640 641 642 643 644
  size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
  size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
  size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
  size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }

  size_t smallest_chunk_size()  { return specialized_chunk_size(); }
645

646 647 648 649 650
  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
  size_t allocated_chunks_count() const { return _allocated_chunks_count; }

651
  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
652 653 654

  static Mutex* expand_lock() { return _expand_lock; }

655 656 657 658 659 660 661 662 663 664 665 666
  // Increment the per Metaspace and global running sums for Metachunks
  // by the given size.  This is used when a Metachunk to added to
  // the in-use list.
  void inc_size_metrics(size_t words);
  // Increment the per Metaspace and global running sums Metablocks by the given
  // size.  This is used when a Metablock is allocated.
  void inc_used_metrics(size_t words);
  // Delete the portion of the running sums for this SpaceManager. That is,
  // the globals running sums for the Metachunks and Metablocks are
  // decremented for all the Metachunks in-use by this SpaceManager.
  void dec_total_from_size_metrics();

667 668 669 670 671
  // Set the sizes for the initial chunks.
  void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                               size_t* chunk_word_size,
                               size_t* class_chunk_word_size);

672 673 674 675 676 677 678 679 680
  size_t sum_capacity_in_chunks_in_use() const;
  size_t sum_used_in_chunks_in_use() const;
  size_t sum_free_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;

  size_t sum_count_in_chunks_in_use();
  size_t sum_count_in_chunks_in_use(ChunkIndex i);

681 682
  Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);

683 684 685 686 687
  // Block allocation and deallocation.
  // Allocates a block from the current chunk
  MetaWord* allocate(size_t word_size);

  // Helper for allocations
688
  MetaWord* allocate_work(size_t word_size);
689 690

  // Returns a block to the per manager freelist
691
  void deallocate(MetaWord* p, size_t word_size);
692 693 694 695 696 697 698 699

  // Based on the allocation size and a minimum chunk size,
  // returned chunk size (for expanding space for chunk allocation).
  size_t calc_chunk_size(size_t allocation_word_size);

  // Called when an allocation from the current chunk fails.
  // Gets a new chunk (may require getting a new virtual space),
  // and allocates from that chunk.
700
  MetaWord* grow_and_allocate(size_t word_size);
701

702 703 704
  // Notify memory usage to MemoryService.
  void track_metaspace_memory_usage();

705 706 707 708 709 710 711
  // debugging support.

  void dump(outputStream* const out) const;
  void print_on(outputStream* st) const;
  void locked_print_chunks_in_use_on(outputStream* st) const;

  void verify();
712
  void verify_chunk_size(Metachunk* chunk);
713
  NOT_PRODUCT(void mangle_freed_chunks();)
714
#ifdef ASSERT
715
  void verify_allocated_blocks_words();
716
#endif
717 718 719 720

  size_t get_raw_word_size(size_t word_size) {
    size_t byte_size = word_size * BytesPerWord;

721 722 723
    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
    raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());

724 725 726 727 728
    size_t raw_word_size = raw_bytes_size / BytesPerWord;
    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");

    return raw_word_size;
  }
729 730 731 732 733 734 735 736 737 738 739 740
};

uint const SpaceManager::_small_chunk_limit = 4;

const char* SpaceManager::_expand_lock_name =
  "SpaceManager chunk allocation lock";
const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
Mutex* const SpaceManager::_expand_lock =
  new Mutex(SpaceManager::_expand_lock_rank,
            SpaceManager::_expand_lock_name,
            Mutex::_allow_vm_block_flag);

741 742 743 744 745
void VirtualSpaceNode::inc_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count++;
  assert(_container_count == container_count_slow(),
         err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
746
                 " container_count_slow() " SIZE_FORMAT,
747 748 749 750 751 752 753 754 755 756 757 758
                 _container_count, container_count_slow()));
}

void VirtualSpaceNode::dec_container_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _container_count--;
}

#ifdef ASSERT
void VirtualSpaceNode::verify_container_count() {
  assert(_container_count == container_count_slow(),
    err_msg("Inconsistency in countainer_count _container_count " SIZE_FORMAT
759
            " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
760 761 762
}
#endif

763 764 765 766 767 768 769 770 771 772 773 774 775
// BlockFreelist methods

BlockFreelist::BlockFreelist() : _dictionary(NULL) {}

BlockFreelist::~BlockFreelist() {
  if (_dictionary != NULL) {
    if (Verbose && TraceMetadataChunkAllocation) {
      _dictionary->print_free_lists(gclog_or_tty);
    }
    delete _dictionary;
  }
}

776
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
777
  Metablock* free_chunk = ::new (p) Metablock(word_size);
778
  if (dictionary() == NULL) {
779
   _dictionary = new BlockTreeDictionary();
780
  }
781
  dictionary()->return_chunk(free_chunk);
782 783
}

784
MetaWord* BlockFreelist::get_block(size_t word_size) {
785 786 787 788
  if (dictionary() == NULL) {
    return NULL;
  }

789 790
  if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
    // Dark matter.  Too small for dictionary.
791 792 793
    return NULL;
  }

794
  Metablock* free_block =
795
    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
796 797 798 799
  if (free_block == NULL) {
    return NULL;
  }

800 801 802 803 804 805 806 807 808 809 810 811 812 813
  const size_t block_size = free_block->size();
  if (block_size > WasteMultiplier * word_size) {
    return_block((MetaWord*)free_block, block_size);
    return NULL;
  }

  MetaWord* new_block = (MetaWord*)free_block;
  assert(block_size >= word_size, "Incorrect size of block from freelist");
  const size_t unused = block_size - word_size;
  if (unused >= TreeChunk<Metablock, FreeList>::min_size()) {
    return_block(new_block + word_size, unused);
  }

  return new_block;
814 815 816 817 818 819 820 821 822 823 824 825 826
}

void BlockFreelist::print_on(outputStream* st) const {
  if (dictionary() == NULL) {
    return;
  }
  dictionary()->print_free_lists(st);
}

// VirtualSpaceNode methods

VirtualSpaceNode::~VirtualSpaceNode() {
  _rs.release();
827 828 829 830
#ifdef ASSERT
  size_t word_size = sizeof(*this) / BytesPerWord;
  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
#endif
831 832 833 834 835 836 837 838 839 840 841
}

size_t VirtualSpaceNode::used_words_in_vs() const {
  return pointer_delta(top(), bottom(), sizeof(MetaWord));
}

// Space committed in the VirtualSpace
size_t VirtualSpaceNode::capacity_words_in_vs() const {
  return pointer_delta(end(), bottom(), sizeof(MetaWord));
}

842 843 844
size_t VirtualSpaceNode::free_words_in_vs() const {
  return pointer_delta(end(), top(), sizeof(MetaWord));
}
845 846 847 848 849 850 851 852 853

// Allocates the chunk from the virtual space only.
// This interface is also used internally for debugging.  Not all
// chunks removed here are necessarily used for allocation.
Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
  // Bottom of the new chunk
  MetaWord* chunk_limit = top();
  assert(chunk_limit != NULL, "Not safe to call this method");

854 855 856 857 858 859
  // The virtual spaces are always expanded by the
  // commit granularity to enforce the following condition.
  // Without this the is_available check will not work correctly.
  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
      "The committed memory doesn't match the expanded memory.");

860 861
  if (!is_available(chunk_word_size)) {
    if (TraceMetadataChunkAllocation) {
862
      gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
863
      // Dump some information about the virtual space that is nearly full
864
      print_on(gclog_or_tty);
865 866 867 868 869 870 871
    }
    return NULL;
  }

  // Take the space  (bump top on the current virtual space).
  inc_top(chunk_word_size);

872 873
  // Initialize the chunk
  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
874 875 876 877 878
  return result;
}


// Expand the virtual space (commit more of the reserved space)
879 880 881 882 883 884 885 886
bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
  size_t min_bytes = min_words * BytesPerWord;
  size_t preferred_bytes = preferred_words * BytesPerWord;

  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();

  if (uncommitted < min_bytes) {
    return false;
887
  }
888 889 890 891 892 893

  size_t commit = MIN2(preferred_bytes, uncommitted);
  bool result = virtual_space()->expand_by(commit, false);

  assert(result, "Failed to commit memory");

894 895 896 897 898
  return result;
}

Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
899 900 901 902 903
  Metachunk* result = take_from_committed(chunk_word_size);
  if (result != NULL) {
    inc_container_count();
  }
  return result;
904 905 906 907 908 909 910 911
}

bool VirtualSpaceNode::initialize() {

  if (!_rs.is_reserved()) {
    return false;
  }

912 913 914 915 916 917 918 919 920 921 922 923 924
  // These are necessary restriction to make sure that the virtual space always
  // grows in steps of Metaspace::commit_alignment(). If both base and size are
  // aligned only the middle alignment of the VirtualSpace is used.
  assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
  assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());

  // ReservedSpaces marked as special will have the entire memory
  // pre-committed. Setting a committed size will make sure that
  // committed_size and actual_committed_size agrees.
  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;

  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
                                            Metaspace::commit_alignment());
925
  if (result) {
926 927 928
    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
        "Checking that the pre-committed memory was registered by the VirtualSpace");

929 930 931 932
    set_top((MetaWord*)virtual_space()->low());
    set_reserved(MemRegion((HeapWord*)_rs.base(),
                 (HeapWord*)(_rs.base() + _rs.size())));

933 934 935 936 937 938 939 940
    assert(reserved()->start() == (HeapWord*) _rs.base(),
      err_msg("Reserved start was not set properly " PTR_FORMAT
        " != " PTR_FORMAT, reserved()->start(), _rs.base()));
    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
      err_msg("Reserved size was not set properly " SIZE_FORMAT
        " != " SIZE_FORMAT, reserved()->word_size(),
        _rs.size() / BytesPerWord));
  }
941 942 943 944 945 946 947 948 949 950 951

  return result;
}

void VirtualSpaceNode::print_on(outputStream* st) const {
  size_t used = used_words_in_vs();
  size_t capacity = capacity_words_in_vs();
  VirtualSpace* vs = virtual_space();
  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
           "[" PTR_FORMAT ", " PTR_FORMAT ", "
           PTR_FORMAT ", " PTR_FORMAT ")",
952 953
           vs, capacity / K,
           capacity == 0 ? 0 : used * 100 / capacity,
954 955 956 957
           bottom(), top(), end(),
           vs->high_boundary());
}

958
#ifdef ASSERT
959 960 961 962
void VirtualSpaceNode::mangle() {
  size_t word_size = capacity_words_in_vs();
  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
}
963
#endif // ASSERT
964 965 966 967 968 969 970 971 972 973 974 975

// VirtualSpaceList methods
// Space allocated from the VirtualSpace

VirtualSpaceList::~VirtualSpaceList() {
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    delete vsl;
  }
}

976
void VirtualSpaceList::inc_reserved_words(size_t v) {
977
  assert_lock_strong(SpaceManager::expand_lock());
978
  _reserved_words = _reserved_words + v;
979
}
980
void VirtualSpaceList::dec_reserved_words(size_t v) {
981
  assert_lock_strong(SpaceManager::expand_lock());
982 983 984
  _reserved_words = _reserved_words - v;
}

985 986 987 988 989 990
#define assert_committed_below_limit()                             \
  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize,      \
      err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
              " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
          MetaspaceAux::committed_bytes(), MaxMetaspaceSize));

991 992 993
void VirtualSpaceList::inc_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words + v;
994 995

  assert_committed_below_limit();
996 997 998 999
}
void VirtualSpaceList::dec_committed_words(size_t v) {
  assert_lock_strong(SpaceManager::expand_lock());
  _committed_words = _committed_words - v;
1000 1001

  assert_committed_below_limit();
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

void VirtualSpaceList::inc_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count++;
}
void VirtualSpaceList::dec_virtual_space_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  _virtual_space_count--;
}

void ChunkManager::remove_chunk(Metachunk* chunk) {
  size_t word_size = chunk->word_size();
  ChunkIndex index = list_index(word_size);
  if (index != HumongousIndex) {
    free_chunks(index)->remove_chunk(chunk);
  } else {
    humongous_dictionary()->remove_chunk(chunk);
  }

  // Chunk is being removed from the chunks free list.
1023
  dec_free_chunks_total(chunk->word_size());
1024 1025 1026 1027 1028
}

// Walk the list of VirtualSpaceNodes and delete
// nodes with a 0 container_count.  Remove Metachunks in
// the node from their respective freelists.
1029
void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
  assert_lock_strong(SpaceManager::expand_lock());
  // Don't use a VirtualSpaceListIterator because this
  // list is being changed and a straightforward use of an iterator is not safe.
  VirtualSpaceNode* purged_vsl = NULL;
  VirtualSpaceNode* prev_vsl = virtual_space_list();
  VirtualSpaceNode* next_vsl = prev_vsl;
  while (next_vsl != NULL) {
    VirtualSpaceNode* vsl = next_vsl;
    next_vsl = vsl->next();
    // Don't free the current virtual space since it will likely
    // be needed soon.
    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
      // Unlink it from the list
      if (prev_vsl == vsl) {
1044 1045
        // This is the case of the current node being the first node.
        assert(vsl == virtual_space_list(), "Expected to be the first node");
1046 1047 1048 1049 1050
        set_virtual_space_list(vsl->next());
      } else {
        prev_vsl->set_next(vsl->next());
      }

1051
      vsl->purge(chunk_manager);
1052 1053
      dec_reserved_words(vsl->reserved_words());
      dec_committed_words(vsl->committed_words());
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
      dec_virtual_space_count();
      purged_vsl = vsl;
      delete vsl;
    } else {
      prev_vsl = vsl;
    }
  }
#ifdef ASSERT
  if (purged_vsl != NULL) {
  // List should be stable enough to use an iterator here.
  VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* vsl = iter.get_next();
      assert(vsl != purged_vsl, "Purge of vsl failed");
    }
  }
#endif
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
void VirtualSpaceList::retire_current_virtual_space() {
  assert_lock_strong(SpaceManager::expand_lock());

  VirtualSpaceNode* vsn = current_virtual_space();

  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
                                  Metaspace::chunk_manager_metadata();

  vsn->retire(cm);
}

void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
    ChunkIndex index = (ChunkIndex)i;
    size_t chunk_size = chunk_manager->free_chunks(index)->size();

    while (free_words_in_vs() >= chunk_size) {
      DEBUG_ONLY(verify_container_count();)
      Metachunk* chunk = get_chunk_vs(chunk_size);
      assert(chunk != NULL, "allocation should have been successful");

      chunk_manager->return_chunks(index, chunk);
      chunk_manager->inc_free_chunks_total(chunk_size);
      DEBUG_ONLY(verify_container_count();)
    }
  }
  assert(free_words_in_vs() == 0, "should be empty now");
}

1102
VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1103 1104 1105
                                   _is_class(false),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1106 1107
                                   _reserved_words(0),
                                   _committed_words(0),
1108 1109 1110
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
1111
  create_new_virtual_space(word_size);
1112 1113 1114 1115 1116 1117
}

VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
                                   _is_class(true),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
1118 1119
                                   _reserved_words(0),
                                   _committed_words(0),
1120 1121 1122 1123 1124
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
  bool succeeded = class_entry->initialize();
1125 1126 1127
  if (succeeded) {
    link_vs(class_entry);
  }
1128 1129
}

1130 1131 1132 1133
size_t VirtualSpaceList::free_bytes() {
  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
}

1134
// Allocate another meta virtual space and add it to the list.
1135
bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1136
  assert_lock_strong(SpaceManager::expand_lock());
1137 1138 1139 1140 1141 1142 1143 1144

  if (is_class()) {
    assert(false, "We currently don't support more than one VirtualSpace for"
                  " the compressed class space. The initialization of the"
                  " CCS uses another code path and should not hit this path.");
    return false;
  }

1145
  if (vs_word_size == 0) {
1146
    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1147 1148
    return false;
  }
1149

1150 1151
  // Reserve the space
  size_t vs_byte_size = vs_word_size * BytesPerWord;
1152
  assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1153 1154 1155 1156 1157 1158 1159

  // Allocate the meta virtual space and initialize it.
  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
  if (!new_entry->initialize()) {
    delete new_entry;
    return false;
  } else {
1160 1161
    assert(new_entry->reserved_words() == vs_word_size,
        "Reserved memory size differs from requested memory size");
1162 1163
    // ensure lock-free iteration sees fully initialized node
    OrderAccess::storestore();
1164
    link_vs(new_entry);
1165 1166 1167 1168
    return true;
  }
}

1169
void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1170 1171 1172 1173 1174 1175
  if (virtual_space_list() == NULL) {
      set_virtual_space_list(new_entry);
  } else {
    current_virtual_space()->set_next(new_entry);
  }
  set_current_virtual_space(new_entry);
1176 1177
  inc_reserved_words(new_entry->reserved_words());
  inc_committed_words(new_entry->committed_words());
1178 1179 1180 1181 1182 1183
  inc_virtual_space_count();
#ifdef ASSERT
  new_entry->mangle();
#endif
  if (TraceMetavirtualspaceAllocation && Verbose) {
    VirtualSpaceNode* vsl = current_virtual_space();
1184
    vsl->print_on(gclog_or_tty);
1185 1186 1187
  }
}

1188 1189 1190
bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
                                      size_t min_words,
                                      size_t preferred_words) {
1191 1192
  size_t before = node->committed_words();

1193
  bool result = node->expand_by(min_words, preferred_words);
1194 1195 1196 1197

  size_t after = node->committed_words();

  // after and before can be the same if the memory was pre-committed.
1198
  assert(after >= before, "Inconsistency");
1199 1200 1201 1202 1203
  inc_committed_words(after - before);

  return result;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
  assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
  assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
  assert(min_words <= preferred_words, "Invalid arguments");

  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
    return  false;
  }

  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
  if (allowed_expansion_words < min_words) {
    return false;
  }

  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);

  // Commit more memory from the the current virtual space.
  bool vs_expanded = expand_node_by(current_virtual_space(),
                                    min_words,
                                    max_expansion_words);
  if (vs_expanded) {
    return true;
  }
1227
  retire_current_virtual_space();
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

  // Get another virtual space.
  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
  grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());

  if (create_new_virtual_space(grow_vs_words)) {
    if (current_virtual_space()->is_pre_committed()) {
      // The memory was pre-committed, so we are done here.
      assert(min_words <= current_virtual_space()->committed_words(),
          "The new VirtualSpace was pre-committed, so it"
          "should be large enough to fit the alloc request.");
      return true;
    }

    return expand_node_by(current_virtual_space(),
                          min_words,
                          max_expansion_words);
  }

  return false;
}

1250
Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1251 1252
                                           size_t grow_chunks_by_words,
                                           size_t medium_chunk_bunch) {
1253

1254 1255
  // Allocate a chunk out of the current virtual space.
  Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1256

1257 1258
  if (next != NULL) {
    return next;
1259 1260
  }

1261 1262
  // The expand amount is currently only determined by the requested sizes
  // and not how much committed memory is left in the current virtual space.
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
  size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
  if (min_word_size >= preferred_word_size) {
    // Can happen when humongous chunks are allocated.
    preferred_word_size = min_word_size;
  }

  bool expanded = expand_by(min_word_size, preferred_word_size);
  if (expanded) {
    next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
    assert(next != NULL, "The allocation was expected to succeed after the expansion");
  }

   return next;
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
void VirtualSpaceList::print_on(outputStream* st) const {
  if (TraceMetadataChunkAllocation && Verbose) {
    VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* node = iter.get_next();
      node->print_on(st);
    }
  }
}

bool VirtualSpaceList::contains(const void *ptr) {
  VirtualSpaceNode* list = virtual_space_list();
  VirtualSpaceListIterator iter(list);
  while (iter.repeat()) {
    VirtualSpaceNode* node = iter.get_next();
    if (node->reserved()->contains(ptr)) {
      return true;
    }
  }
  return false;
}


// MetaspaceGC methods

// VM_CollectForMetadataAllocation is the vm operation used to GC.
// Within the VM operation after the GC the attempt to allocate the metadata
// should succeed.  If the GC did not free enough space for the metaspace
// allocation, the HWM is increased so that another virtualspace will be
// allocated for the metadata.  With perm gen the increase in the perm
// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
// metaspace policy uses those as the small and large steps for the HWM.
//
// After the GC the compute_new_size() for MetaspaceGC is called to
// resize the capacity of the metaspaces.  The current implementation
1315
// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1316
// to resize the Java heap by some GC's.  New flags can be implemented
1317
// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1318
// free space is desirable in the metaspace capacity to decide how much
1319
// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1320 1321 1322 1323 1324 1325
// free space is desirable in the metaspace capacity before decreasing
// the HWM.

// Calculate the amount to increase the high water mark (HWM).
// Increase by a minimum amount (MinMetaspaceExpansion) so that
// another expansion is not requested too soon.  If that is not
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
// If that is still not enough, expand by the size of the allocation
// plus some.
size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
  size_t min_delta = MinMetaspaceExpansion;
  size_t max_delta = MaxMetaspaceExpansion;
  size_t delta = align_size_up(bytes, Metaspace::commit_alignment());

  if (delta <= min_delta) {
    delta = min_delta;
  } else if (delta <= max_delta) {
1337 1338 1339
    // Don't want to hit the high water mark on the next
    // allocation so make the delta greater than just enough
    // for this allocation.
1340 1341 1342 1343 1344
    delta = max_delta;
  } else {
    // This allocation is large but the next ones are probably not
    // so increase by the minimum.
    delta = delta + min_delta;
1345
  }
1346 1347 1348 1349

  assert_is_size_aligned(delta, Metaspace::commit_alignment());

  return delta;
1350 1351
}

1352 1353 1354 1355 1356
size_t MetaspaceGC::capacity_until_GC() {
  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
  assert(value >= MetaspaceSize, "Not initialied properly?");
  return value;
}
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
size_t MetaspaceGC::inc_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(v, &_capacity_until_GC);
}

size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
  assert_is_size_aligned(v, Metaspace::commit_alignment());

  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
}

bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
  // Check if the compressed class space is full.
  if (is_class && Metaspace::using_class_space()) {
    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1375 1376
      return false;
    }
1377 1378
  }

1379 1380 1381 1382 1383
  // Check if the user has imposed a limit on the metaspace memory.
  size_t committed_bytes = MetaspaceAux::committed_bytes();
  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
    return false;
  }
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
  return true;
}

size_t MetaspaceGC::allowed_expansion() {
  size_t committed_bytes = MetaspaceAux::committed_bytes();

  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;

  // Always grant expansion if we are initiating the JVM,
  // or if the GC_locker is preventing GCs.
  if (!is_init_completed() || GC_locker::is_active_and_needs_gc()) {
    return left_until_max / BytesPerWord;
1397 1398
  }

1399
  size_t capacity_until_gc = capacity_until_GC();
1400

1401 1402
  if (capacity_until_gc <= committed_bytes) {
    return 0;
1403 1404
  }

1405 1406
  size_t left_until_GC = capacity_until_gc - committed_bytes;
  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1407

1408 1409
  return left_to_commit / BytesPerWord;
}
1410 1411 1412 1413 1414 1415

void MetaspaceGC::compute_new_size() {
  assert(_shrink_factor <= 100, "invalid shrink factor");
  uint current_shrink_factor = _shrink_factor;
  _shrink_factor = 0;

1416 1417
  const size_t used_after_gc = MetaspaceAux::allocated_capacity_bytes();
  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1418

1419
  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;

  const double min_tmp = used_after_gc / maximum_used_percentage;
  size_t minimum_desired_capacity =
    (size_t)MIN2(min_tmp, double(max_uintx));
  // Don't shrink less than the initial generation size
  minimum_desired_capacity = MAX2(minimum_desired_capacity,
                                  MetaspaceSize);

  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
    gclog_or_tty->print_cr("  "
                  "  minimum_free_percentage: %6.2f"
                  "  maximum_used_percentage: %6.2f",
                  minimum_free_percentage,
                  maximum_used_percentage);
    gclog_or_tty->print_cr("  "
1437 1438
                  "   used_after_gc       : %6.1fKB",
                  used_after_gc / (double) K);
1439 1440 1441
  }


1442
  size_t shrink_bytes = 0;
1443 1444 1445 1446
  if (capacity_until_GC < minimum_desired_capacity) {
    // If we have less capacity below the metaspace HWM, then
    // increment the HWM.
    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1447
    expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1448 1449
    // Don't expand unless it's significant
    if (expand_bytes >= MinMetaspaceExpansion) {
1450
      MetaspaceGC::inc_capacity_until_GC(expand_bytes);
1451 1452
    }
    if (PrintGCDetails && Verbose) {
1453
      size_t new_capacity_until_GC = capacity_until_GC;
1454
      gclog_or_tty->print_cr("    expanding:"
1455 1456 1457 1458
                    "  minimum_desired_capacity: %6.1fKB"
                    "  expand_bytes: %6.1fKB"
                    "  MinMetaspaceExpansion: %6.1fKB"
                    "  new metaspace HWM:  %6.1fKB",
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
                    minimum_desired_capacity / (double) K,
                    expand_bytes / (double) K,
                    MinMetaspaceExpansion / (double) K,
                    new_capacity_until_GC / (double) K);
    }
    return;
  }

  // No expansion, now see if we want to shrink
  // We would never want to shrink more than this
1469 1470 1471
  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
  assert(max_shrink_bytes >= 0, err_msg("max_shrink_bytes " SIZE_FORMAT,
    max_shrink_bytes));
1472 1473

  // Should shrinking be considered?
1474 1475
  if (MaxMetaspaceFreeRatio < 100) {
    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1476 1477 1478 1479 1480
    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
    const double max_tmp = used_after_gc / minimum_used_percentage;
    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
    maximum_desired_capacity = MAX2(maximum_desired_capacity,
                                    MetaspaceSize);
1481
    if (PrintGCDetails && Verbose) {
1482 1483 1484 1485 1486 1487
      gclog_or_tty->print_cr("  "
                             "  maximum_free_percentage: %6.2f"
                             "  minimum_used_percentage: %6.2f",
                             maximum_free_percentage,
                             minimum_used_percentage);
      gclog_or_tty->print_cr("  "
1488 1489
                             "  minimum_desired_capacity: %6.1fKB"
                             "  maximum_desired_capacity: %6.1fKB",
1490 1491 1492 1493 1494 1495 1496 1497 1498
                             minimum_desired_capacity / (double) K,
                             maximum_desired_capacity / (double) K);
    }

    assert(minimum_desired_capacity <= maximum_desired_capacity,
           "sanity check");

    if (capacity_until_GC > maximum_desired_capacity) {
      // Capacity too large, compute shrinking size
1499
      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1500 1501 1502 1503 1504 1505
      // We don't want shrink all the way back to initSize if people call
      // System.gc(), because some programs do that between "phases" and then
      // we'd just have to grow the heap up again for the next phase.  So we
      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
      // on the third call, and 100% by the fourth call.  But if we recompute
      // size without shrinking, it goes back to 0%.
1506
      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1507 1508 1509

      shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());

1510
      assert(shrink_bytes <= max_shrink_bytes,
1511
        err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1512
          shrink_bytes, max_shrink_bytes));
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
      if (current_shrink_factor == 0) {
        _shrink_factor = 10;
      } else {
        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
      }
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("  "
                      "  shrinking:"
                      "  initSize: %.1fK"
                      "  maximum_desired_capacity: %.1fK",
                      MetaspaceSize / (double) K,
                      maximum_desired_capacity / (double) K);
        gclog_or_tty->print_cr("  "
1526
                      "  shrink_bytes: %.1fK"
1527 1528 1529
                      "  current_shrink_factor: %d"
                      "  new shrink factor: %d"
                      "  MinMetaspaceExpansion: %.1fK",
1530
                      shrink_bytes / (double) K,
1531 1532 1533 1534 1535 1536 1537 1538
                      current_shrink_factor,
                      _shrink_factor,
                      MinMetaspaceExpansion / (double) K);
      }
    }
  }

  // Don't shrink unless it's significant
1539 1540
  if (shrink_bytes >= MinMetaspaceExpansion &&
      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1541
    MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
  }
}

// Metadebug methods

void Metadebug::init_allocation_fail_alot_count() {
  if (MetadataAllocationFailALot) {
    _allocation_fail_alot_count =
      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
  }
}

#ifdef ASSERT
bool Metadebug::test_metadata_failure() {
  if (MetadataAllocationFailALot &&
      Threads::is_vm_complete()) {
    if (_allocation_fail_alot_count > 0) {
      _allocation_fail_alot_count--;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("Metadata allocation failing for "
                               "MetadataAllocationFailALot");
      }
      init_allocation_fail_alot_count();
      return true;
    }
  }
  return false;
}
#endif

// ChunkManager methods

E
ehelin 已提交
1575
size_t ChunkManager::free_chunks_total_words() {
1576 1577 1578
  return _free_chunks_total;
}

E
ehelin 已提交
1579 1580
size_t ChunkManager::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
1581 1582 1583 1584 1585 1586 1587 1588 1589
}

size_t ChunkManager::free_chunks_count() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
    // This lock is only needed in debug because the verification
    // of the _free_chunks_totals walks the list of free chunks
1590
    slow_locked_verify_free_chunks_count();
1591 1592
  }
#endif
1593
  return _free_chunks_count;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
}

void ChunkManager::locked_verify_free_chunks_total() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks() == _free_chunks_total,
    err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_total,
           sum_free_chunks()));
}

void ChunkManager::verify_free_chunks_total() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_total();
}

void ChunkManager::locked_verify_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks_count() == _free_chunks_count,
    err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_count,
           sum_free_chunks_count()));
}

void ChunkManager::verify_free_chunks_count() {
#ifdef ASSERT
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_count();
#endif
}

void ChunkManager::verify() {
1627 1628 1629
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify();
1630 1631 1632 1633
}

void ChunkManager::locked_verify() {
  locked_verify_free_chunks_count();
1634
  locked_verify_free_chunks_total();
1635 1636 1637 1638
}

void ChunkManager::locked_print_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1639
  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1640 1641 1642 1643 1644
                _free_chunks_total, _free_chunks_count);
}

void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
1645
  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
                sum_free_chunks(), sum_free_chunks_count());
}
ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
  return &_free_chunks[index];
}

// These methods that sum the free chunk lists are used in printing
// methods that are used in product builds.
size_t ChunkManager::sum_free_chunks() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t result = 0;
1657
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1658 1659 1660 1661 1662 1663
    ChunkList* list = free_chunks(i);

    if (list == NULL) {
      continue;
    }

1664
    result = result + list->count() * list->size();
1665
  }
1666
  result = result + humongous_dictionary()->total_size();
1667 1668 1669 1670 1671 1672
  return result;
}

size_t ChunkManager::sum_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t count = 0;
1673
  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1674 1675 1676 1677
    ChunkList* list = free_chunks(i);
    if (list == NULL) {
      continue;
    }
1678
    count = count + list->count();
1679
  }
1680
  count = count + humongous_dictionary()->total_free_blocks();
1681 1682 1683 1684
  return count;
}

ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1685 1686 1687
  ChunkIndex index = list_index(word_size);
  assert(index < HumongousIndex, "No humongous list");
  return free_chunks(index);
1688 1689 1690 1691 1692
}

Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

1693
  slow_locked_verify();
1694

1695
  Metachunk* chunk = NULL;
1696
  if (list_index(word_size) != HumongousIndex) {
1697 1698
    ChunkList* free_list = find_free_chunks_list(word_size);
    assert(free_list != NULL, "Sanity check");
1699

1700 1701 1702 1703 1704
    chunk = free_list->head();

    if (chunk == NULL) {
      return NULL;
    }
1705 1706

    // Remove the chunk as the head of the list.
1707
    free_list->remove_chunk(chunk);
1708

1709
    if (TraceMetadataChunkAllocation && Verbose) {
1710 1711 1712
      gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
                             PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
                             free_list, chunk, chunk->word_size());
1713 1714
    }
  } else {
1715 1716 1717 1718
    chunk = humongous_dictionary()->get_chunk(
      word_size,
      FreeBlockDictionary<Metachunk>::atLeast);

1719
    if (chunk == NULL) {
1720
      return NULL;
1721
    }
1722 1723 1724 1725 1726 1727 1728 1729

    if (TraceMetadataHumongousAllocation) {
      size_t waste = chunk->word_size() - word_size;
      gclog_or_tty->print_cr("Free list allocate humongous chunk size "
                             SIZE_FORMAT " for requested size " SIZE_FORMAT
                             " waste " SIZE_FORMAT,
                             chunk->word_size(), word_size, waste);
    }
1730
  }
1731

1732
  // Chunk is being removed from the chunks free list.
1733
  dec_free_chunks_total(chunk->word_size());
1734

1735 1736 1737
  // Remove it from the links to this freelist
  chunk->set_next(NULL);
  chunk->set_prev(NULL);
1738 1739 1740
#ifdef ASSERT
  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
  // work.
1741
  chunk->set_is_tagged_free(false);
1742
#endif
1743 1744
  chunk->container()->inc_container_count();

1745
  slow_locked_verify();
1746 1747 1748 1749 1750
  return chunk;
}

Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
1751
  slow_locked_verify();
1752 1753 1754 1755 1756 1757 1758

  // Take from the beginning of the list
  Metachunk* chunk = free_chunks_get(word_size);
  if (chunk == NULL) {
    return NULL;
  }

1759 1760 1761
  assert((word_size <= chunk->word_size()) ||
         list_index(chunk->word_size() == HumongousIndex),
         "Non-humongous variable sized chunk");
1762
  if (TraceMetadataChunkAllocation) {
1763 1764 1765
    size_t list_count;
    if (list_index(word_size) < HumongousIndex) {
      ChunkList* list = find_free_chunks_list(word_size);
1766
      list_count = list->count();
1767 1768 1769
    } else {
      list_count = humongous_dictionary()->total_count();
    }
1770 1771 1772 1773
    gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
                        PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
                        this, chunk, chunk->word_size(), list_count);
    locked_print_free_chunks(gclog_or_tty);
1774 1775 1776 1777 1778
  }

  return chunk;
}

1779
void ChunkManager::print_on(outputStream* out) const {
1780
  if (PrintFLSStatistics != 0) {
1781
    const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1782 1783 1784
  }
}

1785 1786
// SpaceManager methods

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
                                           size_t* chunk_word_size,
                                           size_t* class_chunk_word_size) {
  switch (type) {
  case Metaspace::BootMetaspaceType:
    *chunk_word_size = Metaspace::first_chunk_word_size();
    *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
    break;
  case Metaspace::ROMetaspaceType:
    *chunk_word_size = SharedReadOnlySize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::ReadWriteMetaspaceType:
    *chunk_word_size = SharedReadWriteSize / wordSize;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  case Metaspace::AnonymousMetaspaceType:
  case Metaspace::ReflectionMetaspaceType:
    *chunk_word_size = SpecializedChunk;
    *class_chunk_word_size = ClassSpecializedChunk;
    break;
  default:
    *chunk_word_size = SmallChunk;
    *class_chunk_word_size = ClassSmallChunk;
    break;
  }
1813
  assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1814 1815
    err_msg("Initial chunks sizes bad: data  " SIZE_FORMAT
            " class " SIZE_FORMAT,
1816
            *chunk_word_size, *class_chunk_word_size));
1817 1818
}

1819 1820 1821
size_t SpaceManager::sum_free_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t free = 0;
1822
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      free += chunk->free_word_size();
      chunk = chunk->next();
    }
  }
  return free;
}

size_t SpaceManager::sum_waste_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t result = 0;
1835
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1836 1837
   result += sum_waste_in_chunks_in_use(i);
  }
1838

1839 1840 1841 1842 1843 1844 1845 1846
  return result;
}

size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
  size_t result = 0;
  Metachunk* chunk = chunks_in_use(index);
  // Count the free space in all the chunk but not the
  // current chunk from which allocations are still being done.
1847 1848
  while (chunk != NULL) {
    if (chunk != current_chunk()) {
1849
      result += chunk->free_word_size();
1850
    }
1851
    chunk = chunk->next();
1852 1853 1854 1855 1856
  }
  return result;
}

size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
  // For CMS use "allocated_chunks_words()" which does not need the
  // Metaspace lock.  For the other collectors sum over the
  // lists.  Use both methods as a check that "allocated_chunks_words()"
  // is correct.  That is, sum_capacity_in_chunks() is too expensive
  // to use in the product and allocated_chunks_words() should be used
  // but allow for  checking that allocated_chunks_words() returns the same
  // value as sum_capacity_in_chunks_in_use() which is the definitive
  // answer.
  if (UseConcMarkSweepGC) {
    return allocated_chunks_words();
  } else {
    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
    size_t sum = 0;
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
      Metachunk* chunk = chunks_in_use(i);
      while (chunk != NULL) {
1873
        sum += chunk->word_size();
1874 1875
        chunk = chunk->next();
      }
1876 1877
    }
  return sum;
1878
  }
1879 1880 1881 1882
}

size_t SpaceManager::sum_count_in_chunks_in_use() {
  size_t count = 0;
1883
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1884 1885
    count = count + sum_count_in_chunks_in_use(i);
  }
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
  return count;
}

size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(i);
  while (chunk != NULL) {
    count++;
    chunk = chunk->next();
  }
  return count;
}


size_t SpaceManager::sum_used_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t used = 0;
1904
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      used += chunk->used_word_size();
      chunk = chunk->next();
    }
  }
  return used;
}

void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
    Metachunk* chunk = chunks_in_use(i);
    st->print("SpaceManager: %s " PTR_FORMAT,
                 chunk_size_name(i), chunk);
    if (chunk != NULL) {
      st->print_cr(" free " SIZE_FORMAT,
                   chunk->free_word_size());
    } else {
      st->print_cr("");
    }
  }
1927

1928 1929
  chunk_manager()->locked_print_free_chunks(st);
  chunk_manager()->locked_print_sum_free_chunks(st);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
}

size_t SpaceManager::calc_chunk_size(size_t word_size) {

  // Decide between a small chunk and a medium chunk.  Up to
  // _small_chunk_limit small chunks can be allocated but
  // once a medium chunk has been allocated, no more small
  // chunks will be allocated.
  size_t chunk_word_size;
  if (chunks_in_use(MediumIndex) == NULL &&
1940
      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
1941 1942 1943
    chunk_word_size = (size_t) small_chunk_size();
    if (word_size + Metachunk::overhead() > small_chunk_size()) {
      chunk_word_size = medium_chunk_size();
1944 1945
    }
  } else {
1946
    chunk_word_size = medium_chunk_size();
1947 1948
  }

1949 1950 1951
  // Might still need a humongous chunk.  Enforce
  // humongous allocations sizes to be aligned up to
  // the smallest chunk size.
1952 1953
  size_t if_humongous_sized_chunk =
    align_size_up(word_size + Metachunk::overhead(),
1954
                  smallest_chunk_size());
1955
  chunk_word_size =
1956
    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
1957

1958 1959 1960 1961 1962
  assert(!SpaceManager::is_humongous(word_size) ||
         chunk_word_size == if_humongous_sized_chunk,
         err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
                 " chunk_word_size " SIZE_FORMAT,
                 word_size, chunk_word_size));
1963 1964 1965 1966 1967 1968
  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(word_size)) {
    gclog_or_tty->print_cr("Metadata humongous allocation:");
    gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
    gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
                           chunk_word_size);
1969
    gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
1970 1971 1972 1973 1974
                           Metachunk::overhead());
  }
  return chunk_word_size;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983
void SpaceManager::track_metaspace_memory_usage() {
  if (is_init_completed()) {
    if (is_class()) {
      MemoryService::track_compressed_class_memory_usage();
    }
    MemoryService::track_metaspace_memory_usage();
  }
}

1984
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
1985 1986 1987 1988 1989 1990 1991 1992
  assert(vs_list()->current_virtual_space() != NULL,
         "Should have been set");
  assert(current_chunk() == NULL ||
         current_chunk()->allocate(word_size) == NULL,
         "Don't need to expand");
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  if (TraceMetadataChunkAllocation && Verbose) {
1993 1994 1995 1996 1997 1998
    size_t words_left = 0;
    size_t words_used = 0;
    if (current_chunk() != NULL) {
      words_left = current_chunk()->free_word_size();
      words_used = current_chunk()->used_word_size();
    }
1999
    gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2000 2001 2002
                           " words " SIZE_FORMAT " words used " SIZE_FORMAT
                           " words left",
                            word_size, words_used, words_left);
2003 2004 2005 2006
  }

  // Get another chunk out of the virtual space
  size_t grow_chunks_by_words = calc_chunk_size(word_size);
2007
  Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2008

2009 2010
  MetaWord* mem = NULL;

2011 2012 2013 2014 2015
  // If a chunk was available, add it to the in-use chunk list
  // and do an allocation from it.
  if (next != NULL) {
    // Add to this manager's list of chunks in use.
    add_chunk(next, false);
2016
    mem = next->allocate(word_size);
2017
  }
2018

2019 2020 2021
  // Track metaspace memory usage statistic.
  track_metaspace_memory_usage();

2022
  return mem;
2023 2024 2025 2026
}

void SpaceManager::print_on(outputStream* st) const {

2027
  for (ChunkIndex i = ZeroIndex;
2028
       i < NumberOfInUseLists ;
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
       i = next_chunk_index(i) ) {
    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
                 chunks_in_use(i),
                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
  }
  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
               " Humongous " SIZE_FORMAT,
               sum_waste_in_chunks_in_use(SmallIndex),
               sum_waste_in_chunks_in_use(MediumIndex),
               sum_waste_in_chunks_in_use(HumongousIndex));
2039 2040 2041 2042 2043
  // block free lists
  if (block_freelists() != NULL) {
    st->print_cr("total in block free lists " SIZE_FORMAT,
      block_freelists()->total_size());
  }
2044 2045
}

2046
SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2047
                           Mutex* lock) :
2048
  _mdtype(mdtype),
2049 2050 2051
  _allocated_blocks_words(0),
  _allocated_chunks_words(0),
  _allocated_chunks_count(0),
2052 2053 2054 2055 2056
  _lock(lock)
{
  initialize();
}

2057 2058 2059 2060 2061 2062 2063
void SpaceManager::inc_size_metrics(size_t words) {
  assert_lock_strong(SpaceManager::expand_lock());
  // Total of allocated Metachunks and allocated Metachunks count
  // for each SpaceManager
  _allocated_chunks_words = _allocated_chunks_words + words;
  _allocated_chunks_count++;
  // Global total of capacity in allocated Metachunks
2064
  MetaspaceAux::inc_capacity(mdtype(), words);
2065 2066 2067 2068 2069
  // Global total of allocated Metablocks.
  // used_words_slow() includes the overhead in each
  // Metachunk so include it in the used when the
  // Metachunk is first added (so only added once per
  // Metachunk).
2070
  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2071 2072 2073 2074 2075 2076
}

void SpaceManager::inc_used_metrics(size_t words) {
  // Add to the per SpaceManager total
  Atomic::add_ptr(words, &_allocated_blocks_words);
  // Add to the global total
2077
  MetaspaceAux::inc_used(mdtype(), words);
2078 2079 2080
}

void SpaceManager::dec_total_from_size_metrics() {
2081 2082
  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2083
  // Also deduct the overhead per Metachunk
2084
  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2085 2086
}

2087
void SpaceManager::initialize() {
2088
  Metadebug::init_allocation_fail_alot_count();
2089
  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2090 2091 2092 2093 2094 2095 2096 2097
    _chunks_in_use[i] = NULL;
  }
  _current_chunk = NULL;
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
  }
}

2098 2099 2100 2101 2102 2103 2104 2105 2106
void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
  if (chunks == NULL) {
    return;
  }
  ChunkList* list = free_chunks(index);
  assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* cur = chunks;

2107
  // This returns chunks one at a time.  If a new
2108 2109 2110 2111
  // class List can be created that is a base class
  // of FreeList then something like FreeList::prepend()
  // can be used in place of this loop
  while (cur != NULL) {
2112 2113
    assert(cur->container() != NULL, "Container should have been set");
    cur->container()->dec_container_count();
2114 2115 2116
    // Capture the next link before it is changed
    // by the call to return_chunk_at_head();
    Metachunk* next = cur->next();
2117
    DEBUG_ONLY(cur->set_is_tagged_free(true);)
2118 2119 2120 2121 2122
    list->return_chunk_at_head(cur);
    cur = next;
  }
}

2123
SpaceManager::~SpaceManager() {
2124
  // This call this->_lock which can't be done while holding expand_lock()
2125 2126 2127 2128
  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
    err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
            " allocated_chunks_words() " SIZE_FORMAT,
            sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2129

2130 2131 2132
  MutexLockerEx fcl(SpaceManager::expand_lock(),
                    Mutex::_no_safepoint_check_flag);

2133
  chunk_manager()->slow_locked_verify();
2134

2135 2136
  dec_total_from_size_metrics();

2137 2138 2139 2140 2141
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
    locked_print_chunks_in_use_on(gclog_or_tty);
  }

2142 2143
  // Do not mangle freed Metachunks.  The chunk size inside Metachunks
  // is during the freeing of a VirtualSpaceNodes.
2144

2145 2146
  // Have to update before the chunks_in_use lists are emptied
  // below.
2147 2148
  chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
                                         sum_count_in_chunks_in_use());
2149 2150 2151 2152

  // Add all the chunks in use by this space manager
  // to the global list of free chunks.

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
  // Follow each list of chunks-in-use and add them to the
  // free lists.  Each list is NULL terminated.

  for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("returned %d %s chunks to freelist",
                             sum_count_in_chunks_in_use(i),
                             chunk_size_name(i));
    }
    Metachunk* chunks = chunks_in_use(i);
2163
    chunk_manager()->return_chunks(i, chunks);
2164 2165 2166
    set_chunks_in_use(i, NULL);
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print_cr("updated freelist count %d %s",
2167
                             chunk_manager()->free_chunks(i)->count(),
2168 2169 2170
                             chunk_size_name(i));
    }
    assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2171 2172
  }

2173 2174 2175 2176
  // The medium chunk case may be optimized by passing the head and
  // tail of the medium chunk list to add_at_head().  The tail is often
  // the current chunk but there are probably exceptions.

2177
  // Humongous chunks
2178 2179 2180 2181 2182 2183
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
                            sum_count_in_chunks_in_use(HumongousIndex),
                            chunk_size_name(HumongousIndex));
    gclog_or_tty->print("Humongous chunk dictionary: ");
  }
2184 2185 2186
  // Humongous chunks are never the current chunk.
  Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);

2187 2188
  while (humongous_chunks != NULL) {
#ifdef ASSERT
2189
    humongous_chunks->set_is_tagged_free(true);
2190
#endif
2191 2192 2193 2194 2195 2196 2197
    if (TraceMetadataChunkAllocation && Verbose) {
      gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
                          humongous_chunks,
                          humongous_chunks->word_size());
    }
    assert(humongous_chunks->word_size() == (size_t)
           align_size_up(humongous_chunks->word_size(),
2198
                             smallest_chunk_size()),
2199
           err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2200
                   " granularity %d",
2201
                   humongous_chunks->word_size(), smallest_chunk_size()));
2202
    Metachunk* next_humongous_chunks = humongous_chunks->next();
2203
    humongous_chunks->container()->dec_container_count();
2204
    chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2205
    humongous_chunks = next_humongous_chunks;
2206
  }
2207 2208 2209
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("updated dictionary count %d %s",
2210
                     chunk_manager()->humongous_dictionary()->total_count(),
2211 2212
                     chunk_size_name(HumongousIndex));
  }
2213
  chunk_manager()->slow_locked_verify();
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
  switch (index) {
    case SpecializedIndex:
      return "Specialized";
    case SmallIndex:
      return "Small";
    case MediumIndex:
      return "Medium";
    case HumongousIndex:
      return "Humongous";
    default:
      return NULL;
  }
}

ChunkIndex ChunkManager::list_index(size_t size) {
  switch (size) {
    case SpecializedChunk:
      assert(SpecializedChunk == ClassSpecializedChunk,
             "Need branch for ClassSpecializedChunk");
      return SpecializedIndex;
    case SmallChunk:
    case ClassSmallChunk:
      return SmallIndex;
    case MediumChunk:
    case ClassMediumChunk:
      return MediumIndex;
    default:
2244
      assert(size > MediumChunk || size > ClassMediumChunk,
2245 2246 2247 2248 2249
             "Not a humongous chunk");
      return HumongousIndex;
  }
}

2250
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2251
  assert_lock_strong(_lock);
2252
  size_t raw_word_size = get_raw_word_size(word_size);
2253
  size_t min_size = TreeChunk<Metablock, FreeList>::min_size();
2254
  assert(raw_word_size >= min_size,
2255
         err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2256
  block_freelists()->return_block(p, raw_word_size);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
}

// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {

  assert(new_chunk != NULL, "Should not be NULL");
  assert(new_chunk->next() == NULL, "Should not be on a list");

  new_chunk->reset_empty();

  // Find the correct list and and set the current
  // chunk for that list.
2269
  ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2270

2271
  if (index != HumongousIndex) {
2272
    retire_current_chunk();
2273
    set_current_chunk(new_chunk);
2274 2275 2276
    new_chunk->set_next(chunks_in_use(index));
    set_chunks_in_use(index, new_chunk);
  } else {
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
    // For null class loader data and DumpSharedSpaces, the first chunk isn't
    // small, so small will be null.  Link this first chunk as the current
    // chunk.
    if (make_current) {
      // Set as the current chunk but otherwise treat as a humongous chunk.
      set_current_chunk(new_chunk);
    }
    // Link at head.  The _current_chunk only points to a humongous chunk for
    // the null class loader metaspace (class and data virtual space managers)
    // any humongous chunks so will not point to the tail
    // of the humongous chunks list.
    new_chunk->set_next(chunks_in_use(HumongousIndex));
    set_chunks_in_use(HumongousIndex, new_chunk);

2291
    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2292 2293
  }

2294 2295 2296
  // Add to the running sum of capacity
  inc_size_metrics(new_chunk->word_size());

2297 2298 2299 2300 2301
  assert(new_chunk->is_empty(), "Not ready for reuse");
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
                        sum_count_in_chunks_in_use());
    new_chunk->print_on(gclog_or_tty);
2302
    chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2303 2304 2305
  }
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
void SpaceManager::retire_current_chunk() {
  if (current_chunk() != NULL) {
    size_t remaining_words = current_chunk()->free_word_size();
    if (remaining_words >= TreeChunk<Metablock, FreeList>::min_size()) {
      block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
      inc_used_metrics(remaining_words);
    }
  }
}

2316 2317
Metachunk* SpaceManager::get_new_chunk(size_t word_size,
                                       size_t grow_chunks_by_words) {
2318 2319
  // Get a chunk from the chunk freelist
  Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2320

2321 2322 2323 2324 2325
  if (next == NULL) {
    next = vs_list()->get_new_chunk(word_size,
                                    grow_chunks_by_words,
                                    medium_chunk_bunch());
  }
2326

S
stefank 已提交
2327
  if (TraceMetadataHumongousAllocation && next != NULL &&
2328
      SpaceManager::is_humongous(next->word_size())) {
S
stefank 已提交
2329 2330
    gclog_or_tty->print_cr("  new humongous chunk word size "
                           PTR_FORMAT, next->word_size());
2331 2332 2333 2334 2335
  }

  return next;
}

2336 2337 2338
MetaWord* SpaceManager::allocate(size_t word_size) {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);

2339
  size_t raw_word_size = get_raw_word_size(word_size);
2340
  BlockFreelist* fl =  block_freelists();
2341
  MetaWord* p = NULL;
2342 2343 2344 2345 2346
  // Allocation from the dictionary is expensive in the sense that
  // the dictionary has to be searched for a size.  Don't allocate
  // from the dictionary until it starts to get fat.  Is this
  // a reasonable policy?  Maybe an skinny dictionary is fast enough
  // for allocations.  Do some profiling.  JJJ
2347 2348
  if (fl->total_size() > allocation_from_dictionary_limit) {
    p = fl->get_block(raw_word_size);
2349
  }
2350 2351
  if (p == NULL) {
    p = allocate_work(raw_word_size);
2352 2353
  }

2354
  return p;
2355 2356 2357 2358
}

// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
2359
MetaWord* SpaceManager::allocate_work(size_t word_size) {
2360 2361 2362 2363 2364 2365 2366
  assert_lock_strong(_lock);
#ifdef ASSERT
  if (Metadebug::test_metadata_failure()) {
    return NULL;
  }
#endif
  // Is there space in the current chunk?
2367
  MetaWord* result = NULL;
2368 2369 2370 2371 2372 2373

  // For DumpSharedSpaces, only allocate out of the current chunk which is
  // never null because we gave it the size we wanted.   Caller reports out
  // of memory if this returns null.
  if (DumpSharedSpaces) {
    assert(current_chunk() != NULL, "should never happen");
2374
    inc_used_metrics(word_size);
2375 2376
    return current_chunk()->allocate(word_size); // caller handles null result
  }
2377

2378 2379 2380 2381 2382 2383 2384
  if (current_chunk() != NULL) {
    result = current_chunk()->allocate(word_size);
  }

  if (result == NULL) {
    result = grow_and_allocate(word_size);
  }
2385 2386

  if (result != NULL) {
2387
    inc_used_metrics(word_size);
2388 2389
    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
           "Head of the list is being allocated");
2390 2391 2392 2393 2394 2395 2396 2397 2398
  }

  return result;
}

void SpaceManager::verify() {
  // If there are blocks in the dictionary, then
  // verfication of chunks does not work since
  // being in the dictionary alters a chunk.
2399
  if (block_freelists()->total_size() == 0) {
2400
    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2401 2402 2403
      Metachunk* curr = chunks_in_use(i);
      while (curr != NULL) {
        curr->verify();
2404
        verify_chunk_size(curr);
2405 2406 2407 2408 2409 2410
        curr = curr->next();
      }
    }
  }
}

2411 2412
void SpaceManager::verify_chunk_size(Metachunk* chunk) {
  assert(is_humongous(chunk->word_size()) ||
2413 2414 2415
         chunk->word_size() == medium_chunk_size() ||
         chunk->word_size() == small_chunk_size() ||
         chunk->word_size() == specialized_chunk_size(),
2416 2417 2418 2419
         "Chunk size is wrong");
  return;
}

2420
#ifdef ASSERT
2421
void SpaceManager::verify_allocated_blocks_words() {
2422
  // Verification is only guaranteed at a safepoint.
2423 2424 2425
  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
    "Verification can fail if the applications is running");
  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2426 2427
    err_msg("allocation total is not consistent " SIZE_FORMAT
            " vs " SIZE_FORMAT,
2428
            allocated_blocks_words(), sum_used_in_chunks_in_use()));
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
}

#endif

void SpaceManager::dump(outputStream* const out) const {
  size_t curr_total = 0;
  size_t waste = 0;
  uint i = 0;
  size_t used = 0;
  size_t capacity = 0;

  // Add up statistics for all chunks in this SpaceManager.
2441
  for (ChunkIndex index = ZeroIndex;
2442
       index < NumberOfInUseLists;
2443 2444 2445 2446 2447 2448 2449 2450
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      out->print("%d) ", i++);
      curr->print_on(out);
      curr_total += curr->word_size();
      used += curr->used_word_size();
2451
      capacity += curr->word_size();
2452 2453 2454 2455
      waste += curr->free_word_size() + curr->overhead();;
    }
  }

S
stefank 已提交
2456 2457 2458 2459
  if (TraceMetadataChunkAllocation && Verbose) {
    block_freelists()->print_on(out);
  }

2460
  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2461 2462 2463 2464 2465 2466 2467 2468
  // Free space isn't wasted.
  waste -= free;

  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
}

2469
#ifndef PRODUCT
2470
void SpaceManager::mangle_freed_chunks() {
2471
  for (ChunkIndex index = ZeroIndex;
2472
       index < NumberOfInUseLists;
2473 2474 2475 2476 2477 2478 2479 2480
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      curr->mangle();
    }
  }
}
2481
#endif // PRODUCT
2482 2483 2484

// MetaspaceAux

2485

2486 2487
size_t MetaspaceAux::_allocated_capacity_words[] = {0, 0};
size_t MetaspaceAux::_allocated_used_words[] = {0, 0};
2488

2489 2490 2491 2492 2493
size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->free_bytes();
}

2494
size_t MetaspaceAux::free_bytes() {
2495
  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2496 2497
}

2498
void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2499
  assert_lock_strong(SpaceManager::expand_lock());
2500
  assert(words <= allocated_capacity_words(mdtype),
2501
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2502 2503 2504
            " is greater than _allocated_capacity_words[%u] " SIZE_FORMAT,
            words, mdtype, allocated_capacity_words(mdtype)));
  _allocated_capacity_words[mdtype] -= words;
2505 2506
}

2507
void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2508 2509
  assert_lock_strong(SpaceManager::expand_lock());
  // Needs to be atomic
2510
  _allocated_capacity_words[mdtype] += words;
2511 2512
}

2513 2514
void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
  assert(words <= allocated_used_words(mdtype),
2515
    err_msg("About to decrement below 0: words " SIZE_FORMAT
2516 2517
            " is greater than _allocated_used_words[%u] " SIZE_FORMAT,
            words, mdtype, allocated_used_words(mdtype)));
2518 2519 2520 2521 2522
  // For CMS deallocation of the Metaspaces occurs during the
  // sweep which is a concurrent phase.  Protection by the expand_lock()
  // is not enough since allocation is on a per Metaspace basis
  // and protected by the Metaspace lock.
  jlong minus_words = (jlong) - (jlong) words;
2523
  Atomic::add_ptr(minus_words, &_allocated_used_words[mdtype]);
2524 2525
}

2526
void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2527 2528 2529 2530
  // _allocated_used_words tracks allocations for
  // each piece of metadata.  Those allocations are
  // generally done concurrently by different application
  // threads so must be done atomically.
2531
  Atomic::add_ptr(words, &_allocated_used_words[mdtype]);
2532 2533 2534
}

size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2535 2536 2537 2538
  size_t used = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
2539
    // Sum allocated_blocks_words for each metaspace
2540
    if (msp != NULL) {
2541
      used += msp->used_words_slow(mdtype);
2542 2543 2544 2545 2546
    }
  }
  return used * BytesPerWord;
}

E
ehelin 已提交
2547
size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2548 2549 2550 2551 2552
  size_t free = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
E
ehelin 已提交
2553
      free += msp->free_words_slow(mdtype);
2554 2555 2556 2557 2558
    }
  }
  return free * BytesPerWord;
}

2559
size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2560 2561 2562
  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
    return 0;
  }
2563 2564 2565
  // Don't count the space in the freelists.  That space will be
  // added to the capacity calculation as needed.
  size_t capacity = 0;
2566 2567 2568 2569
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2570
      capacity += msp->capacity_words_slow(mdtype);
2571 2572 2573 2574 2575
    }
  }
  return capacity * BytesPerWord;
}

E
ehelin 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
size_t MetaspaceAux::capacity_bytes_slow() {
#ifdef PRODUCT
  // Use allocated_capacity_bytes() in PRODUCT instead of this function.
  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
#endif
  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
  assert(allocated_capacity_bytes() == class_capacity + non_class_capacity,
      err_msg("bad accounting: allocated_capacity_bytes() " SIZE_FORMAT
        " class_capacity + non_class_capacity " SIZE_FORMAT
        " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
        allocated_capacity_bytes(), class_capacity + non_class_capacity,
        class_capacity, non_class_capacity));

  return class_capacity + non_class_capacity;
}

size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2594
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2595 2596 2597 2598 2599 2600
  return list == NULL ? 0 : list->reserved_bytes();
}

size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
  return list == NULL ? 0 : list->committed_bytes();
2601 2602
}

E
ehelin 已提交
2603
size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2604

E
ehelin 已提交
2605
size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2606 2607
  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
  if (chunk_manager == NULL) {
2608 2609
    return 0;
  }
2610 2611
  chunk_manager->slow_verify();
  return chunk_manager->free_chunks_total_words();
2612 2613
}

E
ehelin 已提交
2614 2615
size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
  return free_chunks_total_words(mdtype) * BytesPerWord;
2616 2617
}

E
ehelin 已提交
2618 2619 2620
size_t MetaspaceAux::free_chunks_total_words() {
  return free_chunks_total_words(Metaspace::ClassType) +
         free_chunks_total_words(Metaspace::NonClassType);
2621 2622
}

E
ehelin 已提交
2623 2624
size_t MetaspaceAux::free_chunks_total_bytes() {
  return free_chunks_total_words() * BytesPerWord;
2625 2626
}

2627 2628 2629 2630 2631
void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
  gclog_or_tty->print(", [Metaspace:");
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
2632
                        "("  SIZE_FORMAT ")",
2633
                        prev_metadata_used,
2634
                        allocated_used_bytes(),
E
ehelin 已提交
2635
                        reserved_bytes());
2636 2637 2638
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
2639
                        "("  SIZE_FORMAT "K)",
E
ehelin 已提交
2640 2641 2642
                        prev_metadata_used/K,
                        allocated_used_bytes()/K,
                        reserved_bytes()/K);
2643 2644 2645 2646 2647 2648 2649 2650 2651
  }

  gclog_or_tty->print("]");
}

// This is printed when PrintGCDetails
void MetaspaceAux::print_on(outputStream* out) {
  Metaspace::MetadataType nct = Metaspace::NonClassType;

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
  out->print_cr(" Metaspace       "
                "used "      SIZE_FORMAT "K, "
                "capacity "  SIZE_FORMAT "K, "
                "committed " SIZE_FORMAT "K, "
                "reserved "  SIZE_FORMAT "K",
                allocated_used_bytes()/K,
                allocated_capacity_bytes()/K,
                committed_bytes()/K,
                reserved_bytes()/K);

2662 2663 2664
  if (Metaspace::using_class_space()) {
    Metaspace::MetadataType ct = Metaspace::ClassType;
    out->print_cr("  class space    "
2665 2666 2667 2668
                  "used "      SIZE_FORMAT "K, "
                  "capacity "  SIZE_FORMAT "K, "
                  "committed " SIZE_FORMAT "K, "
                  "reserved "  SIZE_FORMAT "K",
2669
                  allocated_used_bytes(ct)/K,
2670 2671
                  allocated_capacity_bytes(ct)/K,
                  committed_bytes(ct)/K,
E
ehelin 已提交
2672
                  reserved_bytes(ct)/K);
2673
  }
2674 2675 2676 2677 2678
}

// Print information for class space and data space separately.
// This is almost the same as above.
void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
E
ehelin 已提交
2679
  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2680 2681
  size_t capacity_bytes = capacity_bytes_slow(mdtype);
  size_t used_bytes = used_bytes_slow(mdtype);
E
ehelin 已提交
2682
  size_t free_bytes = free_bytes_slow(mdtype);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
  size_t used_and_free = used_bytes + free_bytes +
                           free_chunks_capacity_bytes;
  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
             "K + unused in chunks " SIZE_FORMAT "K  + "
             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
             "K  capacity in allocated chunks " SIZE_FORMAT "K",
             used_bytes / K,
             free_bytes / K,
             free_chunks_capacity_bytes / K,
             used_and_free / K,
             capacity_bytes / K);
2694 2695
  // Accounting can only be correct if we got the values during a safepoint
  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
// Print total fragmentation for class metaspaces
void MetaspaceAux::print_class_waste(outputStream* out) {
  assert(Metaspace::using_class_space(), "class metaspace not used");
  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
    }
  }
  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                "large count " SIZE_FORMAT,
                cls_specialized_count, cls_specialized_waste,
                cls_small_count, cls_small_waste,
                cls_medium_count, cls_medium_waste, cls_humongous_count);
}
2724

2725 2726
// Print total fragmentation for data and class metaspaces separately
void MetaspaceAux::print_waste(outputStream* out) {
2727 2728
  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2729 2730 2731 2732 2733

  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
2734 2735
      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2736
      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2737
      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2738
      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2739
      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2740
      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2741 2742 2743
    }
  }
  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2744 2745
  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2746 2747
                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
                        "large count " SIZE_FORMAT,
2748
             specialized_count, specialized_waste, small_count,
2749
             small_waste, medium_count, medium_waste, humongous_count);
2750 2751 2752
  if (Metaspace::using_class_space()) {
    print_class_waste(out);
  }
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
}

// Dump global metaspace things from the end of ClassLoaderDataGraph
void MetaspaceAux::dump(outputStream* out) {
  out->print_cr("All Metaspace:");
  out->print("data space: "); print_on(out, Metaspace::NonClassType);
  out->print("class space: "); print_on(out, Metaspace::ClassType);
  print_waste(out);
}

2763
void MetaspaceAux::verify_free_chunks() {
2764
  Metaspace::chunk_manager_metadata()->verify();
2765
  if (Metaspace::using_class_space()) {
2766
    Metaspace::chunk_manager_class()->verify();
2767
  }
2768 2769
}

2770 2771 2772
void MetaspaceAux::verify_capacity() {
#ifdef ASSERT
  size_t running_sum_capacity_bytes = allocated_capacity_bytes();
2773
  // For purposes of the running sum of capacity, verify against capacity
2774 2775 2776 2777 2778
  size_t capacity_in_use_bytes = capacity_bytes_slow();
  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
    err_msg("allocated_capacity_words() * BytesPerWord " SIZE_FORMAT
            " capacity_bytes_slow()" SIZE_FORMAT,
            running_sum_capacity_bytes, capacity_in_use_bytes));
2779 2780 2781 2782 2783 2784 2785 2786 2787
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
    assert(allocated_capacity_bytes(i) == capacity_in_use_bytes,
      err_msg("allocated_capacity_bytes(%u) " SIZE_FORMAT
              " capacity_bytes_slow(%u)" SIZE_FORMAT,
              i, allocated_capacity_bytes(i), i, capacity_in_use_bytes));
  }
2788 2789 2790 2791 2792 2793
#endif
}

void MetaspaceAux::verify_used() {
#ifdef ASSERT
  size_t running_sum_used_bytes = allocated_used_bytes();
2794
  // For purposes of the running sum of used, verify against used
2795 2796 2797
  size_t used_in_use_bytes = used_bytes_slow();
  assert(allocated_used_bytes() == used_in_use_bytes,
    err_msg("allocated_used_bytes() " SIZE_FORMAT
2798
            " used_bytes_slow()" SIZE_FORMAT,
2799
            allocated_used_bytes(), used_in_use_bytes));
2800 2801 2802 2803 2804 2805 2806 2807 2808
  for (Metaspace::MetadataType i = Metaspace::ClassType;
       i < Metaspace:: MetadataTypeCount;
       i = (Metaspace::MetadataType)(i + 1)) {
    size_t used_in_use_bytes = used_bytes_slow(i);
    assert(allocated_used_bytes(i) == used_in_use_bytes,
      err_msg("allocated_used_bytes(%u) " SIZE_FORMAT
              " used_bytes_slow(%u)" SIZE_FORMAT,
              i, allocated_used_bytes(i), i, used_in_use_bytes));
  }
2809 2810 2811 2812 2813 2814 2815 2816 2817
#endif
}

void MetaspaceAux::verify_metrics() {
  verify_capacity();
  verify_used();
}


2818 2819 2820
// Metaspace methods

size_t Metaspace::_first_chunk_word_size = 0;
2821
size_t Metaspace::_first_class_chunk_word_size = 0;
2822

2823 2824 2825
size_t Metaspace::_commit_alignment = 0;
size_t Metaspace::_reserve_alignment = 0;

2826 2827
Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
  initialize(lock, type);
2828 2829 2830 2831
}

Metaspace::~Metaspace() {
  delete _vsm;
2832 2833 2834
  if (using_class_space()) {
    delete _class_vsm;
  }
2835 2836 2837 2838 2839
}

VirtualSpaceList* Metaspace::_space_list = NULL;
VirtualSpaceList* Metaspace::_class_space_list = NULL;

2840 2841 2842
ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
ChunkManager* Metaspace::_chunk_manager_class = NULL;

2843 2844
#define VIRTUALSPACEMULTIPLIER 2

2845
#ifdef _LP64
2846 2847
static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);

2848 2849 2850 2851 2852 2853 2854 2855 2856
void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
  // narrow_klass_base is the lower of the metaspace base and the cds base
  // (if cds is enabled).  The narrow_klass_shift depends on the distance
  // between the lower base and higher address.
  address lower_base;
  address higher_address;
  if (UseSharedSpaces) {
    higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2857
                          (address)(metaspace_base + compressed_class_space_size()));
2858 2859
    lower_base = MIN2(metaspace_base, cds_base);
  } else {
2860
    higher_address = metaspace_base + compressed_class_space_size();
2861
    lower_base = metaspace_base;
2862 2863 2864 2865 2866 2867

    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
    // If compressed class space fits in lower 32G, we don't need a base.
    if (higher_address <= (address)klass_encoding_max) {
      lower_base = 0; // effectively lower base is zero.
    }
2868
  }
2869

2870
  Universe::set_narrow_klass_base(lower_base);
2871

2872
  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    Universe::set_narrow_klass_shift(0);
  } else {
    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
  }
}

// Return TRUE if the specified metaspace_base and cds_base are close enough
// to work with compressed klass pointers.
bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2884
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2885 2886
  address lower_base = MIN2((address)metaspace_base, cds_base);
  address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2887
                                (address)(metaspace_base + compressed_class_space_size()));
2888
  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
2889 2890 2891 2892 2893
}

