g1CollectedHeap.hpp 76.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1RemSet.hpp"
30
#include "gc_implementation/g1/heapRegionSets.hpp"
31 32 33 34 35
#include "gc_implementation/parNew/parGCAllocBuffer.hpp"
#include "memory/barrierSet.hpp"
#include "memory/memRegion.hpp"
#include "memory/sharedHeap.hpp"

36 37 38 39 40 41 42
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.

class HeapRegion;
class HeapRegionSeq;
T
tonyp 已提交
43
class HRRSCleanupTask;
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class PermanentGenerationSpec;
class GenerationSpec;
class OopsInHeapRegionClosure;
class G1ScanHeapEvacClosure;
class ObjectClosure;
class SpaceClosure;
class CompactibleSpaceClosure;
class Space;
class G1CollectorPolicy;
class GenRemSet;
class G1RemSet;
class HeapRegionRemSetIterator;
class ConcurrentMark;
class ConcurrentMarkThread;
class ConcurrentG1Refine;
class ConcurrentZFThread;

61
typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
62
typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
63

64 65 66
typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )

67 68 69
enum G1GCThreadGroups {
  G1CRGroup = 0,
  G1ZFGroup = 1,
70
  G1CMGroup = 2
71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

enum GCAllocPurpose {
  GCAllocForTenured,
  GCAllocForSurvived,
  GCAllocPurposeCount
};

class YoungList : public CHeapObj {
private:
  G1CollectedHeap* _g1h;

  HeapRegion* _head;

85 86
  HeapRegion* _survivor_head;
  HeapRegion* _survivor_tail;
87 88 89

  HeapRegion* _curr;

90
  size_t      _length;
91 92
  size_t      _survivor_length;

93 94 95 96
  size_t      _last_sampled_rs_lengths;
  size_t      _sampled_rs_lengths;

  void         empty_list(HeapRegion* list);
97 98 99 100

public:
  YoungList(G1CollectedHeap* g1h);

101 102 103 104 105 106 107
  void         push_region(HeapRegion* hr);
  void         add_survivor_region(HeapRegion* hr);

  void         empty_list();
  bool         is_empty() { return _length == 0; }
  size_t       length() { return _length; }
  size_t       survivor_length() { return _survivor_length; }
108 109 110 111 112 113 114 115 116 117 118 119

  void rs_length_sampling_init();
  bool rs_length_sampling_more();
  void rs_length_sampling_next();

  void reset_sampled_info() {
    _last_sampled_rs_lengths =   0;
  }
  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }

  // for development purposes
  void reset_auxilary_lists();
120 121 122 123 124 125 126 127
  void clear() { _head = NULL; _length = 0; }

  void clear_survivors() {
    _survivor_head    = NULL;
    _survivor_tail    = NULL;
    _survivor_length  = 0;
  }

128 129
  HeapRegion* first_region() { return _head; }
  HeapRegion* first_survivor_region() { return _survivor_head; }
130
  HeapRegion* last_survivor_region() { return _survivor_tail; }
131 132 133

  // debugging
  bool          check_list_well_formed();
134
  bool          check_list_empty(bool check_sample = true);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  void          print();
};

class RefineCardTableEntryClosure;
class G1CollectedHeap : public SharedHeap {
  friend class VM_G1CollectForAllocation;
  friend class VM_GenCollectForPermanentAllocation;
  friend class VM_G1CollectFull;
  friend class VM_G1IncCollectionPause;
  friend class VMStructs;

  // Closures used in implementation.
  friend class G1ParCopyHelper;
  friend class G1IsAliveClosure;
  friend class G1EvacuateFollowersClosure;
  friend class G1ParScanThreadState;
  friend class G1ParScanClosureSuper;
  friend class G1ParEvacuateFollowersClosure;
  friend class G1ParTask;
  friend class G1FreeGarbageRegionClosure;
  friend class RefineCardTableEntryClosure;
  friend class G1PrepareCompactClosure;
  friend class RegionSorter;
158
  friend class RegionResetter;
159 160
  friend class CountRCClosure;
  friend class EvacPopObjClosure;
161
  friend class G1ParCleanupCTTask;
162 163 164 165 166 167 168 169

  // Other related classes.
  friend class G1MarkSweep;

private:
  // The one and only G1CollectedHeap, so static functions can find it.
  static G1CollectedHeap* _g1h;

170 171
  static size_t _humongous_object_threshold_in_words;

172 173 174 175 176 177 178 179 180 181
  // Storage for the G1 heap (excludes the permanent generation).
  VirtualSpace _g1_storage;
  MemRegion    _g1_reserved;

  // The part of _g1_storage that is currently committed.
  MemRegion _g1_committed;

  // The maximum part of _g1_storage that has ever been committed.
  MemRegion _g1_max_committed;

182 183 184 185 186 187 188 189 190 191
  // The master free list. It will satisfy all new region allocations.
  MasterFreeRegionList      _free_list;

  // The secondary free list which contains regions that have been
  // freed up during the cleanup process. This will be appended to the
  // master free list when appropriate.
  SecondaryFreeRegionList   _secondary_free_list;

  // It keeps track of the humongous regions.
  MasterHumongousRegionSet  _humongous_set;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

  // The number of regions we could create by expansion.
  size_t _expansion_regions;

  // The block offset table for the G1 heap.
  G1BlockOffsetSharedArray* _bot_shared;

  // Move all of the regions off the free lists, then rebuild those free
  // lists, before and after full GC.
  void tear_down_region_lists();
  void rebuild_region_lists();

  // The sequence of all heap regions in the heap.
  HeapRegionSeq* _hrs;

  // The region from which normal-sized objects are currently being
  // allocated.  May be NULL.
  HeapRegion* _cur_alloc_region;

  // Postcondition: cur_alloc_region == NULL.
  void abandon_cur_alloc_region();
213
  void abandon_gc_alloc_regions();
214 215 216 217

  // The to-space memory regions into which objects are being copied during
  // a GC.
  HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
218
  size_t _gc_alloc_region_counts[GCAllocPurposeCount];
219 220 221 222 223 224 225 226
  // These are the regions, one per GCAllocPurpose, that are half-full
  // at the end of a collection and that we want to reuse during the
  // next collection.
  HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
  // This specifies whether we will keep the last half-full region at
  // the end of a collection so that it can be reused during the next
  // collection (this is specified per GCAllocPurpose)
  bool _retain_gc_alloc_region[GCAllocPurposeCount];
227 228 229 230 231

  // A list of the regions that have been set to be alloc regions in the
  // current collection.
  HeapRegion* _gc_alloc_region_list;

232 233 234
  // Determines PLAB size for a particular allocation purpose.
  static size_t desired_plab_sz(GCAllocPurpose purpose);

235
  // When called by par thread, requires the FreeList_lock to be held.
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  void push_gc_alloc_region(HeapRegion* hr);

  // This should only be called single-threaded.  Undeclares all GC alloc
  // regions.
  void forget_alloc_region_list();

  // Should be used to set an alloc region, because there's other
  // associated bookkeeping.
  void set_gc_alloc_region(int purpose, HeapRegion* r);

  // Check well-formedness of alloc region list.
  bool check_gc_alloc_regions();

  // Outside of GC pauses, the number of bytes used in all regions other
  // than the current allocation region.
  size_t _summary_bytes_used;

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  // This is used for a quick test on whether a reference points into
  // the collection set or not. Basically, we have an array, with one
  // byte per region, and that byte denotes whether the corresponding
  // region is in the collection set or not. The entry corresponding
  // the bottom of the heap, i.e., region 0, is pointed to by
  // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
  // biased so that it actually points to address 0 of the address
  // space, to make the test as fast as possible (we can simply shift
  // the address to address into it, instead of having to subtract the
  // bottom of the heap from the address before shifting it; basically
  // it works in the same way the card table works).
  bool* _in_cset_fast_test;

  // The allocated array used for the fast test on whether a reference
  // points into the collection set or not. This field is also used to
  // free the array.
  bool* _in_cset_fast_test_base;

  // The length of the _in_cset_fast_test_base array.
  size_t _in_cset_fast_test_length;

274
  volatile unsigned _gc_time_stamp;
275 276 277 278 279 280 281

  size_t* _surviving_young_words;

  void setup_surviving_young_words();
  void update_surviving_young_words(size_t* surv_young_words);
  void cleanup_surviving_young_words();

282 283 284 285 286 287 288 289 290 291 292 293
  // It decides whether an explicit GC should start a concurrent cycle
  // instead of doing a STW GC. Currently, a concurrent cycle is
  // explicitly started if:
  // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
  // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
  bool should_do_concurrent_full_gc(GCCause::Cause cause);

  // Keeps track of how many "full collections" (i.e., Full GCs or
  // concurrent cycles) we have completed. The number of them we have
  // started is maintained in _total_full_collections in CollectedHeap.
  volatile unsigned int _full_collections_completed;

294 295 296 297
  // These are macros so that, if the assert fires, we get the correct
  // line number, file, etc.

#define heap_locking_asserts_err_msg(__extra_message)                         \
298
  err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
299
          (__extra_message),                                                  \
300 301 302
          BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
          BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
          BOOL_TO_STR(Thread::current()->is_VM_thread()))
303 304 305 306 307 308 309

#define assert_heap_locked()                                                  \
  do {                                                                        \
    assert(Heap_lock->owned_by_self(),                                        \
           heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
  } while (0)

310
#define assert_heap_locked_or_at_safepoint(__should_be_vm_thread)             \
311 312
  do {                                                                        \
    assert(Heap_lock->owned_by_self() ||                                      \
313 314
           (SafepointSynchronize::is_at_safepoint() &&                        \
             ((__should_be_vm_thread) == Thread::current()->is_VM_thread())), \
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
           heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
                                        "should be at a safepoint"));         \
  } while (0)

#define assert_heap_locked_and_not_at_safepoint()                             \
  do {                                                                        \
    assert(Heap_lock->owned_by_self() &&                                      \
                                    !SafepointSynchronize::is_at_safepoint(), \
          heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
                                       "should not be at a safepoint"));      \
  } while (0)

#define assert_heap_not_locked()                                              \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self(),                                       \
        heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
  } while (0)

#define assert_heap_not_locked_and_not_at_safepoint()                         \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self() &&                                     \
                                    !SafepointSynchronize::is_at_safepoint(), \
      heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
                                   "should not be at a safepoint"));          \
  } while (0)

341
#define assert_at_safepoint(__should_be_vm_thread)                            \
342
  do {                                                                        \
343 344
    assert(SafepointSynchronize::is_at_safepoint() &&                         \
              ((__should_be_vm_thread) == Thread::current()->is_VM_thread()), \
345 346 347 348 349 350 351 352 353
           heap_locking_asserts_err_msg("should be at a safepoint"));         \
  } while (0)

#define assert_not_at_safepoint()                                             \
  do {                                                                        \
    assert(!SafepointSynchronize::is_at_safepoint(),                          \
           heap_locking_asserts_err_msg("should not be at a safepoint"));     \
  } while (0)

354 355 356 357 358
protected:

  // Returns "true" iff none of the gc alloc regions have any allocations
  // since the last call to "save_marks".
  bool all_alloc_regions_no_allocs_since_save_marks();
359 360
  // Perform finalization stuff on all allocation regions.
  void retire_all_alloc_regions();
361 362 363 364 365 366 367 368

  // The number of regions allocated to hold humongous objects.
  int         _num_humongous_regions;
  YoungList*  _young_list;

  // The current policy object for the collector.
  G1CollectorPolicy* _g1_policy;

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  // This is the second level of trying to allocate a new region. If
  // new_region_work didn't find a region in the free_list, this call
  // will check whether there's anything available in the
  // secondary_free_list and/or wait for more regions to appear in that
  // list, if _free_regions_coming is set.
  HeapRegion* new_region_try_secondary_free_list(size_t word_size);

  // It will try to allocate a single non-humongous HeapRegion
  // sufficient for an allocation of the given word_size.  If
  // do_expand is true, it will attempt to expand the heap if
  // necessary to satisfy the allocation request. Note that word_size
  // is only used to make sure that we expand sufficiently but, given
  // that the allocation request is assumed not to be humongous,
  // having word_size is not strictly necessary (expanding by a single
  // region will always be sufficient). But let's keep that parameter
  // in case we need it in the future.
  HeapRegion* new_region_work(size_t word_size, bool do_expand);

  // It will try to allocate a new region to be used for allocation by
  // mutator threads. It will not try to expand the heap if not region
  // is available.
  HeapRegion* new_alloc_region(size_t word_size) {
    return new_region_work(word_size, false /* do_expand */);
392
  }
393 394 395 396 397 398 399

  // It will try to allocate a new region to be used for allocation by
  // a GC thread. It will try to expand the heap if no region is
  // available.
  HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);

  int humongous_obj_allocate_find_first(size_t num_regions, size_t word_size);
400 401 402

  // Attempt to allocate an object of the given (very large) "word_size".
  // Returns "NULL" on failure.
403
  HeapWord* humongous_obj_allocate(size_t word_size);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

  // The following two methods, allocate_new_tlab() and
  // mem_allocate(), are the two main entry points from the runtime
  // into the G1's allocation routines. They have the following
  // assumptions:
  //
  // * They should both be called outside safepoints.
  //
  // * They should both be called without holding the Heap_lock.
  //
  // * All allocation requests for new TLABs should go to
  //   allocate_new_tlab().
  //
  // * All non-TLAB allocation requests should go to mem_allocate()
  //   and mem_allocate() should never be called with is_tlab == true.
  //
  // * If the GC locker is active we currently stall until we can
  //   allocate a new young region. This will be changed in the
  //   near future (see CR 6994056).
  //
  // * If either call cannot satisfy the allocation request using the
  //   current allocating region, they will try to get a new one. If
  //   this fails, they will attempt to do an evacuation pause and
  //   retry the allocation.
  //
  // * If all allocation attempts fail, even after trying to schedule
  //   an evacuation pause, allocate_new_tlab() will return NULL,
  //   whereas mem_allocate() will attempt a heap expansion and/or
  //   schedule a Full GC.
  //
  // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
  //   should never be called with word_size being humongous. All
  //   humongous allocation requests should go to mem_allocate() which
  //   will satisfy them with a special path.

  virtual HeapWord* allocate_new_tlab(size_t word_size);

  virtual HeapWord* mem_allocate(size_t word_size,
                                 bool   is_noref,
                                 bool   is_tlab, /* expected to be false */
                                 bool*  gc_overhead_limit_was_exceeded);

  // The following methods, allocate_from_cur_allocation_region(),
447 448
  // attempt_allocation(), attempt_allocation_locked(),
  // replace_cur_alloc_region_and_allocate(),
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  // attempt_allocation_slow(), and attempt_allocation_humongous()
  // have very awkward pre- and post-conditions with respect to
  // locking:
  //
  // If they are called outside a safepoint they assume the caller
  // holds the Heap_lock when it calls them. However, on exit they
  // will release the Heap_lock if they return a non-NULL result, but
  // keep holding the Heap_lock if they return a NULL result. The
  // reason for this is that we need to dirty the cards that span
  // allocated blocks on young regions to avoid having to take the
  // slow path of the write barrier (for performance reasons we don't
  // update RSets for references whose source is a young region, so we
  // don't need to look at dirty cards on young regions). But, doing
  // this card dirtying while holding the Heap_lock can be a
  // scalability bottleneck, especially given that some allocation
  // requests might be of non-trivial size (and the larger the region
  // size is, the fewer allocations requests will be considered
  // humongous, as the humongous size limit is a fraction of the
  // region size). So, when one of these calls succeeds in allocating
  // a block it does the card dirtying after it releases the Heap_lock
  // which is why it will return without holding it.
  //
  // The above assymetry is the reason why locking / unlocking is done
  // explicitly (i.e., with Heap_lock->lock() and
  // Heap_lock->unlocked()) instead of using MutexLocker and
  // MutexUnlocker objects. The latter would ensure that the lock is
  // unlocked / re-locked at every possible exit out of the basic
  // block. However, we only want that action to happen in selected
  // places.
  //
  // Further, if the above methods are called during a safepoint, then
  // naturally there's no assumption about the Heap_lock being held or
  // there's no attempt to unlock it. The parameter at_safepoint
  // indicates whether the call is made during a safepoint or not (as
  // an optimization, to avoid reading the global flag with
  // SafepointSynchronize::is_at_safepoint()).
  //
  // The methods share these parameters:
  //
  // * word_size     : the size of the allocation request in words
  // * at_safepoint  : whether the call is done at a safepoint; this
  //                   also determines whether a GC is permitted
  //                   (at_safepoint == false) or not (at_safepoint == true)
  // * do_dirtying   : whether the method should dirty the allocated
  //                   block before returning
  //
  // They all return either the address of the block, if they
  // successfully manage to allocate it, or NULL.

  // It tries to satisfy an allocation request out of the current
499 500 501 502 503 504 505 506 507
  // alloc region, which is passed as a parameter. It assumes that the
  // caller has checked that the current alloc region is not NULL.
  // Given that the caller has to check the current alloc region for
  // at least NULL, it might as well pass it as the first parameter so
  // that the method doesn't have to read it from the
  // _cur_alloc_region field again. It is called from both
  // attempt_allocation() and attempt_allocation_locked() and the
  // with_heap_lock parameter indicates whether the caller was holding
  // the heap lock when it called it or not.
508
  inline HeapWord* allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
509 510
                                                  size_t word_size,
                                                  bool with_heap_lock);
511

512 513 514 515
  // First-level of allocation slow path: it attempts to allocate out
  // of the current alloc region in a lock-free manner using a CAS. If
  // that fails it takes the Heap_lock and calls
  // attempt_allocation_locked() for the second-level slow path.
516 517
  inline HeapWord* attempt_allocation(size_t word_size);

518 519 520 521 522
  // Second-level of allocation slow path: while holding the Heap_lock
  // it tries to allocate out of the current alloc region and, if that
  // fails, tries to allocate out of a new current alloc region.
  inline HeapWord* attempt_allocation_locked(size_t word_size);

523
  // It assumes that the current alloc region has been retired and
524 525 526 527 528
  // tries to allocate a new one. If it's successful, it performs the
  // allocation out of the new current alloc region and updates
  // _cur_alloc_region. Normally, it would try to allocate a new
  // region if the young gen is not full, unless can_expand is true in
  // which case it would always try to allocate a new region.
529 530
  HeapWord* replace_cur_alloc_region_and_allocate(size_t word_size,
                                                  bool at_safepoint,
531 532
                                                  bool do_dirtying,
                                                  bool can_expand);
533

534 535 536 537 538
  // Third-level of allocation slow path: when we are unable to
  // allocate a new current alloc region to satisfy an allocation
  // request (i.e., when attempt_allocation_locked() fails). It will
  // try to do an evacuation pause, which might stall due to the GC
  // locker, and retry the allocation attempt when appropriate.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  HeapWord* attempt_allocation_slow(size_t word_size);

  // The method that tries to satisfy a humongous allocation
  // request. If it cannot satisfy it it will try to do an evacuation
  // pause to perhaps reclaim enough space to be able to satisfy the
  // allocation request afterwards.
  HeapWord* attempt_allocation_humongous(size_t word_size,
                                         bool at_safepoint);

  // It does the common work when we are retiring the current alloc region.
  inline void retire_cur_alloc_region_common(HeapRegion* cur_alloc_region);

  // It retires the current alloc region, which is passed as a
  // parameter (since, typically, the caller is already holding on to
  // it). It sets _cur_alloc_region to NULL.
  void retire_cur_alloc_region(HeapRegion* cur_alloc_region);

  // It attempts to do an allocation immediately before or after an
  // evacuation pause and can only be called by the VM thread. It has
  // slightly different assumptions that the ones before (i.e.,
  // assumes that the current alloc region has been retired).
  HeapWord* attempt_allocation_at_safepoint(size_t word_size,
                                            bool expect_null_cur_alloc_region);

  // It dirties the cards that cover the block so that so that the post
  // write barrier never queues anything when updating objects on this
  // block. It is assumed (and in fact we assert) that the block
  // belongs to a young region.
  inline void dirty_young_block(HeapWord* start, size_t word_size);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

  // Allocate blocks during garbage collection. Will ensure an
  // allocation region, either by picking one or expanding the
  // heap, and then allocate a block of the given size. The block
  // may not be a humongous - it must fit into a single heap region.
  HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);

  HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
                                    HeapRegion*    alloc_region,
                                    bool           par,
                                    size_t         word_size);

  // Ensure that no further allocations can happen in "r", bearing in mind
  // that parallel threads might be attempting allocations.
  void par_allocate_remaining_space(HeapRegion* r);

584 585 586 587
  // Retires an allocation region when it is full or at the end of a
  // GC pause.
  void  retire_alloc_region(HeapRegion* alloc_region, bool par);

588
  // - if explicit_gc is true, the GC is for a System.gc() or a heap
589 590 591
  //   inspection request and should collect the entire heap
  // - if clear_all_soft_refs is true, all soft references should be
  //   cleared during the GC
592
  // - if explicit_gc is false, word_size describes the allocation that
593 594 595 596
  //   the GC should attempt (at least) to satisfy
  // - it returns false if it is unable to do the collection due to the
  //   GC locker being active, true otherwise
  bool do_collection(bool explicit_gc,
597
                     bool clear_all_soft_refs,
598 599 600 601 602 603 604 605 606 607 608 609 610 611
                     size_t word_size);

  // Callback from VM_G1CollectFull operation.
  // Perform a full collection.
  void do_full_collection(bool clear_all_soft_refs);

  // Resize the heap if necessary after a full collection.  If this is
  // after a collect-for allocation, "word_size" is the allocation size,
  // and will be considered part of the used portion of the heap.
  void resize_if_necessary_after_full_collection(size_t word_size);

  // Callback from VM_G1CollectForAllocation operation.
  // This function does everything necessary/possible to satisfy a
  // failed allocation request (including collection, expansion, etc.)
612
  HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
613 614 615 616 617

  // Attempting to expand the heap sufficiently
  // to support an allocation of the given "word_size".  If
  // successful, perform the allocation and return the address of the
  // allocated block, or else "NULL".
618
  HeapWord* expand_and_allocate(size_t word_size);
619 620 621

public:
  // Expand the garbage-first heap by at least the given size (in bytes!).
622 623
  // Returns true if the heap was expanded by the requested amount;
  // false otherwise.
624
  // (Rounds up to a HeapRegion boundary.)
625
  bool expand(size_t expand_bytes);
626 627 628 629 630

  // Do anything common to GC's.
  virtual void gc_prologue(bool full);
  virtual void gc_epilogue(bool full);

631 632 633 634 635 636
  // We register a region with the fast "in collection set" test. We
  // simply set to true the array slot corresponding to this region.
  void register_region_with_in_cset_fast_test(HeapRegion* r) {
    assert(_in_cset_fast_test_base != NULL, "sanity");
    assert(r->in_collection_set(), "invariant");
    int index = r->hrs_index();
637
    assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    assert(!_in_cset_fast_test_base[index], "invariant");
    _in_cset_fast_test_base[index] = true;
  }

  // This is a fast test on whether a reference points into the
  // collection set or not. It does not assume that the reference
  // points into the heap; if it doesn't, it will return false.
  bool in_cset_fast_test(oop obj) {
    assert(_in_cset_fast_test != NULL, "sanity");
    if (_g1_committed.contains((HeapWord*) obj)) {
      // no need to subtract the bottom of the heap from obj,
      // _in_cset_fast_test is biased
      size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
      bool ret = _in_cset_fast_test[index];
      // let's make sure the result is consistent with what the slower
      // test returns
      assert( ret || !obj_in_cs(obj), "sanity");
      assert(!ret ||  obj_in_cs(obj), "sanity");
      return ret;
    } else {
      return false;
    }
  }

662 663 664 665 666 667
  void clear_cset_fast_test() {
    assert(_in_cset_fast_test_base != NULL, "sanity");
    memset(_in_cset_fast_test_base, false,
        _in_cset_fast_test_length * sizeof(bool));
  }

668 669 670 671 672
  // This is called at the end of either a concurrent cycle or a Full
  // GC to update the number of full collections completed. Those two
  // can happen in a nested fashion, i.e., we start a concurrent
  // cycle, a Full GC happens half-way through it which ends first,
  // and then the cycle notices that a Full GC happened and ends
673 674 675 676 677 678 679 680
  // too. The concurrent parameter is a boolean to help us do a bit
  // tighter consistency checking in the method. If concurrent is
  // false, the caller is the inner caller in the nesting (i.e., the
  // Full GC). If concurrent is true, the caller is the outer caller
  // in this nesting (i.e., the concurrent cycle). Further nesting is
  // not currently supported. The end of the this call also notifies
  // the FullGCCount_lock in case a Java thread is waiting for a full
  // GC to happen (e.g., it called System.gc() with
681
  // +ExplicitGCInvokesConcurrent).
682
  void increment_full_collections_completed(bool concurrent);
683 684 685 686 687

  unsigned int full_collections_completed() {
    return _full_collections_completed;
  }

688 689 690 691 692 693 694
protected:

  // Shrink the garbage-first heap by at most the given size (in bytes!).
  // (Rounds down to a HeapRegion boundary.)
  virtual void shrink(size_t expand_bytes);
  void shrink_helper(size_t expand_bytes);

695 696 697 698 699 700
  #if TASKQUEUE_STATS
  static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
  void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
  void reset_taskqueue_stats();
  #endif // TASKQUEUE_STATS

701 702 703 704 705 706 707 708 709 710 711 712 713
  // Schedule the VM operation that will do an evacuation pause to
  // satisfy an allocation request of word_size. *succeeded will
  // return whether the VM operation was successful (it did do an
  // evacuation pause) or not (another thread beat us to it or the GC
  // locker was active). Given that we should not be holding the
  // Heap_lock when we enter this method, we will pass the
  // gc_count_before (i.e., total_collections()) as a parameter since
  // it has to be read while holding the Heap_lock. Currently, both
  // methods that call do_collection_pause() release the Heap_lock
  // before the call, so it's easy to read gc_count_before just before.
  HeapWord* do_collection_pause(size_t       word_size,
                                unsigned int gc_count_before,
                                bool*        succeeded);
714 715

  // The guts of the incremental collection pause, executed by the vm
716 717 718
  // thread. It returns false if it is unable to do the collection due
  // to the GC locker being active, true otherwise
  bool do_collection_pause_at_safepoint(double target_pause_time_ms);
719 720

  // Actually do the work of evacuating the collection set.
721
  void evacuate_collection_set();
722 723 724 725 726 727

  // The g1 remembered set of the heap.
  G1RemSet* _g1_rem_set;
  // And it's mod ref barrier set, used to track updates for the above.
  ModRefBarrierSet* _mr_bs;

728 729 730 731
  // A set of cards that cover the objects for which the Rsets should be updated
  // concurrently after the collection.
  DirtyCardQueueSet _dirty_card_queue_set;

732 733 734 735 736 737 738 739 740
  // The Heap Region Rem Set Iterator.
  HeapRegionRemSetIterator** _rem_set_iterator;

  // The closure used to refine a single card.
  RefineCardTableEntryClosure* _refine_cte_cl;

  // A function to check the consistency of dirty card logs.
  void check_ct_logs_at_safepoint();

J
johnc 已提交
741 742 743 744 745 746
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet _into_cset_dirty_card_queue_set;

747 748 749 750
  // After a collection pause, make the regions in the CS into free
  // regions.
  void free_collection_set(HeapRegion* cs_head);

751 752 753 754
  // Abandon the current collection set without recording policy
  // statistics or updating free lists.
  void abandon_collection_set(HeapRegion* cs_head);

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
  // Applies "scan_non_heap_roots" to roots outside the heap,
  // "scan_rs" to roots inside the heap (having done "set_region" to
  // indicate the region in which the root resides), and does "scan_perm"
  // (setting the generation to the perm generation.)  If "scan_rs" is
  // NULL, then this step is skipped.  The "worker_i"
  // param is for use with parallel roots processing, and should be
  // the "i" of the calling parallel worker thread's work(i) function.
  // In the sequential case this param will be ignored.
  void g1_process_strong_roots(bool collecting_perm_gen,
                               SharedHeap::ScanningOption so,
                               OopClosure* scan_non_heap_roots,
                               OopsInHeapRegionClosure* scan_rs,
                               OopsInGenClosure* scan_perm,
                               int worker_i);

  // Apply "blk" to all the weak roots of the system.  These include
  // JNI weak roots, the code cache, system dictionary, symbol table,
  // string table, and referents of reachable weak refs.
  void g1_process_weak_roots(OopClosure* root_closure,
                             OopClosure* non_root_closure);

  // Invoke "save_marks" on all heap regions.
  void save_marks();

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
  // It frees a non-humongous region by initializing its contents and
  // adding it to the free list that's passed as a parameter (this is
  // usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
  void free_region(HeapRegion* hr,
                   size_t* pre_used,
                   FreeRegionList* free_list,
                   bool par);

  // It frees a humongous region by collapsing it into individual
  // regions and calling free_region() for each of them. The freed
  // regions will be added to the free list that's passed as a parameter
  // (this is usually a local list which will be appended to the
  // master free list later). The used bytes of freed regions are
  // accumulated in pre_used. If par is true, the region's RSet will
  // not be freed up. The assumption is that this will be done later.
  void free_humongous_region(HeapRegion* hr,
                             size_t* pre_used,
                             FreeRegionList* free_list,
                             HumongousRegionSet* humongous_proxy_set,
                             bool par);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

  // The concurrent marker (and the thread it runs in.)
  ConcurrentMark* _cm;
  ConcurrentMarkThread* _cmThread;
  bool _mark_in_progress;

  // The concurrent refiner.
  ConcurrentG1Refine* _cg1r;

  // The parallel task queues
  RefToScanQueueSet *_task_queues;

  // True iff a evacuation has failed in the current collection.
  bool _evacuation_failed;

  // Set the attribute indicating whether evacuation has failed in the
  // current collection.
  void set_evacuation_failed(bool b) { _evacuation_failed = b; }

  // Failed evacuations cause some logical from-space objects to have
  // forwarding pointers to themselves.  Reset them.
  void remove_self_forwarding_pointers();

  // When one is non-null, so is the other.  Together, they each pair is
  // an object with a preserved mark, and its mark value.
  GrowableArray<oop>*     _objs_with_preserved_marks;
  GrowableArray<markOop>* _preserved_marks_of_objs;

  // Preserve the mark of "obj", if necessary, in preparation for its mark
  // word being overwritten with a self-forwarding-pointer.
  void preserve_mark_if_necessary(oop obj, markOop m);

  // The stack of evac-failure objects left to be scanned.
  GrowableArray<oop>*    _evac_failure_scan_stack;
  // The closure to apply to evac-failure objects.

  OopsInHeapRegionClosure* _evac_failure_closure;
  // Set the field above.
  void
  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
    _evac_failure_closure = evac_failure_closure;
  }

  // Push "obj" on the scan stack.
  void push_on_evac_failure_scan_stack(oop obj);
  // Process scan stack entries until the stack is empty.
  void drain_evac_failure_scan_stack();
  // True iff an invocation of "drain_scan_stack" is in progress; to
  // prevent unnecessary recursion.
  bool _drain_in_progress;

  // Do any necessary initialization for evacuation-failure handling.
  // "cl" is the closure that will be used to process evac-failure
  // objects.
  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
  // Do any necessary cleanup for evacuation-failure handling data
  // structures.
  void finalize_for_evac_failure();

  // An attempt to evacuate "obj" has failed; take necessary steps.
  oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
  void handle_evacuation_failure_common(oop obj, markOop m);


  // Ensure that the relevant gc_alloc regions are set.
  void get_gc_alloc_regions();
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  // We're done with GC alloc regions. We are going to tear down the
  // gc alloc list and remove the gc alloc tag from all the regions on
  // that list. However, we will also retain the last (i.e., the one
  // that is half-full) GC alloc region, per GCAllocPurpose, for
  // possible reuse during the next collection, provided
  // _retain_gc_alloc_region[] indicates that it should be the
  // case. Said regions are kept in the _retained_gc_alloc_regions[]
  // array. If the parameter totally is set, we will not retain any
  // regions, irrespective of what _retain_gc_alloc_region[]
  // indicates.
  void release_gc_alloc_regions(bool totally);
#ifndef PRODUCT
  // Useful for debugging.
  void print_gc_alloc_regions();
#endif // !PRODUCT
883

884 885 886 887 888 889
  // Instance of the concurrent mark is_alive closure for embedding
  // into the reference processor as the is_alive_non_header. This
  // prevents unnecessary additions to the discovered lists during
  // concurrent discovery.
  G1CMIsAliveClosure _is_alive_closure;

890 891 892 893 894 895 896 897 898 899 900 901
  // ("Weak") Reference processing support
  ReferenceProcessor* _ref_processor;

  enum G1H_process_strong_roots_tasks {
    G1H_PS_mark_stack_oops_do,
    G1H_PS_refProcessor_oops_do,
    // Leave this one last.
    G1H_PS_NumElements
  };

  SubTasksDone* _process_strong_tasks;

902
  volatile bool _free_regions_coming;
903 904

public:
905 906 907

  SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }

908 909
  void set_refine_cte_cl_concurrency(bool concurrent);

910
  RefToScanQueue *task_queue(int i) const;
911

912 913 914
  // A set of cards where updates happened during the GC
  DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }

J
johnc 已提交
915 916 917 918 919 920 921
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet& into_cset_dirty_card_queue_set()
        { return _into_cset_dirty_card_queue_set; }

922 923 924 925 926 927 928 929 930 931
  // Create a G1CollectedHeap with the specified policy.
  // Must call the initialize method afterwards.
  // May not return if something goes wrong.
  G1CollectedHeap(G1CollectorPolicy* policy);

  // Initialize the G1CollectedHeap to have the initial and
  // maximum sizes, permanent generation, and remembered and barrier sets
  // specified by the policy object.
  jint initialize();

932
  virtual void ref_processing_init();
933 934 935

  void set_par_threads(int t) {
    SharedHeap::set_par_threads(t);
936
    _process_strong_tasks->set_n_threads(t);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
  }

  virtual CollectedHeap::Name kind() const {
    return CollectedHeap::G1CollectedHeap;
  }

  // The current policy object for the collector.
  G1CollectorPolicy* g1_policy() const { return _g1_policy; }

  // Adaptive size policy.  No such thing for g1.
  virtual AdaptiveSizePolicy* size_policy() { return NULL; }

  // The rem set and barrier set.
  G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  ModRefBarrierSet* mr_bs() const { return _mr_bs; }

  // The rem set iterator.
  HeapRegionRemSetIterator* rem_set_iterator(int i) {
    return _rem_set_iterator[i];
  }

  HeapRegionRemSetIterator* rem_set_iterator() {
    return _rem_set_iterator[0];
  }

  unsigned get_gc_time_stamp() {
    return _gc_time_stamp;
  }

  void reset_gc_time_stamp() {
    _gc_time_stamp = 0;
968 969 970 971 972 973
    OrderAccess::fence();
  }

  void increment_gc_time_stamp() {
    ++_gc_time_stamp;
    OrderAccess::fence();
974 975
  }

J
johnc 已提交
976 977 978
  void iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                  DirtyCardQueue* into_cset_dcq,
                                  bool concurrent, int worker_i);
979 980 981 982 983 984 985 986 987

  // The shared block offset table array.
  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }

  // Reference Processing accessor
  ReferenceProcessor* ref_processor() { return _ref_processor; }

  virtual size_t capacity() const;
  virtual size_t used() const;
988 989 990
  // This should be called when we're not holding the heap lock. The
  // result might be a bit inaccurate.
  size_t used_unlocked() const;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  size_t recalculate_used() const;
#ifndef PRODUCT
  size_t recalculate_used_regions() const;
#endif // PRODUCT

  // These virtual functions do the actual allocation.
  // Some heaps may offer a contiguous region for shared non-blocking
  // allocation, via inlined code (by exporting the address of the top and
  // end fields defining the extent of the contiguous allocation region.)
  // But G1CollectedHeap doesn't yet support this.

  // Return an estimate of the maximum allocation that could be performed
  // without triggering any collection or expansion activity.  In a
  // generational collector, for example, this is probably the largest
  // allocation that could be supported (without expansion) in the youngest
  // generation.  It is "unsafe" because no locks are taken; the result
  // should be treated as an approximation, not a guarantee, for use in
  // heuristic resizing decisions.
  virtual size_t unsafe_max_alloc();

  virtual bool is_maximal_no_gc() const {
    return _g1_storage.uncommitted_size() == 0;
  }

  // The total number of regions in the heap.
  size_t n_regions();

  // The number of regions that are completely free.
  size_t max_regions();

  // The number of regions that are completely free.
1022 1023 1024
  size_t free_regions() {
    return _free_list.length();
  }
1025 1026 1027 1028 1029 1030 1031

  // The number of regions that are not completely free.
  size_t used_regions() { return n_regions() - free_regions(); }

  // The number of regions available for "regular" expansion.
  size_t expansion_regions() { return _expansion_regions; }

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
  // verify_region_sets() performs verification over the region
  // lists. It will be compiled in the product code to be used when
  // necessary (i.e., during heap verification).
  void verify_region_sets();

  // verify_region_sets_optional() is planted in the code for
  // list verification in non-product builds (and it can be enabled in
  // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
#if HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() {
    verify_region_sets();
  }
#else // HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() { }
#endif // HEAP_REGION_SET_FORCE_VERIFY

#ifdef ASSERT
  bool is_on_free_list(HeapRegion* hr) {
    return hr->containing_set() == &_free_list;
  }

  bool is_on_humongous_set(HeapRegion* hr) {
    return hr->containing_set() == &_humongous_set;
}
#endif // ASSERT

  // Wrapper for the region list operations that can be called from
  // methods outside this class.

  void secondary_free_list_add_as_tail(FreeRegionList* list) {
    _secondary_free_list.add_as_tail(list);
  }

  void append_secondary_free_list() {
    _free_list.add_as_tail(&_secondary_free_list);
  }

  void append_secondary_free_list_if_not_empty() {
    if (!_secondary_free_list.is_empty()) {
      MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
      append_secondary_free_list();
    }
  }

  void set_free_regions_coming();
  void reset_free_regions_coming();
  bool free_regions_coming() { return _free_regions_coming; }
  void wait_while_free_regions_coming();
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

  // Perform a collection of the heap; intended for use in implementing
  // "System.gc".  This probably implies as full a collection as the
  // "CollectedHeap" supports.
  virtual void collect(GCCause::Cause cause);

  // The same as above but assume that the caller holds the Heap_lock.
  void collect_locked(GCCause::Cause cause);

  // This interface assumes that it's being called by the
  // vm thread. It collects the heap assuming that the
  // heap lock is already held and that we are executing in
  // the context of the vm thread.
  virtual void collect_as_vm_thread(GCCause::Cause cause);

  // True iff a evacuation has failed in the most-recent collection.
  bool evacuation_failed() { return _evacuation_failed; }

1098 1099 1100 1101
  // It will free a region if it has allocated objects in it that are
  // all dead. It calls either free_region() or
  // free_humongous_region() depending on the type of the region that
  // is passed to it.
T
tonyp 已提交
1102 1103 1104 1105 1106 1107
  void free_region_if_empty(HeapRegion* hr,
                            size_t* pre_used,
                            FreeRegionList* free_list,
                            HumongousRegionSet* humongous_proxy_set,
                            HRRSCleanupTask* hrrs_cleanup_task,
                            bool par);
1108 1109 1110 1111 1112 1113 1114 1115 1116

  // It appends the free list to the master free list and updates the
  // master humongous list according to the contents of the proxy
  // list. It also adjusts the total used bytes according to pre_used
  // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  void update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

  // Returns "TRUE" iff "p" points into the allocated area of the heap.
  virtual bool is_in(const void* p) const;

  // Return "TRUE" iff the given object address is within the collection
  // set.
  inline bool obj_in_cs(oop obj);

  // Return "TRUE" iff the given object address is in the reserved
  // region of g1 (excluding the permanent generation).
  bool is_in_g1_reserved(const void* p) const {
    return _g1_reserved.contains(p);
  }

  // Returns a MemRegion that corresponds to the space that  has been
  // committed in the heap
  MemRegion g1_committed() {
    return _g1_committed;
  }

J
johnc 已提交
1137
  virtual bool is_in_closed_subset(const void* p) const;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

  // Dirty card table entries covering a list of young regions.
  void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);

  // This resets the card table to all zeros.  It is used after
  // a collection pause which used the card table to claim cards.
  void cleanUpCardTable();

  // Iteration functions.

  // Iterate over all the ref-containing fields of all objects, calling
  // "cl.do_oop" on each.
1150 1151 1152 1153
  virtual void oop_iterate(OopClosure* cl) {
    oop_iterate(cl, true);
  }
  void oop_iterate(OopClosure* cl, bool do_perm);
1154 1155

  // Same as above, restricted to a memory region.
1156 1157 1158 1159
  virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
    oop_iterate(mr, cl, true);
  }
  void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1160 1161

  // Iterate over all objects, calling "cl.do_object" on each.
1162 1163 1164 1165 1166 1167 1168
  virtual void object_iterate(ObjectClosure* cl) {
    object_iterate(cl, true);
  }
  virtual void safe_object_iterate(ObjectClosure* cl) {
    object_iterate(cl, true);
  }
  void object_iterate(ObjectClosure* cl, bool do_perm);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

  // Iterate over all objects allocated since the last collection, calling
  // "cl.do_object" on each.  The heap must have been initialized properly
  // to support this function, or else this call will fail.
  virtual void object_iterate_since_last_GC(ObjectClosure* cl);

  // Iterate over all spaces in use in the heap, in ascending address order.
  virtual void space_iterate(SpaceClosure* cl);

  // Iterate over heap regions, in address order, terminating the
  // iteration early if the "doHeapRegion" method returns "true".
  void heap_region_iterate(HeapRegionClosure* blk);

  // Iterate over heap regions starting with r (or the first region if "r"
  // is NULL), in address order, terminating early if the "doHeapRegion"
  // method returns "true".
  void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);

  // As above but starting from the region at index idx.
  void heap_region_iterate_from(int idx, HeapRegionClosure* blk);

  HeapRegion* region_at(size_t idx);

  // Divide the heap region sequence into "chunks" of some size (the number
  // of regions divided by the number of parallel threads times some
  // overpartition factor, currently 4).  Assumes that this will be called
  // in parallel by ParallelGCThreads worker threads with discinct worker
  // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  // calls will use the same "claim_value", and that that claim value is
  // different from the claim_value of any heap region before the start of
  // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  // attempting to claim the first region in each chunk, and, if
  // successful, applying the closure to each region in the chunk (and
  // setting the claim value of the second and subsequent regions of the
  // chunk.)  For now requires that "doHeapRegion" always returns "false",
  // i.e., that a closure never attempt to abort a traversal.
  void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
                                       int worker,
                                       jint claim_value);

1209 1210 1211
  // It resets all the region claim values to the default.
  void reset_heap_region_claim_values();

1212 1213 1214 1215
#ifdef ASSERT
  bool check_heap_region_claim_values(jint claim_value);
#endif // ASSERT

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
  // Iterate over the regions (if any) in the current collection set.
  void collection_set_iterate(HeapRegionClosure* blk);

  // As above but starting from region r
  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);

  // Returns the first (lowest address) compactible space in the heap.
  virtual CompactibleSpace* first_compactible_space();

  // A CollectedHeap will contain some number of spaces.  This finds the
  // space containing a given address, or else returns NULL.
  virtual Space* space_containing(const void* addr) const;

  // A G1CollectedHeap will contain some number of heap regions.  This
  // finds the region containing a given address, or else returns NULL.
  HeapRegion* heap_region_containing(const void* addr) const;

  // Like the above, but requires "addr" to be in the heap (to avoid a
  // null-check), and unlike the above, may return an continuing humongous
  // region.
  HeapRegion* heap_region_containing_raw(const void* addr) const;

  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  // each address in the (reserved) heap is a member of exactly
  // one block.  The defining characteristic of a block is that it is
  // possible to find its size, and thus to progress forward to the next
  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  // represent Java objects, or they might be free blocks in a
  // free-list-based heap (or subheap), as long as the two kinds are
  // distinguishable and the size of each is determinable.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const;

  // Does this heap support heap inspection? (+PrintClassHistogram)
  virtual bool supports_heap_inspection() const { return true; }

  // Section on thread-local allocation buffers (TLABs)
  // See CollectedHeap for semantics.

  virtual bool supports_tlab_allocation() const;
  virtual size_t tlab_capacity(Thread* thr) const;
  virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;

  // Can a compiler initialize a new object without store barriers?
  // This permission only extends from the creation of a new object
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  // via a TLAB up to the first subsequent safepoint. If such permission
  // is granted for this heap type, the compiler promises to call
  // defer_store_barrier() below on any slow path allocation of
  // a new object for which such initializing store barriers will
  // have been elided. G1, like CMS, allows this, but should be
  // ready to provide a compensating write barrier as necessary
  // if that storage came out of a non-young region. The efficiency
  // of this implementation depends crucially on being able to
  // answer very efficiently in constant time whether a piece of
  // storage in the heap comes from a young region or not.
  // See ReduceInitialCardMarks.
1285
  virtual bool can_elide_tlab_store_barriers() const {
1286 1287 1288 1289 1290 1291
    // 6920090: Temporarily disabled, because of lingering
    // instabilities related to RICM with G1. In the
    // interim, the option ReduceInitialCardMarksForG1
    // below is left solely as a debugging device at least
    // until 6920109 fixes the instabilities.
    return ReduceInitialCardMarksForG1;
1292 1293
  }

1294 1295 1296 1297
  virtual bool card_mark_must_follow_store() const {
    return true;
  }

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
  bool is_in_young(oop obj) {
    HeapRegion* hr = heap_region_containing(obj);
    return hr != NULL && hr->is_young();
  }

  // We don't need barriers for initializing stores to objects
  // in the young gen: for the SATB pre-barrier, there is no
  // pre-value that needs to be remembered; for the remembered-set
  // update logging post-barrier, we don't maintain remembered set
  // information for young gen objects. Note that non-generational
  // G1 does not have any "young" objects, should not elide
  // the rs logging barrier and so should always answer false below.
  // However, non-generational G1 (-XX:-G1Gen) appears to have
  // bit-rotted so was not tested below.
  virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1313 1314
    // Re 6920090, 6920109 above.
    assert(ReduceInitialCardMarksForG1, "Else cannot be here");
1315 1316 1317
    assert(G1Gen || !is_in_young(new_obj),
           "Non-generational G1 should never return true below");
    return is_in_young(new_obj);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
  }

  // Can a compiler elide a store barrier when it writes
  // a permanent oop into the heap?  Applies when the compiler
  // is storing x to the heap, where x->is_perm() is true.
  virtual bool can_elide_permanent_oop_store_barriers() const {
    // At least until perm gen collection is also G1-ified, at
    // which point this should return false.
    return true;
  }

  // The boundary between a "large" and "small" array of primitives, in
  // words.
  virtual size_t large_typearray_limit();

  // Returns "true" iff the given word_size is "very large".
  static bool isHumongous(size_t word_size) {
1335 1336 1337 1338 1339 1340
    // Note this has to be strictly greater-than as the TLABs
    // are capped at the humongous thresold and we want to
    // ensure that we don't try to allocate a TLAB as
    // humongous and that we don't allocate a humongous
    // object in a TLAB.
    return word_size > _humongous_object_threshold_in_words;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
  }

  // Update mod union table with the set of dirty cards.
  void updateModUnion();

  // Set the mod union bits corresponding to the given memRegion.  Note
  // that this is always a safe operation, since it doesn't clear any
  // bits.
  void markModUnionRange(MemRegion mr);

  // Records the fact that a marking phase is no longer in progress.
  void set_marking_complete() {
    _mark_in_progress = false;
  }
  void set_marking_started() {
    _mark_in_progress = true;
  }
  bool mark_in_progress() {
    return _mark_in_progress;
  }

  // Print the maximum heap capacity.
  virtual size_t max_capacity() const;

  virtual jlong millis_since_last_gc();

  // Perform any cleanup actions necessary before allowing a verification.
  virtual void prepare_for_verify();

  // Perform verification.
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  // NOTE: Only the "prev" marking information is guaranteed to be
  // consistent most of the time, so most calls to this should use
  // use_prev_marking == true. Currently, there is only one case where
  // this is called with use_prev_marking == false, which is to verify
  // the "next" marking information at the end of remark.
  void verify(bool allow_dirty, bool silent, bool use_prev_marking);

  // Override; it uses the "prev" marking information
1382
  virtual void verify(bool allow_dirty, bool silent);
1383
  // Default behavior by calling print(tty);
1384
  virtual void print() const;
1385
  // This calls print_on(st, PrintHeapAtGCExtended).
1386
  virtual void print_on(outputStream* st) const;
1387 1388 1389 1390
  // If extended is true, it will print out information for all
  // regions in the heap by calling print_on_extended(st).
  virtual void print_on(outputStream* st, bool extended) const;
  virtual void print_on_extended(outputStream* st) const;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

  virtual void print_gc_threads_on(outputStream* st) const;
  virtual void gc_threads_do(ThreadClosure* tc) const;

  // Override
  void print_tracing_info() const;

  // If "addr" is a pointer into the (reserved?) heap, returns a positive
  // number indicating the "arena" within the heap in which "addr" falls.
  // Or else returns 0.
  virtual int addr_to_arena_id(void* addr) const;

  // Convenience function to be used in situations where the heap type can be
  // asserted to be this type.
  static G1CollectedHeap* heap();

  void empty_young_list();

  void set_region_short_lived_locked(HeapRegion* hr);
  // add appropriate methods for any other surv rate groups

1412
  YoungList* young_list() { return _young_list; }
1413 1414 1415 1416 1417

  // debugging
  bool check_young_list_well_formed() {
    return _young_list->check_list_well_formed();
  }
1418 1419

  bool check_young_list_empty(bool check_heap,
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
                              bool check_sample = true);

  // *** Stuff related to concurrent marking.  It's not clear to me that so
  // many of these need to be public.

  // The functions below are helper functions that a subclass of
  // "CollectedHeap" can use in the implementation of its virtual
  // functions.
  // This performs a concurrent marking of the live objects in a
  // bitmap off to the side.
  void doConcurrentMark();

  // This is called from the marksweep collector which then does
  // a concurrent mark and verifies that the results agree with
  // the stop the world marking.
  void checkConcurrentMark();
  void do_sync_mark();

  bool isMarkedPrev(oop obj) const;
  bool isMarkedNext(oop obj) const;

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  bool is_obj_dead_cond(const oop obj,
                        const HeapRegion* hr,
                        const bool use_prev_marking) const {
    if (use_prev_marking) {
      return is_obj_dead(obj, hr);
    } else {
      return is_obj_ill(obj, hr);
    }
  }

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
  // Determine if an object is dead, given the object and also
  // the region to which the object belongs. An object is dead
  // iff a) it was not allocated since the last mark and b) it
  // is not marked.

  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_prev_marking(obj) &&
      !isMarkedPrev(obj);
  }

  // This is used when copying an object to survivor space.
  // If the object is marked live, then we mark the copy live.
  // If the object is allocated since the start of this mark
  // cycle, then we mark the copy live.
  // If the object has been around since the previous mark
  // phase, and hasn't been marked yet during this phase,
  // then we don't mark it, we just wait for the
  // current marking cycle to get to it.

  // This function returns true when an object has been
  // around since the previous marking and hasn't yet
  // been marked during this marking.

  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_next_marking(obj) &&
      !isMarkedNext(obj);
  }

  // Determine if an object is dead, given only the object itself.
  // This will find the region to which the object belongs and
  // then call the region version of the same function.

  // Added if it is in permanent gen it isn't dead.
  // Added if it is NULL it isn't dead.

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  bool is_obj_dead_cond(const oop obj,
                        const bool use_prev_marking) {
    if (use_prev_marking) {
      return is_obj_dead(obj);
    } else {
      return is_obj_ill(obj);
    }
  }

  bool is_obj_dead(const oop obj) {
    const HeapRegion* hr = heap_region_containing(obj);
1503 1504 1505 1506 1507 1508 1509 1510 1511
    if (hr == NULL) {
      if (Universe::heap()->is_in_permanent(obj))
        return false;
      else if (obj == NULL) return false;
      else return true;
    }
    else return is_obj_dead(obj, hr);
  }

1512 1513
  bool is_obj_ill(const oop obj) {
    const HeapRegion* hr = heap_region_containing(obj);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
    if (hr == NULL) {
      if (Universe::heap()->is_in_permanent(obj))
        return false;
      else if (obj == NULL) return false;
      else return true;
    }
    else return is_obj_ill(obj, hr);
  }

  // The following is just to alert the verification code
  // that a full collection has occurred and that the
  // remembered sets are no longer up to date.
  bool _full_collection;
  void set_full_collection() { _full_collection = true;}
  void clear_full_collection() {_full_collection = false;}
  bool full_collection() {return _full_collection;}

  ConcurrentMark* concurrent_mark() const { return _cm; }
  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
  // The dirty cards region list is used to record a subset of regions
  // whose cards need clearing. The list if populated during the
  // remembered set scanning and drained during the card table
  // cleanup. Although the methods are reentrant, population/draining
  // phases must not overlap. For synchronization purposes the last
  // element on the list points to itself.
  HeapRegion* _dirty_cards_region_list;
  void push_dirty_cards_region(HeapRegion* hr);
  HeapRegion* pop_dirty_cards_region();

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
public:
  void stop_conc_gc_threads();

  // <NEW PREDICTION>

  double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  void check_if_region_is_too_expensive(double predicted_time_ms);
  size_t pending_card_num();
  size_t max_pending_card_num();
  size_t cards_scanned();

  // </NEW PREDICTION>

protected:
  size_t _max_heap_capacity;
};

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
#define use_local_bitmaps         1
#define verify_local_bitmaps      0
#define oop_buffer_length       256

#ifndef PRODUCT
class GCLabBitMap;
class GCLabBitMapClosure: public BitMapClosure {
private:
  ConcurrentMark* _cm;
  GCLabBitMap*    _bitmap;

public:
  GCLabBitMapClosure(ConcurrentMark* cm,
                     GCLabBitMap* bitmap) {
    _cm     = cm;
    _bitmap = bitmap;
  }

  virtual bool do_bit(size_t offset);
};
#endif // !PRODUCT

class GCLabBitMap: public BitMap {
private:
  ConcurrentMark* _cm;

  int       _shifter;
  size_t    _bitmap_word_covers_words;

  // beginning of the heap
  HeapWord* _heap_start;

  // this is the actual start of the GCLab
  HeapWord* _real_start_word;

  // this is the actual end of the GCLab
  HeapWord* _real_end_word;

  // this is the first word, possibly located before the actual start
  // of the GCLab, that corresponds to the first bit of the bitmap
  HeapWord* _start_word;

  // size of a GCLab in words
  size_t _gclab_word_size;

  static int shifter() {
    return MinObjAlignment - 1;
  }

  // how many heap words does a single bitmap word corresponds to?
  static size_t bitmap_word_covers_words() {
    return BitsPerWord << shifter();
  }

1615 1616 1617 1618 1619 1620 1621 1622
  size_t gclab_word_size() const {
    return _gclab_word_size;
  }

  // Calculates actual GCLab size in words
  size_t gclab_real_word_size() const {
    return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
           / BitsPerWord;
1623 1624
  }

1625 1626
  static size_t bitmap_size_in_bits(size_t gclab_word_size) {
    size_t bits_in_bitmap = gclab_word_size >> shifter();
1627 1628 1629 1630 1631 1632 1633 1634 1635
    // We are going to ensure that the beginning of a word in this
    // bitmap also corresponds to the beginning of a word in the
    // global marking bitmap. To handle the case where a GCLab
    // starts from the middle of the bitmap, we need to add enough
    // space (i.e. up to a bitmap word) to ensure that we have
    // enough bits in the bitmap.
    return bits_in_bitmap + BitsPerWord - 1;
  }
public:
1636 1637
  GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
    : BitMap(bitmap_size_in_bits(gclab_word_size)),
1638 1639 1640 1641
      _cm(G1CollectedHeap::heap()->concurrent_mark()),
      _shifter(shifter()),
      _bitmap_word_covers_words(bitmap_word_covers_words()),
      _heap_start(heap_start),
1642
      _gclab_word_size(gclab_word_size),
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
      _real_start_word(NULL),
      _real_end_word(NULL),
      _start_word(NULL)
  {
    guarantee( size_in_words() >= bitmap_size_in_words(),
               "just making sure");
  }

  inline unsigned heapWordToOffset(HeapWord* addr) {
    unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
    assert(offset < size(), "offset should be within bounds");
    return offset;
  }

  inline HeapWord* offsetToHeapWord(size_t offset) {
    HeapWord* addr =  _start_word + (offset << _shifter);
    assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
    return addr;
  }

  bool fields_well_formed() {
    bool ret1 = (_real_start_word == NULL) &&
                (_real_end_word == NULL) &&
                (_start_word == NULL);
    if (ret1)
      return true;

    bool ret2 = _real_start_word >= _start_word &&
      _start_word < _real_end_word &&
      (_real_start_word + _gclab_word_size) == _real_end_word &&
      (_start_word + _gclab_word_size + _bitmap_word_covers_words)
                                                              > _real_end_word;
    return ret2;
  }

  inline bool mark(HeapWord* addr) {
    guarantee(use_local_bitmaps, "invariant");
    assert(fields_well_formed(), "invariant");

    if (addr >= _real_start_word && addr < _real_end_word) {
      assert(!isMarked(addr), "should not have already been marked");

      // first mark it on the bitmap
      at_put(heapWordToOffset(addr), true);

      return true;
    } else {
      return false;
    }
  }

  inline bool isMarked(HeapWord* addr) {
    guarantee(use_local_bitmaps, "invariant");
    assert(fields_well_formed(), "invariant");

    return at(heapWordToOffset(addr));
  }

  void set_buffer(HeapWord* start) {
    guarantee(use_local_bitmaps, "invariant");
    clear();

    assert(start != NULL, "invariant");
    _real_start_word = start;
    _real_end_word   = start + _gclab_word_size;

    size_t diff =
      pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
    _start_word = start - diff;

    assert(fields_well_formed(), "invariant");
  }

#ifndef PRODUCT
  void verify() {
    // verify that the marks have been propagated
    GCLabBitMapClosure cl(_cm, this);
    iterate(&cl);
  }
#endif // PRODUCT

  void retire() {
    guarantee(use_local_bitmaps, "invariant");
    assert(fields_well_formed(), "invariant");

    if (_start_word != NULL) {
      CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();

      // this means that the bitmap was set up for the GCLab
      assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");

      mark_bitmap->mostly_disjoint_range_union(this,
                                0, // always start from the start of the bitmap
                                _start_word,
1737
                                gclab_real_word_size());
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
      _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));

#ifndef PRODUCT
      if (use_local_bitmaps && verify_local_bitmaps)
        verify();
#endif // PRODUCT
    } else {
      assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
    }
  }

1749 1750
  size_t bitmap_size_in_words() const {
    return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1751
  }
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761
};

class G1ParGCAllocBuffer: public ParGCAllocBuffer {
private:
  bool        _retired;
  bool        _during_marking;
  GCLabBitMap _bitmap;

public:
1762 1763
  G1ParGCAllocBuffer(size_t gclab_word_size) :
    ParGCAllocBuffer(gclab_word_size),
1764
    _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
1765
    _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
    _retired(false)
  { }

  inline bool mark(HeapWord* addr) {
    guarantee(use_local_bitmaps, "invariant");
    assert(_during_marking, "invariant");
    return _bitmap.mark(addr);
  }

  inline void set_buf(HeapWord* buf) {
    if (use_local_bitmaps && _during_marking)
      _bitmap.set_buffer(buf);
    ParGCAllocBuffer::set_buf(buf);
    _retired = false;
  }

  inline void retire(bool end_of_gc, bool retain) {
    if (_retired)
      return;
    if (use_local_bitmaps && _during_marking) {
      _bitmap.retire();
    }
    ParGCAllocBuffer::retire(end_of_gc, retain);
    _retired = true;
  }
};

class G1ParScanThreadState : public StackObj {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueue*  _refs;
  DirtyCardQueue   _dcq;
  CardTableModRefBS* _ct_bs;
  G1RemSet* _g1_rem;

1801 1802 1803 1804
  G1ParGCAllocBuffer  _surviving_alloc_buffer;
  G1ParGCAllocBuffer  _tenured_alloc_buffer;
  G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  ageTable            _age_table;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

  size_t           _alloc_buffer_waste;
  size_t           _undo_waste;

  OopsInHeapRegionClosure*      _evac_failure_cl;
  G1ParScanHeapEvacClosure*     _evac_cl;
  G1ParScanPartialArrayClosure* _partial_scan_cl;

  int _hash_seed;
  int _queue_num;

1816
  size_t _term_attempts;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

  double _start;
  double _start_strong_roots;
  double _strong_roots_time;
  double _start_term;
  double _term_time;

  // Map from young-age-index (0 == not young, 1 is youngest) to
  // surviving words. base is what we get back from the malloc call
  size_t* _surviving_young_words_base;
  // this points into the array, as we use the first few entries for padding
  size_t* _surviving_young_words;

1830
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

  void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }

  void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }

  DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  CardTableModRefBS* ctbs()                      { return _ct_bs; }

  template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
    if (!from->is_survivor()) {
      _g1_rem->par_write_ref(from, p, tid);
    }
  }

  template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
    // If the new value of the field points to the same region or
    // is the to-space, we don't need to include it in the Rset updates.
    if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
      size_t card_index = ctbs()->index_for(p);
      // If the card hasn't been added to the buffer, do it.
      if (ctbs()->mark_card_deferred(card_index)) {
        dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
      }
    }
  }

public:
  G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);

  ~G1ParScanThreadState() {
    FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  }

  RefToScanQueue*   refs()            { return _refs;             }
  ageTable*         age_table()       { return &_age_table;       }

  G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1868
    return _alloc_buffers[purpose];
1869 1870
  }

1871 1872
  size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  size_t undo_waste() const                      { return _undo_waste; }
1873 1874

#ifdef ASSERT
1875 1876 1877 1878
  bool verify_ref(narrowOop* ref) const;
  bool verify_ref(oop* ref) const;
  bool verify_task(StarTask ref) const;
#endif // ASSERT
1879

1880 1881 1882
  template <class T> void push_on_queue(T* ref) {
    assert(verify_ref(ref), "sanity");
    refs()->push(ref);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
  }

  template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
    if (G1DeferredRSUpdate) {
      deferred_rs_update(from, p, tid);
    } else {
      immediate_rs_update(from, p, tid);
    }
  }

  HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {

    HeapWord* obj = NULL;
1896 1897
    size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
    if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1898
      G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1899 1900
      assert(gclab_word_size == alloc_buf->word_sz(),
             "dynamic resizing is not supported");
1901 1902 1903
      add_to_alloc_buffer_waste(alloc_buf->words_remaining());
      alloc_buf->retire(false, false);

1904
      HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
      if (buf == NULL) return NULL; // Let caller handle allocation failure.
      // Otherwise.
      alloc_buf->set_buf(buf);

      obj = alloc_buf->allocate(word_sz);
      assert(obj != NULL, "buffer was definitely big enough...");
    } else {
      obj = _g1h->par_allocate_during_gc(purpose, word_sz);
    }
    return obj;
  }

  HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
    HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
    if (obj != NULL) return obj;
    return allocate_slow(purpose, word_sz);
  }

  void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
    if (alloc_buffer(purpose)->contains(obj)) {
      assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
             "should contain whole object");
      alloc_buffer(purpose)->undo_allocation(obj, word_sz);
    } else {
      CollectedHeap::fill_with_object(obj, word_sz);
      add_to_undo_waste(word_sz);
    }
  }

  void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
    _evac_failure_cl = evac_failure_cl;
  }
  OopsInHeapRegionClosure* evac_failure_closure() {
    return _evac_failure_cl;
  }

  void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
    _evac_cl = evac_cl;
  }

  void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
    _partial_scan_cl = partial_scan_cl;
  }

  int* hash_seed() { return &_hash_seed; }
  int  queue_num() { return _queue_num; }

1952
  size_t term_attempts() const  { return _term_attempts; }
1953
  void note_term_attempt() { _term_attempts++; }
1954 1955 1956 1957 1958 1959 1960

  void start_strong_roots() {
    _start_strong_roots = os::elapsedTime();
  }
  void end_strong_roots() {
    _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  }
1961
  double strong_roots_time() const { return _strong_roots_time; }
1962 1963 1964 1965 1966 1967 1968 1969

  void start_term_time() {
    note_term_attempt();
    _start_term = os::elapsedTime();
  }
  void end_term_time() {
    _term_time += (os::elapsedTime() - _start_term);
  }
1970
  double term_time() const { return _term_time; }
1971

1972
  double elapsed_time() const {
1973 1974 1975
    return os::elapsedTime() - _start;
  }

1976 1977 1978 1979 1980
  static void
    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  void
    print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;

1981 1982 1983 1984 1985 1986 1987 1988
  size_t* surviving_young_words() {
    // We add on to hide entry 0 which accumulates surviving words for
    // age -1 regions (i.e. non-young ones)
    return _surviving_young_words;
  }

  void retire_alloc_buffers() {
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1989
      size_t waste = _alloc_buffers[ap]->words_remaining();
1990
      add_to_alloc_buffer_waste(waste);
1991
      _alloc_buffers[ap]->retire(true, false);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    }
  }

  template <class T> void deal_with_reference(T* ref_to_scan) {
    if (has_partial_array_mask(ref_to_scan)) {
      _partial_scan_cl->do_oop_nv(ref_to_scan);
    } else {
      // Note: we can use "raw" versions of "region_containing" because
      // "obj_to_scan" is definitely in the heap, and is not in a
      // humongous region.
      HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
      _evac_cl->set_region(r);
      _evac_cl->do_oop_nv(ref_to_scan);
    }
  }

2008 2009 2010 2011 2012 2013
  void deal_with_reference(StarTask ref) {
    assert(verify_task(ref), "sanity");
    if (ref.is_narrow()) {
      deal_with_reference((narrowOop*)ref);
    } else {
      deal_with_reference((oop*)ref);
2014 2015
    }
  }
2016 2017 2018

public:
  void trim_queue();
2019
};
2020 2021

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP