g1CollectedHeap.hpp 43.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.

class HeapRegion;
class HeapRegionSeq;
class HeapRegionList;
class PermanentGenerationSpec;
class GenerationSpec;
class OopsInHeapRegionClosure;
class G1ScanHeapEvacClosure;
class ObjectClosure;
class SpaceClosure;
class CompactibleSpaceClosure;
class Space;
class G1CollectorPolicy;
class GenRemSet;
class G1RemSet;
class HeapRegionRemSetIterator;
class ConcurrentMark;
class ConcurrentMarkThread;
class ConcurrentG1Refine;
class ConcurrentZFThread;

// If want to accumulate detailed statistics on work queues
// turn this on.
#define G1_DETAILED_STATS 0

#if G1_DETAILED_STATS
#  define IF_G1_DETAILED_STATS(code) code
#else
#  define IF_G1_DETAILED_STATS(code)
#endif

typedef GenericTaskQueue<oop*>    RefToScanQueue;
typedef GenericTaskQueueSet<oop*> RefToScanQueueSet;

enum G1GCThreadGroups {
  G1CRGroup = 0,
  G1ZFGroup = 1,
  G1CMGroup = 2,
  G1CLGroup = 3
};

enum GCAllocPurpose {
  GCAllocForTenured,
  GCAllocForSurvived,
  GCAllocPurposeCount
};

class YoungList : public CHeapObj {
private:
  G1CollectedHeap* _g1h;

  HeapRegion* _head;

  HeapRegion* _scan_only_head;
  HeapRegion* _scan_only_tail;
  size_t      _length;
  size_t      _scan_only_length;

  size_t      _last_sampled_rs_lengths;
  size_t      _sampled_rs_lengths;
  HeapRegion* _curr;
  HeapRegion* _curr_scan_only;

  HeapRegion* _survivor_head;
  HeapRegion* _survivors_tail;
  size_t      _survivor_length;

  void          empty_list(HeapRegion* list);

public:
  YoungList(G1CollectedHeap* g1h);

  void          push_region(HeapRegion* hr);
  void          add_survivor_region(HeapRegion* hr);
  HeapRegion*   pop_region();
  void          empty_list();
  bool          is_empty() { return _length == 0; }
  size_t        length() { return _length; }
  size_t        scan_only_length() { return _scan_only_length; }

  void rs_length_sampling_init();
  bool rs_length_sampling_more();
  void rs_length_sampling_next();

  void reset_sampled_info() {
    _last_sampled_rs_lengths =   0;
  }
  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }

  // for development purposes
  void reset_auxilary_lists();
  HeapRegion* first_region() { return _head; }
  HeapRegion* first_scan_only_region() { return _scan_only_head; }
  HeapRegion* first_survivor_region() { return _survivor_head; }
  HeapRegion* par_get_next_scan_only_region() {
    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
    HeapRegion* ret = _curr_scan_only;
    if (ret != NULL)
      _curr_scan_only = ret->get_next_young_region();
    return ret;
  }

  // debugging
  bool          check_list_well_formed();
  bool          check_list_empty(bool ignore_scan_only_list,
                                 bool check_sample = true);
  void          print();
};

class RefineCardTableEntryClosure;
class G1CollectedHeap : public SharedHeap {
  friend class VM_G1CollectForAllocation;
  friend class VM_GenCollectForPermanentAllocation;
  friend class VM_G1CollectFull;
  friend class VM_G1IncCollectionPause;
  friend class VM_G1PopRegionCollectionPause;
  friend class VMStructs;

  // Closures used in implementation.
  friend class G1ParCopyHelper;
  friend class G1IsAliveClosure;
  friend class G1EvacuateFollowersClosure;
  friend class G1ParScanThreadState;
  friend class G1ParScanClosureSuper;
  friend class G1ParEvacuateFollowersClosure;
  friend class G1ParTask;
  friend class G1FreeGarbageRegionClosure;
  friend class RefineCardTableEntryClosure;
  friend class G1PrepareCompactClosure;
  friend class RegionSorter;
  friend class CountRCClosure;
  friend class EvacPopObjClosure;

  // Other related classes.
  friend class G1MarkSweep;

private:
  enum SomePrivateConstants {
    VeryLargeInBytes = HeapRegion::GrainBytes/2,
    VeryLargeInWords = VeryLargeInBytes/HeapWordSize,
    MinHeapDeltaBytes = 10 * HeapRegion::GrainBytes,      // FIXME
    NumAPIs = HeapRegion::MaxAge
  };


  // The one and only G1CollectedHeap, so static functions can find it.
  static G1CollectedHeap* _g1h;

  // Storage for the G1 heap (excludes the permanent generation).
  VirtualSpace _g1_storage;
  MemRegion    _g1_reserved;

  // The part of _g1_storage that is currently committed.
  MemRegion _g1_committed;