// Try to allocate the metaspace at the requested addr.
void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
  assert(using_class_space(), "called improperly");
2894
  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2895
  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
2896
         "Metaspace size is too big");
2897 2898 2899
  assert_is_ptr_aligned(requested_addr, _reserve_alignment);
  assert_is_ptr_aligned(cds_base, _reserve_alignment);
  assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
2900 2901 2902

  // Don't use large pages for the class space.
  bool large_pages = false;
2903

2904
  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
2905 2906 2907
                                             _reserve_alignment,
                                             large_pages,
                                             requested_addr, 0);
2908 2909
  if (!metaspace_rs.is_reserved()) {
    if (UseSharedSpaces) {
2910 2911
      size_t increment = align_size_up(1*G, _reserve_alignment);

2912 2913 2914 2915
      // Keep trying to allocate the metaspace, increasing the requested_addr
      // by 1GB each time, until we reach an address that will no longer allow
      // use of CDS with compressed klass pointers.
      char *addr = requested_addr;
2916 2917 2918
      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
        addr = addr + increment;
2919
        metaspace_rs = ReservedSpace(compressed_class_space_size(),
2920
                                     _reserve_alignment, large_pages, addr, 0);
2921 2922 2923 2924 2925
      }
    }

    // If no successful allocation then try to allocate the space anywhere.  If
    // that fails then OOM doom.  At this point we cannot try allocating the
2926 2927 2928
    // metaspace as if UseCompressedClassPointers is off because too much
    // initialization has happened that depends on UseCompressedClassPointers.
    // So, UseCompressedClassPointers cannot be turned off at this point.
2929
    if (!metaspace_rs.is_reserved()) {
2930
      metaspace_rs = ReservedSpace(compressed_class_space_size(),
2931
                                   _reserve_alignment, large_pages);
2932 2933
      if (!metaspace_rs.is_reserved()) {
        vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
2934
                                              compressed_class_space_size()));
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
      }
    }
  }

  // If we got here then the metaspace got allocated.
  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);

  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
    FileMapInfo::stop_sharing_and_unmap(
        "Could not allocate metaspace at a compatible address");
  }

  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
                                  UseSharedSpaces ? (address)cds_base : 0);

  initialize_class_space(metaspace_rs);

  if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
    gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
                            Universe::narrow_klass_base(), Universe::narrow_klass_shift());
2956 2957
    gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
                           compressed_class_space_size(), metaspace_rs.base(), requested_addr);
2958 2959 2960
  }
}

2961
// For UseCompressedClassPointers the class space is reserved above the top of
2962 2963 2964
// the Java heap.  The argument passed in is at the base of the compressed space.
void Metaspace::initialize_class_space(ReservedSpace rs) {
  // The reserved space size may be bigger because of alignment, esp with UseLargePages
2965 2966
  assert(rs.size() >= CompressedClassSpaceSize,
         err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
2967 2968
  assert(using_class_space(), "Must be using class space");
  _class_space_list = new VirtualSpaceList(rs);
2969
  _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
2970 2971 2972 2973

  if (!_class_space_list->initialization_succeeded()) {
    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
  }
2974 2975 2976 2977
}

#endif

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
void Metaspace::ergo_initialize() {
  if (DumpSharedSpaces) {
    // Using large pages when dumping the shared archive is currently not implemented.
    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
  }

  size_t page_size = os::vm_page_size();
  if (UseLargePages && UseLargePagesInMetaspace) {
    page_size = os::large_page_size();
  }

  _commit_alignment  = page_size;
  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());

  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
  // override if MaxMetaspaceSize was set on the command line or not.
  // This information is needed later to conform to the specification of the
  // java.lang.management.MemoryUsage API.
  //
  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
  // globals.hpp to the aligned value, but this is not possible, since the
  // alignment depends on other flags being parsed.
3000
  MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3001 3002 3003 3004 3005

  if (MetaspaceSize > MaxMetaspaceSize) {
    MetaspaceSize = MaxMetaspaceSize;
  }

3006
  MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3007 3008 3009 3010 3011 3012 3013

  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");

  if (MetaspaceSize < 256*K) {
    vm_exit_during_initialization("Too small initial Metaspace size");
  }

3014 3015
  MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
  MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3016

3017
  CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3018
  set_compressed_class_space_size(CompressedClassSpaceSize);
3019 3020
}

3021 3022 3023
void Metaspace::global_initialize() {
  // Initialize the alignment for shared spaces.
  int max_alignment = os::vm_page_size();
3024 3025
  size_t cds_total = 0;

3026 3027 3028
  MetaspaceShared::set_max_alignment(max_alignment);

  if (DumpSharedSpaces) {
3029
    SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3030
    SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3031 3032
    SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
    SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3033 3034 3035 3036

    // Initialize with the sum of the shared space sizes.  The read-only
    // and read write metaspace chunks will be allocated out of this and the
    // remainder is the misc code and data chunks.
3037
    cds_total = FileMapInfo::shared_spaces_size();
3038
    cds_total = align_size_up(cds_total, _reserve_alignment);
3039
    _space_list = new VirtualSpaceList(cds_total/wordSize);
3040
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3041

3042 3043 3044 3045
    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to dump shared archive.", NULL);
    }

3046
#ifdef _LP64
3047
    if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3048 3049 3050
      vm_exit_during_initialization("Unable to dump shared archive.",
          err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
                  SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3051 3052
                  "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
                  cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3053 3054
    }

3055 3056
    // Set the compressed klass pointer base so that decoding of these pointers works
    // properly when creating the shared archive.
3057 3058
    assert(UseCompressedOops && UseCompressedClassPointers,
      "UseCompressedOops and UseCompressedClassPointers must be set");
3059 3060 3061 3062 3063 3064 3065 3066 3067
    Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
    if (TraceMetavirtualspaceAllocation && Verbose) {
      gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
                             _space_list->current_virtual_space()->bottom());
    }

    Universe::set_narrow_klass_shift(0);
#endif

3068 3069 3070 3071
  } else {
    // If using shared space, open the file that contains the shared space
    // and map in the memory before initializing the rest of metaspace (so
    // the addresses don't conflict)
3072
    address cds_address = NULL;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    if (UseSharedSpaces) {
      FileMapInfo* mapinfo = new FileMapInfo();
      memset(mapinfo, 0, sizeof(FileMapInfo));

      // Open the shared archive file, read and validate the header. If
      // initialization fails, shared spaces [UseSharedSpaces] are
      // disabled and the file is closed.
      // Map in spaces now also
      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
        FileMapInfo::set_current_info(mapinfo);
3083 3084
        cds_total = FileMapInfo::shared_spaces_size();
        cds_address = (address)mapinfo->region_base(0);
3085 3086 3087 3088
      } else {
        assert(!mapinfo->is_open() && !UseSharedSpaces,
               "archive file not closed or shared spaces not disabled.");
      }
3089 3090 3091
    }

#ifdef _LP64
3092
    // If UseCompressedClassPointers is set then allocate the metaspace area
3093 3094 3095
    // above the heap and above the CDS area (if it exists).
    if (using_class_space()) {
      if (UseSharedSpaces) {
3096 3097 3098
        char* cds_end = (char*)(cds_address + cds_total);
        cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3099
      } else {
3100 3101
        char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
        allocate_metaspace_compressed_klass_ptrs(base, 0);
3102
      }
3103
    }
3104
#endif
3105

3106
    // Initialize these before initializing the VirtualSpaceList
3107
    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3108 3109 3110 3111 3112
    _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
    // Make the first class chunk bigger than a medium chunk so it's not put
    // on the medium chunk list.   The next chunk will be small and progress
    // from there.  This size calculated by -version.
    _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3113
                                       (CompressedClassSpaceSize/BytesPerWord)*2);
3114
    _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3115 3116
    // Arbitrarily set the initial virtual space to a multiple
    // of the boot class loader size.
3117 3118 3119
    size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
    word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());

3120 3121
    // Initialize the list of virtual spaces.
    _space_list = new VirtualSpaceList(word_size);
3122
    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3123 3124 3125 3126

    if (!_space_list->initialization_succeeded()) {
      vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
    }
3127
  }
3128 3129

  MetaspaceGC::initialize();
3130 3131 3132 3133 3134 3135 3136 3137 3138
}

Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
                                               size_t chunk_word_size,
                                               size_t chunk_bunch) {
  // Get a chunk from the chunk freelist
  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
  if (chunk != NULL) {
    return chunk;
3139
  }
3140

3141
  return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3142 3143
}

3144
void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3145 3146 3147

  assert(space_list() != NULL,
    "Metadata VirtualSpaceList has not been initialized");
3148 3149
  assert(chunk_manager_metadata() != NULL,
    "Metadata ChunkManager has not been initialized");
3150

3151
  _vsm = new SpaceManager(NonClassType, lock);
3152 3153 3154
  if (_vsm == NULL) {
    return;
  }
3155 3156
  size_t word_size;
  size_t class_word_size;
3157
  vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3158

3159
  if (using_class_space()) {
3160 3161 3162 3163
  assert(class_space_list() != NULL,
    "Class VirtualSpaceList has not been initialized");
  assert(chunk_manager_class() != NULL,
    "Class ChunkManager has not been initialized");
3164

3165
    // Allocate SpaceManager for classes.
3166
    _class_vsm = new SpaceManager(ClassType, lock);
3167 3168 3169
    if (_class_vsm == NULL) {
      return;
    }
3170 3171 3172 3173 3174
  }

  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  // Allocate chunk for metadata objects
3175 3176 3177
  Metachunk* new_chunk = get_initialization_chunk(NonClassType,
                                                  word_size,
                                                  vsm()->medium_chunk_bunch());
3178 3179 3180 3181 3182 3183 3184
  assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
  if (new_chunk != NULL) {
    // Add to this manager's list of chunks in use and current_chunk().
    vsm()->add_chunk(new_chunk, true);
  }

  // Allocate chunk for class metadata objects
3185
  if (using_class_space()) {
3186 3187 3188
    Metachunk* class_chunk = get_initialization_chunk(ClassType,
                                                      class_word_size,
                                                      class_vsm()->medium_chunk_bunch());
3189 3190 3191
    if (class_chunk != NULL) {
      class_vsm()->add_chunk(class_chunk, true);
    }
3192
  }
3193 3194 3195

  _alloc_record_head = NULL;
  _alloc_record_tail = NULL;
3196 3197
}

3198 3199 3200 3201 3202
size_t Metaspace::align_word_size_up(size_t word_size) {
  size_t byte_size = word_size * wordSize;
  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
}

3203 3204
MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
  // DumpSharedSpaces doesn't use class metadata area (yet)
3205
  // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3206
  if (is_class_space_allocation(mdtype)) {
3207
    return  class_vsm()->allocate(word_size);
3208
  } else {
3209
    return  vsm()->allocate(word_size);
3210 3211 3212
  }
}

3213
MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3214 3215 3216 3217 3218 3219
  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
  assert(delta_bytes > 0, "Must be");

  size_t after_inc = MetaspaceGC::inc_capacity_until_GC(delta_bytes);
  size_t before_inc = after_inc - delta_bytes;

3220 3221
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3222
        " to " SIZE_FORMAT, before_inc, after_inc);
3223
  }
3224

3225
  return allocate(word_size, mdtype);
3226 3227
}

3228 3229 3230 3231 3232 3233 3234
// Space allocated in the Metaspace.  This may
// be across several metadata virtual spaces.
char* Metaspace::bottom() const {
  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
  return (char*)vsm()->current_chunk()->bottom();
}

3235
size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3236 3237 3238 3239 3240
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
  }
3241 3242
}

E
ehelin 已提交
3243
size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3244 3245 3246 3247 3248
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_free_in_chunks_in_use();
  }
3249 3250 3251 3252 3253 3254 3255
}

// Space capacity in the Metaspace.  It includes
// space in the list of chunks from which allocations
// have been made. Don't include space in the global freelist and
// in the space available in the dictionary which
// is already counted in some chunk.
3256
size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3257 3258 3259 3260 3261
  if (mdtype == ClassType) {
    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
  } else {
    return vsm()->sum_capacity_in_chunks_in_use();
  }
3262 3263
}

3264 3265 3266 3267 3268 3269 3270 3271
size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
  return used_words_slow(mdtype) * BytesPerWord;
}

size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
  return capacity_words_slow(mdtype) * BytesPerWord;
}

3272 3273 3274
void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
  if (SafepointSynchronize::is_at_safepoint()) {
    assert(Thread::current()->is_VM_thread(), "should be the VM thread");
3275
    // Don't take Heap_lock
3276
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3277 3278 3279 3280 3281 3282 3283
    if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3284 3285
    if (is_class && using_class_space()) {
      class_vsm()->deallocate(ptr, word_size);
3286
    } else {
3287
      vsm()->deallocate(ptr, word_size);
3288 3289
    }
  } else {
3290
    MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3291

3292 3293 3294 3295 3296 3297 3298
    if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
3299
    if (is_class && using_class_space()) {
3300
      class_vsm()->deallocate(ptr, word_size);
3301
    } else {
3302
      vsm()->deallocate(ptr, word_size);
3303 3304 3305 3306
    }
  }
}

3307

3308
MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3309
                              bool read_only, MetaspaceObj::Type type, TRAPS) {
3310 3311 3312 3313 3314 3315 3316
  if (HAS_PENDING_EXCEPTION) {
    assert(false, "Should not allocate with exception pending");
    return NULL;  // caller does a CHECK_NULL too
  }

  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
        "ClassLoaderData::the_null_class_loader_data() should have been used.");
3317

3318 3319 3320 3321
  // Allocate in metaspaces without taking out a lock, because it deadlocks
  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
  // to revisit this for application class data sharing.
  if (DumpSharedSpaces) {
3322 3323
    assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
    Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3324
    MetaWord* result = space->allocate(word_size, NonClassType);
3325 3326 3327
    if (result == NULL) {
      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
    }
3328 3329 3330 3331 3332 3333 3334

    space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));

    // Zero initialize.
    Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

    return result;
3335 3336
  }

3337 3338 3339 3340
  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;

  // Try to allocate metadata.
  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3341 3342

  if (result == NULL) {
3343 3344 3345
    // Allocation failed.
    if (is_init_completed()) {
      // Only start a GC if the bootstrapping has completed.
3346

3347 3348 3349
      // Try to clean out some memory and retry.
      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
          loader_data, word_size, mdtype);
3350 3351
    }
  }
3352 3353

  if (result == NULL) {
3354
    report_metadata_oome(loader_data, word_size, mdtype, CHECK_NULL);
3355 3356
  }

3357 3358 3359 3360
  // Zero initialize.
  Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);

  return result;
3361 3362
}

3363 3364 3365 3366 3367
size_t Metaspace::class_chunk_size(size_t word_size) {
  assert(using_class_space(), "Has to use class space");
  return class_vsm()->calc_chunk_size(word_size);
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetadataType mdtype, TRAPS) {
  // If result is still null, we are out of memory.
  if (Verbose && TraceMetadataChunkAllocation) {
    gclog_or_tty->print_cr("Metaspace allocation failed for size "
        SIZE_FORMAT, word_size);
    if (loader_data->metaspace_or_null() != NULL) {
      loader_data->dump(gclog_or_tty);
    }
    MetaspaceAux::dump(gclog_or_tty);
  }

3379 3380 3381 3382 3383 3384 3385 3386 3387
  bool out_of_compressed_class_space = false;
  if (is_class_space_allocation(mdtype)) {
    Metaspace* metaspace = loader_data->metaspace_non_null();
    out_of_compressed_class_space =
      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
      CompressedClassSpaceSize;
  }

3388
  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3389 3390 3391
  const char* space_string = out_of_compressed_class_space ?
    "Compressed class space" : "Metaspace";

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
  report_java_out_of_memory(space_string);

  if (JvmtiExport::should_post_resource_exhausted()) {
    JvmtiExport::post_resource_exhausted(
        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
        space_string);
  }

  if (!is_init_completed()) {
    vm_exit_during_initialization("OutOfMemoryError", space_string);
  }

3404
  if (out_of_compressed_class_space) {
3405 3406 3407 3408 3409 3410
    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
  } else {
    THROW_OOP(Universe::out_of_memory_error_metaspace());
  }
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
  assert(DumpSharedSpaces, "sanity");

  AllocRecord *rec = new AllocRecord((address)ptr, type, (int)word_size * HeapWordSize);
  if (_alloc_record_head == NULL) {
    _alloc_record_head = _alloc_record_tail = rec;
  } else {
    _alloc_record_tail->_next = rec;
    _alloc_record_tail = rec;
  }
}

void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
  assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");

  address last_addr = (address)bottom();

  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
    address ptr = rec->_ptr;
    if (last_addr < ptr) {
      closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
    }
    closure->doit(ptr, rec->_type, rec->_byte_size);
    last_addr = ptr + rec->_byte_size;
  }

  address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
  if (last_addr < top) {
    closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
  }
}

3443 3444 3445 3446
void Metaspace::purge(MetadataType mdtype) {
  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
}

3447 3448 3449
void Metaspace::purge() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
3450
  purge(NonClassType);
3451
  if (using_class_space()) {
3452
    purge(ClassType);
3453
  }
3454 3455
}

3456 3457 3458
void Metaspace::print_on(outputStream* out) const {
  // Print both class virtual space counts and metaspace.
  if (Verbose) {
3459 3460
    vsm()->print_on(out);
    if (using_class_space()) {
3461
      class_vsm()->print_on(out);
3462
    }
3463 3464 3465
  }
}

3466
bool Metaspace::contains(const void * ptr) {
3467 3468 3469
  if (MetaspaceShared::is_in_shared_space(ptr)) {
    return true;
  }
3470 3471 3472 3473 3474
  // This is checked while unlocked.  As long as the virtualspaces are added
  // at the end, the pointer will be in one of them.  The virtual spaces
  // aren't deleted presently.  When they are, some sort of locking might
  // be needed.  Note, locking this can cause inversion problems with the
  // caller in MetaspaceObj::is_metadata() function.
3475
  return space_list()->contains(ptr) ||
3476
         (using_class_space() && class_space_list()->contains(ptr));
3477 3478 3479 3480
}

void Metaspace::verify() {
  vsm()->verify();
3481 3482 3483
  if (using_class_space()) {
    class_vsm()->verify();
  }
3484 3485 3486 3487 3488
}

void Metaspace::dump(outputStream* const out) const {
  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
  vsm()->dump(out);
3489 3490 3491 3492
  if (using_class_space()) {
    out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
    class_vsm()->dump(out);
  }
3493
}
3494 3495 3496 3497 3498

/////////////// Unit tests ///////////////

#ifndef PRODUCT

3499
class TestMetaspaceAuxTest : AllStatic {
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
 public:
  static void test_reserved() {
    size_t reserved = MetaspaceAux::reserved_bytes();

    assert(reserved > 0, "assert");

    size_t committed  = MetaspaceAux::committed_bytes();
    assert(committed <= reserved, "assert");

    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
    assert(reserved_metadata > 0, "assert");
    assert(reserved_metadata <= reserved, "assert");

    if (UseCompressedClassPointers) {
      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
      assert(reserved_class > 0, "assert");
      assert(reserved_class < reserved, "assert");
    }
  }

  static void test_committed() {
    size_t committed = MetaspaceAux::committed_bytes();

    assert(committed > 0, "assert");

    size_t reserved  = MetaspaceAux::reserved_bytes();
    assert(committed <= reserved, "assert");

    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
    assert(committed_metadata > 0, "assert");
    assert(committed_metadata <= committed, "assert");

    if (UseCompressedClassPointers) {
      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
      assert(committed_class > 0, "assert");
      assert(committed_class < committed, "assert");
    }
  }

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
  static void test_virtual_space_list_large_chunk() {
    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
    // vm_allocation_granularity aligned on Windows.
    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
    large_size += (os::vm_page_size()/BytesPerWord);
    vs_list->get_new_chunk(large_size, large_size, 0);
  }

3549 3550 3551
  static void test() {
    test_reserved();
    test_committed();
3552
    test_virtual_space_list_large_chunk();
3553 3554 3555
  }
};

3556 3557
void TestMetaspaceAux_test() {
  TestMetaspaceAuxTest::test();
3558 3559
}

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
class TestVirtualSpaceNodeTest {
  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
                                          size_t& num_small_chunks,
                                          size_t& num_specialized_chunks) {
    num_medium_chunks = words_left / MediumChunk;
    words_left = words_left % MediumChunk;

    num_small_chunks = words_left / SmallChunk;
    words_left = words_left % SmallChunk;
    // how many specialized chunks can we get?
    num_specialized_chunks = words_left / SpecializedChunk;
    assert(words_left % SpecializedChunk == 0, "should be nothing left");
  }

 public:
  static void test() {
    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
    const size_t vsn_test_size_words = MediumChunk  * 4;
    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;

    // The chunk sizes must be multiples of eachother, or this will fail
    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);

    { // No committed memory in VSN
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
    }

    { // All of VSN is committed, half is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
      vsn.get_chunk_vs(MediumChunk);
      vsn.get_chunk_vs(MediumChunk);
      vsn.retire(&cm);
      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
    }

    { // 4 pages of VSN is committed, some is used by chunks
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
      assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
      vsn.initialize();
      vsn.expand_by(page_chunks, page_chunks);
      vsn.get_chunk_vs(SmallChunk);
      vsn.get_chunk_vs(SpecializedChunk);
      vsn.retire(&cm);

      // committed - used = words left to retire
      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;

      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

    { // Half of VSN is committed, a humongous chunk is used
      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
      VirtualSpaceNode vsn(vsn_test_size_bytes);
      vsn.initialize();
      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
      vsn.retire(&cm);

      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);

      assert(num_medium_chunks == 0, "should not get any medium chunks");
      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
    }

  }
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

#define assert_is_available_positive(word_size) \
  assert(vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

#define assert_is_available_negative(word_size) \
  assert(!vsn.is_available(word_size), \
    err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
            "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
            (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));

  static void test_is_available_positive() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available accepts the committed size.
    assert_is_available_positive(commit_word_size);

    // Check that is_available accepts half the committed size.
    size_t expand_word_size = commit_word_size / 2;
    assert_is_available_positive(expand_word_size);
  }

  static void test_is_available_negative() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Check that is_available doesn't accept a too large size.
    size_t two_times_commit_word_size = commit_word_size * 2;
    assert_is_available_negative(two_times_commit_word_size);
  }

  static void test_is_available_overflow() {
    // Reserve some memory.
    VirtualSpaceNode vsn(os::vm_allocation_granularity());
    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");

    // Commit some memory.
    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
    assert(expanded, "Failed to commit");

    // Calculate a size that will overflow the virtual space size.
    void* virtual_space_max = (void*)(uintptr_t)-1;
    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
    size_t overflow_size = bottom_to_max + BytesPerWord;
    size_t overflow_word_size = overflow_size / BytesPerWord;

    // Check that is_available can handle the overflow.
    assert_is_available_negative(overflow_word_size);
  }

  static void test_is_available() {
    TestVirtualSpaceNodeTest::test_is_available_positive();
    TestVirtualSpaceNodeTest::test_is_available_negative();
    TestVirtualSpaceNodeTest::test_is_available_overflow();
  }
3715 3716 3717 3718
};

void TestVirtualSpaceNode_test() {
  TestVirtualSpaceNodeTest::test();
3719
  TestVirtualSpaceNodeTest::test_is_available();
3720 3721
}

3722
#endif