g1CollectedHeap.cpp 251.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25
#include "precompiled.hpp"
J
johnc 已提交
26
#include "code/codeCache.hpp"
27 28 29 30 31
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
32
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
33 34
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
35
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
36
#include "gc_implementation/g1/g1EvacFailure.hpp"
37
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
38
#include "gc_implementation/g1/g1Log.hpp"
39 40 41
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
P
pliden 已提交
42
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
43
#include "gc_implementation/g1/g1YCTypes.hpp"
44
#include "gc_implementation/g1/heapRegion.inline.hpp"
45 46 47
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
48 49 50 51
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
52 53 54
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
55
#include "memory/iterator.hpp"
56
#include "memory/referenceProcessor.hpp"
57 58 59
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/vmThread.hpp"
60
#include "utilities/ticks.hpp"
61

62 63
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

64 65 66
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
67
#define YOUNG_LIST_VERBOSE 0
68 69 70 71 72 73
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
74 75 76 77 78
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
79

80 81 82 83 84 85
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
S
sla 已提交
86
// SharedHeap::process_strong_roots() which calls eventually to
87 88 89 90 91
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

92 93 94 95 96 97 98 99 100 101 102 103 104 105
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
106
    bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
107 108 109 110 111
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
130
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
161 162
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}

163 164 165 166 167 168 169 170 171 172
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

173 174 175 176
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
177 178 179 180 181 182 183 184 185
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

186
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
187 188 189 190
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
191
  assert(hr->is_survivor(), "should be flagged as survivor region");
192 193 194 195
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
196
    _survivor_tail = hr;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
221
  _survivor_tail = NULL;
222 223 224 225 226 227 228 229 230 231
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

232
  uint length = 0;
233 234 235
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
236
    if (!curr->is_young()) {
237
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
238
                             "incorrectly tagged (y: %d, surv: %d)",
239
                             curr->bottom(), curr->end(),
240
                             curr->is_young(), curr->is_survivor());
241 242 243 244 245 246 247 248 249 250
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
251
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
252 253 254
                           length, _length);
  }

255
  return ret;
256 257
}

258
bool YoungList::check_list_empty(bool check_sample) {
259 260 261
  bool ret = true;

  if (_length != 0) {
262
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

278
  return ret;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
295 296 297 298 299 300 301 302 303 304 305 306
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

307 308 309 310 311 312 313 314 315 316 317 318 319 320
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
321
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
322

323
  int young_index_in_cset = 0;
324 325 326
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
327
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
328 329 330 331 332

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
333
    young_index_in_cset += 1;
334
  }
335
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
336 337
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

338 339
  _head   = _survivor_head;
  _length = _survivor_length;
340
  if (_survivor_head != NULL) {
341 342 343
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
344 345
  }

346 347 348 349
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
350

351
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
352 353 354 355 356

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
357 358
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
359 360 361 362 363 364 365

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
366 367
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
368 369
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
370
                             curr->age_in_surv_rate_group_cond());
371 372 373 374 375 376 377
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

431
void G1CollectedHeap::stop_conc_gc_threads() {
432
  _cg1r->stop();
433 434 435
  _cmThread->stop();
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
454
// can move in an incremental collection.
455 456 457 458 459
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
460 461
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
462 463 464 465 466 467
     return false;
  } else {
    return !hr->isHumongous();
  }
}

468 469
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
470
  CardTableModRefBS* ct_bs = g1_barrier_set();
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

519
HeapRegion*
520
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
521 522 523 524 525
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
526
                               "secondary_free_list has %u entries",
527 528 529 530 531 532 533 534 535
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
536
      HeapRegion* res = _free_list.remove_region(is_old);
537 538 539 540 541 542 543 544
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
545
    // Wait here until we get notified either when (a) there are no
546 547 548 549 550 551 552 553 554 555 556
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
557

558
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
559
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
560 561
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
562

563 564 565 566 567 568 569
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
570
      res = new_region_try_secondary_free_list(is_old);
571 572 573 574 575
      if (res != NULL) {
        return res;
      }
    }
  }
576 577 578

  res = _free_list.remove_region(is_old);

579 580 581 582 583
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
584
    res = new_region_try_secondary_free_list(is_old);
585
  }
586 587 588 589 590 591 592
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

593 594 595 596 597
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
598
    if (expand(word_size * HeapWordSize)) {
599 600
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
601 602 603
      // region size, the free list should in theory not be empty.
      // In either case remove_region() will check for NULL.
      res = _free_list.remove_region(is_old);
604 605
    } else {
      _expand_heap_after_alloc_failure = false;
606
    }
607 608 609 610
  }
  return res;
}

611 612
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
613 614 615
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

616
  uint first = G1_NULL_HRS_INDEX;
617 618
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
S
sla 已提交
619
    // path. The caller will attempt the expansion if this fails, so
620
    // let's not try to expand here too.
621
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
622 623 624
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
625
      first = G1_NULL_HRS_INDEX;
626 627 628 629 630 631 632 633 634 635 636
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
637
    append_secondary_free_list_if_not_empty_with_lock();
638 639

    if (free_regions() >= num_regions) {
640 641
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
642
        for (uint i = first; i < first + num_regions; ++i) {
643
          HeapRegion* hr = region_at(i);
644
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
645
          assert(is_on_master_free_list(hr), "sanity");
646 647 648 649 650 651 652 653 654
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
655
HeapWord*
656 657
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
658
                                                           size_t word_size) {
659
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
660 661 662 663
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
664
  uint last = first + num_regions;
T
tonyp 已提交
665 666 667 668 669 670 671 672 673 674

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
675
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
676 677 678
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
679
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
680 681 682 683
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
684
  // should also match the end of the last region in the series.
T
tonyp 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
714
  for (uint i = first + 1; i < last; ++i) {
715
    hr = region_at(i);
T
tonyp 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
736 737 738 739 740 741 742 743 744 745 746
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
760
  for (uint i = first + 1; i < last; ++i) {
761
    hr = region_at(i);
T
tonyp 已提交
762 763 764 765 766
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
767
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
768 769 770 771
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
772
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

788 789 790
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
791
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
792
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
793

794
  verify_region_sets_optional();
795

796 797 798 799 800
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
801
  if (first == G1_NULL_HRS_INDEX) {
802
    // The only thing we can do now is attempt expansion.
803
    if (fs + x_num >= num_regions) {
804 805 806 807 808 809 810 811 812 813
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

814 815 816 817 818
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
819
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
820 821 822
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
823 824
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
825 826
    }
  }
827

T
tonyp 已提交
828
  HeapWord* result = NULL;
829
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
830 831 832
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
833 834 835 836 837

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
838
  }
839 840

  verify_region_sets_optional();
T
tonyp 已提交
841 842

  return result;
843 844
}

845 846 847
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
848

849
  unsigned int dummy_gc_count_before;
850 851
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
852 853 854
}

HeapWord*
855 856 857
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
858

S
sla 已提交
859
  // Loop until the allocation is satisfied, or unsatisfied after GC.
860
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
861
    unsigned int gc_count_before;
862

863 864
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
865
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
866
    } else {
867
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
868 869 870 871
    }
    if (result != NULL) {
      return result;
    }
872

873 874 875 876
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
877

878 879 880 881 882 883
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
884
        // Allocations that take place on VM operations do not do any
885 886
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
887 888 889
        dirty_young_block(result, word_size);
      }
      return result;
890
    } else {
891 892 893
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
894 895
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
896 897 898 899 900
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
901
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
902 903 904
    }
  }

905
  ShouldNotReachHere();
906 907 908
  return NULL;
}

909
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
910 911
                                           unsigned int *gc_count_before_ret,
                                           int* gclocker_retry_count_ret) {
912 913 914 915 916
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
917

918 919 920 921 922 923 924
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
925
  HeapWord* result = NULL;
926 927 928
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
929

930 931 932 933 934 935 936
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
937
      }
938

939 940 941
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
942

943 944
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
945 946
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
947 948 949 950 951 952 953 954
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
955 956 957 958 959 960 961 962 963 964 965 966
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
967 968
      }
    }
969

970 971
    if (should_try_gc) {
      bool succeeded;
972 973
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
974
      if (result != NULL) {
975
        assert(succeeded, "only way to get back a non-NULL result");
976 977 978
        return result;
      }

979 980 981 982 983
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
984
        *gc_count_before_ret = total_collections();
985 986 987
        return NULL;
      }
    } else {
988 989 990 991 992
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
993 994 995
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
996
      GC_locker::stall_until_clear();
997
      (*gclocker_retry_count_ret) += 1;
998 999
    }

S
sla 已提交
1000
    // We can reach here if we were unsuccessful in scheduling a
1001 1002 1003 1004 1005 1006 1007 1008 1009
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1010
    if (result != NULL) {
1011
      return result;
1012 1013
    }

1014 1015 1016
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1017
      warning("G1CollectedHeap::attempt_allocation_slow() "
1018
              "retries %d times", try_count);
1019 1020 1021
    }
  }

1022 1023
  ShouldNotReachHere();
  return NULL;
1024 1025
}

1026
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1027 1028
                                          unsigned int * gc_count_before_ret,
                                          int* gclocker_retry_count_ret) {
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1040
  assert_heap_not_locked_and_not_at_safepoint();
1041 1042
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1043

1044 1045 1046 1047 1048
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1049 1050
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1051 1052 1053
    collect(GCCause::_g1_humongous_allocation);
  }

1054 1055 1056 1057 1058
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1059
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1060
    bool should_try_gc;
1061
    unsigned int gc_count_before;
1062

1063
    {
1064
      MutexLockerEx x(Heap_lock);
1065

1066 1067 1068 1069
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1070 1071
      if (result != NULL) {
        return result;
1072
      }
1073

1074 1075 1076
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1089 1090 1091
      }
    }

1092 1093 1094 1095
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1096

1097
      bool succeeded;
1098 1099
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1110
        *gc_count_before_ret = total_collections();
1111
        return NULL;
1112 1113
      }
    } else {
1114 1115 1116 1117 1118
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1119 1120 1121
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1122
      GC_locker::stall_until_clear();
1123
      (*gclocker_retry_count_ret) += 1;
1124 1125
    }

S
sla 已提交
1126
    // We can reach here if we were unsuccessful in scheduling a
1127 1128 1129 1130 1131 1132
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1133 1134
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1135 1136
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1137 1138
    }
  }
1139 1140

  ShouldNotReachHere();
1141
  return NULL;
1142 1143
}

1144 1145
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1146
  assert_at_safepoint(true /* should_be_vm_thread */);
1147 1148 1149
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1150

1151 1152 1153 1154
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1155 1156 1157 1158 1159
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1160
  }
1161 1162

  ShouldNotReachHere();
1163 1164 1165
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1166
  G1CollectedHeap* _g1h;
1167 1168
  ModRefBarrierSet* _mr_bs;
public:
1169
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1170 1171
    _g1h(g1h), _mr_bs(mr_bs) {}

1172
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1173 1174
    HeapRegionRemSet* hrrs = r->rem_set();

1175
    if (r->continuesHumongous()) {
J
johnc 已提交
1176 1177 1178
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1179
      return false;
1180
    }
J
johnc 已提交
1181

1182
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1183
    hrrs->clear();
1184 1185 1186 1187 1188 1189
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1190

1191 1192 1193 1194
    return false;
  }
};

1195
void G1CollectedHeap::clear_rsets_post_compaction() {
1196
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1197 1198
  heap_region_iterate(&rs_clear);
}
1199

1200 1201 1202 1203 1204 1205
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1206
    _cl(g1->g1_rem_set(), worker_i),
1207 1208 1209
    _worker_i(worker_i),
    _g1h(g1)
  { }
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1228 1229 1230
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1231
                                          _g1->workers()->active_workers(),
1232 1233 1234 1235
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1247
        if (hr->region_num() == 1) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1265 1266 1267 1268 1269
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1270
bool G1CollectedHeap::do_collection(bool explicit_gc,
1271
                                    bool clear_all_soft_refs,
1272
                                    size_t word_size) {
1273 1274
  assert_at_safepoint(true /* should_be_vm_thread */);

1275
  if (GC_locker::check_active_before_gc()) {
1276
    return false;
1277 1278
  }

S
sla 已提交
1279
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1280
  gc_timer->register_gc_start();
S
sla 已提交
1281 1282 1283 1284

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1285
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1286 1287
  ResourceMark rm;

1288
  print_heap_before_gc();
S
sla 已提交
1289
  trace_heap_before_gc(gc_tracer);
1290

1291
  size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1292

1293
  verify_region_sets_optional();
1294

1295 1296 1297 1298 1299
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1300 1301 1302 1303
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1304
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1305 1306
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1307

1308
    {
S
sla 已提交
1309
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1329

1330 1331 1332
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1333

1334
      assert(used() == recalculate_used(), "Should be equal");
1335

1336
      verify_before_gc();
1337

S
sla 已提交
1338
      pre_full_gc_dump(gc_timer);
1339

1340
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1341

1342 1343 1344 1345 1346
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1347

1348 1349 1350 1351
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1352

1353 1354 1355 1356
      // Make sure we'll choose a new allocation region afterwards.
      release_mutator_alloc_region();
      abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();
1357

1358 1359 1360 1361
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1362

1363 1364 1365 1366 1367 1368 1369
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1370

1371 1372
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1373

1374 1375 1376
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1377

1378 1379
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1380

1381 1382
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1383

1384 1385
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1386

1387 1388 1389 1390 1391
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1392

1393 1394
      assert(free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);
1395

1396 1397 1398
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1399

1400
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1401

1402
      MemoryService::track_memory_usage();
1403

1404 1405
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1406

1407 1408
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1409
      MetaspaceAux::verify_metrics();
1410

1411 1412 1413 1414 1415 1416
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1417

1418 1419
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1420
      // sets, and clear all cards.  Later we will rebuild remembered
1421 1422 1423
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1424

1425 1426
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1427

1428 1429 1430 1431
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1432

1433 1434 1435
        print_hrs_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1436

1437 1438 1439 1440
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1441
      }
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1479

J
johnc 已提交
1480 1481 1482
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1483 1484 1485
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1486

1487 1488 1489
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1490

1491 1492 1493 1494 1495
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(!G1DeferredRSUpdate
             || (G1DeferredRSUpdate &&
                (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1496

1497 1498 1499 1500 1501
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1502

1503 1504
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1505

1506 1507
      _hrs.verify_optional();
      verify_region_sets_optional();
1508

1509 1510
      verify_after_gc();

1511 1512 1513
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1514

1515 1516 1517 1518
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
1519

1520
      init_mutator_alloc_region();
1521

1522 1523
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1524

1525 1526 1527
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1528

1529 1530 1531 1532 1533
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1534

1535 1536
      gc_epilogue(true);
    }
1537

1538
    if (G1Log::finer()) {
1539
      g1_policy()->print_detailed_heap_transition(true /* full */);
1540
    }
1541 1542

    print_heap_after_gc();
S
sla 已提交
1543 1544 1545
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1546

1547
    gc_timer->register_gc_end();
S
sla 已提交
1548
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1549
  }
1550

1551
  return true;
1552 1553 1554
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1555 1556 1557 1558 1559 1560 1561 1562
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1575 1576 1577 1578
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1579
  // We don't have floating point command-line arguments
1580
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1581
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1582
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1583 1584
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1621

1622
  if (capacity_after_gc < minimum_desired_capacity) {
1623 1624
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1635 1636

    // No expansion, now see if we want to shrink
1637
  } else if (capacity_after_gc > maximum_desired_capacity) {
1638 1639
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1640 1641 1642 1643 1644 1645 1646 1647 1648
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1649 1650 1651 1652 1653 1654
    shrink(shrink_bytes);
  }
}


HeapWord*
1655 1656
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1657
  assert_at_safepoint(true /* should_be_vm_thread */);
1658 1659 1660

  *succeeded = true;
  // Let's attempt the allocation first.
1661 1662 1663
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1664 1665 1666 1667
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1668 1669 1670 1671 1672 1673 1674

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1675
    assert(*succeeded, "sanity");
1676 1677 1678
    return result;
  }

1679 1680 1681 1682 1683 1684 1685 1686
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1687

1688 1689
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1690
                                  true /* expect_null_mutator_alloc_region */);
1691
  if (result != NULL) {
1692
    assert(*succeeded, "sanity");
1693 1694 1695
    return result;
  }

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1707
                                  true /* expect_null_mutator_alloc_region */);
1708
  if (result != NULL) {
1709
    assert(*succeeded, "sanity");
1710 1711 1712
    return result;
  }

1713
  assert(!collector_policy()->should_clear_all_soft_refs(),
1714
         "Flag should have been handled and cleared prior to this point");
1715

1716 1717 1718 1719
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1720
  assert(*succeeded, "sanity");
1721 1722 1723 1724 1725 1726 1727 1728 1729
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1730 1731 1732
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1733

1734
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1735 1736 1737 1738 1739
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1740
  if (expand(expand_bytes)) {
1741
    _hrs.verify_optional();
1742 1743
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1744
                                 false /* expect_null_mutator_alloc_region */);
1745
  }
1746
  return NULL;
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
1760 1761
  // Tell the hot card cache about the update
  _cg1r->hot_card_cache()->resize_card_counts(capacity());
1762 1763
}

1764 1765
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1766 1767
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1768 1769 1770 1771 1772
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1773

1774 1775 1776 1777 1778 1779 1780
  if (_g1_storage.uncommitted_size() == 0) {
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1781 1782
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1783 1784
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1810
    }
1811
    _free_list.add_as_tail(&expansion_list);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1822
    g1_policy()->record_new_heap_size(n_regions());
1823
  } else {
1824 1825 1826
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1827 1828 1829 1830 1831
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
1832
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1833 1834
    }
  }
1835
  return successful;
1836 1837
}

1838
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1839 1840 1841 1842
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1843 1844 1845
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

  uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1846
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1847
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1848 1849 1850 1851 1852 1853

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1854 1855 1856 1857 1858
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
    _g1_storage.shrink_by(shrunk_bytes);
    HeapWord* new_end = (HeapWord*) _g1_storage.high();

1859
    if (_hr_printer.is_active()) {
1860 1861
      HeapWord* curr = old_end;
      while (curr > new_end) {
1862 1863 1864 1865 1866 1867
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
    }

1868
    _expansion_regions += num_regions_removed;
1869 1870
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1871
    g1_policy()->record_new_heap_size(n_regions());
1872 1873 1874 1875
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1876 1877 1878 1879
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1880 1881
  verify_region_sets_optional();

1882 1883 1884 1885 1886
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1887 1888 1889
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1890
  tear_down_region_sets(true /* free_list_only */);
1891
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1892
  rebuild_region_sets(true /* free_list_only */);
1893

1894
  _hrs.verify_optional();
1895
  verify_region_sets_optional();
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1908
  _dirty_card_queue_set(false),
J
johnc 已提交
1909
  _into_cset_dirty_card_queue_set(false),
1910 1911 1912 1913
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1914 1915
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1916
  _evac_failure_scan_stack(NULL),
1917
  _mark_in_progress(false),
1918
  _cg1r(NULL), _summary_bytes_used(0),
1919
  _g1mm(NULL),
1920 1921
  _refine_cte_cl(NULL),
  _full_collection(false),
1922 1923 1924 1925
  _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1926
  _free_regions_coming(false),
1927 1928
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1929
  _retained_old_gc_alloc_region(NULL),
1930 1931
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1932
  _expand_heap_after_alloc_failure(true),
1933
  _surviving_young_words(NULL),
1934 1935
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1936
  _concurrent_cycle_started(false),
1937
  _in_cset_fast_test(NULL),
1938
  _in_cset_fast_test_base(NULL),
1939 1940
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1941 1942 1943 1944 1945 1946 1947
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1948 1949 1950
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1951 1952 1953

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1954 1955 1956
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1957
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1958 1959
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1960 1961
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1962
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1963

1964 1965 1966 1967
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1968
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1969
  }
1970 1971
  clear_cset_start_regions();

1972 1973 1974
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1975 1976 1977 1978
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1979
  CollectedHeap::pre_initialize();
1980 1981
  os::enable_vtime();

1982 1983
  G1Log::init();

1984 1985 1986 1987
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1988 1989 1990 1991
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1992 1993 1994 1995 1996 1997 1998 1999 2000
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
2001
  size_t heap_alignment = collector_policy()->heap_alignment();
2002 2003 2004 2005

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2006
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2007

2008
  _cg1r = new ConcurrentG1Refine(this);
2009 2010

  // Reserve the maximum.
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

2023
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2024
                                                 heap_alignment);
2025 2026

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
2027
  // temporarily think something is in the heap.  (I've actually seen this
2028 2029 2030 2031 2032
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2033
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2034 2035 2036 2037

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
2038 2039
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2040 2041 2042 2043
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2044
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2045 2046 2047 2048 2049 2050 2051 2052 2053

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2054
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
2055 2056 2057 2058
                  (HeapWord*) _g1_reserved.end());
  assert(_hrs.max_length() == _expansion_regions,
         err_msg("max length: %u expansion regions: %u",
                 _hrs.max_length(), _expansion_regions));
2059

2060 2061 2062
  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2063 2064
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2065
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2066 2067 2068
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2069
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2070
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2071
            "too many cards per region");
2072

2073
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2074

2075 2076 2077 2078 2079
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2080 2081
  _in_cset_fast_test_length = max_regions();
  _in_cset_fast_test_base =
Z
zgu 已提交
2082
                   NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2083

2084 2085 2086 2087
  // We're biasing _in_cset_fast_test to avoid subtracting the
  // beginning of the heap every time we want to index; basically
  // it's the same with what we do with the card table.
  _in_cset_fast_test = _in_cset_fast_test_base -
2088
               ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2089

2090 2091 2092 2093
  // Clear the _cset_fast_test bitmap in anticipation of adding
  // regions to the incremental collection set for the first
  // evacuation pause.
  clear_cset_fast_test();
2094

2095 2096
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2097 2098 2099 2100 2101
  _cm = new ConcurrentMark(this, heap_rs);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2102 2103 2104 2105 2106
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2107
  // Now expand into the initial heap size.
2108
  if (!expand(init_byte_size)) {
2109
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2110 2111
    return JNI_ENOMEM;
  }
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2124
                                               G1SATBProcessCompletedThreshold,
2125
                                               Shared_SATB_Q_lock);
2126 2127 2128

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2129 2130
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2131 2132
                                                Shared_DirtyCardQ_lock);

2133 2134 2135
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2136 2137
                                      -1, // never trigger processing
                                      -1, // no limit on length
2138 2139 2140
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2151 2152 2153 2154
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2155 2156 2157
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2158 2159 2160

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2172 2173
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2174
  _g1mm = new G1MonitoringSupport(this);
2175

P
pliden 已提交
2176 2177
  G1StringDedup::initialize();

2178 2179 2180
  return JNI_OK;
}

2181 2182 2183 2184
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2185
void G1CollectedHeap::ref_processing_init() {
2186 2187
  // Reference processing in G1 currently works as follows:
  //
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2220

2221 2222
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2246
    new ReferenceProcessor(mr,    // span
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
2262
                                // lists does not require a barrier.
2263 2264 2265 2266 2267 2268
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2314 2315 2316
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2317
                                                 int worker_i) {
2318
  // Clean cards in the hot card cache
2319 2320
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2321

2322 2323
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2324
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2325 2326
    n_completed_buffers++;
  }
2327
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2328 2329 2330 2331 2332 2333 2334 2335
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2336 2337
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2338
  size_t result = _summary_bytes_used;
2339
  // Read only once in case it is set to NULL concurrently
2340
  HeapRegion* hr = _mutator_alloc_region.get();
2341 2342
  if (hr != NULL)
    result += hr->used();
2343 2344 2345
  return result;
}

2346 2347 2348 2349 2350
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2365 2366
  double recalculate_used_start = os::elapsedTime();

2367
  SumUsedClosure blk;
2368
  heap_region_iterate(&blk);
2369 2370

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2371 2372 2373 2374
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2375
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2386 2387
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2388 2389
    return 0;
  }
2390
  return hr->free();
2391 2392
}

2393
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2394 2395 2396 2397 2398 2399
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2400 2401
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2434 2435
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2436 2437 2438 2439 2440
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2441 2442 2443 2444 2445 2446 2447 2448
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2449
  assert(concurrent ||
2450 2451 2452 2453 2454
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2455 2456

  // This is the case for the outer caller, i.e. the concurrent cycle.
2457
  assert(!concurrent ||
2458
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2459
         err_msg("for outer caller (concurrent cycle): "
2460 2461 2462
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2463

2464
  _old_marking_cycles_completed += 1;
2465

2466 2467 2468
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2469
  // incorrectly see that a marking cycle is still in progress.
2470
  if (concurrent) {
2471 2472 2473
    _cmThread->clear_in_progress();
  }

2474 2475 2476 2477 2478 2479 2480
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2481
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2494

2495
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2524
void G1CollectedHeap::collect(GCCause::Cause cause) {
2525
  assert_heap_not_locked();
2526

2527
  unsigned int gc_count_before;
2528
  unsigned int old_marking_count_before;
2529 2530 2531 2532 2533 2534 2535
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2536

2537 2538
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2539
      old_marking_count_before = _old_marking_cycles_started;
2540 2541 2542 2543 2544 2545
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2546
      VM_G1IncCollectionPause op(gc_count_before,
2547
                                 0,     /* word_size */
2548
                                 true,  /* should_initiate_conc_mark */
2549 2550
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2551

2552
      VMThread::execute(&op);
2553
      if (!op.pause_succeeded()) {
2554
        if (old_marking_count_before == _old_marking_cycles_started) {
2555
          retry_gc = op.should_retry_gc();
2556 2557 2558 2559 2560
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2561 2562 2563 2564 2565 2566

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2567
      }
2568
    } else {
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2582
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2583 2584
        VMThread::execute(&op);
      }
2585
    }
2586
  } while (retry_gc);
2587 2588 2589
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2590 2591 2592 2593 2594
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2595 2596
    return hr->is_in(p);
  } else {
2597
    return false;
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2608
  ExtendedOopClosure* _cl;
2609
public:
2610
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2611 2612
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2613
    if (!r->continuesHumongous()) {
2614 2615 2616 2617 2618 2619
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2620
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2621
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2622
  heap_region_iterate(&blk);
2623 2624
}

2625
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2626
  IterateOopClosureRegionClosure blk(mr, cl);
2627
  heap_region_iterate(&blk);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2644
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2645
  IterateObjectClosureRegionClosure blk(cl);
2646
  heap_region_iterate(&blk);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2663
  heap_region_iterate(&blk);
2664 2665
}

2666 2667
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2668 2669 2670 2671
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2672
                                                 uint worker_id,
2673
                                                 uint no_of_par_workers,
2674
                                                 jint claim_value) {
2675
  const uint regions = n_regions();
2676
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2677 2678 2679 2680 2681
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2682
  // try to spread out the starting points of the workers
2683 2684 2685
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2686 2687

  // each worker will actually look at all regions
2688 2689
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2690 2691 2692 2693 2694 2695 2696 2697 2698
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2699
    if (r->claimHeapRegion(claim_value)) {
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2711
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2712 2713 2714 2715 2716 2717 2718 2719 2720
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

S
sla 已提交
2721
          // No one should have claimed it directly. We can given
2722 2723 2724 2725 2726
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
S
sla 已提交
2727
            // we should always be able to claim it; no one else should
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2743
      }
2744 2745 2746 2747

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2748 2749 2750 2751
    }
  }
}

2752 2753 2754 2755 2756 2757 2758 2759
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2760
void G1CollectedHeap::reset_heap_region_claim_values() {
2761 2762 2763 2764
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2765 2766 2767 2768 2769
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2770 2771 2772 2773 2774 2775 2776 2777 2778
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2779
  uint _failures;
2780
  HeapRegion* _sh_region;
2781

2782 2783 2784 2785 2786
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2787
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2788
                             "claim value = %d, should be %d",
2789 2790
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2791 2792 2793 2794 2795 2796 2797 2798
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2799
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2800
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2801
                               HR_FORMAT_PARAMS(r),
2802 2803 2804 2805 2806 2807 2808
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2809
  uint failures() { return _failures; }
2810 2811 2812 2813 2814 2815 2816
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2817 2818

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2819 2820 2821
private:
  jint _claim_value;
  uint _failures;
2822 2823 2824

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2825
    _claim_value(claim_value), _failures(0) { }
2826

2827
  uint failures() { return _failures; }
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2848 2849
#endif // ASSERT

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2862

2863 2864
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2865
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2893
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2894
    uint cs_size = g1_policy()->cset_region_length();
2895
    uint active_workers = workers()->active_workers();
2896 2897 2898 2899
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2900 2901
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2902 2903 2904 2905 2906 2907 2908 2909 2910

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2911
    for (uint i = start_ind; i < end_ind; i++) {
2912 2913 2914
      result = result->next_in_collection_set();
    }
  }
2915 2916 2917 2918 2919 2920 2921 2922 2923

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2924 2925 2926
  return result;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2952 2953 2954 2955 2956
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2980
  return n_regions() > 0 ? region_at(0) : NULL;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3024 3025 3026 3027 3028 3029
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

3030
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
3031
  // since we can't allow tlabs to grow big enough to accommodate
3032 3033
  // humongous objects.

3034
  HeapRegion* hr = _mutator_alloc_region.get();
B
brutisso 已提交
3035
  size_t max_tlab = max_tlab_size() * wordSize;
3036
  if (hr == NULL) {
B
brutisso 已提交
3037
    return max_tlab;
3038
  } else {
B
brutisso 已提交
3039
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3040 3041 3042 3043
  }
}

size_t G1CollectedHeap::max_capacity() const {
3044
  return _g1_reserved.byte_size();
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3104
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3140
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3239
class VerifyLivenessOopClosure: public OopClosure {
3240 3241
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3242
public:
3243 3244 3245
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3246 3247 3248 3249 3250
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3251
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3252
              "Dead object referenced by a not dead object");
3253 3254 3255 3256
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3257
private:
3258 3259 3260
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3261
  VerifyOption _vo;
3262
public:
3263 3264 3265 3266 3267
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3268 3269 3270
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3271
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3272
    assert(o != NULL, "Huh?");
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3285
      o->oop_iterate_no_header(&isLive);
3286 3287 3288 3289
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3325
private:
3326 3327 3328
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3329
public:
3330 3331 3332
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3333 3334
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3335
      _vo(vo),
3336 3337 3338 3339 3340
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3341

3342
  bool doHeapRegion(HeapRegion* r) {
3343
    if (!r->continuesHumongous()) {
3344
      bool failures = false;
3345
      r->verify(_vo, &failures);
3346 3347 3348
      if (failures) {
        _failures = true;
      } else {
3349
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3350
        r->object_iterate(&not_dead_yet_cl);
3351 3352 3353 3354 3355 3356 3357
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3358
                                 not_dead_yet_cl.live_bytes());
3359 3360 3361 3362 3363 3364
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3365 3366
        }
      }
3367
    }
3368
    return false; // stop the region iteration if we hit a failure
3369 3370 3371
  }
};

J
johnc 已提交
3372
// This is the task used for parallel verification of the heap regions
3373 3374 3375 3376

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3377 3378
  VerifyOption     _vo;
  bool             _failures;
3379 3380

public:
3381 3382 3383
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3384
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3385
    AbstractGangTask("Parallel verify task"),
3386
    _g1h(g1h),
3387
    _vo(vo),
3388 3389 3390 3391 3392
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3393

3394
  void work(uint worker_id) {
3395
    HandleMark hm;
3396
    VerifyRegionClosure blk(true, _vo);
3397
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3398
                                          _g1h->workers()->active_workers(),
3399
                                          HeapRegion::ParVerifyClaimValue);
3400 3401 3402
    if (blk.failures()) {
      _failures = true;
    }
3403 3404 3405
  }
};

J
johnc 已提交
3406
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3407
  if (SafepointSynchronize::is_at_safepoint()) {
3408
    assert(Thread::current()->is_VM_thread(),
3409
           "Expected to be executed serially by the VM thread at this point");
3410

J
johnc 已提交
3411 3412 3413 3414
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3415
    VerifyKlassClosure klassCl(this, &rootsCl);
3416

3417 3418
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3419
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3420

3421 3422 3423
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3424
    process_strong_roots(true,      // activate StrongRootsScope
3425 3426
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3427
                         ScanningOption(so),  // roots scanning options
3428
                         &rootsCl,
3429
                         &blobsCl,
3430 3431
                         &klassCl
                         );
3432

J
johnc 已提交
3433
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3444
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3445 3446 3447 3448
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3449
      G1ParVerifyTask task(this, vo);
3450 3451 3452 3453
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3454 3455 3456
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3457 3458 3459
      if (task.failures()) {
        failures = true;
      }
3460

3461 3462
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3463 3464 3465 3466 3467 3468 3469 3470
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3471
      VerifyRegionClosure blk(false, vo);
3472
      heap_region_iterate(&blk);
3473 3474 3475
      if (blk.failures()) {
        failures = true;
      }
3476
    }
3477
    if (!silent) gclog_or_tty->print("RemSet ");
3478
    rem_set()->verify();
3479

P
pliden 已提交
3480 3481 3482 3483 3484
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3485 3486
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3487 3488 3489 3490
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3491
      gclog_or_tty->print_cr("");
3492
#ifndef PRODUCT
3493
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3494
        concurrent_mark()->print_reachable("at-verification-failure",
3495
                                           vo, false /* all */);
3496
      }
3497
#endif
3498 3499 3500
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3501
  } else {
P
pliden 已提交
3502 3503 3504 3505 3506 3507 3508
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3509 3510 3511
  }
}

J
johnc 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3573
void G1CollectedHeap::print_on(outputStream* st) const {
3574 3575
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3576
            capacity()/K, used_unlocked()/K);
3577 3578 3579 3580 3581
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3582
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3583 3584 3585 3586 3587 3588
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3589
  st->cr();
3590
  MetaspaceAux::print_on(st);
3591 3592
}

3593 3594 3595 3596 3597
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3598 3599 3600 3601 3602
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3603
  PrintRegionClosure blk(st);
3604
  heap_region_iterate(&blk);
3605 3606
}

3607 3608 3609 3610 3611 3612 3613 3614 3615
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3616
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3617
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3618
    workers()->print_worker_threads_on(st);
3619
  }
T
tonyp 已提交
3620
  _cmThread->print_on(st);
3621
  st->cr();
T
tonyp 已提交
3622 3623
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3624 3625 3626
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3627 3628 3629
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3630
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3631 3632 3633
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3634
  _cg1r->threads_do(tc);
P
pliden 已提交
3635 3636 3637
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3638 3639 3640 3641 3642 3643 3644 3645 3646
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3647
  if (G1SummarizeRSetStats) {
3648 3649
    g1_rem_set()->print_summary_info();
  }
3650
  if (G1SummarizeConcMark) {
3651 3652 3653 3654 3655 3656
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3707 3708 3709 3710 3711 3712 3713
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3714
  // always_do_update_barrier = false;
3715 3716
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3717
  accumulate_statistics_all_tlabs();
3718
  ensure_parsability(true);
3719 3720 3721 3722 3723

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3724 3725 3726
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3727 3728 3729 3730 3731

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3732
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3733 3734
  }

3735 3736 3737 3738 3739
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3740
  // always_do_update_barrier = true;
3741

B
brutisso 已提交
3742 3743
  resize_all_tlabs();

3744 3745 3746
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3747 3748
}

3749 3750
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3751 3752
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3753
  assert_heap_not_locked_and_not_at_safepoint();
3754
  g1_policy()->record_stop_world_start();
3755 3756 3757 3758
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3759
                             gc_cause);
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3770 3771 3772 3773
}

void
G1CollectedHeap::doConcurrentMark() {
3774 3775 3776 3777
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3793 3794 3795 3796
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3797 3798 3799
}

size_t G1CollectedHeap::cards_scanned() {
3800
  return g1_rem_set()->cardsScanned();
3801 3802 3803 3804
}

void
G1CollectedHeap::setup_surviving_young_words() {
3805 3806
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3807
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3808
  if (_surviving_young_words == NULL) {
3809
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3810 3811
                          "Not enough space for young surv words summary.");
  }
3812
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3813
#ifdef ASSERT
3814
  for (uint i = 0;  i < array_length; ++i) {
3815
    assert( _surviving_young_words[i] == 0, "memset above" );
3816
  }
3817
#endif // !ASSERT
3818 3819 3820 3821 3822
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3823 3824
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3825
    _surviving_young_words[i] += surv_young_words[i];
3826
  }
3827 3828 3829 3830 3831
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3832
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3833 3834 3835
  _surviving_young_words = NULL;
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3853 3854 3855
    return false;
  }
};
3856
#endif // ASSERT
3857

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3869
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3880
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3881 3882 3883 3884 3885 3886
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3887 3888 3889 3890 3891 3892 3893 3894 3895
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

  gclog_or_tty->date_stamp(PrintGCDateStamps);
  gclog_or_tty->stamp(PrintGCTimeStamps);

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3896
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3922
  gclog_or_tty->flush();
3923 3924
}

3925
bool
3926
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3927 3928 3929
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3930
  if (GC_locker::check_active_before_gc()) {
3931
    return false;
3932 3933
  }

3934
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3935 3936 3937

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3938
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3939 3940
  ResourceMark rm;

3941
  print_heap_before_gc();
S
sla 已提交
3942
  trace_heap_before_gc(_gc_tracer_stw);
3943

3944
  verify_region_sets_optional();
3945
  verify_dirty_young_regions();
3946

3947 3948 3949 3950 3951 3952 3953 3954
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3955

3956 3957
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3958

3959 3960 3961 3962
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3963

3964 3965
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3966 3967
    EvacuationInfo evacuation_info;

3968 3969 3970
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3971
      increment_old_marking_cycles_started();
S
sla 已提交
3972
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3973
    }
S
sla 已提交
3974 3975 3976

    _gc_tracer_stw->report_yc_type(yc_type());

3977
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3978

3979 3980
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3981 3982
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3983
    log_gc_header();
3984

3985
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3986
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3987

T
tonyp 已提交
3988 3989 3990 3991 3992 3993
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3994
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3995
      append_secondary_free_list_if_not_empty_with_lock();
3996
    }
3997

J
johnc 已提交
3998 3999 4000
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
4001

4002 4003 4004 4005
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

4006 4007 4008 4009 4010
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
4011
      increment_gc_time_stamp();
4012

4013
      verify_before_gc();
4014

4015
      COMPILER2_PRESENT(DerivedPointerTable::clear());
4016

4017 4018 4019
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
4020

4021 4022 4023
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
4024

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

4041 4042 4043 4044 4045 4046
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
4047 4048
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4049
        double sample_start_time_sec = os::elapsedTime();
4050

4051
#if YOUNG_LIST_VERBOSE
4052 4053 4054
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4055 4056
#endif // YOUNG_LIST_VERBOSE

4057
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4058

4059 4060 4061 4062 4063 4064
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4065
        double wait_time_ms = 0.0;
4066 4067
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4068
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4069
        }
4070
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4071

4072
#if YOUNG_LIST_VERBOSE
4073 4074
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4075
#endif // YOUNG_LIST_VERBOSE
4076

4077 4078 4079
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4080

4081
#if YOUNG_LIST_VERBOSE
4082 4083 4084
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4085
#endif // YOUNG_LIST_VERBOSE
4086

S
sla 已提交
4087
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4088

4089 4090 4091
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4092
        // GC). We also call this after finalize_cset() to
4093 4094 4095 4096 4097 4098
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4112 4113 4114
          }
        }

4115
#ifdef ASSERT
4116 4117
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4118
#endif // ASSERT
4119

4120
        setup_surviving_young_words();
4121

4122
        // Initialize the GC alloc regions.
S
sla 已提交
4123
        init_gc_alloc_regions(evacuation_info);
4124

4125
        // Actually do the work...
S
sla 已提交
4126
        evacuate_collection_set(evacuation_info);
4127

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4138
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4139
        g1_policy()->clear_collection_set();
4140

4141
        cleanup_surviving_young_words();
4142

4143 4144
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4145

4146 4147 4148 4149
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
4150

4151
        _young_list->reset_sampled_info();
4152

4153 4154 4155 4156 4157 4158
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4159 4160

#if YOUNG_LIST_VERBOSE
4161 4162
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4163
#endif // YOUNG_LIST_VERBOSE
4164

4165
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4166 4167
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4168

4169
        _young_list->reset_auxilary_lists();
4170

4171 4172
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
S
sla 已提交
4173 4174 4175 4176 4177 4178
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4179 4180 4181 4182 4183
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
4184

4185
        if (g1_policy()->during_initial_mark_pause()) {
4186 4187 4188
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4189 4190
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4191 4192 4193
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4194
        }
4195

4196
        allocate_dummy_regions();
4197

4198
#if YOUNG_LIST_VERBOSE
4199 4200 4201
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4202
#endif // YOUNG_LIST_VERBOSE
4203

4204 4205 4206 4207 4208 4209
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4210 4211
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4212 4213 4214 4215 4216 4217
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
4218 4219 4220
          }
        }

S
sla 已提交
4221
        // We redo the verification but now wrt to the new CSet which
4222 4223 4224 4225 4226 4227 4228
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4229 4230 4231 4232 4233
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4234
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4261
        verify_after_gc();
4262

4263 4264
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4265

4266 4267
        // CM reference discovery will be re-enabled if necessary.
      }
4268

4269 4270 4271 4272 4273 4274
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4275 4276 4277
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4278 4279

#ifdef TRACESPINNING
4280
      ParallelTaskTerminator::print_termination_counts();
4281
#endif
4282

4283 4284
      gc_epilogue(false);
    }
4285

4286 4287 4288
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4289
    // It is not yet to safe to tell the concurrent mark to
4290 4291 4292
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4293

4294 4295 4296 4297 4298
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4299

4300
    print_heap_after_gc();
S
sla 已提交
4301
    trace_heap_after_gc(_gc_tracer_stw);
4302

4303 4304 4305 4306 4307
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4308

S
sla 已提交
4309 4310
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4311
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4312 4313
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // ConcurrentGCThread::safepoint_desynchronize().
    doConcurrentMark();
  }

4329
  return true;
4330 4331
}

4332 4333 4334 4335 4336
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4337
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4338 4339
      break;
    case GCAllocForTenured:
4340
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4341 4342 4343
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4344
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4345 4346
      break;
  }
4347 4348 4349 4350 4351 4352

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4353 4354
}

4355 4356 4357 4358 4359 4360 4361 4362 4363
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4364

S
sla 已提交
4365
void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4366
  assert_at_safepoint(true /* should_be_vm_thread */);
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
S
sla 已提交
4380
  // has been subsequently used to allocate a humongous
4381 4382 4383 4384 4385 4386 4387
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4388 4389 4390 4391 4392
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4393 4394
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4395 4396
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
S
sla 已提交
4397
    evacuation_info.set_alloc_regions_used_before(retained_region->used());
4398 4399 4400
  }
}

S
sla 已提交
4401 4402 4403
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
                                         _old_gc_alloc_region.count());
4404 4405 4406 4407 4408 4409 4410
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4411 4412

  if (ResizePLAB) {
J
johnc 已提交
4413 4414
    _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
    _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4415
  }
4416 4417
}

4418 4419 4420 4421
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4422 4423
}

4424 4425 4426
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4427
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4428 4429 4430 4431 4432 4433 4434
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4435
  delete _evac_failure_scan_stack;
4436 4437 4438
  _evac_failure_scan_stack = NULL;
}

4439 4440
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4441

4442 4443
  double remove_self_forwards_start = os::elapsedTime();

4444
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4445

4446 4447 4448 4449
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4450
  } else {
4451
    rsfp_task.work(0);
4452
  }
4453 4454 4455 4456 4457 4458 4459

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4460 4461

  // Now restore saved marks, if any.
4462 4463 4464 4465 4466 4467
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4468
  }
4469 4470
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4471 4472

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4490
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4491
                                               oop old) {
4492 4493 4494
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4495 4496 4497 4498
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4499 4500 4501
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4502

S
sla 已提交
4503 4504
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4523 4524 4525 4526 4527 4528 4529
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4540
    _hr_printer.evac_failure(r);
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4554 4555 4556 4557
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4558 4559
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4560 4561 4562 4563 4564
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4565 4566 4567 4568
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4569
    } else {
4570 4571 4572
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4573
    }
4574 4575 4576 4577 4578
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4579
    } else {
4580 4581 4582
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4583 4584 4585
    }
  }

4586 4587 4588
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4589 4590
}

4591
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4592
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4593

4594
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4595 4596 4597
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
4598
    _ct_bs(g1h->g1_barrier_set()),
4599 4600 4601
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4602 4603
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4604
    _age_table(false), _scanner(g1h, this, rp),
4605
    _strong_roots_time(0), _term_time(0),
4606
    _alloc_buffer_waste(0), _undo_waste(0) {
4607 4608 4609 4610 4611
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4612 4613 4614 4615
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
Z
zgu 已提交
4616
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4617
  if (_surviving_young_words_base == NULL)
4618
    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4619 4620
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4621
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4622

4623 4624 4625
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4626 4627
  _start = os::elapsedTime();
}
4628

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4658 4659 4660 4661 4662 4663 4664
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
4665
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4666 4667 4668 4669 4670 4671 4672 4673 4674
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
4675
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4676 4677 4678
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
4679
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4694 4695
  assert(_evac_failure_cl != NULL, "not set");

4696 4697 4698 4699 4700 4701
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4702

4703 4704 4705 4706 4707 4708
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4709 4710
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4711 4712
  _g1(g1), _par_scan_state(par_scan_state),
  _worker_id(par_scan_state->queue_num()) { }
4713

4714
void G1ParCopyHelper::mark_object(oop obj) {
4715 4716 4717 4718 4719 4720 4721
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4722
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4723 4724
}

4725
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4744
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4745 4746
}

4747
oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4748
  size_t word_sz = old->size();
4749
  HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4750 4751
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4752 4753
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4754
  G1CollectorPolicy* g1p = _g1h->g1_policy();
4755
  markOop m = old->mark();
4756 4757 4758
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4759
                                                             word_sz);
4760
  HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4761 4762
#ifndef PRODUCT
  // Should this evacuation fail?
4763
  if (_g1h->evacuation_should_fail()) {
4764
    if (obj_ptr != NULL) {
4765
      undo_allocation(alloc_purpose, obj_ptr, word_sz);
4766 4767 4768 4769
      obj_ptr = NULL;
    }
  }
#endif // !PRODUCT
4770 4771 4772 4773

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
4774
    return _g1h->handle_evacuation_failure_par(this, old);
4775 4776
  }

4777 4778
  oop obj = oop(obj_ptr);

4779 4780 4781
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4782 4783 4784
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4785 4786 4787 4788 4789 4790

    // alloc_purpose is just a hint to allocate() above, recheck the type of region
    // we actually allocated from and update alloc_purpose accordingly
    HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
    alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;

4791
    if (g1p->track_object_age(alloc_purpose)) {
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4811
        obj->set_mark(m);
4812
      }
4813
      age_table()->add(obj, word_sz);
4814 4815
    } else {
      obj->set_mark(m);
4816
    }
4817

P
pliden 已提交
4818 4819 4820 4821 4822 4823 4824
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
                                             to_region->is_young(),
                                             queue_num(),
                                             obj);
    }

4825
    size_t* surv_young_words = surviving_young_words();
4826 4827 4828
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4829 4830 4831 4832
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4833
      oop* old_p = set_partial_array_mask(old);
4834
      push_on_queue(old_p);
4835
    } else {
4836 4837
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
4838
      _scanner.set_region(_g1h->heap_region_containing_raw(obj));
B
brutisso 已提交
4839
      obj->oop_iterate_backwards(&_scanner);
4840 4841
    }
  } else {
4842
    undo_allocation(alloc_purpose, obj_ptr, word_sz);
4843 4844 4845 4846 4847
    obj = forward_ptr;
  }
  return obj;
}

4848 4849 4850 4851 4852 4853 4854
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4855
template <G1Barrier barrier, bool do_mark_object>
4856
template <class T>
4857
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4858 4859 4860 4861 4862 4863 4864
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4865

4866 4867
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4868
  if (_g1->in_cset_fast_test(obj)) {
4869
    oop forwardee;
4870
    if (obj->is_forwarded()) {
4871
      forwardee = obj->forwardee();
4872
    } else {
4873
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4874 4875 4876 4877 4878 4879 4880
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4881
    }
4882

4883
    if (barrier == G1BarrierKlass) {
4884
      do_klass_barrier(p, forwardee);
4885
    }
4886 4887 4888 4889
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4890
    if (do_mark_object) {
4891
      mark_object(obj);
4892
    }
4893
  }
4894

4895
  if (barrier == G1BarrierEvac) {
4896
    _par_scan_state->update_rs(_from, p, _worker_id);
4897
  }
4898 4899
}

4900 4901
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4922
  void do_void();
4923

4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4945
        pss->deal_with_reference((narrowOop*) stolen_task);
4946
      } else {
4947
        pss->deal_with_reference((oop*) stolen_task);
4948
      }
4949 4950 4951 4952

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4953
      pss->trim_queue();
4954
    }
4955 4956 4957 4958
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4959

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4986 4987 4988 4989 4990
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4991
  uint _n_workers;
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
5002 5003
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
5004 5005 5006
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
5007 5008
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
5009 5010 5011 5012 5013 5014 5015 5016
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

5031 5032
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
5033 5034

    double start_time_ms = os::elapsedTime() * 1000.0;
5035
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5036

5037 5038 5039
    {
      ResourceMark rm;
      HandleMark   hm;
5040

5041
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5042

5043
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
5044
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5045

5046
      pss.set_evac_failure_closure(&evac_failure_cl);
5047

5048
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5049
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5050

5051
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5052 5053 5054 5055 5056
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5057

5058
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
5059
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5060

5061 5062 5063
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
5064
        scan_klasses_cl = &scan_mark_klasses_cl_s;
5065
      }
5066

5067
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5068

J
johnc 已提交
5069 5070 5071 5072 5073
      // Don't scan the scavengable methods in the code cache as part
      // of strong root scanning. The code roots that point into a
      // region in the collection set are scanned when we scan the
      // region's RSet.
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5074

5075
      pss.start_strong_roots();
5076 5077
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
5078 5079
                                    scan_root_cl,
                                    &push_heap_rs_cl,
5080
                                    scan_klasses_cl,
5081 5082
                                    worker_id);
      pss.end_strong_roots();
5083

5084 5085 5086 5087 5088 5089
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
5090
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5091
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5092 5093 5094 5095 5096 5097 5098 5099
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
5100

5101
      assert(pss.refs()->is_empty(), "should be empty");
5102

5103 5104 5105
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
5106 5107
    }

5108
    double end_time_ms = os::elapsedTime() * 1000.0;
5109
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5110 5111 5112 5113 5114
  }
};

// *** Common G1 Evacuation Stuff

5115 5116
// This method is run in a GC worker.

5117 5118
void
G1CollectedHeap::
5119
g1_process_strong_roots(bool is_scavenging,
5120
                        ScanningOption so,
5121 5122
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
5123
                        G1KlassScanClosure* scan_klasses,
5124
                        int worker_i) {
5125

5126
  // First scan the strong roots
5127 5128 5129 5130 5131
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

J
johnc 已提交
5132 5133 5134 5135
  assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  // Walk the code cache/strong code roots w/o buffering, because StarTask
  // cannot handle unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5136 5137

  process_strong_roots(false, // no scoping; this is parallel code
5138
                       is_scavenging, so,
5139
                       &buf_scan_non_heap_roots,
5140
                       &eager_scan_code_roots,
5141 5142
                       scan_klasses
                       );
5143

5144
  // Now the CM ref_processor roots.
5145
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5146 5147 5148 5149 5150
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5151 5152 5153
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
5154
  buf_scan_non_heap_roots.done();
5155

5156 5157
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

5158
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5159

5160
  double ext_root_time_ms =
5161
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5162

5163
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5164

5165 5166 5167
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
5168
  double satb_filtering_ms = 0.0;
5169 5170
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
5171 5172
      double satb_filter_start = os::elapsedTime();

5173
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
5174 5175

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5176
    }
5177
  }
5178
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5179

J
johnc 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
  // If this is an initial mark pause, and we're not scanning
  // the entire code cache, we need to mark the oops in the
  // strong code root lists for the regions that are not in
  // the collection set.
  // Note all threads participate in this set of root tasks.
  double mark_strong_code_roots_ms = 0.0;
  if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
    double mark_strong_roots_start = os::elapsedTime();
    mark_strong_code_roots(worker_i);
    mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  }
  g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);

5193 5194
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
J
johnc 已提交
5195
    g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5196 5197 5198 5199 5200
  }
  _process_strong_tasks->all_tasks_completed();
}

void
5201
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5202
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5203
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5204 5205
}

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
5219 5220

  bool _do_in_parallel;
5221 5222 5223
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
    AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5224
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
5239
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5240 5241
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
5242
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5243 5244 5245 5246 5247
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  }

  void work(uint worker_id) {
5248
    if (_do_in_parallel) {
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
  if (G1TraceStringSymbolTableScrubbing) {
    gclog_or_tty->print_cr("Cleaned string and symbol table, "
                           "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                           "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                           g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
                           g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  }
P
pliden 已提交
5300 5301 5302 5303

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5304 5305
}

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

void G1CollectedHeap::redirty_logged_cards() {
  guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  double redirty_logged_cards_start = os::elapsedTime();

  RedirtyLoggedCardTableEntryFastClosure redirty;
  dirty_card_queue_set().set_closure(&redirty);
  dirty_card_queue_set().apply_closure_to_all_completed_buffers();

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5377
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5378 5379 5380 5381 5382
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5383
                            OopsInHeapRegionClosure* metadata_obj_cl,
5384 5385 5386
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5387
    _copy_metadata_obj_cl(metadata_obj_cl),
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5412
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5413
      // the referent object and update the pointer, while avoiding
5414 5415 5416 5417 5418
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5419 5420 5421
        assert(!ClassLoaderDataGraph::contains((address)p),
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5460
  FlexibleWorkGang*  _workers;
5461 5462 5463 5464
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5465
                        FlexibleWorkGang* workers,
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5502
  virtual void work(uint worker_id) {
5503 5504 5505 5506 5507 5508
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5509
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5510 5511 5512 5513 5514
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5515
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5516 5517

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5518
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5519 5520

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5521
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5522 5523 5524 5525

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5526
      copy_metadata_cl = &copy_mark_metadata_cl;
5527 5528 5529
    }

    // Keep alive closure.
5530
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5531 5532 5533 5534 5535

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5536
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5571 5572
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5573 5574 5575
  }
};

S
sla 已提交
5576
// Driver routine for parallel reference enqueueing.
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5601
  uint _n_workers;
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5612
  void work(uint worker_id) {
5613 5614 5615
    ResourceMark rm;
    HandleMark   hm;

5616
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5617 5618 5619 5620 5621 5622 5623 5624
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5625
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5626 5627

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5628
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5629 5630

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5631
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5632 5633 5634 5635

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5636
      copy_metadata_cl = &copy_mark_metadata_cl;
5637 5638 5639 5640 5641 5642 5643
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5644
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5645 5646 5647

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5648 5649
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5650 5651 5652 5653

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5654
    assert(0 <= worker_id && worker_id < limit, "sanity");
5655 5656 5657
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5658
    for (uint idx = worker_id; idx < limit; idx += stride) {
5659
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5685
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5701
  // As a result the copy closure would not have been applied to the
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5712
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5713 5714
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5715

J
johnc 已提交
5716 5717 5718 5719
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5738
  G1ParScanThreadState            pss(this, 0, NULL);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5750
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5751 5752

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5753
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5754 5755

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5756
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5757 5758 5759 5760

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5761
    copy_metadata_cl = &copy_mark_metadata_cl;
5762 5763 5764
  }

  // Keep alive closure.
5765
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5766 5767 5768 5769 5770 5771 5772

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5773
  ReferenceProcessorStats stats;
5774 5775
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5776 5777 5778 5779 5780
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
                                              _gc_timer_stw);
5781 5782
  } else {
    // Parallel reference processing
J
johnc 已提交
5783 5784
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5785

J
johnc 已提交
5786
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5787 5788 5789 5790 5791
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
                                              _gc_timer_stw);
5792 5793
  }

S
sla 已提交
5794
  _gc_tracer_stw->report_gc_reference_stats(stats);
5795 5796 5797 5798 5799 5800 5801
  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5802
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5803 5804 5805
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5806
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5818
    // Parallel reference enqueueing
5819

J
johnc 已提交
5820 5821 5822 5823
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5824

J
johnc 已提交
5825
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5826 5827 5828 5829 5830 5831 5832 5833 5834
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5835
  // and could significantly increase the pause time.
5836 5837

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5838
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5839 5840
}

S
sla 已提交
5841
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5842
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5843
  _evacuation_failed = false;
5844

5845 5846 5847
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5848
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5849 5850 5851 5852 5853

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5854

5855
  uint n_workers;
5856 5857 5858 5859 5860 5861 5862 5863
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5864
    workers()->set_active_workers(n_workers);
5865 5866 5867 5868 5869 5870 5871 5872
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5873 5874 5875 5876 5877

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5878
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5879 5880
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5881

5882
  {
5883
    StrongRootsScope srs(this);
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5904 5905
  }

5906
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5907
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5908 5909 5910

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5911
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5912

5913
  set_par_threads(0);
5914

5915 5916 5917 5918 5919
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5920
  process_discovered_references(n_workers);
5921

5922
  // Weak root processing.
5923
  {
5924
    G1STWIsAliveClosure is_alive(this);
5925 5926
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
P
pliden 已提交
5927 5928 5929
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
    }
5930
  }
5931

S
sla 已提交
5932
  release_gc_alloc_regions(n_workers, evacuation_info);
5933
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5934

5935 5936 5937 5938 5939
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5940

J
johnc 已提交
5941 5942 5943 5944 5945 5946
  // Migrate the strong code roots attached to each region in
  // the collection set. Ideally we would like to do this
  // after we have finished the scanning/evacuation of the
  // strong code roots for a particular heap region.
  migrate_strong_code_roots();

5947 5948
  purge_code_root_memory();

J
johnc 已提交
5949 5950 5951 5952 5953
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5954 5955 5956 5957
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5958 5959 5960 5961 5962

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5963 5964
  }

5965 5966 5967
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5968
  // the act of enqueueing entries on to the pending list
5969 5970 5971
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5972
  enqueue_discovered_references(n_workers);
5973

5974
  if (G1DeferredRSUpdate) {
5975
    redirty_logged_cards();
5976
  }
5977 5978 5979
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5980 5981
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5982 5983
                                  bool par,
                                  bool locked) {
5984 5985 5986 5987
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

5988 5989 5990 5991 5992 5993
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5994
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5995
  free_list->add_ordered(hr);
5996 5997 5998 5999 6000 6001 6002 6003 6004
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
6005 6006 6007
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
6008
  hr->set_notHumongous();
6009
  free_region(hr, free_list, par);
6010

6011
  uint i = hr->hrs_index() + 1;
6012
  while (i < last_index) {
6013
    HeapRegion* curr_hr = region_at(i);
6014
    assert(curr_hr->continuesHumongous(), "invariant");
6015
    curr_hr->set_notHumongous();
6016
    free_region(curr_hr, free_list, par);
6017 6018
    i += 1;
  }
6019 6020 6021 6022 6023
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
6024
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6025 6026
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
6027
  }
6028 6029 6030 6031 6032 6033 6034

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6035
    _free_list.add_ordered(list);
6036 6037 6038
  }
}

6039 6040 6041 6042 6043 6044 6045
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  assert(_summary_bytes_used >= bytes,
         err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
                  _summary_bytes_used, bytes));
  _summary_bytes_used -= bytes;
}

6046
class G1ParCleanupCTTask : public AbstractGangTask {
6047
  G1SATBCardTableModRefBS* _ct_bs;
6048
  G1CollectedHeap* _g1h;
6049
  HeapRegion* volatile _su_head;
6050
public:
6051
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6052
                     G1CollectedHeap* g1h) :
6053
    AbstractGangTask("G1 Par Cleanup CT Task"),
6054
    _ct_bs(ct_bs), _g1h(g1h) { }
6055

6056
  void work(uint worker_id) {
6057 6058 6059 6060 6061
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6062

6063
  void clear_cards(HeapRegion* r) {
6064
    // Cards of the survivors should have already been dirtied.
6065
    if (!r->is_survivor()) {
6066 6067 6068 6069 6070
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6071 6072
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6073
  G1CollectedHeap* _g1h;
6074
  G1SATBCardTableModRefBS* _ct_bs;
6075
public:
6076
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6077
    : _g1h(g1h), _ct_bs(ct_bs) { }
6078
  virtual bool doHeapRegion(HeapRegion* r) {
6079
    if (r->is_survivor()) {
6080
      _g1h->verify_dirty_region(r);
6081
    } else {
6082
      _g1h->verify_not_dirty_region(r);
6083 6084 6085 6086
    }
    return false;
  }
};
6087

6088 6089
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6090
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6103
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6104
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6105 6106 6107 6108 6109
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6110 6111
}

6112
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6113
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6114
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6115
    verify_dirty_region(hr);
6116 6117 6118 6119 6120 6121
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6122 6123
#endif

6124
void G1CollectedHeap::cleanUpCardTable() {
6125
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6126 6127
  double start = os::elapsedTime();

J
johnc 已提交
6128 6129 6130
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6131

6132 6133
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6146 6147
      }
    }
J
johnc 已提交
6148 6149 6150 6151 6152 6153
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6154
  }
6155

6156
  double elapsed = os::elapsedTime() - start;
6157
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6158 6159
}

S
sla 已提交
6160
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6161 6162 6163
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6164 6165 6166
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6167 6168 6169 6170 6171
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6182
    assert(!is_on_master_free_list(cur), "sanity");
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6193 6194 6195 6196
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6197

6198 6199 6200
        start_sec = os::elapsedTime();
        non_young = true;
      }
6201 6202
    }

6203
    rs_lengths += cur->rem_set()->occupied_locked();
6204 6205 6206 6207 6208 6209 6210 6211

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6212
      assert(index != -1, "invariant");
6213
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6214 6215
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6216 6217 6218 6219 6220 6221

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6222 6223
    } else {
      int index = cur->young_index_in_cset();
6224
      assert(index == -1, "invariant");
6225 6226 6227 6228 6229 6230 6231
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6232 6233
      MemRegion used_mr = cur->used_region();

6234
      // And the region is empty.
6235
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6236
      pre_used += cur->used();
6237
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6238 6239
    } else {
      cur->uninstall_surv_rate_group();
6240
      if (cur->is_young()) {
6241
        cur->set_young_index_in_cset(-1);
6242
      }
6243 6244
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6245 6246
      // The region is now considered to be old.
      _old_set.add(cur);
S
sla 已提交
6247
      evacuation_info.increment_collectionset_used_after(cur->used());
6248 6249 6250 6251
    }
    cur = next;
  }

S
sla 已提交
6252
  evacuation_info.set_regions_freed(local_free_list.length());
6253 6254 6255 6256 6257
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6258 6259

  if (non_young) {
6260
    non_young_time_ms += elapsed_ms;
6261
  } else {
6262
    young_time_ms += elapsed_ms;
6263
  }
6264

6265 6266
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6267 6268
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6269 6270
}

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6292 6293 6294 6295
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6296 6297
  }

6298 6299
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6300 6301
}

6302
void G1CollectedHeap::reset_free_regions_coming() {
6303 6304
  assert(free_regions_coming(), "pre-condition");

6305 6306 6307 6308
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6309 6310
  }

6311 6312 6313
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6314 6315 6316
  }
}

6317 6318 6319 6320 6321
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6322 6323
  }

6324 6325 6326
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6327 6328 6329
  }

  {
6330 6331 6332
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6333 6334 6335
    }
  }

6336 6337 6338
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6364 6365
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6366

6367
  if (check_heap) {
6368 6369 6370 6371 6372 6373 6374 6375
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6376 6377
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6378
  HeapRegionSet *_old_set;
6379

T
tonyp 已提交
6380
public:
6381
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6382

T
tonyp 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6410 6411 6412 6413
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6414
  }
6415
  _free_list.remove_all();
6416 6417
}

T
tonyp 已提交
6418 6419 6420
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6421
  HeapRegionSet*   _old_set;
T
tonyp 已提交
6422 6423
  FreeRegionList* _free_list;
  size_t          _total_used;
6424

6425
public:
T
tonyp 已提交
6426
  RebuildRegionSetsClosure(bool free_list_only,
6427
                           HeapRegionSet* old_set, FreeRegionList* free_list) :
T
tonyp 已提交
6428 6429 6430 6431 6432 6433 6434
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6435

6436
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6452
      }
T
tonyp 已提交
6453
      _total_used += r->used();
6454
    }
T
tonyp 已提交
6455

6456 6457 6458
    return false;
  }

T
tonyp 已提交
6459 6460
  size_t total_used() {
    return _total_used;
6461
  }
6462 6463
};

T
tonyp 已提交
6464 6465 6466
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6467 6468 6469 6470
  if (!free_list_only) {
    _young_list->empty_list();
  }

T
tonyp 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6481 6482 6483 6484 6485 6486
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6487 6488 6489
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6490
    return false;
6491 6492
  } else {
    return hr->is_in(p);
6493
  }
6494 6495
}

6496 6497
// Methods for the mutator alloc region

6498 6499 6500 6501 6502
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6503 6504
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6505
    HeapRegion* new_alloc_region = new_region(word_size,
6506
                                              false /* is_old */,
6507 6508 6509
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6510
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6524
  _hr_printer.retire(alloc_region);
6525 6526 6527 6528
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6529 6530 6531 6532 6533 6534 6535
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6536 6537 6538
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6539
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6540
  uint n_workers = workers()->active_workers();
6541
  assert(UseDynamicNumberOfGCThreads ||
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6552 6553 6554 6555 6556
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6557 6558 6559
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6560
                                                 uint count,
6561 6562 6563 6564
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
6565
    bool survivor = (ap == GCAllocForSurvived);
6566
    HeapRegion* new_alloc_region = new_region(word_size,
6567
                                              !survivor,
6568 6569 6570 6571 6572 6573
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
6574
      if (survivor) {
6575 6576 6577 6578 6579
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6580 6581
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6593 6594
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6595 6596 6597
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6598 6599
  } else {
    _old_set.add(alloc_region);
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6627 6628
// Heap region set verification

6629 6630
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6631 6632 6633
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
  FreeRegionList*  _free_list;
6634 6635

public:
6636 6637 6638
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6639

6640 6641 6642 6643 6644
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
    _old_count(), _humongous_count(), _free_count(){ }
6645 6646 6647 6648 6649 6650 6651 6652 6653

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6654 6655
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
      _humongous_count.increment(1u, hr->capacity());
6656
    } else if (hr->is_empty()) {
6657 6658
      assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
      _free_count.increment(1u, hr->capacity());
T
tonyp 已提交
6659
    } else {
6660 6661
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
      _old_count.increment(1u, hr->capacity());
6662
    }
6663 6664
    return false;
  }
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678

  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

    guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6679 6680
};

6681
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6682 6683 6684 6685 6686
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
6687
  return new HeapRegion(hrs_index, _bot_shared, mr);
6688 6689
}

6690 6691
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6692

6693
  // First, check the explicit lists.
6694
  _free_list.verify_list();
6695 6696 6697 6698 6699
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6700
    _secondary_free_list.verify_list();
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6716

T
tonyp 已提交
6717 6718 6719 6720
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6721

6722 6723
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6724

T
tonyp 已提交
6725
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6726
  heap_region_iterate(&cl);
6727
  cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6728
}
J
johnc 已提交
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6741 6742 6743 6744
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6745 6746 6747 6748 6749

      // HeapRegion::add_strong_code_root() avoids adding duplicate
      // entries but having duplicates is  OK since we "mark" nmethods
      // as visited when we scan the strong code root lists during the GC.
      hr->add_strong_code_root(_nm);
6750 6751 6752
      assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6773 6774 6775 6776 6777
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6778
      hr->remove_strong_code_root(_nm);
6779 6780 6781
      assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *hr) {
6812 6813 6814
    assert(!hr->isHumongous(),
           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
                   HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
    hr->migrate_strong_code_roots();
    return false;
  }
};

void G1CollectedHeap::migrate_strong_code_roots() {
  MigrateCodeRootsHeapRegionClosure cl;
  double migrate_start = os::elapsedTime();
  collection_set_iterate(&cl);
  double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
}

6828 6829 6830 6831 6832 6833 6834
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
  G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
// Mark all the code roots that point into regions *not* in the
// collection set.
//
// Note we do not want to use a "marking" CodeBlobToOopClosure while
// walking the the code roots lists of regions not in the collection
// set. Suppose we have an nmethod (M) that points to objects in two
// separate regions - one in the collection set (R1) and one not (R2).
// Using a "marking" CodeBlobToOopClosure here would result in "marking"
// nmethod M when walking the code roots for R1. When we come to scan
// the code roots for R2, we would see that M is already marked and it
// would be skipped and the objects in R2 that are referenced from M
// would not be evacuated.

class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {

  class MarkStrongCodeRootOopClosure: public OopClosure {
    ConcurrentMark* _cm;
    HeapRegion* _hr;
    uint _worker_id;

    template <class T> void do_oop_work(T* p) {
      T heap_oop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(heap_oop)) {
        oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
        // Only mark objects in the region (which is assumed
        // to be not in the collection set).
        if (_hr->is_in(obj)) {
          _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
        }
      }
    }

  public:
    MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
      _cm(cm), _hr(hr), _worker_id(worker_id) {
      assert(!_hr->in_collection_set(), "sanity");
    }

    void do_oop(narrowOop* p) { do_oop_work(p); }
    void do_oop(oop* p)       { do_oop_work(p); }
  };

  MarkStrongCodeRootOopClosure _oop_cl;

public:
  MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
    _oop_cl(cm, hr, worker_id) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      nm->oops_do(&_oop_cl);
    }
  }
};

class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  uint _worker_id;

public:
  MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
    _g1h(g1h), _worker_id(worker_id) {}

  bool doHeapRegion(HeapRegion *hr) {
    HeapRegionRemSet* hrrs = hr->rem_set();
6901 6902 6903 6904
    if (hr->continuesHumongous()) {
      // Code roots should never be attached to a continuation of a humongous region
      assert(hrrs->strong_code_roots_list_length() == 0,
             err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6905
                     " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6906 6907
                     HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
                     hrrs->strong_code_roots_list_length()));
J
johnc 已提交
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
      return false;
    }

    if (hr->in_collection_set()) {
      // Don't mark code roots into regions in the collection set here.
      // They will be marked when we scan them.
      return false;
    }

    MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
    hr->strong_code_roots_do(&cb_cl);
    return false;
  }
};

void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  MarkStrongCodeRootsHRClosure cl(this, worker_id);
6925 6926 6927 6928 6929 6930 6931 6932
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    heap_region_par_iterate_chunked(&cl,
                                    worker_id,
                                    workers()->active_workers(),
                                    HeapRegion::ParMarkRootClaimValue);
  } else {
    heap_region_iterate(&cl);
  }
J
johnc 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
}

class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

    if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}