g1CollectedHeap.hpp 67.4 KB
Newer Older
1
  /*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

28 29
#include "gc_implementation/g1/g1AllocationContext.hpp"
#include "gc_implementation/g1/g1Allocator.hpp"
30
#include "gc_implementation/g1/concurrentMark.hpp"
S
sla 已提交
31
#include "gc_implementation/g1/evacuationInfo.hpp"
32
#include "gc_implementation/g1/g1AllocRegion.hpp"
33
#include "gc_implementation/g1/g1BiasedArray.hpp"
34
#include "gc_implementation/g1/g1HRPrinter.hpp"
35
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
36
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
S
sla 已提交
37
#include "gc_implementation/g1/g1YCTypes.hpp"
38
#include "gc_implementation/g1/heapRegionManager.hpp"
39
#include "gc_implementation/g1/heapRegionSet.hpp"
40
#include "gc_implementation/shared/hSpaceCounters.hpp"
41
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
42 43 44
#include "memory/barrierSet.hpp"
#include "memory/memRegion.hpp"
#include "memory/sharedHeap.hpp"
45
#include "utilities/stack.hpp"
46

47 48 49 50 51
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.

J
johnc 已提交
52
// Forward declarations
53
class HeapRegion;
T
tonyp 已提交
54
class HRRSCleanupTask;
55 56
class GenerationSpec;
class OopsInHeapRegionClosure;
57
class G1KlassScanClosure;
58 59 60 61 62 63 64 65 66 67 68 69
class G1ScanHeapEvacClosure;
class ObjectClosure;
class SpaceClosure;
class CompactibleSpaceClosure;
class Space;
class G1CollectorPolicy;
class GenRemSet;
class G1RemSet;
class HeapRegionRemSetIterator;
class ConcurrentMark;
class ConcurrentMarkThread;
class ConcurrentG1Refine;
S
sla 已提交
70
class ConcurrentGCTimer;
71
class GenerationCounters;
S
sla 已提交
72 73 74 75
class STWGCTimer;
class G1NewTracer;
class G1OldTracer;
class EvacuationFailedInfo;
J
johnc 已提交
76
class nmethod;
77
class Ticks;
78

Z
zgu 已提交
79 80
typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
81

82 83 84
typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )

Z
zgu 已提交
85
class YoungList : public CHeapObj<mtGC> {
86 87 88 89 90
private:
  G1CollectedHeap* _g1h;

  HeapRegion* _head;

91 92
  HeapRegion* _survivor_head;
  HeapRegion* _survivor_tail;
93 94 95

  HeapRegion* _curr;

96 97
  uint        _length;
  uint        _survivor_length;
98

99 100 101 102
  size_t      _last_sampled_rs_lengths;
  size_t      _sampled_rs_lengths;

  void         empty_list(HeapRegion* list);
103 104 105 106

public:
  YoungList(G1CollectedHeap* g1h);

107 108 109 110 111
  void         push_region(HeapRegion* hr);
  void         add_survivor_region(HeapRegion* hr);

  void         empty_list();
  bool         is_empty() { return _length == 0; }
112 113
  uint         length() { return _length; }
  uint         survivor_length() { return _survivor_length; }
114

115 116 117 118 119 120 121
  // Currently we do not keep track of the used byte sum for the
  // young list and the survivors and it'd be quite a lot of work to
  // do so. When we'll eventually replace the young list with
  // instances of HeapRegionLinkedList we'll get that for free. So,
  // we'll report the more accurate information then.
  size_t       eden_used_bytes() {
    assert(length() >= survivor_length(), "invariant");
122
    return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
123 124
  }
  size_t       survivor_used_bytes() {
125
    return (size_t) survivor_length() * HeapRegion::GrainBytes;
126 127
  }

128 129 130 131 132 133 134 135 136 137 138
  void rs_length_sampling_init();
  bool rs_length_sampling_more();
  void rs_length_sampling_next();

  void reset_sampled_info() {
    _last_sampled_rs_lengths =   0;
  }
  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }

  // for development purposes
  void reset_auxilary_lists();
139 140 141 142 143 144 145 146
  void clear() { _head = NULL; _length = 0; }

  void clear_survivors() {
    _survivor_head    = NULL;
    _survivor_tail    = NULL;
    _survivor_length  = 0;
  }

147 148
  HeapRegion* first_region() { return _head; }
  HeapRegion* first_survivor_region() { return _survivor_head; }
149
  HeapRegion* last_survivor_region() { return _survivor_tail; }
150 151 152

  // debugging
  bool          check_list_well_formed();
153
  bool          check_list_empty(bool check_sample = true);
154 155 156
  void          print();
};

J
johnc 已提交
157 158 159 160 161 162 163 164 165 166 167 168
// The G1 STW is alive closure.
// An instance is embedded into the G1CH and used as the
// (optional) _is_alive_non_header closure in the STW
// reference processor. It is also extensively used during
// reference processing during STW evacuation pauses.
class G1STWIsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p);
};

169
class RefineCardTableEntryClosure;
170

171 172 173 174
class G1RegionMappingChangedListener : public G1MappingChangedListener {
 private:
  void reset_from_card_cache(uint start_idx, size_t num_regions);
 public:
175
  virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
176 177
};

178
class G1CollectedHeap : public SharedHeap {
179
  friend class VM_CollectForMetadataAllocation;
180 181 182 183
  friend class VM_G1CollectForAllocation;
  friend class VM_G1CollectFull;
  friend class VM_G1IncCollectionPause;
  friend class VMStructs;
184
  friend class MutatorAllocRegion;
185 186
  friend class SurvivorGCAllocRegion;
  friend class OldGCAllocRegion;
187 188 189
  friend class G1Allocator;
  friend class G1DefaultAllocator;
  friend class G1ResManAllocator;
190 191

  // Closures used in implementation.
192
  template <G1Barrier barrier, G1Mark do_mark_object>
B
brutisso 已提交
193
  friend class G1ParCopyClosure;
194 195 196 197 198 199
  friend class G1IsAliveClosure;
  friend class G1EvacuateFollowersClosure;
  friend class G1ParScanThreadState;
  friend class G1ParScanClosureSuper;
  friend class G1ParEvacuateFollowersClosure;
  friend class G1ParTask;
200 201
  friend class G1ParGCAllocator;
  friend class G1DefaultParGCAllocator;
202 203 204 205
  friend class G1FreeGarbageRegionClosure;
  friend class RefineCardTableEntryClosure;
  friend class G1PrepareCompactClosure;
  friend class RegionSorter;
206
  friend class RegionResetter;
207 208
  friend class CountRCClosure;
  friend class EvacPopObjClosure;
209
  friend class G1ParCleanupCTTask;
210

211
  friend class G1FreeHumongousRegionClosure;
212 213 214 215 216 217 218
  // Other related classes.
  friend class G1MarkSweep;

private:
  // The one and only G1CollectedHeap, so static functions can find it.
  static G1CollectedHeap* _g1h;

219 220
  static size_t _humongous_object_threshold_in_words;

221
  // The secondary free list which contains regions that have been
222 223
  // freed up during the cleanup process. This will be appended to
  // the master free list when appropriate.
224
  FreeRegionList _secondary_free_list;
225

T
tonyp 已提交
226
  // It keeps track of the old regions.
227
  HeapRegionSet _old_set;
T
tonyp 已提交
228

229
  // It keeps track of the humongous regions.
230
  HeapRegionSet _humongous_set;
231

232 233 234
  void clear_humongous_is_live_table();
  void eagerly_reclaim_humongous_regions();

235
  // The number of regions we could create by expansion.
236
  uint _expansion_regions;
237 238 239 240

  // The block offset table for the G1 heap.
  G1BlockOffsetSharedArray* _bot_shared;

T
tonyp 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  // Tears down the region sets / lists so that they are empty and the
  // regions on the heap do not belong to a region set / list. The
  // only exception is the humongous set which we leave unaltered. If
  // free_list_only is true, it will only tear down the master free
  // list. It is called before a Full GC (free_list_only == false) or
  // before heap shrinking (free_list_only == true).
  void tear_down_region_sets(bool free_list_only);