  // The maximum part of _g1_storage that has ever been committed.
  MemRegion _g1_max_committed;

  // The number of regions that are completely free.
  size_t _free_regions;

  // The number of regions we could create by expansion.
  size_t _expansion_regions;

  // Return the number of free regions in the heap (by direct counting.)
  size_t count_free_regions();
  // Return the number of free regions on the free and unclean lists.
  size_t count_free_regions_list();

  // The block offset table for the G1 heap.
  G1BlockOffsetSharedArray* _bot_shared;

  // Move all of the regions off the free lists, then rebuild those free
  // lists, before and after full GC.
  void tear_down_region_lists();
  void rebuild_region_lists();
  // This sets all non-empty regions to need zero-fill (which they will if
  // they are empty after full collection.)
  void set_used_regions_to_need_zero_fill();

  // The sequence of all heap regions in the heap.
  HeapRegionSeq* _hrs;

  // The region from which normal-sized objects are currently being
  // allocated.  May be NULL.
  HeapRegion* _cur_alloc_region;

  // Postcondition: cur_alloc_region == NULL.
  void abandon_cur_alloc_region();

  // The to-space memory regions into which objects are being copied during
  // a GC.
  HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
  uint _gc_alloc_region_counts[GCAllocPurposeCount];

  // A list of the regions that have been set to be alloc regions in the
  // current collection.
  HeapRegion* _gc_alloc_region_list;

  // When called by par thread, require par_alloc_during_gc_lock() to be held.
  void push_gc_alloc_region(HeapRegion* hr);

  // This should only be called single-threaded.  Undeclares all GC alloc
  // regions.
  void forget_alloc_region_list();

  // Should be used to set an alloc region, because there's other
  // associated bookkeeping.
  void set_gc_alloc_region(int purpose, HeapRegion* r);

  // Check well-formedness of alloc region list.
  bool check_gc_alloc_regions();

  // Outside of GC pauses, the number of bytes used in all regions other
  // than the current allocation region.
  size_t _summary_bytes_used;

  // Summary information about popular objects; method to print it.
  NumberSeq _pop_obj_rc_at_copy;
  void print_popularity_summary_info() const;

  unsigned _gc_time_stamp;

  size_t* _surviving_young_words;

  void setup_surviving_young_words();
  void update_surviving_young_words(size_t* surv_young_words);
  void cleanup_surviving_young_words();

protected:

  // Returns "true" iff none of the gc alloc regions have any allocations
  // since the last call to "save_marks".
  bool all_alloc_regions_no_allocs_since_save_marks();
  // Calls "note_end_of_copying on all gc alloc_regions.
  void all_alloc_regions_note_end_of_copying();

  // The number of regions allocated to hold humongous objects.
  int         _num_humongous_regions;
  YoungList*  _young_list;

  // The current policy object for the collector.
  G1CollectorPolicy* _g1_policy;

  // Parallel allocation lock to protect the current allocation region.
  Mutex  _par_alloc_during_gc_lock;
  Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }

  // If possible/desirable, allocate a new HeapRegion for normal object
  // allocation sufficient for an allocation of the given "word_size".
  // If "do_expand" is true, will attempt to expand the heap if necessary
  // to to satisfy the request.  If "zero_filled" is true, requires a
  // zero-filled region.
  // (Returning NULL will trigger a GC.)
  virtual HeapRegion* newAllocRegion_work(size_t word_size,
                                          bool do_expand,
                                          bool zero_filled);

  virtual HeapRegion* newAllocRegion(size_t word_size,
                                     bool zero_filled = true) {
    return newAllocRegion_work(word_size, false, zero_filled);
  }
  virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
                                                  size_t word_size,
                                                  bool zero_filled = true);

  // Attempt to allocate an object of the given (very large) "word_size".
  // Returns "NULL" on failure.
  virtual HeapWord* humongousObjAllocate(size_t word_size);

  // If possible, allocate a block of the given word_size, else return "NULL".
  // Returning NULL will trigger GC or heap expansion.
  // These two methods have rather awkward pre- and
  // post-conditions. If they are called outside a safepoint, then
  // they assume that the caller is holding the heap lock. Upon return
  // they release the heap lock, if they are returning a non-NULL
  // value. attempt_allocation_slow() also dirties the cards of a
  // newly-allocated young region after it releases the heap
  // lock. This change in interface was the neatest way to achieve
  // this card dirtying without affecting mem_allocate(), which is a
  // more frequently called method. We tried two or three different
  // approaches, but they were even more hacky.
  HeapWord* attempt_allocation(size_t word_size,
                               bool permit_collection_pause = true);

  HeapWord* attempt_allocation_slow(size_t word_size,
                                    bool permit_collection_pause = true);

  // Allocate blocks during garbage collection. Will ensure an
  // allocation region, either by picking one or expanding the
  // heap, and then allocate a block of the given size. The block
  // may not be a humongous - it must fit into a single heap region.
  HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
  HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);

  HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
                                    HeapRegion*    alloc_region,
                                    bool           par,
                                    size_t         word_size);

  // Ensure that no further allocations can happen in "r", bearing in mind
  // that parallel threads might be attempting allocations.
  void par_allocate_remaining_space(HeapRegion* r);

  // Helper function for two callbacks below.
  // "full", if true, indicates that the GC is for a System.gc() request,
  // and should collect the entire heap.  If "clear_all_soft_refs" is true,
  // all soft references are cleared during the GC.  If "full" is false,
  // "word_size" describes the allocation that the GC should
  // attempt (at least) to satisfy.
  void do_collection(bool full, bool clear_all_soft_refs,
                     size_t word_size);

  // Callback from VM_G1CollectFull operation.
  // Perform a full collection.
  void do_full_collection(bool clear_all_soft_refs);

  // Resize the heap if necessary after a full collection.  If this is
  // after a collect-for allocation, "word_size" is the allocation size,
  // and will be considered part of the used portion of the heap.
  void resize_if_necessary_after_full_collection(size_t word_size);

  // Callback from VM_G1CollectForAllocation operation.
  // This function does everything necessary/possible to satisfy a
  // failed allocation request (including collection, expansion, etc.)
  HeapWord* satisfy_failed_allocation(size_t word_size);

  // Attempting to expand the heap sufficiently
  // to support an allocation of the given "word_size".  If
  // successful, perform the allocation and return the address of the
  // allocated block, or else "NULL".
  virtual HeapWord* expand_and_allocate(size_t word_size);

public:
  // Expand the garbage-first heap by at least the given size (in bytes!).
  // (Rounds up to a HeapRegion boundary.)
  virtual void expand(size_t expand_bytes);

  // Do anything common to GC's.
  virtual void gc_prologue(bool full);
  virtual void gc_epilogue(bool full);

protected:

  // Shrink the garbage-first heap by at most the given size (in bytes!).
  // (Rounds down to a HeapRegion boundary.)
  virtual void shrink(size_t expand_bytes);
  void shrink_helper(size_t expand_bytes);

  // Do an incremental collection: identify a collection set, and evacuate
  // its live objects elsewhere.
  virtual void do_collection_pause();

  // The guts of the incremental collection pause, executed by the vm
  // thread.  If "popular_region" is non-NULL, this pause should evacuate
  // this single region whose remembered set has gotten large, moving
  // any popular objects to one of the popular regions.
  virtual void do_collection_pause_at_safepoint(HeapRegion* popular_region);

  // Actually do the work of evacuating the collection set.
  virtual void evacuate_collection_set();

  // If this is an appropriate right time, do a collection pause.
  // The "word_size" argument, if non-zero, indicates the size of an
  // allocation request that is prompting this query.
  void do_collection_pause_if_appropriate(size_t word_size);

  // The g1 remembered set of the heap.
  G1RemSet* _g1_rem_set;
  // And it's mod ref barrier set, used to track updates for the above.
  ModRefBarrierSet* _mr_bs;

  // The Heap Region Rem Set Iterator.
  HeapRegionRemSetIterator** _rem_set_iterator;

  // The closure used to refine a single card.
  RefineCardTableEntryClosure* _refine_cte_cl;

  // A function to check the consistency of dirty card logs.
  void check_ct_logs_at_safepoint();

  // After a collection pause, make the regions in the CS into free
  // regions.
  void free_collection_set(HeapRegion* cs_head);

  // Applies "scan_non_heap_roots" to roots outside the heap,
  // "scan_rs" to roots inside the heap (having done "set_region" to
  // indicate the region in which the root resides), and does "scan_perm"
  // (setting the generation to the perm generation.)  If "scan_rs" is
  // NULL, then this step is skipped.  The "worker_i"
  // param is for use with parallel roots processing, and should be
  // the "i" of the calling parallel worker thread's work(i) function.
  // In the sequential case this param will be ignored.
  void g1_process_strong_roots(bool collecting_perm_gen,
                               SharedHeap::ScanningOption so,
                               OopClosure* scan_non_heap_roots,
                               OopsInHeapRegionClosure* scan_rs,
                               OopsInHeapRegionClosure* scan_so,
                               OopsInGenClosure* scan_perm,
                               int worker_i);

  void scan_scan_only_set(OopsInHeapRegionClosure* oc,
                          int worker_i);
  void scan_scan_only_region(HeapRegion* hr,
                             OopsInHeapRegionClosure* oc,
                             int worker_i);

  // Apply "blk" to all the weak roots of the system.  These include
  // JNI weak roots, the code cache, system dictionary, symbol table,
  // string table, and referents of reachable weak refs.
  void g1_process_weak_roots(OopClosure* root_closure,
                             OopClosure* non_root_closure);

  // Invoke "save_marks" on all heap regions.
  void save_marks();

  // Free a heap region.
  void free_region(HeapRegion* hr);
  // A component of "free_region", exposed for 'batching'.
  // All the params after "hr" are out params: the used bytes of the freed
  // region(s), the number of H regions cleared, the number of regions
  // freed, and pointers to the head and tail of a list of freed contig
  // regions, linked throught the "next_on_unclean_list" field.
  void free_region_work(HeapRegion* hr,
                        size_t& pre_used,
                        size_t& cleared_h,
                        size_t& freed_regions,
                        UncleanRegionList* list,
                        bool par = false);


  // The concurrent marker (and the thread it runs in.)
  ConcurrentMark* _cm;
  ConcurrentMarkThread* _cmThread;
  bool _mark_in_progress;

  // The concurrent refiner.
  ConcurrentG1Refine* _cg1r;

  // The concurrent zero-fill thread.
  ConcurrentZFThread* _czft;

  // The parallel task queues
  RefToScanQueueSet *_task_queues;

  // True iff a evacuation has failed in the current collection.
  bool _evacuation_failed;

  // Set the attribute indicating whether evacuation has failed in the
  // current collection.
  void set_evacuation_failed(bool b) { _evacuation_failed = b; }

  // Failed evacuations cause some logical from-space objects to have
  // forwarding pointers to themselves.  Reset them.
  void remove_self_forwarding_pointers();

  // When one is non-null, so is the other.  Together, they each pair is
  // an object with a preserved mark, and its mark value.
  GrowableArray<oop>*     _objs_with_preserved_marks;
  GrowableArray<markOop>* _preserved_marks_of_objs;

  // Preserve the mark of "obj", if necessary, in preparation for its mark
  // word being overwritten with a self-forwarding-pointer.
  void preserve_mark_if_necessary(oop obj, markOop m);

  // The stack of evac-failure objects left to be scanned.
  GrowableArray<oop>*    _evac_failure_scan_stack;
  // The closure to apply to evac-failure objects.

  OopsInHeapRegionClosure* _evac_failure_closure;
  // Set the field above.
  void
  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
    _evac_failure_closure = evac_failure_closure;
  }

  // Push "obj" on the scan stack.
  void push_on_evac_failure_scan_stack(oop obj);
  // Process scan stack entries until the stack is empty.
  void drain_evac_failure_scan_stack();
  // True iff an invocation of "drain_scan_stack" is in progress; to
  // prevent unnecessary recursion.
  bool _drain_in_progress;

  // Do any necessary initialization for evacuation-failure handling.
  // "cl" is the closure that will be used to process evac-failure
  // objects.
  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
  // Do any necessary cleanup for evacuation-failure handling data
  // structures.
  void finalize_for_evac_failure();

  // An attempt to evacuate "obj" has failed; take necessary steps.
  void handle_evacuation_failure(oop obj);
  oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
  void handle_evacuation_failure_common(oop obj, markOop m);


  // Ensure that the relevant gc_alloc regions are set.
  void get_gc_alloc_regions();
  // We're done with GC alloc regions; release them, as appropriate.
  void release_gc_alloc_regions();

  // ("Weak") Reference processing support
  ReferenceProcessor* _ref_processor;

  enum G1H_process_strong_roots_tasks {
    G1H_PS_mark_stack_oops_do,
    G1H_PS_refProcessor_oops_do,
    // Leave this one last.
    G1H_PS_NumElements
  };

  SubTasksDone* _process_strong_tasks;

  // Allocate space to hold a popular object.  Result is guaranteed below
  // "popular_object_boundary()".  Note: CURRENTLY halts the system if we
  // run out of space to hold popular objects.
  HeapWord* allocate_popular_object(size_t word_size);

  // The boundary between popular and non-popular objects.
  HeapWord* _popular_object_boundary;

  HeapRegionList* _popular_regions_to_be_evacuated;

  // Compute which objects in "single_region" are popular.  If any are,
  // evacuate them to a popular region, leaving behind forwarding pointers,
  // and select "popular_region" as the single collection set region.
  // Otherwise, leave the collection set null.
  void popularity_pause_preamble(HeapRegion* populer_region);

  // Compute which objects in "single_region" are popular, and evacuate
  // them to a popular region, leaving behind forwarding pointers.
  // Returns "true" if at least one popular object is discovered and
  // evacuated.  In any case, "*max_rc" is set to the maximum reference
  // count of an object in the region.
  bool compute_reference_counts_and_evac_popular(HeapRegion* populer_region,
                                                 size_t* max_rc);
  // Subroutines used in the above.
  bool _rc_region_above;
  size_t _rc_region_diff;
  jint* obj_rc_addr(oop obj) {
    uintptr_t obj_addr = (uintptr_t)obj;
    if (_rc_region_above) {
      jint* res = (jint*)(obj_addr + _rc_region_diff);
      assert((uintptr_t)res > obj_addr, "RC region is above.");
      return res;
    } else {
      jint* res = (jint*)(obj_addr - _rc_region_diff);
      assert((uintptr_t)res < obj_addr, "RC region is below.");
      return res;
    }
  }
  jint obj_rc(oop obj) {
    return *obj_rc_addr(obj);
  }
  void inc_obj_rc(oop obj) {
    (*obj_rc_addr(obj))++;
  }
  void atomic_inc_obj_rc(oop obj);


  // Number of popular objects and bytes (latter is cheaper!).
  size_t pop_object_used_objs();
  size_t pop_object_used_bytes();

  // Index of the popular region in which allocation is currently being
  // done.
  int _cur_pop_hr_index;

  // List of regions which require zero filling.
  UncleanRegionList _unclean_region_list;
  bool _unclean_regions_coming;

  bool check_age_cohort_well_formed_work(int a, HeapRegion* hr);

public:
  void set_refine_cte_cl_concurrency(bool concurrent);

  RefToScanQueue *task_queue(int i);

  // Create a G1CollectedHeap with the specified policy.
  // Must call the initialize method afterwards.
  // May not return if something goes wrong.
  G1CollectedHeap(G1CollectorPolicy* policy);

  // Initialize the G1CollectedHeap to have the initial and
  // maximum sizes, permanent generation, and remembered and barrier sets
  // specified by the policy object.
  jint initialize();

  void ref_processing_init();

  void set_par_threads(int t) {
    SharedHeap::set_par_threads(t);
    _process_strong_tasks->set_par_threads(t);
  }

  virtual CollectedHeap::Name kind() const {
    return CollectedHeap::G1CollectedHeap;
  }

  // The current policy object for the collector.
  G1CollectorPolicy* g1_policy() const { return _g1_policy; }

  // Adaptive size policy.  No such thing for g1.
  virtual AdaptiveSizePolicy* size_policy() { return NULL; }

  // The rem set and barrier set.
  G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  ModRefBarrierSet* mr_bs() const { return _mr_bs; }

  // The rem set iterator.
  HeapRegionRemSetIterator* rem_set_iterator(int i) {
    return _rem_set_iterator[i];
  }

  HeapRegionRemSetIterator* rem_set_iterator() {
    return _rem_set_iterator[0];
  }

  unsigned get_gc_time_stamp() {
    return _gc_time_stamp;
  }

  void reset_gc_time_stamp() {
    _gc_time_stamp = 0;
  }

  void iterate_dirty_card_closure(bool concurrent, int worker_i);

  // The shared block offset table array.
  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }

  // Reference Processing accessor
  ReferenceProcessor* ref_processor() { return _ref_processor; }

  // Reserved (g1 only; super method includes perm), capacity and the used
  // portion in bytes.
  size_t g1_reserved_obj_bytes() { return _g1_reserved.byte_size(); }
  virtual size_t capacity() const;
  virtual size_t used() const;
  size_t recalculate_used() const;
#ifndef PRODUCT
  size_t recalculate_used_regions() const;
#endif // PRODUCT

  // These virtual functions do the actual allocation.
  virtual HeapWord* mem_allocate(size_t word_size,
                                 bool   is_noref,
                                 bool   is_tlab,
                                 bool* gc_overhead_limit_was_exceeded);

  // Some heaps may offer a contiguous region for shared non-blocking
  // allocation, via inlined code (by exporting the address of the top and
  // end fields defining the extent of the contiguous allocation region.)
  // But G1CollectedHeap doesn't yet support this.

  // Return an estimate of the maximum allocation that could be performed
  // without triggering any collection or expansion activity.  In a
  // generational collector, for example, this is probably the largest
  // allocation that could be supported (without expansion) in the youngest
  // generation.  It is "unsafe" because no locks are taken; the result
  // should be treated as an approximation, not a guarantee, for use in
  // heuristic resizing decisions.
  virtual size_t unsafe_max_alloc();

  virtual bool is_maximal_no_gc() const {
    return _g1_storage.uncommitted_size() == 0;
  }

  // The total number of regions in the heap.
  size_t n_regions();

  // The number of regions that are completely free.
  size_t max_regions();

  // The number of regions that are completely free.
  size_t free_regions();

  // The number of regions that are not completely free.
  size_t used_regions() { return n_regions() - free_regions(); }

  // True iff the ZF thread should run.
  bool should_zf();

  // The number of regions available for "regular" expansion.
  size_t expansion_regions() { return _expansion_regions; }

#ifndef PRODUCT
  bool regions_accounted_for();
  bool print_region_accounting_info();
  void print_region_counts();
#endif

  HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
  HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);

  void put_region_on_unclean_list(HeapRegion* r);
  void put_region_on_unclean_list_locked(HeapRegion* r);

  void prepend_region_list_on_unclean_list(UncleanRegionList* list);
  void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);

  void set_unclean_regions_coming(bool b);
  void set_unclean_regions_coming_locked(bool b);
  // Wait for cleanup to be complete.
  void wait_for_cleanup_complete();
  // Like above, but assumes that the calling thread owns the Heap_lock.
  void wait_for_cleanup_complete_locked();

  // Return the head of the unclean list.
  HeapRegion* peek_unclean_region_list_locked();
  // Remove and return the head of the unclean list.
  HeapRegion* pop_unclean_region_list_locked();

  // List of regions which are zero filled and ready for allocation.
  HeapRegion* _free_region_list;
  // Number of elements on the free list.
  size_t _free_region_list_size;

  // If the head of the unclean list is ZeroFilled, move it to the free
  // list.
  bool move_cleaned_region_to_free_list_locked();
  bool move_cleaned_region_to_free_list();

  void put_free_region_on_list_locked(HeapRegion* r);
  void put_free_region_on_list(HeapRegion* r);

  // Remove and return the head element of the free list.
  HeapRegion* pop_free_region_list_locked();

  // If "zero_filled" is true, we first try the free list, then we try the
  // unclean list, zero-filling the result.  If "zero_filled" is false, we
  // first try the unclean list, then the zero-filled list.
  HeapRegion* alloc_free_region_from_lists(bool zero_filled);

  // Verify the integrity of the region lists.
  void remove_allocated_regions_from_lists();
  bool verify_region_lists();
  bool verify_region_lists_locked();
  size_t unclean_region_list_length();
  size_t free_region_list_length();

  // Perform a collection of the heap; intended for use in implementing
  // "System.gc".  This probably implies as full a collection as the
  // "CollectedHeap" supports.
  virtual void collect(GCCause::Cause cause);

  // The same as above but assume that the caller holds the Heap_lock.
  void collect_locked(GCCause::Cause cause);

  // This interface assumes that it's being called by the
  // vm thread. It collects the heap assuming that the
  // heap lock is already held and that we are executing in
  // the context of the vm thread.
  virtual void collect_as_vm_thread(GCCause::Cause cause);

  // True iff a evacuation has failed in the most-recent collection.
  bool evacuation_failed() { return _evacuation_failed; }

  // Free a region if it is totally full of garbage.  Returns the number of
  // bytes freed (0 ==> didn't free it).
  size_t free_region_if_totally_empty(HeapRegion *hr);
  void free_region_if_totally_empty_work(HeapRegion *hr,
                                         size_t& pre_used,
                                         size_t& cleared_h_regions,
                                         size_t& freed_regions,
                                         UncleanRegionList* list,
                                         bool par = false);

  // If we've done free region work that yields the given changes, update
  // the relevant global variables.
  void finish_free_region_work(size_t pre_used,
                               size_t cleared_h_regions,
                               size_t freed_regions,
                               UncleanRegionList* list);


  // Returns "TRUE" iff "p" points into the allocated area of the heap.
  virtual bool is_in(const void* p) const;

  // Return "TRUE" iff the given object address is within the collection
  // set.
  inline bool obj_in_cs(oop obj);

  // Return "TRUE" iff the given object address is in the reserved
  // region of g1 (excluding the permanent generation).
  bool is_in_g1_reserved(const void* p) const {
    return _g1_reserved.contains(p);
  }

  // Returns a MemRegion that corresponds to the space that  has been
  // committed in the heap
  MemRegion g1_committed() {
    return _g1_committed;
  }

  NOT_PRODUCT( bool is_in_closed_subset(const void* p) const; )

  // Dirty card table entries covering a list of young regions.
  void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);

  // This resets the card table to all zeros.  It is used after
  // a collection pause which used the card table to claim cards.
  void cleanUpCardTable();

  // Iteration functions.

  // Iterate over all the ref-containing fields of all objects, calling
  // "cl.do_oop" on each.
  virtual void oop_iterate(OopClosure* cl);

  // Same as above, restricted to a memory region.
  virtual void oop_iterate(MemRegion mr, OopClosure* cl);

  // Iterate over all objects, calling "cl.do_object" on each.
  virtual void object_iterate(ObjectClosure* cl);

  // Iterate over all objects allocated since the last collection, calling
  // "cl.do_object" on each.  The heap must have been initialized properly
  // to support this function, or else this call will fail.
  virtual void object_iterate_since_last_GC(ObjectClosure* cl);

  // Iterate over all spaces in use in the heap, in ascending address order.
  virtual void space_iterate(SpaceClosure* cl);

  // Iterate over heap regions, in address order, terminating the
  // iteration early if the "doHeapRegion" method returns "true".
  void heap_region_iterate(HeapRegionClosure* blk);

  // Iterate over heap regions starting with r (or the first region if "r"
  // is NULL), in address order, terminating early if the "doHeapRegion"
  // method returns "true".
  void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);

  // As above but starting from the region at index idx.
  void heap_region_iterate_from(int idx, HeapRegionClosure* blk);

  HeapRegion* region_at(size_t idx);


  // Divide the heap region sequence into "chunks" of some size (the number
  // of regions divided by the number of parallel threads times some
  // overpartition factor, currently 4).  Assumes that this will be called
  // in parallel by ParallelGCThreads worker threads with discinct worker
  // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  // calls will use the same "claim_value", and that that claim value is
  // different from the claim_value of any heap region before the start of
  // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  // attempting to claim the first region in each chunk, and, if
  // successful, applying the closure to each region in the chunk (and
  // setting the claim value of the second and subsequent regions of the
  // chunk.)  For now requires that "doHeapRegion" always returns "false",
  // i.e., that a closure never attempt to abort a traversal.
  void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
                                       int worker,
                                       jint claim_value);

  // Iterate over the regions (if any) in the current collection set.
  void collection_set_iterate(HeapRegionClosure* blk);

  // As above but starting from region r
  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);

  // Returns the first (lowest address) compactible space in the heap.
  virtual CompactibleSpace* first_compactible_space();

  // A CollectedHeap will contain some number of spaces.  This finds the
  // space containing a given address, or else returns NULL.
  virtual Space* space_containing(const void* addr) const;

  // A G1CollectedHeap will contain some number of heap regions.  This
  // finds the region containing a given address, or else returns NULL.
  HeapRegion* heap_region_containing(const void* addr) const;

  // Like the above, but requires "addr" to be in the heap (to avoid a
  // null-check), and unlike the above, may return an continuing humongous
  // region.
  HeapRegion* heap_region_containing_raw(const void* addr) const;

  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  // each address in the (reserved) heap is a member of exactly
  // one block.  The defining characteristic of a block is that it is
  // possible to find its size, and thus to progress forward to the next
  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  // represent Java objects, or they might be free blocks in a
  // free-list-based heap (or subheap), as long as the two kinds are
  // distinguishable and the size of each is determinable.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const;

  // Does this heap support heap inspection? (+PrintClassHistogram)
  virtual bool supports_heap_inspection() const { return true; }

  // Section on thread-local allocation buffers (TLABs)
  // See CollectedHeap for semantics.

  virtual bool supports_tlab_allocation() const;
  virtual size_t tlab_capacity(Thread* thr) const;
  virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  virtual HeapWord* allocate_new_tlab(size_t size);

  // Can a compiler initialize a new object without store barriers?
  // This permission only extends from the creation of a new object
  // via a TLAB up to the first subsequent safepoint.
  virtual bool can_elide_tlab_store_barriers() const {
    // Since G1's TLAB's may, on occasion, come from non-young regions
    // as well. (Is there a flag controlling that? XXX)
    return false;
  }

  // Can a compiler elide a store barrier when it writes
  // a permanent oop into the heap?  Applies when the compiler
  // is storing x to the heap, where x->is_perm() is true.
  virtual bool can_elide_permanent_oop_store_barriers() const {
    // At least until perm gen collection is also G1-ified, at
    // which point this should return false.
    return true;
  }

  virtual bool allocs_are_zero_filled();

  // The boundary between a "large" and "small" array of primitives, in
  // words.
  virtual size_t large_typearray_limit();

  // All popular objects are guaranteed to have addresses below this
  // boundary.
  HeapWord* popular_object_boundary() {
    return _popular_object_boundary;
  }

  // Declare the region as one that should be evacuated because its
  // remembered set is too large.
  void schedule_popular_region_evac(HeapRegion* r);
  // If there is a popular region to evacuate it, remove it from the list
  // and return it.
  HeapRegion* popular_region_to_evac();
  // Evacuate the given popular region.
  void evac_popular_region(HeapRegion* r);

  // Returns "true" iff the given word_size is "very large".
  static bool isHumongous(size_t word_size) {
    return word_size >= VeryLargeInWords;
  }

  // Update mod union table with the set of dirty cards.
  void updateModUnion();

  // Set the mod union bits corresponding to the given memRegion.  Note
  // that this is always a safe operation, since it doesn't clear any
  // bits.
  void markModUnionRange(MemRegion mr);

  // Records the fact that a marking phase is no longer in progress.
  void set_marking_complete() {
    _mark_in_progress = false;
  }
  void set_marking_started() {
    _mark_in_progress = true;
  }
  bool mark_in_progress() {
    return _mark_in_progress;
  }

  // Print the maximum heap capacity.
  virtual size_t max_capacity() const;

  virtual jlong millis_since_last_gc();

  // Perform any cleanup actions necessary before allowing a verification.
  virtual void prepare_for_verify();

  // Perform verification.
  virtual void verify(bool allow_dirty, bool silent);
  virtual void print() const;
  virtual void print_on(outputStream* st) const;

  virtual void print_gc_threads_on(outputStream* st) const;
  virtual void gc_threads_do(ThreadClosure* tc) const;

  // Override
  void print_tracing_info() const;

  // If "addr" is a pointer into the (reserved?) heap, returns a positive
  // number indicating the "arena" within the heap in which "addr" falls.
  // Or else returns 0.
  virtual int addr_to_arena_id(void* addr) const;

  // Convenience function to be used in situations where the heap type can be
  // asserted to be this type.
  static G1CollectedHeap* heap();

  void empty_young_list();
  bool should_set_young_locked();

  void set_region_short_lived_locked(HeapRegion* hr);
  // add appropriate methods for any other surv rate groups

  void young_list_rs_length_sampling_init() {
    _young_list->rs_length_sampling_init();
  }
  bool young_list_rs_length_sampling_more() {
    return _young_list->rs_length_sampling_more();
  }
  void young_list_rs_length_sampling_next() {
    _young_list->rs_length_sampling_next();
  }
  size_t young_list_sampled_rs_lengths() {
    return _young_list->sampled_rs_lengths();
  }

  size_t young_list_length()   { return _young_list->length(); }
  size_t young_list_scan_only_length() {
                                      return _young_list->scan_only_length(); }

  HeapRegion* pop_region_from_young_list() {
    return _young_list->pop_region();
  }

  HeapRegion* young_list_first_region() {
    return _young_list->first_region();
  }

  // debugging
  bool check_young_list_well_formed() {
    return _young_list->check_list_well_formed();
  }
  bool check_young_list_empty(bool ignore_scan_only_list,
                              bool check_sample = true);

  // *** Stuff related to concurrent marking.  It's not clear to me that so
  // many of these need to be public.

  // The functions below are helper functions that a subclass of
  // "CollectedHeap" can use in the implementation of its virtual
  // functions.
  // This performs a concurrent marking of the live objects in a
  // bitmap off to the side.
  void doConcurrentMark();

  // This is called from the marksweep collector which then does
  // a concurrent mark and verifies that the results agree with
  // the stop the world marking.
  void checkConcurrentMark();
  void do_sync_mark();

  bool isMarkedPrev(oop obj) const;
  bool isMarkedNext(oop obj) const;

  // Determine if an object is dead, given the object and also
  // the region to which the object belongs. An object is dead
  // iff a) it was not allocated since the last mark and b) it
  // is not marked.

  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_prev_marking(obj) &&
      !isMarkedPrev(obj);
  }

  // This is used when copying an object to survivor space.
  // If the object is marked live, then we mark the copy live.
  // If the object is allocated since the start of this mark
  // cycle, then we mark the copy live.
  // If the object has been around since the previous mark
  // phase, and hasn't been marked yet during this phase,
  // then we don't mark it, we just wait for the
  // current marking cycle to get to it.

  // This function returns true when an object has been
  // around since the previous marking and hasn't yet
  // been marked during this marking.

  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_next_marking(obj) &&
      !isMarkedNext(obj);
  }

  // Determine if an object is dead, given only the object itself.
  // This will find the region to which the object belongs and
  // then call the region version of the same function.

  // Added if it is in permanent gen it isn't dead.
  // Added if it is NULL it isn't dead.

  bool is_obj_dead(oop obj) {
    HeapRegion* hr = heap_region_containing(obj);
    if (hr == NULL) {
      if (Universe::heap()->is_in_permanent(obj))
        return false;
      else if (obj == NULL) return false;
      else return true;
    }
    else return is_obj_dead(obj, hr);
  }

  bool is_obj_ill(oop obj) {
    HeapRegion* hr = heap_region_containing(obj);
    if (hr == NULL) {
      if (Universe::heap()->is_in_permanent(obj))
        return false;
      else if (obj == NULL) return false;
      else return true;
    }
    else return is_obj_ill(obj, hr);
  }

  // The following is just to alert the verification code
  // that a full collection has occurred and that the
  // remembered sets are no longer up to date.
  bool _full_collection;
  void set_full_collection() { _full_collection = true;}
  void clear_full_collection() {_full_collection = false;}
  bool full_collection() {return _full_collection;}

  ConcurrentMark* concurrent_mark() const { return _cm; }
  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }

public:
  void stop_conc_gc_threads();

  // <NEW PREDICTION>

  double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  void check_if_region_is_too_expensive(double predicted_time_ms);
  size_t pending_card_num();
  size_t max_pending_card_num();
  size_t cards_scanned();

  // </NEW PREDICTION>

protected:
  size_t _max_heap_capacity;

//  debug_only(static void check_for_valid_allocation_state();)

public:
  // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
  // MemoryService).  In productization, we can make this assert false
  // to catch such places (as well as searching for calls to this...)
  static void g1_unimplemented();

};

// Local Variables: ***
// c-indentation-style: gnu ***
// End: ***