  // Rebuilds the region sets / lists so that they are repopulated to
  // reflect the contents of the heap. The only exception is the
  // humongous set which was not torn down in the first place. If
  // free_list_only is true, it will only rebuild the master free
  // list. It is called after a Full GC (free_list_only == false) or
  // after heap shrinking (free_list_only == true).
  void rebuild_region_sets(bool free_list_only);
256

257 258 259
  // Callback for region mapping changed events.
  G1RegionMappingChangedListener _listener;

260
  // The sequence of all heap regions in the heap.
261
  HeapRegionManager _hrm;
262

263 264
  // Class that handles the different kinds of allocations.
  G1Allocator* _allocator;
265

266 267 268
  // Statistics for each allocation context
  AllocationContextStats _allocation_context_stats;

269 270 271 272 273 274
  // PLAB sizing policy for survivors.
  PLABStats _survivor_plab_stats;

  // PLAB sizing policy for tenured objects.
  PLABStats _old_plab_stats;

275 276 277 278 279 280 281 282
  // It specifies whether we should attempt to expand the heap after a
  // region allocation failure. If heap expansion fails we set this to
  // false so that we don't re-attempt the heap expansion (it's likely
  // that subsequent expansion attempts will also fail if one fails).
  // Currently, it is only consulted during GC and it's reset at the
  // start of each GC.
  bool _expand_heap_after_alloc_failure;

283 284 285 286 287
  // It resets the mutator alloc region before new allocations can take place.
  void init_mutator_alloc_region();

  // It releases the mutator alloc region.
  void release_mutator_alloc_region();
288

289
  // It initializes the GC alloc regions at the start of a GC.
S
sla 已提交
290
  void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
291

292
  // It releases the GC alloc regions at the end of a GC.
S
sla 已提交
293
  void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
294 295 296 297

  // It does any cleanup that needs to be done on the GC alloc regions
  // before a Full GC.
  void abandon_gc_alloc_regions();
298

299 300 301
  // Helper for monitoring and management support.
  G1MonitoringSupport* _g1mm;

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  // Records whether the region at the given index is kept live by roots or
  // references from the young generation.
  class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
   protected:
    bool default_value() const { return false; }
   public:
    void clear() { G1BiasedMappedArray<bool>::clear(); }
    void set_live(uint region) {
      set_by_index(region, true);
    }
    bool is_live(uint region) {
      return get_by_index(region);
    }
  };

  HumongousIsLiveBiasedMappedArray _humongous_is_live;
  // Stores whether during humongous object registration we found candidate regions.
  // If not, we can skip a few steps.
  bool _has_humongous_reclaim_candidates;
321

322
  volatile unsigned _gc_time_stamp;
323 324 325

  size_t* _surviving_young_words;

326 327
  G1HRPrinter _hr_printer;

328 329 330 331
  void setup_surviving_young_words();
  void update_surviving_young_words(size_t* surv_young_words);
  void cleanup_surviving_young_words();

332 333 334 335 336
  // It decides whether an explicit GC should start a concurrent cycle
  // instead of doing a STW GC. Currently, a concurrent cycle is
  // explicitly started if:
  // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
  // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
337
  // (c) cause == _g1_humongous_allocation
338 339
  bool should_do_concurrent_full_gc(GCCause::Cause cause);

340 341 342 343 344 345 346
  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
  // concurrent cycles) we have started.
  volatile unsigned int _old_marking_cycles_started;

  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
  // concurrent cycles) we have completed.
  volatile unsigned int _old_marking_cycles_completed;
347

S
sla 已提交
348 349
  bool _concurrent_cycle_started;

350 351 352 353 354 355 356 357
  // This is a non-product method that is helpful for testing. It is
  // called at the end of a GC and artificially expands the heap by
  // allocating a number of dead regions. This way we can induce very
  // frequent marking cycles and stress the cleanup / concurrent
  // cleanup code more (as all the regions that will be allocated by
  // this method will be found dead by the marking cycle).
  void allocate_dummy_regions() PRODUCT_RETURN;

358 359 360 361 362
  // Clear RSets after a compaction. It also resets the GC time stamps.
  void clear_rsets_post_compaction();

  // If the HR printer is active, dump the state of the regions in the
  // heap after a compaction.
363
  void print_hrm_post_compaction();
364

365 366 367 368
  double verify(bool guard, const char* msg);
  void verify_before_gc();
  void verify_after_gc();

369 370 371
  void log_gc_header();
  void log_gc_footer(double pause_time_sec);

372 373 374
  // These are macros so that, if the assert fires, we get the correct
  // line number, file, etc.

T
tonyp 已提交
375
#define heap_locking_asserts_err_msg(_extra_message_)                         \
376
  err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
T
tonyp 已提交
377
          (_extra_message_),                                                  \
378 379 380
          BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
          BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
          BOOL_TO_STR(Thread::current()->is_VM_thread()))
381 382 383 384 385 386 387

#define assert_heap_locked()                                                  \
  do {                                                                        \
    assert(Heap_lock->owned_by_self(),                                        \
           heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
  } while (0)

T
tonyp 已提交
388
#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
389 390
  do {                                                                        \
    assert(Heap_lock->owned_by_self() ||                                      \
391
           (SafepointSynchronize::is_at_safepoint() &&                        \
T
tonyp 已提交
392
             ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
           heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
                                        "should be at a safepoint"));         \
  } while (0)

#define assert_heap_locked_and_not_at_safepoint()                             \
  do {                                                                        \
    assert(Heap_lock->owned_by_self() &&                                      \
                                    !SafepointSynchronize::is_at_safepoint(), \
          heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
                                       "should not be at a safepoint"));      \
  } while (0)

#define assert_heap_not_locked()                                              \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self(),                                       \
        heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
  } while (0)

#define assert_heap_not_locked_and_not_at_safepoint()                         \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self() &&                                     \
                                    !SafepointSynchronize::is_at_safepoint(), \
      heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
                                   "should not be at a safepoint"));          \
  } while (0)

T
tonyp 已提交
419
#define assert_at_safepoint(_should_be_vm_thread_)                            \
420
  do {                                                                        \
421
    assert(SafepointSynchronize::is_at_safepoint() &&                         \
T
tonyp 已提交
422
              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
423 424 425 426 427 428 429 430 431
           heap_locking_asserts_err_msg("should be at a safepoint"));         \
  } while (0)

#define assert_not_at_safepoint()                                             \
  do {                                                                        \
    assert(!SafepointSynchronize::is_at_safepoint(),                          \
           heap_locking_asserts_err_msg("should not be at a safepoint"));     \
  } while (0)

432 433
protected:

434
  // The young region list.
435 436 437 438 439
  YoungList*  _young_list;

  // The current policy object for the collector.
  G1CollectorPolicy* _g1_policy;

440
  // This is the second level of trying to allocate a new region. If
441 442 443 444
  // new_region() didn't find a region on the free_list, this call will
  // check whether there's anything available on the
  // secondary_free_list and/or wait for more regions to appear on
  // that list, if _free_regions_coming is set.
445
  HeapRegion* new_region_try_secondary_free_list(bool is_old);
T
tonyp 已提交
446 447 448 449

  // Try to allocate a single non-humongous HeapRegion sufficient for
  // an allocation of the given word_size. If do_expand is true,
  // attempt to expand the heap if necessary to satisfy the allocation
450 451 452
  // request. If the region is to be used as an old region or for a
  // humongous object, set is_old to true. If not, to false.
  HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
453

T
tonyp 已提交
454 455 456
  // Initialize a contiguous set of free regions of length num_regions
  // and starting at index first so that they appear as a single
  // humongous region.
457 458
  HeapWord* humongous_obj_allocate_initialize_regions(uint first,
                                                      uint num_regions,
459 460
                                                      size_t word_size,
                                                      AllocationContext_t context);
T
tonyp 已提交
461 462 463

  // Attempt to allocate a humongous object of the given size. Return
  // NULL if unsuccessful.
464
  HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
465 466 467 468 469 470 471 472 473 474 475 476 477

  // The following two methods, allocate_new_tlab() and
  // mem_allocate(), are the two main entry points from the runtime
  // into the G1's allocation routines. They have the following
  // assumptions:
  //
  // * They should both be called outside safepoints.
  //
  // * They should both be called without holding the Heap_lock.
  //
  // * All allocation requests for new TLABs should go to
  //   allocate_new_tlab().
  //
478
  // * All non-TLAB allocation requests should go to mem_allocate().
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  //
  // * If either call cannot satisfy the allocation request using the
  //   current allocating region, they will try to get a new one. If
  //   this fails, they will attempt to do an evacuation pause and
  //   retry the allocation.
  //
  // * If all allocation attempts fail, even after trying to schedule
  //   an evacuation pause, allocate_new_tlab() will return NULL,
  //   whereas mem_allocate() will attempt a heap expansion and/or
  //   schedule a Full GC.
  //
  // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
  //   should never be called with word_size being humongous. All
  //   humongous allocation requests should go to mem_allocate() which
  //   will satisfy them with a special path.

  virtual HeapWord* allocate_new_tlab(size_t word_size);

  virtual HeapWord* mem_allocate(size_t word_size,
                                 bool*  gc_overhead_limit_was_exceeded);

500 501 502 503 504 505 506 507 508 509 510 511 512
  // The following three methods take a gc_count_before_ret
  // parameter which is used to return the GC count if the method
  // returns NULL. Given that we are required to read the GC count
  // while holding the Heap_lock, and these paths will take the
  // Heap_lock at some point, it's easier to get them to read the GC
  // count while holding the Heap_lock before they return NULL instead
  // of the caller (namely: mem_allocate()) having to also take the
  // Heap_lock just to read the GC count.

  // First-level mutator allocation attempt: try to allocate out of
  // the mutator alloc region without taking the Heap_lock. This
  // should only be used for non-humongous allocations.
  inline HeapWord* attempt_allocation(size_t word_size,
513 514
                                      unsigned int* gc_count_before_ret,
                                      int* gclocker_retry_count_ret);
515 516 517 518 519

  // Second-level mutator allocation attempt: take the Heap_lock and
  // retry the allocation attempt, potentially scheduling a GC
  // pause. This should only be used for non-humongous allocations.
  HeapWord* attempt_allocation_slow(size_t word_size,
520
                                    AllocationContext_t context,
521 522
                                    unsigned int* gc_count_before_ret,
                                    int* gclocker_retry_count_ret);
523 524 525

  // Takes the Heap_lock and attempts a humongous allocation. It can
  // potentially schedule a GC pause.
526
  HeapWord* attempt_allocation_humongous(size_t word_size,
527 528
                                         unsigned int* gc_count_before_ret,
                                         int* gclocker_retry_count_ret);
529

530 531 532 533
  // Allocation attempt that should be called during safepoints (e.g.,
  // at the end of a successful GC). expect_null_mutator_alloc_region
  // specifies whether the mutator alloc region is expected to be NULL
  // or not.
534
  HeapWord* attempt_allocation_at_safepoint(size_t word_size,
535 536
                                            AllocationContext_t context,
                                            bool expect_null_mutator_alloc_region);
537 538 539 540 541 542

  // It dirties the cards that cover the block so that so that the post
  // write barrier never queues anything when updating objects on this
  // block. It is assumed (and in fact we assert) that the block
  // belongs to a young region.
  inline void dirty_young_block(HeapWord* start, size_t word_size);
543 544 545 546 547

  // Allocate blocks during garbage collection. Will ensure an
  // allocation region, either by picking one or expanding the
  // heap, and then allocate a block of the given size. The block
  // may not be a humongous - it must fit into a single heap region.
548 549 550
  HeapWord* par_allocate_during_gc(GCAllocPurpose purpose,
                                   size_t word_size,
                                   AllocationContext_t context);
551

552 553 554 555 556
  HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
                                    HeapRegion*    alloc_region,
                                    bool           par,
                                    size_t         word_size);

557 558 559 560
  // Ensure that no further allocations can happen in "r", bearing in mind
  // that parallel threads might be attempting allocations.
  void par_allocate_remaining_space(HeapRegion* r);

561
  // Allocation attempt during GC for a survivor object / PLAB.
562 563
  inline HeapWord* survivor_attempt_allocation(size_t word_size,
                                               AllocationContext_t context);
564

565
  // Allocation attempt during GC for an old object / PLAB.
566 567
  inline HeapWord* old_attempt_allocation(size_t word_size,
                                          AllocationContext_t context);
568

569 570 571
  // These methods are the "callbacks" from the G1AllocRegion class.

  // For mutator alloc regions.
572 573 574 575
  HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
  void retire_mutator_alloc_region(HeapRegion* alloc_region,
                                   size_t allocated_bytes);

576
  // For GC alloc regions.
577
  HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
578 579 580 581
                                  GCAllocPurpose ap);
  void retire_gc_alloc_region(HeapRegion* alloc_region,
                              size_t allocated_bytes, GCAllocPurpose ap);

582
  // - if explicit_gc is true, the GC is for a System.gc() or a heap
583 584 585
  //   inspection request and should collect the entire heap
  // - if clear_all_soft_refs is true, all soft references should be
  //   cleared during the GC
586
  // - if explicit_gc is false, word_size describes the allocation that
587 588 589 590
  //   the GC should attempt (at least) to satisfy
  // - it returns false if it is unable to do the collection due to the
  //   GC locker being active, true otherwise
  bool do_collection(bool explicit_gc,
591
                     bool clear_all_soft_refs,
592 593 594 595
                     size_t word_size);

  // Callback from VM_G1CollectFull operation.
  // Perform a full collection.
596
  virtual void do_full_collection(bool clear_all_soft_refs);
597 598 599 600 601 602 603 604 605

  // Resize the heap if necessary after a full collection.  If this is
  // after a collect-for allocation, "word_size" is the allocation size,
  // and will be considered part of the used portion of the heap.
  void resize_if_necessary_after_full_collection(size_t word_size);

  // Callback from VM_G1CollectForAllocation operation.
  // This function does everything necessary/possible to satisfy a
  // failed allocation request (including collection, expansion, etc.)
606 607 608
  HeapWord* satisfy_failed_allocation(size_t word_size,
                                      AllocationContext_t context,
                                      bool* succeeded);
609 610 611 612 613

  // Attempting to expand the heap sufficiently
  // to support an allocation of the given "word_size".  If
  // successful, perform the allocation and return the address of the
  // allocated block, or else "NULL".
614
  HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
615

616 617
  // Process any reference objects discovered during
  // an incremental evacuation pause.
J
johnc 已提交
618
  void process_discovered_references(uint no_of_gc_workers);
619 620 621

  // Enqueue any remaining discovered references
  // after processing.
J
johnc 已提交
622
  void enqueue_discovered_references(uint no_of_gc_workers);
623

624
public:
625

S
sjohanss 已提交
626 627 628 629
  G1Allocator* allocator() {
    return _allocator;
  }

630 631 632 633
  G1MonitoringSupport* g1mm() {
    assert(_g1mm != NULL, "should have been initialized");
    return _g1mm;
  }
634

635
  // Expand the garbage-first heap by at least the given size (in bytes!).
636 637
  // Returns true if the heap was expanded by the requested amount;
  // false otherwise.
638
  // (Rounds up to a HeapRegion boundary.)
639
  bool expand(size_t expand_bytes);
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
  // Returns the PLAB statistics given a purpose.
  PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
    PLABStats* stats = NULL;

    switch (purpose) {
    case GCAllocForSurvived:
      stats = &_survivor_plab_stats;
      break;
    case GCAllocForTenured:
      stats = &_old_plab_stats;
      break;
    default:
      assert(false, "unrecognized GCAllocPurpose");
    }

    return stats;
  }

  // Determines PLAB size for a particular allocation purpose.
  size_t desired_plab_sz(GCAllocPurpose purpose);

662 663
  inline AllocationContextStats& allocation_context_stats();

664 665 666 667
  // Do anything common to GC's.
  virtual void gc_prologue(bool full);
  virtual void gc_epilogue(bool full);

668 669 670 671 672 673 674 675 676 677 678 679 680 681
  inline void set_humongous_is_live(oop obj);

  bool humongous_is_live(uint region) {
    return _humongous_is_live.is_live(region);
  }

  // Returns whether the given region (which must be a humongous (start) region)
  // is to be considered conservatively live regardless of any other conditions.
  bool humongous_region_is_always_live(uint index);
  // Register the given region to be part of the collection set.
  inline void register_humongous_region_with_in_cset_fast_test(uint index);
  // Register regions with humongous objects (actually on the start region) in
  // the in_cset_fast_test table.
  void register_humongous_regions_with_in_cset_fast_test();
682 683 684
  // We register a region with the fast "in collection set" test. We
  // simply set to true the array slot corresponding to this region.
  void register_region_with_in_cset_fast_test(HeapRegion* r) {
685
    _in_cset_fast_test.set_in_cset(r->hrm_index());
686 687 688
  }

  // This is a fast test on whether a reference points into the
689 690
  // collection set or not. Assume that the reference
  // points into the heap.
691
  inline bool in_cset_fast_test(oop obj);
692

693
  void clear_cset_fast_test() {
694
    _in_cset_fast_test.clear();
695 696
  }

697 698 699 700
  // This is called at the start of either a concurrent cycle or a Full
  // GC to update the number of old marking cycles started.
  void increment_old_marking_cycles_started();

701
  // This is called at the end of either a concurrent cycle or a Full
702
  // GC to update the number of old marking cycles completed. Those two
703 704 705
  // can happen in a nested fashion, i.e., we start a concurrent
  // cycle, a Full GC happens half-way through it which ends first,
  // and then the cycle notices that a Full GC happened and ends
706 707 708 709 710
  // too. The concurrent parameter is a boolean to help us do a bit
  // tighter consistency checking in the method. If concurrent is
  // false, the caller is the inner caller in the nesting (i.e., the
  // Full GC). If concurrent is true, the caller is the outer caller
  // in this nesting (i.e., the concurrent cycle). Further nesting is
711
  // not currently supported. The end of this call also notifies
712 713
  // the FullGCCount_lock in case a Java thread is waiting for a full
  // GC to happen (e.g., it called System.gc() with
714
  // +ExplicitGCInvokesConcurrent).
715
  void increment_old_marking_cycles_completed(bool concurrent);
716

717 718
  unsigned int old_marking_cycles_completed() {
    return _old_marking_cycles_completed;
719 720
  }

721
  void register_concurrent_cycle_start(const Ticks& start_time);
S
sla 已提交
722 723 724 725 726
  void register_concurrent_cycle_end();
  void trace_heap_after_concurrent_cycle();

  G1YCType yc_type();

727 728
  G1HRPrinter* hr_printer() { return &_hr_printer; }

729 730 731 732 733 734
  // Frees a non-humongous region by initializing its contents and
  // adding it to the free list that's passed as a parameter (this is
  // usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
735 736
  // The locked parameter indicates if the caller has already taken
  // care of proper synchronization. This may allow some optimizations.
737 738
  void free_region(HeapRegion* hr,
                   FreeRegionList* free_list,
739 740
                   bool par,
                   bool locked = false);
741 742 743 744 745 746 747 748 749 750 751

  // Frees a humongous region by collapsing it into individual regions
  // and calling free_region() for each of them. The freed regions
  // will be added to the free list that's passed as a parameter (this
  // is usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
  void free_humongous_region(HeapRegion* hr,
                             FreeRegionList* free_list,
                             bool par);
752 753 754 755 756 757 758
protected:

  // Shrink the garbage-first heap by at most the given size (in bytes!).
  // (Rounds down to a HeapRegion boundary.)
  virtual void shrink(size_t expand_bytes);
  void shrink_helper(size_t expand_bytes);

759 760 761 762 763 764
  #if TASKQUEUE_STATS
  static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
  void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
  void reset_taskqueue_stats();
  #endif // TASKQUEUE_STATS

765 766 767 768 769 770 771 772 773 774
  // Schedule the VM operation that will do an evacuation pause to
  // satisfy an allocation request of word_size. *succeeded will
  // return whether the VM operation was successful (it did do an
  // evacuation pause) or not (another thread beat us to it or the GC
  // locker was active). Given that we should not be holding the
  // Heap_lock when we enter this method, we will pass the
  // gc_count_before (i.e., total_collections()) as a parameter since
  // it has to be read while holding the Heap_lock. Currently, both
  // methods that call do_collection_pause() release the Heap_lock
  // before the call, so it's easy to read gc_count_before just before.
775 776 777 778
  HeapWord* do_collection_pause(size_t         word_size,
                                unsigned int   gc_count_before,
                                bool*          succeeded,
                                GCCause::Cause gc_cause);
779 780

  // The guts of the incremental collection pause, executed by the vm
781 782 783
  // thread. It returns false if it is unable to do the collection due
  // to the GC locker being active, true otherwise
  bool do_collection_pause_at_safepoint(double target_pause_time_ms);
784 785

  // Actually do the work of evacuating the collection set.
S
sla 已提交
786
  void evacuate_collection_set(EvacuationInfo& evacuation_info);
787 788 789 790

  // The g1 remembered set of the heap.
  G1RemSet* _g1_rem_set;

791 792 793 794
  // A set of cards that cover the objects for which the Rsets should be updated
  // concurrently after the collection.
  DirtyCardQueueSet _dirty_card_queue_set;

795 796 797 798 799 800
  // The closure used to refine a single card.
  RefineCardTableEntryClosure* _refine_cte_cl;

  // A function to check the consistency of dirty card logs.
  void check_ct_logs_at_safepoint();

J
johnc 已提交
801 802 803 804 805 806
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet _into_cset_dirty_card_queue_set;

807 808
  // After a collection pause, make the regions in the CS into free
  // regions.
S
sla 已提交
809
  void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
810

811 812 813 814
  // Abandon the current collection set without recording policy
  // statistics or updating free lists.
  void abandon_collection_set(HeapRegion* cs_head);

815 816
  // Applies "scan_non_heap_roots" to roots outside the heap,
  // "scan_rs" to roots inside the heap (having done "set_region" to
817 818
  // indicate the region in which the root resides),
  // and does "scan_metadata" If "scan_rs" is
819 820 821 822
  // NULL, then this step is skipped.  The "worker_i"
  // param is for use with parallel roots processing, and should be
  // the "i" of the calling parallel worker thread's work(i) function.
  // In the sequential case this param will be ignored.
823 824
  void g1_process_roots(OopClosure* scan_non_heap_roots,
                        OopClosure* scan_non_heap_weak_roots,
825
                        G1ParPushHeapRSClosure* scan_rs,
826 827 828 829
                        CLDClosure* scan_strong_clds,
                        CLDClosure* scan_weak_clds,
                        CodeBlobClosure* scan_strong_code,
                        uint worker_i);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

  // The concurrent marker (and the thread it runs in.)
  ConcurrentMark* _cm;
  ConcurrentMarkThread* _cmThread;
  bool _mark_in_progress;

  // The concurrent refiner.
  ConcurrentG1Refine* _cg1r;

  // The parallel task queues
  RefToScanQueueSet *_task_queues;

  // True iff a evacuation has failed in the current collection.
  bool _evacuation_failed;

S
sla 已提交
845
  EvacuationFailedInfo* _evacuation_failed_info_array;
846 847 848 849 850

  // Failed evacuations cause some logical from-space objects to have
  // forwarding pointers to themselves.  Reset them.
  void remove_self_forwarding_pointers();

851 852 853
  // Together, these store an object with a preserved mark, and its mark value.
  Stack<oop, mtGC>     _objs_with_preserved_marks;
  Stack<markOop, mtGC> _preserved_marks_of_objs;
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886

  // Preserve the mark of "obj", if necessary, in preparation for its mark
  // word being overwritten with a self-forwarding-pointer.
  void preserve_mark_if_necessary(oop obj, markOop m);

  // The stack of evac-failure objects left to be scanned.
  GrowableArray<oop>*    _evac_failure_scan_stack;
  // The closure to apply to evac-failure objects.

  OopsInHeapRegionClosure* _evac_failure_closure;
  // Set the field above.
  void
  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
    _evac_failure_closure = evac_failure_closure;
  }

  // Push "obj" on the scan stack.
  void push_on_evac_failure_scan_stack(oop obj);
  // Process scan stack entries until the stack is empty.
  void drain_evac_failure_scan_stack();
  // True iff an invocation of "drain_scan_stack" is in progress; to
  // prevent unnecessary recursion.
  bool _drain_in_progress;

  // Do any necessary initialization for evacuation-failure handling.
  // "cl" is the closure that will be used to process evac-failure
  // objects.
  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
  // Do any necessary cleanup for evacuation-failure handling data
  // structures.
  void finalize_for_evac_failure();

  // An attempt to evacuate "obj" has failed; take necessary steps.
S
sla 已提交
887
  oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
888 889
  void handle_evacuation_failure_common(oop obj, markOop m);

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
#ifndef PRODUCT
  // Support for forcing evacuation failures. Analogous to
  // PromotionFailureALot for the other collectors.

  // Records whether G1EvacuationFailureALot should be in effect
  // for the current GC
  bool _evacuation_failure_alot_for_current_gc;

  // Used to record the GC number for interval checking when
  // determining whether G1EvaucationFailureALot is in effect
  // for the current GC.
  size_t _evacuation_failure_alot_gc_number;

  // Count of the number of evacuations between failures.
  volatile size_t _evacuation_failure_alot_count;

  // Set whether G1EvacuationFailureALot should be in effect
  // for the current GC (based upon the type of GC and which
  // command line flags are set);
  inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
                                                  bool during_initial_mark,
                                                  bool during_marking);

  inline void set_evacuation_failure_alot_for_current_gc();

  // Return true if it's time to cause an evacuation failure.
  inline bool evacuation_should_fail();

  // Reset the G1EvacuationFailureALot counters.  Should be called at
S
sla 已提交
919
  // the end of an evacuation pause in which an evacuation failure occurred.
920 921 922
  inline void reset_evacuation_should_fail();
#endif // !PRODUCT

923 924
  // ("Weak") Reference processing support.
  //
S
sla 已提交
925
  // G1 has 2 instances of the reference processor class. One
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
  // (_ref_processor_cm) handles reference object discovery
  // and subsequent processing during concurrent marking cycles.
  //
  // The other (_ref_processor_stw) handles reference object
  // discovery and processing during full GCs and incremental
  // evacuation pauses.
  //
  // During an incremental pause, reference discovery will be
  // temporarily disabled for _ref_processor_cm and will be
  // enabled for _ref_processor_stw. At the end of the evacuation
  // pause references discovered by _ref_processor_stw will be
  // processed and discovery will be disabled. The previous
  // setting for reference object discovery for _ref_processor_cm
  // will be re-instated.
  //
  // At the start of marking:
  //  * Discovery by the CM ref processor is verified to be inactive
  //    and it's discovered lists are empty.
  //  * Discovery by the CM ref processor is then enabled.
  //
  // At the end of marking:
  //  * Any references on the CM ref processor's discovered
  //    lists are processed (possibly MT).
  //
  // At the start of full GC we:
  //  * Disable discovery by the CM ref processor and
  //    empty CM ref processor's discovered lists
  //    (without processing any entries).
  //  * Verify that the STW ref processor is inactive and it's
  //    discovered lists are empty.
  //  * Temporarily set STW ref processor discovery as single threaded.
  //  * Temporarily clear the STW ref processor's _is_alive_non_header
  //    field.
  //  * Finally enable discovery by the STW ref processor.
  //
  // The STW ref processor is used to record any discovered
  // references during the full GC.
  //
  // At the end of a full GC we:
  //  * Enqueue any reference objects discovered by the STW ref processor
  //    that have non-live referents. This has the side-effect of
  //    making the STW ref processor inactive by disabling discovery.
  //  * Verify that the CM ref processor is still inactive
  //    and no references have been placed on it's discovered
  //    lists (also checked as a precondition during initial marking).

  // The (stw) reference processor...
  ReferenceProcessor* _ref_processor_stw;

S
sla 已提交
975 976 977 978 979 980
  STWGCTimer* _gc_timer_stw;
  ConcurrentGCTimer* _gc_timer_cm;

  G1OldTracer* _gc_tracer_cm;
  G1NewTracer* _gc_tracer_stw;

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
  // During reference object discovery, the _is_alive_non_header
  // closure (if non-null) is applied to the referent object to
  // determine whether the referent is live. If so then the
  // reference object does not need to be 'discovered' and can
  // be treated as a regular oop. This has the benefit of reducing
  // the number of 'discovered' reference objects that need to
  // be processed.
  //
  // Instance of the is_alive closure for embedding into the
  // STW reference processor as the _is_alive_non_header field.
  // Supplying a value for the _is_alive_non_header field is
  // optional but doing so prevents unnecessary additions to
  // the discovered lists during reference discovery.
  G1STWIsAliveClosure _is_alive_closure_stw;

  // The (concurrent marking) reference processor...
  ReferenceProcessor* _ref_processor_cm;
998

999 1000 1001 1002 1003 1004 1005
  // Instance of the concurrent mark is_alive closure for embedding
  // into the Concurrent Marking reference processor as the
  // _is_alive_non_header field. Supplying a value for the
  // _is_alive_non_header field is optional but doing so prevents
  // unnecessary additions to the discovered lists during reference
  // discovery.
  G1CMIsAliveClosure _is_alive_closure_cm;
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
  // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  HeapRegion** _worker_cset_start_region;

  // Time stamp to validate the regions recorded in the cache
  // used by G1CollectedHeap::start_cset_region_for_worker().
  // The heap region entry for a given worker is valid iff
  // the associated time stamp value matches the current value
  // of G1CollectedHeap::_gc_time_stamp.
  unsigned int* _worker_cset_start_region_time_stamp;

1017
  enum G1H_process_roots_tasks {
1018
    G1H_PS_filter_satb_buffers,
1019 1020 1021 1022 1023 1024 1025
    G1H_PS_refProcessor_oops_do,
    // Leave this one last.
    G1H_PS_NumElements
  };

  SubTasksDone* _process_strong_tasks;

1026
  volatile bool _free_regions_coming;
1027 1028

public:
1029 1030 1031

  SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }

1032 1033
  void set_refine_cte_cl_concurrency(bool concurrent);

1034
  RefToScanQueue *task_queue(int i) const;
1035

1036 1037 1038
  // A set of cards where updates happened during the GC
  DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }

J
johnc 已提交
1039 1040 1041 1042 1043 1044 1045
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet& into_cset_dirty_card_queue_set()
        { return _into_cset_dirty_card_queue_set; }

1046 1047 1048 1049 1050 1051
  // Create a G1CollectedHeap with the specified policy.
  // Must call the initialize method afterwards.
  // May not return if something goes wrong.
  G1CollectedHeap(G1CollectorPolicy* policy);

  // Initialize the G1CollectedHeap to have the initial and
1052
  // maximum sizes and remembered and barrier sets
1053 1054 1055
  // specified by the policy object.
  jint initialize();

1056 1057
  virtual void stop();

1058 1059 1060
  // Return the (conservative) maximum heap alignment for any G1 heap
  static size_t conservative_max_heap_alignment();

1061
  // Initialize weak reference processing.
1062
  virtual void ref_processing_init();
1063

1064
  void set_par_threads(uint t) {
1065
    SharedHeap::set_par_threads(t);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    // Done in SharedHeap but oddly there are
    // two _process_strong_tasks's in a G1CollectedHeap
    // so do it here too.
    _process_strong_tasks->set_n_threads(t);
  }

  // Set _n_par_threads according to a policy TBD.
  void set_par_threads();

  void set_n_termination(int t) {
1076
    _process_strong_tasks->set_n_threads(t);
1077 1078 1079 1080 1081 1082 1083 1084 1085
  }

  virtual CollectedHeap::Name kind() const {
    return CollectedHeap::G1CollectedHeap;
  }

  // The current policy object for the collector.
  G1CollectorPolicy* g1_policy() const { return _g1_policy; }

1086 1087
  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
  // Adaptive size policy.  No such thing for g1.
  virtual AdaptiveSizePolicy* size_policy() { return NULL; }

  // The rem set and barrier set.
  G1RemSet* g1_rem_set() const { return _g1_rem_set; }

  unsigned get_gc_time_stamp() {
    return _gc_time_stamp;
  }

1098
  inline void reset_gc_time_stamp();
1099

1100 1101
  void check_gc_time_stamps() PRODUCT_RETURN;

1102
  inline void increment_gc_time_stamp();
1103

1104 1105 1106 1107 1108
  // Reset the given region's GC timestamp. If it's starts humongous,
  // also reset the GC timestamp of its corresponding
  // continues humongous regions too.
  void reset_gc_time_stamps(HeapRegion* hr);

J
johnc 已提交
1109 1110
  void iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                  DirtyCardQueue* into_cset_dcq,
1111
                                  bool concurrent, uint worker_i);
1112 1113 1114 1115

  // The shared block offset table array.
  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }

1116 1117 1118 1119 1120
  // Reference Processing accessors

  // The STW reference processor....
  ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }

S
sla 已提交
1121
  // The Concurrent Marking reference processor...
1122
  ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1123

S
sla 已提交
1124 1125 1126
  ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }

1127 1128
  virtual size_t capacity() const;
  virtual size_t used() const;
1129 1130 1131
  // This should be called when we're not holding the heap lock. The
  // result might be a bit inaccurate.
  size_t used_unlocked() const;
1132 1133 1134 1135 1136 1137 1138 1139 1140
  size_t recalculate_used() const;

  // These virtual functions do the actual allocation.
  // Some heaps may offer a contiguous region for shared non-blocking
  // allocation, via inlined code (by exporting the address of the top and
  // end fields defining the extent of the contiguous allocation region.)
  // But G1CollectedHeap doesn't yet support this.

  virtual bool is_maximal_no_gc() const {
1141
    return _hrm.available() == 0;
1142 1143
  }

1144
  // The current number of regions in the heap.
1145
  uint num_regions() const { return _hrm.length(); }
1146

1147
  // The max number of regions in the heap.
1148
  uint max_regions() const { return _hrm.max_length(); }
1149 1150

  // The number of regions that are completely free.
1151
  uint num_free_regions() const { return _hrm.num_free_regions(); }
1152 1153

  // The number of regions that are not completely free.
1154
  uint num_used_regions() const { return num_regions() - num_free_regions(); }
1155

1156 1157
  void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1158 1159 1160
  void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  void verify_dirty_young_regions() PRODUCT_RETURN;

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
#ifndef PRODUCT
  // Make sure that the given bitmap has no marked objects in the
  // range [from,limit). If it does, print an error message and return
  // false. Otherwise, just return true. bitmap_name should be "prev"
  // or "next".
  bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                HeapWord* from, HeapWord* limit);

  // Verify that the prev / next bitmap range [tams,end) for the given
  // region has no marks. Return true if all is well, false if errors
  // are detected.
  bool verify_bitmaps(const char* caller, HeapRegion* hr);
#endif // PRODUCT

  // If G1VerifyBitmaps is set, verify that the marking bitmaps for
  // the given region do not have any spurious marks. If errors are
  // detected, print appropriate error messages and crash.
  void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;

  // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
  // have any spurious marks. If errors are detected, print
  // appropriate error messages and crash.
  void check_bitmaps(const char* caller) PRODUCT_RETURN;

1185 1186 1187 1188 1189 1190 1191
  // verify_region_sets() performs verification over the region
  // lists. It will be compiled in the product code to be used when
  // necessary (i.e., during heap verification).
  void verify_region_sets();

  // verify_region_sets_optional() is planted in the code for
  // list verification in non-product builds (and it can be enabled in
S
sla 已提交
1192
  // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1193 1194 1195 1196 1197 1198 1199 1200 1201
#if HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() {
    verify_region_sets();
  }
#else // HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() { }
#endif // HEAP_REGION_SET_FORCE_VERIFY

#ifdef ASSERT
T
tonyp 已提交
1202
  bool is_on_master_free_list(HeapRegion* hr) {
1203
    return _hrm.is_free(hr);
1204 1205 1206 1207 1208 1209
  }
#endif // ASSERT

  // Wrapper for the region list operations that can be called from
  // methods outside this class.

1210 1211
  void secondary_free_list_add(FreeRegionList* list) {
    _secondary_free_list.add_ordered(list);
1212 1213 1214
  }

  void append_secondary_free_list() {
1215
    _hrm.insert_list_into_free_list(&_secondary_free_list);
1216 1217
  }

T
tonyp 已提交
1218 1219 1220
  void append_secondary_free_list_if_not_empty_with_lock() {
    // If the secondary free list looks empty there's no reason to
    // take the lock and then try to append it.
1221 1222 1223 1224 1225 1226
    if (!_secondary_free_list.is_empty()) {
      MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
      append_secondary_free_list();
    }
  }

1227
  inline void old_set_remove(HeapRegion* hr);
T
tonyp 已提交
1228

1229 1230 1231 1232
  size_t non_young_capacity_bytes() {
    return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  }

1233 1234 1235 1236
  void set_free_regions_coming();
  void reset_free_regions_coming();
  bool free_regions_coming() { return _free_regions_coming; }
  void wait_while_free_regions_coming();
1237

1238 1239 1240
  // Determine whether the given region is one that we are using as an
  // old GC alloc region.
  bool is_old_gc_alloc_region(HeapRegion* hr) {
1241
    return _allocator->is_retained_old_region(hr);
1242 1243
  }

1244 1245 1246 1247 1248 1249 1250 1251
  // Perform a collection of the heap; intended for use in implementing
  // "System.gc".  This probably implies as full a collection as the
  // "CollectedHeap" supports.
  virtual void collect(GCCause::Cause cause);

  // The same as above but assume that the caller holds the Heap_lock.
  void collect_locked(GCCause::Cause cause);

1252
  virtual bool copy_allocation_context_stats(const jint* contexts,
1253 1254 1255 1256
                                             jlong* totals,
                                             jbyte* accuracy,
                                             jint len);

S
sla 已提交
1257
  // True iff an evacuation has failed in the most-recent collection.
1258 1259
  bool evacuation_failed() { return _evacuation_failed; }

1260 1261 1262
  void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  void prepend_to_freelist(FreeRegionList* list);
  void decrement_summary_bytes(size_t bytes);
1263

S
stefank 已提交
1264
  // Returns "TRUE" iff "p" points into the committed areas of the heap.
1265
  virtual bool is_in(const void* p) const;
1266 1267 1268 1269 1270
#ifdef ASSERT
  // Returns whether p is in one of the available areas of the heap. Slow but
  // extensive version.
  bool is_in_exact(const void* p) const;
#endif
1271 1272

  // Return "TRUE" iff the given object address is within the collection
1273
  // set. Slow implementation.
1274 1275
  inline bool obj_in_cs(oop obj);

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
  inline bool is_in_cset(oop obj);

  inline bool is_in_cset_or_humongous(const oop obj);

  enum in_cset_state_t {
   InNeither,           // neither in collection set nor humongous
   InCSet,              // region is in collection set only
   IsHumongous          // region is a humongous start region
  };
 private:
  // Instances of this class are used for quick tests on whether a reference points
  // into the collection set or is a humongous object (points into a humongous
  // object).
  // Each of the array's elements denotes whether the corresponding region is in
  // the collection set or a humongous region.
  // We use this to quickly reclaim humongous objects: by making a humongous region
  // succeed this test, we sort-of add it to the collection set. During the reference
  // iteration closures, when we see a humongous region, we simply mark it as
  // referenced, i.e. live.
  class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<char> {
   protected:
    char default_value() const { return G1CollectedHeap::InNeither; }
   public:
    void set_humongous(uintptr_t index) {
      assert(get_by_index(index) != InCSet, "Should not overwrite InCSet values");
      set_by_index(index, G1CollectedHeap::IsHumongous);
    }

    void clear_humongous(uintptr_t index) {
      set_by_index(index, G1CollectedHeap::InNeither);
    }

    void set_in_cset(uintptr_t index) {
      assert(get_by_index(index) != G1CollectedHeap::IsHumongous, "Should not overwrite IsHumongous value");
      set_by_index(index, G1CollectedHeap::InCSet);
    }

    bool is_in_cset_or_humongous(HeapWord* addr) const { return get_by_address(addr) != G1CollectedHeap::InNeither; }
    bool is_in_cset(HeapWord* addr) const { return get_by_address(addr) == G1CollectedHeap::InCSet; }
    G1CollectedHeap::in_cset_state_t at(HeapWord* addr) const { return (G1CollectedHeap::in_cset_state_t)get_by_address(addr); }
    void clear() { G1BiasedMappedArray<char>::clear(); }
  };

  // This array is used for a quick test on whether a reference points into
  // the collection set or not. Each of the array's elements denotes whether the
  // corresponding region is in the collection set or not.
  G1FastCSetBiasedMappedArray _in_cset_fast_test;

 public:

  inline in_cset_state_t in_cset_state(const oop obj);

1328
  // Return "TRUE" iff the given object address is in the reserved
1329
  // region of g1.
1330
  bool is_in_g1_reserved(const void* p) const {
1331
    return _hrm.reserved().contains(p);
1332 1333
  }

1334 1335
  // Returns a MemRegion that corresponds to the space that has been
  // reserved for the heap
1336
  MemRegion g1_reserved() const {
1337
    return _hrm.reserved();
1338 1339
  }

J
johnc 已提交
1340
  virtual bool is_in_closed_subset(const void* p) const;
1341

1342 1343
  G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
    return (G1SATBCardTableLoggingModRefBS*) barrier_set();
1344 1345
  }

1346 1347 1348 1349 1350 1351 1352 1353
  // This resets the card table to all zeros.  It is used after
  // a collection pause which used the card table to claim cards.
  void cleanUpCardTable();

  // Iteration functions.

  // Iterate over all the ref-containing fields of all objects, calling
  // "cl.do_oop" on each.
1354
  virtual void oop_iterate(ExtendedOopClosure* cl);
1355 1356

  // Iterate over all objects, calling "cl.do_object" on each.
1357 1358
  virtual void object_iterate(ObjectClosure* cl);

1359
  virtual void safe_object_iterate(ObjectClosure* cl) {
1360
    object_iterate(cl);
1361
  }
1362 1363 1364 1365 1366 1367

  // Iterate over all spaces in use in the heap, in ascending address order.
  virtual void space_iterate(SpaceClosure* cl);

  // Iterate over heap regions, in address order, terminating the
  // iteration early if the "doHeapRegion" method returns "true".
1368
  void heap_region_iterate(HeapRegionClosure* blk) const;
1369

1370
  // Return the region with the given index. It assumes the index is valid.
1371
  inline HeapRegion* region_at(uint index) const;
1372

1373 1374 1375 1376
  // Calculate the region index of the given address. Given address must be
  // within the heap.
  inline uint addr_to_region(HeapWord* addr) const;

1377 1378
  inline HeapWord* bottom_addr_for_region(uint index) const;

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
  // Divide the heap region sequence into "chunks" of some size (the number
  // of regions divided by the number of parallel threads times some
  // overpartition factor, currently 4).  Assumes that this will be called
  // in parallel by ParallelGCThreads worker threads with discinct worker
  // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  // calls will use the same "claim_value", and that that claim value is
  // different from the claim_value of any heap region before the start of
  // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  // attempting to claim the first region in each chunk, and, if
  // successful, applying the closure to each region in the chunk (and
  // setting the claim value of the second and subsequent regions of the
  // chunk.)  For now requires that "doHeapRegion" always returns "false",
  // i.e., that a closure never attempt to abort a traversal.
1392 1393 1394 1395
  void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                       uint worker_id,
                                       uint num_workers,
                                       jint claim_value) const;
1396

1397 1398 1399
  // It resets all the region claim values to the default.
  void reset_heap_region_claim_values();

1400 1401 1402 1403
  // Resets the claim values of regions in the current
  // collection set to the default.
  void reset_cset_heap_region_claim_values();

1404 1405
#ifdef ASSERT
  bool check_heap_region_claim_values(jint claim_value);
1406 1407 1408 1409

  // Same as the routine above but only checks regions in the
  // current collection set.
  bool check_cset_heap_region_claim_values(jint claim_value);
1410 1411
#endif // ASSERT

1412 1413 1414 1415 1416 1417
  // Clear the cached cset start regions and (more importantly)
  // the time stamps. Called when we reset the GC time stamp.
  void clear_cset_start_regions();

  // Given the id of a worker, obtain or calculate a suitable
  // starting region for iterating over the current collection set.
1418
  HeapRegion* start_cset_region_for_worker(uint worker_i);
1419

1420 1421 1422 1423 1424 1425
  // Iterate over the regions (if any) in the current collection set.
  void collection_set_iterate(HeapRegionClosure* blk);

  // As above but starting from region r
  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);

1426
  HeapRegion* next_compaction_region(const HeapRegion* from) const;
1427 1428 1429 1430 1431

  // A CollectedHeap will contain some number of spaces.  This finds the
  // space containing a given address, or else returns NULL.
  virtual Space* space_containing(const void* addr) const;

1432
  // Returns the HeapRegion that contains addr. addr must not be NULL.
1433
  template <class T>
1434
  inline HeapRegion* heap_region_containing_raw(const T addr) const;
1435

1436 1437
  // Returns the HeapRegion that contains addr. addr must not be NULL.
  // If addr is within a humongous continues region, it returns its humongous start region.
1438
  template <class T>
1439
  inline HeapRegion* heap_region_containing(const T addr) const;
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  // each address in the (reserved) heap is a member of exactly
  // one block.  The defining characteristic of a block is that it is
  // possible to find its size, and thus to progress forward to the next
  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  // represent Java objects, or they might be free blocks in a
  // free-list-based heap (or subheap), as long as the two kinds are
  // distinguishable and the size of each is determinable.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const;

  // Does this heap support heap inspection? (+PrintClassHistogram)
  virtual bool supports_heap_inspection() const { return true; }

  // Section on thread-local allocation buffers (TLABs)
  // See CollectedHeap for semantics.

B
brutisso 已提交
1471 1472 1473 1474 1475
  bool supports_tlab_allocation() const;
  size_t tlab_capacity(Thread* ignored) const;
  size_t tlab_used(Thread* ignored) const;
  size_t max_tlab_size() const;
  size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1476 1477 1478

  // Can a compiler initialize a new object without store barriers?
  // This permission only extends from the creation of a new object
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
  // via a TLAB up to the first subsequent safepoint. If such permission
  // is granted for this heap type, the compiler promises to call
  // defer_store_barrier() below on any slow path allocation of
  // a new object for which such initializing store barriers will
  // have been elided. G1, like CMS, allows this, but should be
  // ready to provide a compensating write barrier as necessary
  // if that storage came out of a non-young region. The efficiency
  // of this implementation depends crucially on being able to
  // answer very efficiently in constant time whether a piece of
  // storage in the heap comes from a young region or not.
  // See ReduceInitialCardMarks.
1490
  virtual bool can_elide_tlab_store_barriers() const {
1491
    return true;
1492 1493
  }

1494 1495 1496 1497
  virtual bool card_mark_must_follow_store() const {
    return true;
  }

1498
  inline bool is_in_young(const oop obj);
1499

1500 1501 1502 1503 1504 1505
#ifdef ASSERT
  virtual bool is_in_partial_collection(const void* p);
#endif

  virtual bool is_scavengable(const void* addr);

1506 1507 1508 1509
  // We don't need barriers for initializing stores to objects
  // in the young gen: for the SATB pre-barrier, there is no
  // pre-value that needs to be remembered; for the remembered-set
  // update logging post-barrier, we don't maintain remembered set
1510
  // information for young gen objects.
1511
  virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1512 1513 1514

  // Returns "true" iff the given word_size is "very large".
  static bool isHumongous(size_t word_size) {
1515 1516 1517 1518 1519 1520
    // Note this has to be strictly greater-than as the TLABs
    // are capped at the humongous thresold and we want to
    // ensure that we don't try to allocate a TLAB as
    // humongous and that we don't allocate a humongous
    // object in a TLAB.
    return word_size > _humongous_object_threshold_in_words;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
  }

  // Update mod union table with the set of dirty cards.
  void updateModUnion();

  // Set the mod union bits corresponding to the given memRegion.  Note
  // that this is always a safe operation, since it doesn't clear any
  // bits.
  void markModUnionRange(MemRegion mr);

  // Records the fact that a marking phase is no longer in progress.
  void set_marking_complete() {
    _mark_in_progress = false;
  }
  void set_marking_started() {
    _mark_in_progress = true;
  }
  bool mark_in_progress() {
    return _mark_in_progress;
  }

  // Print the maximum heap capacity.
  virtual size_t max_capacity() const;

  virtual jlong millis_since_last_gc();

1547

1548 1549 1550 1551 1552 1553 1554
  // Convenience function to be used in situations where the heap type can be
  // asserted to be this type.
  static G1CollectedHeap* heap();

  void set_region_short_lived_locked(HeapRegion* hr);
  // add appropriate methods for any other surv rate groups

B
brutisso 已提交
1555
  YoungList* young_list() const { return _young_list; }
1556 1557 1558 1559 1560

  // debugging
  bool check_young_list_well_formed() {
    return _young_list->check_list_well_formed();
  }
1561 1562

  bool check_young_list_empty(bool check_heap,
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
                              bool check_sample = true);

  // *** Stuff related to concurrent marking.  It's not clear to me that so
  // many of these need to be public.

  // The functions below are helper functions that a subclass of
  // "CollectedHeap" can use in the implementation of its virtual
  // functions.
  // This performs a concurrent marking of the live objects in a
  // bitmap off to the side.
  void doConcurrentMark();

  bool isMarkedPrev(oop obj) const;
  bool isMarkedNext(oop obj) const;

  // Determine if an object is dead, given the object and also
  // the region to which the object belongs. An object is dead
  // iff a) it was not allocated since the last mark and b) it
  // is not marked.
  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_prev_marking(obj) &&
      !isMarkedPrev(obj);
  }

  // This function returns true when an object has been
  // around since the previous marking and hasn't yet
  // been marked during this marking.
  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_next_marking(obj) &&
      !isMarkedNext(obj);
  }

  // Determine if an object is dead, given only the object itself.
  // This will find the region to which the object belongs and
  // then call the region version of the same function.

  // Added if it is NULL it isn't dead.

1603
  inline bool is_obj_dead(const oop obj) const;
1604

1605
  inline bool is_obj_ill(const oop obj) const;
1606

J
johnc 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
  bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  bool is_marked(oop obj, VerifyOption vo);
  const char* top_at_mark_start_str(VerifyOption vo);

  ConcurrentMark* concurrent_mark() const { return _cm; }

  // Refinement

  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }

  // The dirty cards region list is used to record a subset of regions
  // whose cards need clearing. The list if populated during the
  // remembered set scanning and drained during the card table
  // cleanup. Although the methods are reentrant, population/draining
  // phases must not overlap. For synchronization purposes the last
  // element on the list points to itself.
  HeapRegion* _dirty_cards_region_list;
  void push_dirty_cards_region(HeapRegion* hr);
  HeapRegion* pop_dirty_cards_region();

  // Optimized nmethod scanning support routines

  // Register the given nmethod with the G1 heap
  virtual void register_nmethod(nmethod* nm);

  // Unregister the given nmethod from the G1 heap
  virtual void unregister_nmethod(nmethod* nm);

1636 1637 1638
  // Free up superfluous code root memory.
  void purge_code_root_memory();

J
johnc 已提交
1639 1640 1641 1642
  // Rebuild the stong code root lists for each region
  // after a full GC
  void rebuild_strong_code_roots();

1643 1644 1645 1646
  // Delete entries for dead interned string and clean up unreferenced symbols
  // in symbol table, possibly in parallel.
  void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);

1647 1648 1649
  // Parallel phase of unloading/cleaning after G1 concurrent mark.
  void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);

1650 1651
  // Redirty logged cards in the refinement queue.
  void redirty_logged_cards();
J
johnc 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
  // Verification

  // The following is just to alert the verification code
  // that a full collection has occurred and that the
  // remembered sets are no longer up to date.
  bool _full_collection;
  void set_full_collection() { _full_collection = true;}
  void clear_full_collection() {_full_collection = false;}
  bool full_collection() {return _full_collection;}

  // Perform any cleanup actions necessary before allowing a verification.
  virtual void prepare_for_verify();

  // Perform verification.

  // vo == UsePrevMarking  -> use "prev" marking information,
  // vo == UseNextMarking -> use "next" marking information
  // vo == UseMarkWord    -> use the mark word in the object header
  //
  // NOTE: Only the "prev" marking information is guaranteed to be
  // consistent most of the time, so most calls to this should use
  // vo == UsePrevMarking.
  // Currently, there is only one case where this is called with
  // vo == UseNextMarking, which is to verify the "next" marking
  // information at the end of remark.
  // Currently there is only one place where this is called with
  // vo == UseMarkWord, which is to verify the marking during a
  // full GC.
  void verify(bool silent, VerifyOption vo);

  // Override; it uses the "prev" marking information
  virtual void verify(bool silent);

1685 1686
  // The methods below are here for convenience and dispatch the
  // appropriate method depending on value of the given VerifyOption
J
johnc 已提交
1687 1688
  // parameter. The values for that parameter, and their meanings,
  // are the same as those above.
1689 1690 1691

  bool is_obj_dead_cond(const oop obj,
                        const HeapRegion* hr,
1692
                        const VerifyOption vo) const;
1693 1694

  bool is_obj_dead_cond(const oop obj,
1695
                        const VerifyOption vo) const;
1696

J
johnc 已提交
1697
  // Printing
1698

J
johnc 已提交
1699 1700 1701
  virtual void print_on(outputStream* st) const;
  virtual void print_extended_on(outputStream* st) const;
  virtual void print_on_error(outputStream* st) const;
1702

J
johnc 已提交
1703 1704
  virtual void print_gc_threads_on(outputStream* st) const;
  virtual void gc_threads_do(ThreadClosure* tc) const;
1705

J
johnc 已提交
1706 1707 1708 1709 1710 1711
  // Override
  void print_tracing_info() const;

  // The following two methods are helpful for debugging RSet issues.
  void print_cset_rsets() PRODUCT_RETURN;
  void print_all_rsets() PRODUCT_RETURN;
1712

1713 1714 1715 1716 1717 1718 1719 1720
public:
  size_t pending_card_num();
  size_t cards_scanned();

protected:
  size_t _max_heap_capacity;
};

1721
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP