g1CollectedHeap.cpp 250.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
J
johnc 已提交
30
#include "code/codeCache.hpp"
31 32 33 34 35
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
36
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
37 38
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
39
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
40
#include "gc_implementation/g1/g1EvacFailure.hpp"
41
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
42
#include "gc_implementation/g1/g1Log.hpp"
43 44 45
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
P
pliden 已提交
46
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
47
#include "gc_implementation/g1/g1YCTypes.hpp"
48
#include "gc_implementation/g1/heapRegion.inline.hpp"
49 50 51
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
52 53 54 55
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
56 57 58
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
59
#include "memory/iterator.hpp"
60
#include "memory/referenceProcessor.hpp"
61 62
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
63
#include "runtime/prefetch.inline.hpp"
64
#include "runtime/orderAccess.inline.hpp"
65
#include "runtime/vmThread.hpp"
66
#include "utilities/ticks.hpp"
67

68 69
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

70 71 72
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
73
#define YOUNG_LIST_VERBOSE 0
74 75 76 77 78 79
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
80 81 82 83 84
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
85

86 87 88 89 90 91
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
S
sla 已提交
92
// SharedHeap::process_strong_roots() which calls eventually to
93 94 95 96 97
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

98 99 100 101 102 103 104
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
P
pliden 已提交
105
  RefineCardTableEntryClosure(G1RemSet* g1rs,
106
                              ConcurrentG1Refine* cg1r) :
P
pliden 已提交
107
    _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
108
  {}
109
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
110
    bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
111 112 113 114 115
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
116
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
134
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
135 136 137
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
138
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
165 166
    _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}

167
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
168 169 170 171 172 173 174 175 176
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

177 178 179 180
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
181 182 183 184 185 186 187 188 189
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

190
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
191 192 193 194
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
195
  assert(hr->is_survivor(), "should be flagged as survivor region");
196 197 198 199
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
200
    _survivor_tail = hr;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
225
  _survivor_tail = NULL;
226 227 228 229 230 231 232 233 234 235
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

236
  uint length = 0;
237 238 239
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
240
    if (!curr->is_young()) {
241
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
242
                             "incorrectly tagged (y: %d, surv: %d)",
243
                             curr->bottom(), curr->end(),
244
                             curr->is_young(), curr->is_survivor());
245 246 247 248 249 250 251 252 253 254
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
255
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
256 257 258
                           length, _length);
  }

259
  return ret;
260 261
}

262
bool YoungList::check_list_empty(bool check_sample) {
263 264 265
  bool ret = true;

  if (_length != 0) {
266
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

282
  return ret;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
299 300 301 302 303 304 305 306 307 308 309 310
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

311 312 313 314 315 316 317 318 319 320 321 322 323 324
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
325
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
326

327
  int young_index_in_cset = 0;
328 329 330
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
331
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
332 333 334 335 336

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
337
    young_index_in_cset += 1;
338
  }
339
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
340 341
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

342 343
  _head   = _survivor_head;
  _length = _survivor_length;
344
  if (_survivor_head != NULL) {
345 346 347
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
348 349
  }

350 351 352 353
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
354

355
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
356 357 358 359 360

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
361 362
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
363 364 365 366 367 368 369

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
370 371
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
372 373
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
374
                             curr->age_in_surv_rate_group_cond());
375 376 377 378
      curr = curr->get_next_young_region();
    }
  }

379
  gclog_or_tty->cr();
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
453
// can move in an incremental collection.
454 455 456 457 458
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
459 460
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
461 462 463 464 465 466
     return false;
  } else {
    return !hr->isHumongous();
  }
}

467 468
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
469
  CardTableModRefBS* ct_bs = g1_barrier_set();
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

518
HeapRegion*
519
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
520 521 522 523 524
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
525
                               "secondary_free_list has %u entries",
526 527 528 529 530 531 532 533 534
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
535
      HeapRegion* res = _free_list.remove_region(is_old);
536 537 538 539 540 541 542 543
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
544
    // Wait here until we get notified either when (a) there are no
545 546 547 548 549 550 551 552 553 554 555
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
556

557
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
558
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
559 560
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
561

562 563 564 565 566 567 568
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
569
      res = new_region_try_secondary_free_list(is_old);
570 571 572 573 574
      if (res != NULL) {
        return res;
      }
    }
  }
575 576 577

  res = _free_list.remove_region(is_old);

578 579 580 581 582
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
583
    res = new_region_try_secondary_free_list(is_old);
584
  }
585 586 587 588 589 590 591
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

592 593 594 595 596
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
597
    if (expand(word_size * HeapWordSize)) {
598 599
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
600 601 602
      // region size, the free list should in theory not be empty.
      // In either case remove_region() will check for NULL.
      res = _free_list.remove_region(is_old);
603 604
    } else {
      _expand_heap_after_alloc_failure = false;
605
    }
606 607 608 609
  }
  return res;
}

610 611
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
612 613 614
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

615
  uint first = G1_NULL_HRS_INDEX;
616 617
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
S
sla 已提交
618
    // path. The caller will attempt the expansion if this fails, so
619
    // let's not try to expand here too.
620
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
621 622 623
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
624
      first = G1_NULL_HRS_INDEX;
625 626 627 628 629 630 631 632 633 634 635
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
636
    append_secondary_free_list_if_not_empty_with_lock();
637 638

    if (free_regions() >= num_regions) {
639 640
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
641
        for (uint i = first; i < first + num_regions; ++i) {
642
          HeapRegion* hr = region_at(i);
643
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
644
          assert(is_on_master_free_list(hr), "sanity");
645 646 647 648 649 650 651 652 653
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
654
HeapWord*
655 656
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
657
                                                           size_t word_size) {
658
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
659 660 661 662
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
663
  uint last = first + num_regions;
T
tonyp 已提交
664 665 666 667 668 669 670 671 672 673

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
674
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
675 676 677
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
678
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
679 680 681 682
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
683
  // should also match the end of the last region in the series.
T
tonyp 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
713
  for (uint i = first + 1; i < last; ++i) {
714
    hr = region_at(i);
T
tonyp 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
735 736 737 738 739 740 741 742 743 744 745
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
759
  for (uint i = first + 1; i < last; ++i) {
760
    hr = region_at(i);
T
tonyp 已提交
761 762 763 764 765
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
766
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
767 768 769 770
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
771
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

787 788 789
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
790
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
791
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
792

793
  verify_region_sets_optional();
794

795 796 797 798 799
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
800
  if (first == G1_NULL_HRS_INDEX) {
801
    // The only thing we can do now is attempt expansion.
802
    if (fs + x_num >= num_regions) {
803 804 805 806 807 808 809 810 811 812
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

813 814 815 816 817
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
818
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
819 820 821
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
822 823
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
824 825
    }
  }
826

T
tonyp 已提交
827
  HeapWord* result = NULL;
828
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
829 830 831
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
832 833 834 835 836

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
837
  }
838 839

  verify_region_sets_optional();
T
tonyp 已提交
840 841

  return result;
842 843
}

844 845 846
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
847

848
  unsigned int dummy_gc_count_before;
849 850
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
851 852 853
}

HeapWord*
854 855 856
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
857

S
sla 已提交
858
  // Loop until the allocation is satisfied, or unsatisfied after GC.
859
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
860
    unsigned int gc_count_before;
861

862 863
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
864
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
865
    } else {
866
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
867 868 869 870
    }
    if (result != NULL) {
      return result;
    }
871

872 873 874 875
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
876

877 878 879 880 881 882
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
883
        // Allocations that take place on VM operations do not do any
884 885
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
886 887 888
        dirty_young_block(result, word_size);
      }
      return result;
889
    } else {
890 891 892
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
893 894
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
895 896 897 898 899
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
900
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
901 902 903
    }
  }

904
  ShouldNotReachHere();
905 906 907
  return NULL;
}

908
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
909 910
                                           unsigned int *gc_count_before_ret,
                                           int* gclocker_retry_count_ret) {
911 912 913 914 915
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
916

917 918 919 920 921 922 923
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
924
  HeapWord* result = NULL;
925 926 927
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
928

929 930 931 932 933 934 935
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
936
      }
937

938 939 940
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
941

942 943
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
944 945
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
946 947 948 949 950 951 952 953
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
954 955 956 957 958 959 960 961 962 963 964 965
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
966 967
      }
    }
968

969 970
    if (should_try_gc) {
      bool succeeded;
971 972
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
973
      if (result != NULL) {
974
        assert(succeeded, "only way to get back a non-NULL result");
975 976 977
        return result;
      }

978 979 980 981 982
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
983
        *gc_count_before_ret = total_collections();
984 985 986
        return NULL;
      }
    } else {
987 988 989 990 991
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
992 993 994
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
995
      GC_locker::stall_until_clear();
996
      (*gclocker_retry_count_ret) += 1;
997 998
    }

S
sla 已提交
999
    // We can reach here if we were unsuccessful in scheduling a
1000 1001 1002 1003 1004 1005 1006 1007 1008
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1009
    if (result != NULL) {
1010
      return result;
1011 1012
    }

1013 1014 1015
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1016
      warning("G1CollectedHeap::attempt_allocation_slow() "
1017
              "retries %d times", try_count);
1018 1019 1020
    }
  }

1021 1022
  ShouldNotReachHere();
  return NULL;
1023 1024
}

1025
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026 1027
                                          unsigned int * gc_count_before_ret,
                                          int* gclocker_retry_count_ret) {
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1039
  assert_heap_not_locked_and_not_at_safepoint();
1040 1041
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1042

1043 1044 1045 1046 1047
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1048 1049
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1050 1051 1052
    collect(GCCause::_g1_humongous_allocation);
  }

1053 1054 1055 1056 1057
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1058
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1059
    bool should_try_gc;
1060
    unsigned int gc_count_before;
1061

1062
    {
1063
      MutexLockerEx x(Heap_lock);
1064

1065 1066 1067 1068
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1069 1070
      if (result != NULL) {
        return result;
1071
      }
1072

1073 1074 1075
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1088 1089 1090
      }
    }

1091 1092 1093 1094
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1095

1096
      bool succeeded;
1097 1098
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1109
        *gc_count_before_ret = total_collections();
1110
        return NULL;
1111 1112
      }
    } else {
1113 1114 1115 1116 1117
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1118 1119 1120
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1121
      GC_locker::stall_until_clear();
1122
      (*gclocker_retry_count_ret) += 1;
1123 1124
    }

S
sla 已提交
1125
    // We can reach here if we were unsuccessful in scheduling a
1126 1127 1128 1129 1130 1131
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1132 1133
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1134 1135
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1136 1137
    }
  }
1138 1139

  ShouldNotReachHere();
1140
  return NULL;
1141 1142
}

1143 1144
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1145
  assert_at_safepoint(true /* should_be_vm_thread */);
1146 1147 1148
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1149

1150 1151 1152 1153
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1154 1155 1156 1157 1158
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1159
  }
1160 1161

  ShouldNotReachHere();
1162 1163 1164
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1165
  G1CollectedHeap* _g1h;
1166 1167
  ModRefBarrierSet* _mr_bs;
public:
1168
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1169 1170
    _g1h(g1h), _mr_bs(mr_bs) {}

1171
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1172 1173
    HeapRegionRemSet* hrrs = r->rem_set();

1174
    if (r->continuesHumongous()) {
J
johnc 已提交
1175 1176 1177
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1178
      return false;
1179
    }
J
johnc 已提交
1180

1181
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1182
    hrrs->clear();
1183 1184 1185 1186 1187 1188
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1189

1190 1191 1192 1193
    return false;
  }
};

1194
void G1CollectedHeap::clear_rsets_post_compaction() {
1195
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1196 1197
  heap_region_iterate(&rs_clear);
}
1198

1199 1200 1201 1202 1203 1204
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1205
    _cl(g1->g1_rem_set(), worker_i),
1206 1207 1208
    _worker_i(worker_i),
    _g1h(g1)
  { }
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1227 1228 1229
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1230
                                          _g1->workers()->active_workers(),
1231 1232 1233 1234
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1246
        if (hr->region_num() == 1) {
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1264 1265 1266 1267 1268
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1269
bool G1CollectedHeap::do_collection(bool explicit_gc,
1270
                                    bool clear_all_soft_refs,
1271
                                    size_t word_size) {
1272 1273
  assert_at_safepoint(true /* should_be_vm_thread */);

1274
  if (GC_locker::check_active_before_gc()) {
1275
    return false;
1276 1277
  }

S
sla 已提交
1278
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1279
  gc_timer->register_gc_start();
S
sla 已提交
1280 1281 1282 1283

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1284
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1285 1286
  ResourceMark rm;

1287
  print_heap_before_gc();
S
sla 已提交
1288
  trace_heap_before_gc(gc_tracer);
1289

1290
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1291

1292
  verify_region_sets_optional();
1293

1294 1295 1296 1297 1298
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1299 1300 1301 1302
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1303
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1304 1305
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1306

1307
    {
1308
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1328

1329 1330 1331
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1332

1333
      assert(used() == recalculate_used(), "Should be equal");
1334

1335
      verify_before_gc();
1336

S
sla 已提交
1337
      pre_full_gc_dump(gc_timer);
1338

1339
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1340

1341 1342 1343 1344 1345
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1346

1347 1348 1349 1350
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1351

1352 1353 1354 1355
      // Make sure we'll choose a new allocation region afterwards.
      release_mutator_alloc_region();
      abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();
1356

1357 1358 1359 1360
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1361

1362 1363 1364 1365 1366 1367 1368
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1369

1370 1371
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1372

1373 1374 1375
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1376

1377 1378
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1379

1380 1381
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1382

1383 1384
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1385

1386 1387 1388 1389 1390
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1391

1392 1393
      assert(free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);
1394

1395 1396 1397
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1398

1399
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1400

1401
      MemoryService::track_memory_usage();
1402

1403 1404
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1405

1406 1407
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1408
      MetaspaceAux::verify_metrics();
1409

1410 1411 1412 1413 1414 1415
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1416

1417 1418
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1419
      // sets, and clear all cards.  Later we will rebuild remembered
1420 1421 1422
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1423

1424 1425
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1426

1427 1428 1429 1430
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1431

1432 1433 1434
        print_hrs_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1435

1436 1437 1438 1439
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1440
      }
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1478

J
johnc 已提交
1479 1480 1481
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1482 1483 1484
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1485

1486 1487 1488
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1489

1490 1491 1492 1493 1494
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(!G1DeferredRSUpdate
             || (G1DeferredRSUpdate &&
                (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1495

1496 1497 1498 1499 1500
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1501

1502 1503
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1504

1505 1506
      _hrs.verify_optional();
      verify_region_sets_optional();
1507

1508 1509
      verify_after_gc();

1510 1511 1512
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1513

1514
      clear_cset_fast_test();
1515

1516
      init_mutator_alloc_region();
1517

1518 1519
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1520

1521 1522 1523
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1524

1525 1526 1527 1528 1529
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1530

1531 1532
      gc_epilogue(true);
    }
1533

1534
    if (G1Log::finer()) {
1535
      g1_policy()->print_detailed_heap_transition(true /* full */);
1536
    }
1537 1538

    print_heap_after_gc();
S
sla 已提交
1539 1540 1541
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1542

1543
    gc_timer->register_gc_end();
S
sla 已提交
1544
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1545
  }
1546

1547
  return true;
1548 1549 1550
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1551 1552 1553 1554 1555 1556 1557 1558
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1571 1572 1573 1574
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1575
  // We don't have floating point command-line arguments
1576
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1577
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1578
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1579 1580
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1617

1618
  if (capacity_after_gc < minimum_desired_capacity) {
1619 1620
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1631 1632

    // No expansion, now see if we want to shrink
1633
  } else if (capacity_after_gc > maximum_desired_capacity) {
1634 1635
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1636 1637 1638 1639 1640 1641 1642 1643 1644
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1645 1646 1647 1648 1649 1650
    shrink(shrink_bytes);
  }
}


HeapWord*
1651 1652
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1653
  assert_at_safepoint(true /* should_be_vm_thread */);
1654 1655 1656

  *succeeded = true;
  // Let's attempt the allocation first.
1657 1658 1659
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1660 1661 1662 1663
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1664 1665 1666 1667 1668 1669 1670

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1671
    assert(*succeeded, "sanity");
1672 1673 1674
    return result;
  }

1675 1676 1677 1678 1679 1680 1681 1682
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1683

1684 1685
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1686
                                  true /* expect_null_mutator_alloc_region */);
1687
  if (result != NULL) {
1688
    assert(*succeeded, "sanity");
1689 1690 1691
    return result;
  }

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1703
                                  true /* expect_null_mutator_alloc_region */);
1704
  if (result != NULL) {
1705
    assert(*succeeded, "sanity");
1706 1707 1708
    return result;
  }

1709
  assert(!collector_policy()->should_clear_all_soft_refs(),
1710
         "Flag should have been handled and cleared prior to this point");
1711

1712 1713 1714 1715
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1716
  assert(*succeeded, "sanity");
1717 1718 1719 1720 1721 1722 1723 1724 1725
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1726 1727 1728
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1729

1730
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1731 1732 1733 1734 1735
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1736
  if (expand(expand_bytes)) {
1737
    _hrs.verify_optional();
1738 1739
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1740
                                 false /* expect_null_mutator_alloc_region */);
1741
  }
1742
  return NULL;
1743 1744
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
1756 1757
  // Tell the hot card cache about the update
  _cg1r->hot_card_cache()->resize_card_counts(capacity());
1758 1759
}

1760 1761
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1762 1763
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1764 1765 1766 1767 1768
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1769

1770 1771 1772 1773 1774 1775 1776
  if (_g1_storage.uncommitted_size() == 0) {
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1777 1778
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1779 1780
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1806
    }
1807
    _free_list.add_as_tail(&expansion_list);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1818
    g1_policy()->record_new_heap_size(n_regions());
1819
  } else {
1820 1821 1822
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1823 1824 1825 1826 1827
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
1828
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1829 1830
    }
  }
1831
  return successful;
1832 1833
}

1834
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1835 1836 1837 1838
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1839 1840 1841
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

  uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1842
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1843
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1844 1845 1846 1847 1848 1849

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1850 1851 1852 1853 1854
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
    _g1_storage.shrink_by(shrunk_bytes);
    HeapWord* new_end = (HeapWord*) _g1_storage.high();

1855
    if (_hr_printer.is_active()) {
1856 1857
      HeapWord* curr = old_end;
      while (curr > new_end) {
1858 1859 1860 1861 1862 1863
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
    }

1864
    _expansion_regions += num_regions_removed;
1865 1866
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1867
    g1_policy()->record_new_heap_size(n_regions());
1868 1869 1870 1871
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1872 1873 1874 1875
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1876 1877
  verify_region_sets_optional();

1878 1879 1880 1881 1882
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1883 1884 1885
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1886
  tear_down_region_sets(true /* free_list_only */);
1887
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1888
  rebuild_region_sets(true /* free_list_only */);
1889

1890
  _hrs.verify_optional();
1891
  verify_region_sets_optional();
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1904
  _dirty_card_queue_set(false),
J
johnc 已提交
1905
  _into_cset_dirty_card_queue_set(false),
1906 1907 1908 1909
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1910 1911
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1912
  _evac_failure_scan_stack(NULL),
1913
  _mark_in_progress(false),
1914
  _cg1r(NULL), _summary_bytes_used(0),
1915
  _g1mm(NULL),
1916 1917
  _refine_cte_cl(NULL),
  _full_collection(false),
1918 1919 1920 1921
  _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1922
  _free_regions_coming(false),
1923 1924
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1925
  _retained_old_gc_alloc_region(NULL),
1926 1927
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1928
  _expand_heap_after_alloc_failure(true),
1929
  _surviving_young_words(NULL),
1930 1931
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1932
  _concurrent_cycle_started(false),
1933
  _in_cset_fast_test(),
1934 1935
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1936 1937 1938 1939 1940 1941 1942
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1943 1944 1945
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1946 1947 1948

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1949 1950 1951
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1952
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1953 1954
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1955 1956
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1957
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1958

1959 1960 1961 1962
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1963
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1964
  }
1965 1966
  clear_cset_start_regions();

1967 1968 1969
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1970 1971 1972 1973
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1974
  CollectedHeap::pre_initialize();
1975 1976
  os::enable_vtime();

1977 1978
  G1Log::init();

1979 1980 1981 1982
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1983 1984 1985 1986
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1987 1988 1989 1990 1991 1992 1993 1994 1995
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1996
  size_t heap_alignment = collector_policy()->heap_alignment();
1997 1998 1999 2000

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2001
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2002

2003
  _cg1r = new ConcurrentG1Refine(this);
2004 2005

  // Reserve the maximum.
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

2018
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2019
                                                 heap_alignment);
2020 2021

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
2022
  // temporarily think something is in the heap.  (I've actually seen this
2023 2024 2025 2026 2027
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2028
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2029 2030 2031 2032

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
2033 2034
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2035 2036 2037 2038
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2039
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2040 2041 2042 2043 2044 2045 2046 2047 2048

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2049
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
2050 2051 2052 2053
                  (HeapWord*) _g1_reserved.end());
  assert(_hrs.max_length() == _expansion_regions,
         err_msg("max length: %u expansion regions: %u",
                 _hrs.max_length(), _expansion_regions));
2054

2055 2056 2057
  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2058 2059
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2060
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2061 2062 2063
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2064
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2065
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2066
            "too many cards per region");
2067

2068
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2069

2070 2071 2072 2073 2074
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2075
  _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2076

2077 2078
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2079 2080 2081 2082 2083
  _cm = new ConcurrentMark(this, heap_rs);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2084 2085 2086 2087 2088
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2089
  // Now expand into the initial heap size.
2090
  if (!expand(init_byte_size)) {
2091
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2092 2093
    return JNI_ENOMEM;
  }
2094 2095 2096 2097 2098

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
P
pliden 已提交
2099
    new RefineCardTableEntryClosure(g1_rem_set(),
2100 2101 2102 2103 2104
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2105
                                               G1SATBProcessCompletedThreshold,
2106
                                               Shared_SATB_Q_lock);
2107 2108 2109

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2110 2111
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2112 2113
                                                Shared_DirtyCardQ_lock);

2114 2115 2116
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2117 2118
                                      -1, // never trigger processing
                                      -1, // no limit on length
2119 2120 2121
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2132 2133 2134 2135
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2136 2137 2138
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2139 2140 2141

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2153 2154
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2155
  _g1mm = new G1MonitoringSupport(this);
2156

P
pliden 已提交
2157 2158
  G1StringDedup::initialize();

2159 2160 2161
  return JNI_OK;
}

2162
void G1CollectedHeap::stop() {
2163 2164
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2165
  // that are destroyed during shutdown.
2166 2167 2168 2169 2170
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2171 2172
}

2173 2174 2175 2176
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2177
void G1CollectedHeap::ref_processing_init() {
2178 2179
  // Reference processing in G1 currently works as follows:
  //
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2212

2213 2214
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2229
                           &_is_alive_closure_cm);
2230 2231 2232 2233 2234
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2235
    new ReferenceProcessor(mr,    // span
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2246
                           &_is_alive_closure_stw);
2247 2248
                                // is alive closure
                                // (for efficiency/performance)
2249 2250 2251 2252 2253 2254
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2300 2301 2302
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2303
                                                 uint worker_i) {
2304
  // Clean cards in the hot card cache
2305 2306
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2307

2308 2309
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2310
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2311 2312
    n_completed_buffers++;
  }
2313
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2314 2315 2316 2317 2318 2319 2320 2321
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2322 2323
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2324
  size_t result = _summary_bytes_used;
2325
  // Read only once in case it is set to NULL concurrently
2326
  HeapRegion* hr = _mutator_alloc_region.get();
2327 2328
  if (hr != NULL)
    result += hr->used();
2329 2330 2331
  return result;
}

2332 2333 2334 2335 2336
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2351 2352
  double recalculate_used_start = os::elapsedTime();

2353
  SumUsedClosure blk;
2354
  heap_region_iterate(&blk);
2355 2356

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2357 2358 2359 2360
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2361
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2372 2373
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2374 2375
    return 0;
  }
2376
  return hr->free();
2377 2378
}

2379
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2380 2381 2382 2383 2384 2385
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2386 2387
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2420 2421
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2422 2423 2424 2425 2426
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2427 2428 2429 2430 2431 2432 2433 2434
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2435
  assert(concurrent ||
2436 2437 2438 2439 2440
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2441 2442

  // This is the case for the outer caller, i.e. the concurrent cycle.
2443
  assert(!concurrent ||
2444
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2445
         err_msg("for outer caller (concurrent cycle): "
2446 2447 2448
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2449

2450
  _old_marking_cycles_completed += 1;
2451

2452 2453 2454
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2455
  // incorrectly see that a marking cycle is still in progress.
2456
  if (concurrent) {
2457 2458 2459
    _cmThread->clear_in_progress();
  }

2460 2461 2462 2463 2464 2465 2466
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2467
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2480

2481
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2510
void G1CollectedHeap::collect(GCCause::Cause cause) {
2511
  assert_heap_not_locked();
2512

2513
  unsigned int gc_count_before;
2514
  unsigned int old_marking_count_before;
2515 2516 2517 2518 2519 2520 2521
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2522

2523 2524
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2525
      old_marking_count_before = _old_marking_cycles_started;
2526 2527 2528 2529 2530 2531
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2532
      VM_G1IncCollectionPause op(gc_count_before,
2533
                                 0,     /* word_size */
2534
                                 true,  /* should_initiate_conc_mark */
2535 2536
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2537

2538
      VMThread::execute(&op);
2539
      if (!op.pause_succeeded()) {
2540
        if (old_marking_count_before == _old_marking_cycles_started) {
2541
          retry_gc = op.should_retry_gc();
2542 2543 2544 2545 2546
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2547 2548 2549 2550 2551 2552

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2553
      }
2554
    } else {
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2568
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2569 2570
        VMThread::execute(&op);
      }
2571
    }
2572
  } while (retry_gc);
2573 2574 2575
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2576 2577 2578 2579 2580
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2581 2582
    return hr->is_in(p);
  } else {
2583
    return false;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2594
  ExtendedOopClosure* _cl;
2595
public:
2596
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2597 2598
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2599
    if (!r->continuesHumongous()) {
2600 2601 2602 2603 2604 2605
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2606
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2607
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2608
  heap_region_iterate(&blk);
2609 2610
}

2611
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2612
  IterateOopClosureRegionClosure blk(mr, cl);
2613
  heap_region_iterate(&blk);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2630
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2631
  IterateObjectClosureRegionClosure blk(cl);
2632
  heap_region_iterate(&blk);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2649
  heap_region_iterate(&blk);
2650 2651
}

2652 2653
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2654 2655 2656 2657
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2658
                                                 uint worker_id,
2659
                                                 uint no_of_par_workers,
2660
                                                 jint claim_value) {
2661
  const uint regions = n_regions();
2662
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2663 2664 2665 2666 2667
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2668
  // try to spread out the starting points of the workers
2669 2670 2671
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2672 2673

  // each worker will actually look at all regions
2674 2675
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2676 2677 2678 2679 2680 2681 2682 2683 2684
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2685
    if (r->claimHeapRegion(claim_value)) {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2697
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2698 2699 2700 2701 2702 2703 2704 2705 2706
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

S
sla 已提交
2707
          // No one should have claimed it directly. We can given
2708 2709 2710 2711 2712
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
S
sla 已提交
2713
            // we should always be able to claim it; no one else should
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2729
      }
2730 2731 2732 2733

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2734 2735 2736 2737
    }
  }
}

2738 2739 2740 2741 2742 2743 2744 2745
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2746
void G1CollectedHeap::reset_heap_region_claim_values() {
2747 2748 2749 2750
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2751 2752 2753 2754 2755
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2756 2757 2758 2759 2760 2761 2762 2763 2764
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2765
  uint _failures;
2766
  HeapRegion* _sh_region;
2767

2768 2769 2770 2771 2772
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2773
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2774
                             "claim value = %d, should be %d",
2775 2776
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2777 2778 2779 2780 2781 2782 2783 2784
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2785
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2786
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2787
                               HR_FORMAT_PARAMS(r),
2788 2789 2790 2791 2792 2793 2794
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2795
  uint failures() { return _failures; }
2796 2797 2798 2799 2800 2801 2802
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2803 2804

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2805 2806 2807
private:
  jint _claim_value;
  uint _failures;
2808 2809 2810

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2811
    _claim_value(claim_value), _failures(0) { }
2812

2813
  uint failures() { return _failures; }
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2834 2835
#endif // ASSERT

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2848

2849 2850
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2851
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2879
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2880
    uint cs_size = g1_policy()->cset_region_length();
2881
    uint active_workers = workers()->active_workers();
2882 2883 2884 2885
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2886 2887
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2888 2889 2890 2891 2892 2893 2894 2895 2896

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2897
    for (uint i = start_ind; i < end_ind; i++) {
2898 2899 2900
      result = result->next_in_collection_set();
    }
  }
2901 2902 2903 2904 2905 2906 2907 2908 2909

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2910 2911 2912
  return result;
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2938 2939 2940 2941 2942
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2966
  return n_regions() > 0 ? region_at(0) : NULL;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3010 3011 3012 3013 3014 3015
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

3016
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
3017
  // since we can't allow tlabs to grow big enough to accommodate
3018 3019
  // humongous objects.

3020
  HeapRegion* hr = _mutator_alloc_region.get();
B
brutisso 已提交
3021
  size_t max_tlab = max_tlab_size() * wordSize;
3022
  if (hr == NULL) {
B
brutisso 已提交
3023
    return max_tlab;
3024
  } else {
B
brutisso 已提交
3025
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3026 3027 3028 3029
  }
}

size_t G1CollectedHeap::max_capacity() const {
3030
  return _g1_reserved.byte_size();
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3090
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3126
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3225
class VerifyLivenessOopClosure: public OopClosure {
3226 3227
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3228
public:
3229 3230 3231
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3232 3233 3234 3235 3236
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3237
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3238
              "Dead object referenced by a not dead object");
3239 3240 3241 3242
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3243
private:
3244 3245 3246
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3247
  VerifyOption _vo;
3248
public:
3249 3250 3251 3252 3253
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3254 3255 3256
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3257
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3258
    assert(o != NULL, "Huh?");
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3271
      o->oop_iterate_no_header(&isLive);
3272 3273 3274 3275
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3311
private:
3312 3313 3314
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3315
public:
3316 3317 3318
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3319 3320
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3321
      _vo(vo),
3322 3323 3324 3325 3326
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3327

3328
  bool doHeapRegion(HeapRegion* r) {
3329
    if (!r->continuesHumongous()) {
3330
      bool failures = false;
3331
      r->verify(_vo, &failures);
3332 3333 3334
      if (failures) {
        _failures = true;
      } else {
3335
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3336
        r->object_iterate(&not_dead_yet_cl);
3337 3338 3339 3340 3341 3342 3343
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3344
                                 not_dead_yet_cl.live_bytes());
3345 3346 3347 3348 3349 3350
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3351 3352
        }
      }
3353
    }
3354
    return false; // stop the region iteration if we hit a failure
3355 3356 3357
  }
};

J
johnc 已提交
3358
// This is the task used for parallel verification of the heap regions
3359 3360 3361 3362

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3363 3364
  VerifyOption     _vo;
  bool             _failures;
3365 3366

public:
3367 3368 3369
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3370
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3371
    AbstractGangTask("Parallel verify task"),
3372
    _g1h(g1h),
3373
    _vo(vo),
3374 3375 3376 3377 3378
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3379

3380
  void work(uint worker_id) {
3381
    HandleMark hm;
3382
    VerifyRegionClosure blk(true, _vo);
3383
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3384
                                          _g1h->workers()->active_workers(),
3385
                                          HeapRegion::ParVerifyClaimValue);
3386 3387 3388
    if (blk.failures()) {
      _failures = true;
    }
3389 3390 3391
  }
};

J
johnc 已提交
3392
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3393
  if (SafepointSynchronize::is_at_safepoint()) {
3394
    assert(Thread::current()->is_VM_thread(),
3395
           "Expected to be executed serially by the VM thread at this point");
3396

J
johnc 已提交
3397 3398 3399 3400
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3401
    VerifyKlassClosure klassCl(this, &rootsCl);
3402

3403 3404
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3405
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3406

3407 3408 3409
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3410
    process_strong_roots(true,      // activate StrongRootsScope
3411 3412
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3413
                         ScanningOption(so),  // roots scanning options
3414
                         &rootsCl,
3415
                         &blobsCl,
3416 3417
                         &klassCl
                         );
3418

J
johnc 已提交
3419
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3430
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3431 3432 3433 3434
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3435
      G1ParVerifyTask task(this, vo);
3436 3437 3438 3439
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3440 3441 3442
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3443 3444 3445
      if (task.failures()) {
        failures = true;
      }
3446

3447 3448
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3449 3450 3451 3452 3453 3454 3455 3456
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3457
      VerifyRegionClosure blk(false, vo);
3458
      heap_region_iterate(&blk);
3459 3460 3461
      if (blk.failures()) {
        failures = true;
      }
3462
    }
3463
    if (!silent) gclog_or_tty->print("RemSet ");
3464
    rem_set()->verify();
3465

P
pliden 已提交
3466 3467 3468 3469 3470
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3471 3472
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3473 3474 3475 3476
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3477
      gclog_or_tty->cr();
3478
#ifndef PRODUCT
3479
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3480
        concurrent_mark()->print_reachable("at-verification-failure",
3481
                                           vo, false /* all */);
3482
      }
3483
#endif
3484 3485 3486
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3487
  } else {
P
pliden 已提交
3488 3489 3490 3491 3492 3493 3494
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3495 3496 3497
  }
}

J
johnc 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3559
void G1CollectedHeap::print_on(outputStream* st) const {
3560 3561
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3562
            capacity()/K, used_unlocked()/K);
3563 3564 3565 3566 3567
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3568
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3569 3570 3571 3572 3573 3574
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3575
  st->cr();
3576
  MetaspaceAux::print_on(st);
3577 3578
}

3579 3580 3581 3582 3583
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3584 3585 3586 3587 3588
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3589
  PrintRegionClosure blk(st);
3590
  heap_region_iterate(&blk);
3591 3592
}

3593 3594 3595 3596 3597 3598 3599 3600 3601
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3602
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3603
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3604
    workers()->print_worker_threads_on(st);
3605
  }
T
tonyp 已提交
3606
  _cmThread->print_on(st);
3607
  st->cr();
T
tonyp 已提交
3608 3609
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3610 3611 3612
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3613 3614 3615
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3616
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3617 3618 3619
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3620
  _cg1r->threads_do(tc);
P
pliden 已提交
3621 3622 3623
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3624 3625 3626 3627 3628 3629 3630 3631 3632
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3633
  if (G1SummarizeRSetStats) {
3634 3635
    g1_rem_set()->print_summary_info();
  }
3636
  if (G1SummarizeConcMark) {
3637 3638 3639 3640 3641 3642
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3671
    gclog_or_tty->print_cr("%s", msg);
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3693 3694 3695 3696 3697 3698 3699
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3700
  // always_do_update_barrier = false;
3701 3702
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3703
  accumulate_statistics_all_tlabs();
3704
  ensure_parsability(true);
3705 3706 3707 3708 3709

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3710 3711 3712
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3713 3714 3715 3716 3717

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3718
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3719 3720
  }

3721 3722 3723 3724 3725
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3726
  // always_do_update_barrier = true;
3727

B
brutisso 已提交
3728 3729
  resize_all_tlabs();

3730 3731 3732
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3733 3734
}

3735 3736
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3737 3738
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3739
  assert_heap_not_locked_and_not_at_safepoint();
3740
  g1_policy()->record_stop_world_start();
3741 3742 3743 3744
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3745
                             gc_cause);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3756 3757 3758 3759
}

void
G1CollectedHeap::doConcurrentMark() {
3760 3761 3762 3763
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3779 3780 3781 3782
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3783 3784 3785
}

size_t G1CollectedHeap::cards_scanned() {
3786
  return g1_rem_set()->cardsScanned();
3787 3788 3789 3790
}

void
G1CollectedHeap::setup_surviving_young_words() {
3791 3792
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3793
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3794
  if (_surviving_young_words == NULL) {
3795
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3796 3797
                          "Not enough space for young surv words summary.");
  }
3798
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3799
#ifdef ASSERT
3800
  for (uint i = 0;  i < array_length; ++i) {
3801
    assert( _surviving_young_words[i] == 0, "memset above" );
3802
  }
3803
#endif // !ASSERT
3804 3805 3806 3807 3808
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3809 3810
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3811
    _surviving_young_words[i] += surv_young_words[i];
3812
  }
3813 3814 3815 3816 3817
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3818
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3819 3820 3821
  _surviving_young_words = NULL;
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3839 3840 3841
    return false;
  }
};
3842
#endif // ASSERT
3843

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3855
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3866
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3867 3868 3869 3870 3871 3872
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3873 3874 3875 3876 3877
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3878
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3879 3880

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3881
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3907
  gclog_or_tty->flush();
3908 3909
}

3910
bool
3911
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3912 3913 3914
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3915
  if (GC_locker::check_active_before_gc()) {
3916
    return false;
3917 3918
  }

3919
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3920 3921 3922

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3923
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3924 3925
  ResourceMark rm;

3926
  print_heap_before_gc();
S
sla 已提交
3927
  trace_heap_before_gc(_gc_tracer_stw);
3928

3929
  verify_region_sets_optional();
3930
  verify_dirty_young_regions();
3931

3932 3933 3934 3935 3936 3937 3938 3939
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3940

3941 3942
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3943

3944 3945 3946 3947
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3948

3949 3950
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3951 3952
    EvacuationInfo evacuation_info;

3953 3954 3955
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3956
      increment_old_marking_cycles_started();
S
sla 已提交
3957
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3958
    }
S
sla 已提交
3959 3960 3961

    _gc_tracer_stw->report_yc_type(yc_type());

3962
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3963

3964 3965
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3966 3967
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3968
    log_gc_header();
3969

3970
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3971
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3972

T
tonyp 已提交
3973 3974 3975 3976 3977 3978
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3979
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3980
      append_secondary_free_list_if_not_empty_with_lock();
3981
    }
3982

J
johnc 已提交
3983 3984 3985
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3986

3987 3988 3989 3990
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3991 3992 3993 3994 3995
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3996
      increment_gc_time_stamp();
3997

3998
      verify_before_gc();
3999

4000
      COMPILER2_PRESENT(DerivedPointerTable::clear());
4001

4002 4003 4004
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
4005

4006 4007 4008
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

4026 4027 4028 4029 4030 4031
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
4032 4033
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4034
        double sample_start_time_sec = os::elapsedTime();
4035

4036
#if YOUNG_LIST_VERBOSE
4037 4038 4039
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4040 4041
#endif // YOUNG_LIST_VERBOSE

4042
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4043

4044 4045 4046 4047 4048 4049
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4050
        double wait_time_ms = 0.0;
4051 4052
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4053
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4054
        }
4055
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4056

4057
#if YOUNG_LIST_VERBOSE
4058 4059
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4060
#endif // YOUNG_LIST_VERBOSE
4061

4062 4063 4064
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4065

4066
#if YOUNG_LIST_VERBOSE
4067 4068 4069
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4070
#endif // YOUNG_LIST_VERBOSE
4071

S
sla 已提交
4072
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4073

4074 4075 4076
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4077
        // GC). We also call this after finalize_cset() to
4078 4079 4080 4081 4082 4083
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4097 4098 4099
          }
        }

4100
#ifdef ASSERT
4101 4102
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4103
#endif // ASSERT
4104

4105
        setup_surviving_young_words();
4106

4107
        // Initialize the GC alloc regions.
S
sla 已提交
4108
        init_gc_alloc_regions(evacuation_info);
4109

4110
        // Actually do the work...
S
sla 已提交
4111
        evacuate_collection_set(evacuation_info);
4112

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4123
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4124
        g1_policy()->clear_collection_set();
4125

4126
        cleanup_surviving_young_words();
4127

4128 4129
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4130

4131
        clear_cset_fast_test();
4132

4133
        _young_list->reset_sampled_info();
4134

4135 4136 4137 4138 4139 4140
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4141 4142

#if YOUNG_LIST_VERBOSE
4143 4144
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4145
#endif // YOUNG_LIST_VERBOSE
4146

4147
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4148 4149
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4150

4151
        _young_list->reset_auxilary_lists();
4152

4153 4154
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
S
sla 已提交
4155 4156 4157 4158 4159 4160
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4161 4162 4163 4164 4165
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
4166

4167
        if (g1_policy()->during_initial_mark_pause()) {
4168 4169 4170
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4171 4172
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4173 4174 4175
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4176
        }
4177

4178
        allocate_dummy_regions();
4179

4180
#if YOUNG_LIST_VERBOSE
4181 4182 4183
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4184
#endif // YOUNG_LIST_VERBOSE
4185

4186 4187 4188 4189 4190 4191
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4192 4193
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4194 4195 4196 4197 4198 4199
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
4200 4201 4202
          }
        }

S
sla 已提交
4203
        // We redo the verification but now wrt to the new CSet which
4204 4205 4206 4207 4208 4209 4210
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4211 4212 4213 4214 4215
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4216
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4243
        verify_after_gc();
4244

4245 4246
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4247

4248 4249
        // CM reference discovery will be re-enabled if necessary.
      }
4250

4251 4252 4253 4254 4255 4256
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4257 4258 4259
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4260 4261

#ifdef TRACESPINNING
4262
      ParallelTaskTerminator::print_termination_counts();
4263
#endif
4264

4265 4266
      gc_epilogue(false);
    }
4267

4268 4269 4270
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4271
    // It is not yet to safe to tell the concurrent mark to
4272 4273 4274
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4275

4276 4277 4278 4279 4280
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4281

4282
    print_heap_after_gc();
S
sla 已提交
4283
    trace_heap_after_gc(_gc_tracer_stw);
4284

4285 4286 4287 4288 4289
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4290

S
sla 已提交
4291 4292
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4293
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4294 4295
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4307
    // SuspendibleThreadSet::desynchronize().
4308 4309 4310
    doConcurrentMark();
  }

4311
  return true;
4312 4313
}

4314 4315 4316 4317 4318
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4319
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4320 4321
      break;
    case GCAllocForTenured:
4322
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4323 4324 4325
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4326
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4327 4328
      break;
  }
4329 4330 4331 4332 4333 4334

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4335 4336
}

4337 4338 4339 4340 4341 4342 4343 4344 4345
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4346

S
sla 已提交
4347
void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4348
  assert_at_safepoint(true /* should_be_vm_thread */);
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
S
sla 已提交
4362
  // has been subsequently used to allocate a humongous
4363 4364 4365 4366 4367 4368 4369
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4370 4371 4372 4373 4374
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4375 4376
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4377 4378
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
S
sla 已提交
4379
    evacuation_info.set_alloc_regions_used_before(retained_region->used());
4380 4381 4382
  }
}

S
sla 已提交
4383 4384 4385
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
                                         _old_gc_alloc_region.count());
4386 4387 4388 4389 4390 4391 4392
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4393 4394

  if (ResizePLAB) {
J
johnc 已提交
4395 4396
    _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
    _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4397
  }
4398 4399
}

4400 4401 4402 4403
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4404 4405
}

4406 4407 4408
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4409
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4410 4411 4412 4413 4414 4415 4416
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4417
  delete _evac_failure_scan_stack;
4418 4419 4420
  _evac_failure_scan_stack = NULL;
}

4421 4422
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4423

4424 4425
  double remove_self_forwards_start = os::elapsedTime();

4426
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4427

4428 4429 4430 4431
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4432
  } else {
4433
    rsfp_task.work(0);
4434
  }
4435 4436 4437 4438 4439 4440 4441

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4442 4443

  // Now restore saved marks, if any.
4444 4445 4446 4447 4448 4449
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4450
  }
4451 4452
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4453 4454

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4472
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4473
                                               oop old) {
4474 4475 4476
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4477 4478 4479 4480
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4481 4482 4483
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4484

S
sla 已提交
4485 4486
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4505 4506 4507 4508 4509 4510 4511
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4522
    _hr_printer.evac_failure(r);
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4536 4537 4538 4539
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4540 4541
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4542 4543 4544 4545 4546
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4547 4548 4549 4550
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4551
    } else {
4552 4553 4554
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4555
    }
4556 4557 4558 4559 4560
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4561
    } else {
4562 4563 4564
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4565 4566 4567
    }
  }

4568 4569 4570
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4571 4572
}

4573
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4574
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4575

4576
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4577 4578 4579
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
4580
    _ct_bs(g1h->g1_barrier_set()),
4581 4582 4583
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4584 4585
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4586
    _age_table(false), _scanner(g1h, this, rp),
4587
    _strong_roots_time(0), _term_time(0),
4588
    _alloc_buffer_waste(0), _undo_waste(0) {
4589 4590 4591 4592 4593
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4594 4595 4596 4597
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
Z
zgu 已提交
4598
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4599
  if (_surviving_young_words_base == NULL)
4600
    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4601 4602
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4603
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4604

4605 4606 4607
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4608 4609
  _start = os::elapsedTime();
}
4610

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4640 4641 4642 4643 4644 4645 4646
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
4647
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4648 4649 4650 4651 4652 4653 4654 4655 4656
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
4657
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4658 4659 4660
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
4661
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4676 4677
  assert(_evac_failure_cl != NULL, "not set");

4678 4679 4680 4681 4682 4683
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4684

4685 4686 4687 4688 4689 4690
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4691 4692
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4693 4694
  _g1(g1), _par_scan_state(par_scan_state),
  _worker_id(par_scan_state->queue_num()) { }
4695

4696
void G1ParCopyHelper::mark_object(oop obj) {
4697 4698 4699 4700 4701 4702 4703
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4704
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4705 4706
}

4707
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4726
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4727 4728
}

4729
oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4730
  size_t word_sz = old->size();
4731
  HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4732 4733
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4734 4735
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4736
  G1CollectorPolicy* g1p = _g1h->g1_policy();
4737
  markOop m = old->mark();
4738 4739 4740
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4741
                                                             word_sz);
4742
  HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4743 4744
#ifndef PRODUCT
  // Should this evacuation fail?
4745
  if (_g1h->evacuation_should_fail()) {
4746
    if (obj_ptr != NULL) {
4747
      undo_allocation(alloc_purpose, obj_ptr, word_sz);
4748 4749 4750 4751
      obj_ptr = NULL;
    }
  }
#endif // !PRODUCT
4752 4753 4754 4755

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
4756
    return _g1h->handle_evacuation_failure_par(this, old);
4757 4758
  }

4759 4760
  oop obj = oop(obj_ptr);

4761 4762 4763
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4764 4765 4766
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4767 4768 4769 4770 4771 4772

    // alloc_purpose is just a hint to allocate() above, recheck the type of region
    // we actually allocated from and update alloc_purpose accordingly
    HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
    alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;

4773
    if (g1p->track_object_age(alloc_purpose)) {
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4793
        obj->set_mark(m);
4794
      }
4795
      age_table()->add(obj, word_sz);
4796 4797
    } else {
      obj->set_mark(m);
4798
    }
4799

P
pliden 已提交
4800 4801 4802 4803 4804 4805 4806
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
                                             to_region->is_young(),
                                             queue_num(),
                                             obj);
    }

4807
    size_t* surv_young_words = surviving_young_words();
4808 4809 4810
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4811 4812 4813 4814
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4815
      oop* old_p = set_partial_array_mask(old);
4816
      push_on_queue(old_p);
4817
    } else {
4818 4819
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
4820
      _scanner.set_region(_g1h->heap_region_containing_raw(obj));
B
brutisso 已提交
4821
      obj->oop_iterate_backwards(&_scanner);
4822 4823
    }
  } else {
4824
    undo_allocation(alloc_purpose, obj_ptr, word_sz);
4825 4826 4827 4828 4829
    obj = forward_ptr;
  }
  return obj;
}

4830 4831 4832 4833 4834 4835 4836
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4837
template <G1Barrier barrier, bool do_mark_object>
4838
template <class T>
4839
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4840 4841 4842 4843 4844 4845 4846
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4847

4848 4849
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4850
  if (_g1->in_cset_fast_test(obj)) {
4851
    oop forwardee;
4852
    if (obj->is_forwarded()) {
4853
      forwardee = obj->forwardee();
4854
    } else {
4855
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4856 4857 4858 4859 4860 4861 4862
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4863
    }
4864

4865
    if (barrier == G1BarrierKlass) {
4866
      do_klass_barrier(p, forwardee);
4867
    }
4868 4869 4870 4871
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4872
    if (do_mark_object) {
4873
      mark_object(obj);
4874
    }
4875
  }
4876

4877
  if (barrier == G1BarrierEvac) {
4878
    _par_scan_state->update_rs(_from, p, _worker_id);
4879
  }
4880 4881
}

4882 4883
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4904
  void do_void();
4905

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4927
        pss->deal_with_reference((narrowOop*) stolen_task);
4928
      } else {
4929
        pss->deal_with_reference((oop*) stolen_task);
4930
      }
4931 4932 4933 4934

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4935
      pss->trim_queue();
4936
    }
4937 4938 4939 4940
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4941

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4968 4969 4970 4971 4972
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4973
  uint _n_workers;
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4984 4985
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
4986 4987 4988
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4989 4990
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4991 4992 4993 4994 4995 4996 4997 4998
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

5013 5014
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
5015 5016

    double start_time_ms = os::elapsedTime() * 1000.0;
5017
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5018

5019 5020 5021
    {
      ResourceMark rm;
      HandleMark   hm;
5022

5023
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5024

5025
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
5026
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5027

5028
      pss.set_evac_failure_closure(&evac_failure_cl);
5029

5030
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5031
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5032

5033
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5034 5035 5036 5037 5038
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5039

5040
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
5041
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5042

5043 5044 5045
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
5046
        scan_klasses_cl = &scan_mark_klasses_cl_s;
5047
      }
5048

5049
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5050

J
johnc 已提交
5051 5052 5053 5054 5055
      // Don't scan the scavengable methods in the code cache as part
      // of strong root scanning. The code roots that point into a
      // region in the collection set are scanned when we scan the
      // region's RSet.
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5056

5057
      pss.start_strong_roots();
5058 5059
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
5060 5061
                                    scan_root_cl,
                                    &push_heap_rs_cl,
5062
                                    scan_klasses_cl,
5063 5064
                                    worker_id);
      pss.end_strong_roots();
5065

5066 5067 5068 5069 5070 5071
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
5072
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5073
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5074 5075 5076 5077 5078 5079 5080 5081
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
5082

5083
      assert(pss.refs()->is_empty(), "should be empty");
5084

5085 5086 5087
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
5088 5089
    }

5090
    double end_time_ms = os::elapsedTime() * 1000.0;
5091
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5092 5093 5094 5095 5096
  }
};

// *** Common G1 Evacuation Stuff

5097 5098
// This method is run in a GC worker.

5099 5100
void
G1CollectedHeap::
5101
g1_process_strong_roots(bool is_scavenging,
5102
                        ScanningOption so,
5103 5104
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
5105
                        G1KlassScanClosure* scan_klasses,
5106
                        uint worker_i) {
5107

5108
  // First scan the strong roots
5109 5110 5111 5112 5113
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

J
johnc 已提交
5114 5115 5116 5117
  assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  // Walk the code cache/strong code roots w/o buffering, because StarTask
  // cannot handle unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5118 5119

  process_strong_roots(false, // no scoping; this is parallel code
5120
                       is_scavenging, so,
5121
                       &buf_scan_non_heap_roots,
5122
                       &eager_scan_code_roots,
5123 5124
                       scan_klasses
                       );
5125

5126
  // Now the CM ref_processor roots.
5127
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5128 5129 5130 5131 5132
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5133 5134 5135
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
5136
  buf_scan_non_heap_roots.done();
5137

5138 5139
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

5140
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5141

5142
  double ext_root_time_ms =
5143
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5144

5145
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5146

5147 5148 5149
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
5150
  double satb_filtering_ms = 0.0;
5151 5152
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
5153 5154
      double satb_filter_start = os::elapsedTime();

5155
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
5156 5157

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5158
    }
5159
  }
5160
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5161

J
johnc 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
  // If this is an initial mark pause, and we're not scanning
  // the entire code cache, we need to mark the oops in the
  // strong code root lists for the regions that are not in
  // the collection set.
  // Note all threads participate in this set of root tasks.
  double mark_strong_code_roots_ms = 0.0;
  if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
    double mark_strong_roots_start = os::elapsedTime();
    mark_strong_code_roots(worker_i);
    mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  }
  g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);

5175 5176
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
J
johnc 已提交
5177
    g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5178 5179 5180 5181 5182
  }
  _process_strong_tasks->all_tasks_completed();
}

void
5183
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5184
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5185
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5186 5187
}

5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
5201 5202

  bool _do_in_parallel;
5203 5204 5205
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
    AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5206
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
5221
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5222 5223
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
5224
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5225 5226 5227 5228 5229
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  }

  void work(uint worker_id) {
5230
    if (_do_in_parallel) {
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
  if (G1TraceStringSymbolTableScrubbing) {
    gclog_or_tty->print_cr("Cleaned string and symbol table, "
                           "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                           "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                           g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
                           g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  }
P
pliden 已提交
5282 5283 5284 5285

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5286 5287
}

5288 5289
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
5290
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

void G1CollectedHeap::redirty_logged_cards() {
  guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  double redirty_logged_cards_start = os::elapsedTime();

  RedirtyLoggedCardTableEntryFastClosure redirty;
  dirty_card_queue_set().set_closure(&redirty);
  dirty_card_queue_set().apply_closure_to_all_completed_buffers();

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5359
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5360 5361 5362 5363 5364
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5365
                            OopsInHeapRegionClosure* metadata_obj_cl,
5366 5367 5368
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5369
    _copy_metadata_obj_cl(metadata_obj_cl),
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5394
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5395
      // the referent object and update the pointer, while avoiding
5396 5397 5398 5399 5400
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5401
        assert(!Metaspace::contains((const void*)p),
5402 5403
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5442
  FlexibleWorkGang*  _workers;
5443 5444 5445 5446
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5447
                        FlexibleWorkGang* workers,
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5484
  virtual void work(uint worker_id) {
5485 5486 5487 5488 5489 5490
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5491
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5492 5493 5494 5495 5496
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5497
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5498 5499

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5500
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5501 5502

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5503
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5504 5505 5506 5507

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5508
      copy_metadata_cl = &copy_mark_metadata_cl;
5509 5510 5511
    }

    // Keep alive closure.
5512
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5513 5514 5515 5516 5517

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5518
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5553 5554
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5555 5556 5557
  }
};

S
sla 已提交
5558
// Driver routine for parallel reference enqueueing.
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5583
  uint _n_workers;
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5594
  void work(uint worker_id) {
5595 5596 5597
    ResourceMark rm;
    HandleMark   hm;

5598
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5599 5600 5601 5602 5603 5604 5605 5606
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5607
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5608 5609

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5610
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5611 5612

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5613
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5614 5615 5616 5617

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5618
      copy_metadata_cl = &copy_mark_metadata_cl;
5619 5620 5621 5622 5623 5624 5625
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5626
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5627 5628 5629

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5630 5631
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5632 5633 5634 5635

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5636
    assert(0 <= worker_id && worker_id < limit, "sanity");
5637 5638 5639
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5640
    for (uint idx = worker_id; idx < limit; idx += stride) {
5641
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5667
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5683
  // As a result the copy closure would not have been applied to the
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5694
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5695 5696
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5697

J
johnc 已提交
5698 5699 5700 5701
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5720
  G1ParScanThreadState            pss(this, 0, NULL);
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5732
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5733 5734

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5735
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5736 5737

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5738
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5739 5740 5741 5742

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5743
    copy_metadata_cl = &copy_mark_metadata_cl;
5744 5745 5746
  }

  // Keep alive closure.
5747
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5748 5749 5750 5751 5752 5753 5754

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5755
  ReferenceProcessorStats stats;
5756 5757
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5758 5759 5760 5761
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5762 5763
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5764 5765
  } else {
    // Parallel reference processing
J
johnc 已提交
5766 5767
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5768

J
johnc 已提交
5769
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5770 5771 5772 5773
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5774 5775
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5776 5777
  }

S
sla 已提交
5778
  _gc_tracer_stw->report_gc_reference_stats(stats);
5779 5780 5781 5782 5783 5784 5785
  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5786
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5787 5788 5789
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5790
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5802
    // Parallel reference enqueueing
5803

J
johnc 已提交
5804 5805 5806 5807
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5808

J
johnc 已提交
5809
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5810 5811 5812 5813 5814 5815 5816 5817 5818
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5819
  // and could significantly increase the pause time.
5820 5821

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5822
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5823 5824
}

S
sla 已提交
5825
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5826
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5827
  _evacuation_failed = false;
5828

5829 5830 5831
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5832
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5833 5834 5835 5836 5837

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5838

5839
  uint n_workers;
5840 5841 5842 5843 5844 5845 5846 5847
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5848
    workers()->set_active_workers(n_workers);
5849 5850 5851 5852 5853 5854 5855 5856
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5857 5858 5859 5860 5861

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5862
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5863 5864
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5865

5866
  {
5867
    StrongRootsScope srs(this);
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5888 5889
  }

5890
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5891
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5892 5893 5894

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5895
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5896

5897
  set_par_threads(0);
5898

5899 5900 5901 5902 5903
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5904
  process_discovered_references(n_workers);
5905

5906
  // Weak root processing.
5907
  {
5908
    G1STWIsAliveClosure is_alive(this);
5909 5910
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
P
pliden 已提交
5911 5912 5913
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
    }
5914
  }
5915

S
sla 已提交
5916
  release_gc_alloc_regions(n_workers, evacuation_info);
5917
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5918

5919 5920 5921 5922 5923
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5924

J
johnc 已提交
5925 5926 5927 5928 5929 5930
  // Migrate the strong code roots attached to each region in
  // the collection set. Ideally we would like to do this
  // after we have finished the scanning/evacuation of the
  // strong code roots for a particular heap region.
  migrate_strong_code_roots();

5931 5932
  purge_code_root_memory();

J
johnc 已提交
5933 5934 5935 5936 5937
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5938 5939 5940 5941
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5942 5943 5944 5945 5946

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5947 5948
  }

5949 5950 5951
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5952
  // the act of enqueueing entries on to the pending list
5953 5954 5955
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5956
  enqueue_discovered_references(n_workers);
5957

5958
  if (G1DeferredRSUpdate) {
5959
    redirty_logged_cards();
5960
  }
5961 5962 5963
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5964 5965
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5966 5967
                                  bool par,
                                  bool locked) {
5968 5969 5970 5971
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

5972 5973 5974 5975 5976 5977
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5978
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5979
  free_list->add_ordered(hr);
5980 5981 5982 5983 5984 5985 5986 5987 5988
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
5989 5990 5991
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
5992
  hr->set_notHumongous();
5993
  free_region(hr, free_list, par);
5994

5995
  uint i = hr->hrs_index() + 1;
5996
  while (i < last_index) {
5997
    HeapRegion* curr_hr = region_at(i);
5998
    assert(curr_hr->continuesHumongous(), "invariant");
5999
    curr_hr->set_notHumongous();
6000
    free_region(curr_hr, free_list, par);
6001 6002
    i += 1;
  }
6003 6004 6005 6006 6007
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
6008
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6009 6010
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
6011
  }
6012 6013 6014 6015 6016 6017 6018

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6019
    _free_list.add_ordered(list);
6020 6021 6022
  }
}

6023 6024 6025 6026 6027 6028 6029
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  assert(_summary_bytes_used >= bytes,
         err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
                  _summary_bytes_used, bytes));
  _summary_bytes_used -= bytes;
}

6030
class G1ParCleanupCTTask : public AbstractGangTask {
6031
  G1SATBCardTableModRefBS* _ct_bs;
6032
  G1CollectedHeap* _g1h;
6033
  HeapRegion* volatile _su_head;
6034
public:
6035
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6036
                     G1CollectedHeap* g1h) :
6037
    AbstractGangTask("G1 Par Cleanup CT Task"),
6038
    _ct_bs(ct_bs), _g1h(g1h) { }
6039

6040
  void work(uint worker_id) {
6041 6042 6043 6044 6045
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
6046

6047
  void clear_cards(HeapRegion* r) {
6048
    // Cards of the survivors should have already been dirtied.
6049
    if (!r->is_survivor()) {
6050 6051 6052 6053 6054
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

6055 6056
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6057
  G1CollectedHeap* _g1h;
6058
  G1SATBCardTableModRefBS* _ct_bs;
6059
public:
6060
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6061
    : _g1h(g1h), _ct_bs(ct_bs) { }
6062
  virtual bool doHeapRegion(HeapRegion* r) {
6063
    if (r->is_survivor()) {
6064
      _g1h->verify_dirty_region(r);
6065
    } else {
6066
      _g1h->verify_not_dirty_region(r);
6067 6068 6069 6070
    }
    return false;
  }
};
6071

6072 6073
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6074
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6087
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6088
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6089 6090 6091 6092 6093
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6094 6095
}

6096
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6097
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6098
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6099
    verify_dirty_region(hr);
6100 6101 6102 6103 6104 6105
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6106 6107
#endif

6108
void G1CollectedHeap::cleanUpCardTable() {
6109
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6110 6111
  double start = os::elapsedTime();

J
johnc 已提交
6112 6113 6114
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6115

6116 6117
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6130 6131
      }
    }
J
johnc 已提交
6132 6133 6134 6135 6136 6137
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6138
  }
6139

6140
  double elapsed = os::elapsedTime() - start;
6141
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6142 6143
}

S
sla 已提交
6144
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6145 6146 6147
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6148 6149 6150
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6151 6152 6153 6154 6155
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6166
    assert(!is_on_master_free_list(cur), "sanity");
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6177 6178 6179 6180
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6181

6182 6183 6184
        start_sec = os::elapsedTime();
        non_young = true;
      }
6185 6186
    }

6187
    rs_lengths += cur->rem_set()->occupied_locked();
6188 6189 6190 6191 6192 6193 6194 6195

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6196
      assert(index != -1, "invariant");
6197
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6198 6199
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6200 6201 6202 6203 6204 6205

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6206 6207
    } else {
      int index = cur->young_index_in_cset();
6208
      assert(index == -1, "invariant");
6209 6210 6211 6212 6213 6214 6215
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6216 6217
      MemRegion used_mr = cur->used_region();

6218
      // And the region is empty.
6219
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6220
      pre_used += cur->used();
6221
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6222 6223
    } else {
      cur->uninstall_surv_rate_group();
6224
      if (cur->is_young()) {
6225
        cur->set_young_index_in_cset(-1);
6226
      }
6227 6228
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6229 6230
      // The region is now considered to be old.
      _old_set.add(cur);
S
sla 已提交
6231
      evacuation_info.increment_collectionset_used_after(cur->used());
6232 6233 6234 6235
    }
    cur = next;
  }

S
sla 已提交
6236
  evacuation_info.set_regions_freed(local_free_list.length());
6237 6238 6239 6240 6241
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6242 6243

  if (non_young) {
6244
    non_young_time_ms += elapsed_ms;
6245
  } else {
6246
    young_time_ms += elapsed_ms;
6247
  }
6248

6249 6250
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6251 6252
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6253 6254
}

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6276 6277 6278 6279
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6280 6281
  }

6282 6283
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6284 6285
}

6286
void G1CollectedHeap::reset_free_regions_coming() {
6287 6288
  assert(free_regions_coming(), "pre-condition");

6289 6290 6291 6292
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6293 6294
  }

6295 6296 6297
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6298 6299 6300
  }
}

6301 6302 6303 6304 6305
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6306 6307
  }

6308 6309 6310
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6311 6312 6313
  }

  {
6314 6315 6316
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6317 6318 6319
    }
  }

6320 6321 6322
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6348 6349
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6350

6351
  if (check_heap) {
6352 6353 6354 6355 6356 6357 6358 6359
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6360 6361
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6362
  HeapRegionSet *_old_set;
6363

T
tonyp 已提交
6364
public:
6365
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6366

T
tonyp 已提交
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6394 6395 6396 6397
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6398
  }
6399
  _free_list.remove_all();
6400 6401
}

T
tonyp 已提交
6402 6403 6404
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6405
  HeapRegionSet*   _old_set;
T
tonyp 已提交
6406 6407
  FreeRegionList* _free_list;
  size_t          _total_used;
6408

6409
public:
T
tonyp 已提交
6410
  RebuildRegionSetsClosure(bool free_list_only,
6411
                           HeapRegionSet* old_set, FreeRegionList* free_list) :
T
tonyp 已提交
6412 6413 6414 6415 6416 6417 6418
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6419

6420
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6436
      }
T
tonyp 已提交
6437
      _total_used += r->used();
6438
    }
T
tonyp 已提交
6439

6440 6441 6442
    return false;
  }

T
tonyp 已提交
6443 6444
  size_t total_used() {
    return _total_used;
6445
  }
6446 6447
};

T
tonyp 已提交
6448 6449 6450
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6451 6452 6453 6454
  if (!free_list_only) {
    _young_list->empty_list();
  }

T
tonyp 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6465 6466 6467 6468 6469 6470
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6471 6472 6473
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6474
    return false;
6475 6476
  } else {
    return hr->is_in(p);
6477
  }
6478 6479
}

6480 6481
// Methods for the mutator alloc region

6482 6483 6484 6485 6486
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6487 6488
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6489
    HeapRegion* new_alloc_region = new_region(word_size,
6490
                                              false /* is_old */,
6491 6492 6493
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6494
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6508
  _hr_printer.retire(alloc_region);
6509 6510 6511 6512
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6513 6514 6515 6516 6517 6518 6519
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6520 6521 6522
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6523
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6524
  uint n_workers = workers()->active_workers();
6525
  assert(UseDynamicNumberOfGCThreads ||
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6536 6537 6538 6539 6540
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6541 6542 6543
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6544
                                                 uint count,
6545 6546 6547 6548
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
6549
    bool survivor = (ap == GCAllocForSurvived);
6550
    HeapRegion* new_alloc_region = new_region(word_size,
6551
                                              !survivor,
6552 6553 6554 6555 6556 6557
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
6558
      if (survivor) {
6559 6560 6561 6562 6563
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6564 6565
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6577 6578
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6579 6580 6581
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6582 6583
  } else {
    _old_set.add(alloc_region);
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6611 6612
// Heap region set verification

6613 6614
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6615 6616 6617
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
  FreeRegionList*  _free_list;
6618 6619

public:
6620 6621 6622
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6623

6624 6625 6626 6627 6628
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
    _old_count(), _humongous_count(), _free_count(){ }
6629 6630 6631 6632 6633 6634 6635 6636 6637

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6638 6639
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
      _humongous_count.increment(1u, hr->capacity());
6640
    } else if (hr->is_empty()) {
6641 6642
      assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
      _free_count.increment(1u, hr->capacity());
T
tonyp 已提交
6643
    } else {
6644 6645
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
      _old_count.increment(1u, hr->capacity());
6646
    }
6647 6648
    return false;
  }
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662

  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

    guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6663 6664
};

6665
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6666 6667 6668 6669 6670
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
6671
  return new HeapRegion(hrs_index, _bot_shared, mr);
6672 6673
}

6674 6675
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6676

6677
  // First, check the explicit lists.
6678
  _free_list.verify_list();
6679 6680 6681 6682 6683
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6684
    _secondary_free_list.verify_list();
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6700

T
tonyp 已提交
6701 6702 6703 6704
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6705

6706 6707
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6708

T
tonyp 已提交
6709
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6710
  heap_region_iterate(&cl);
6711
  cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6712
}
J
johnc 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6725 6726 6727 6728
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6729 6730 6731 6732 6733

      // HeapRegion::add_strong_code_root() avoids adding duplicate
      // entries but having duplicates is  OK since we "mark" nmethods
      // as visited when we scan the strong code root lists during the GC.
      hr->add_strong_code_root(_nm);
6734 6735 6736
      assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6757 6758 6759 6760 6761
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6762
      hr->remove_strong_code_root(_nm);
6763 6764 6765
      assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *hr) {
6796 6797 6798
    assert(!hr->isHumongous(),
           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
                   HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
    hr->migrate_strong_code_roots();
    return false;
  }
};

void G1CollectedHeap::migrate_strong_code_roots() {
  MigrateCodeRootsHeapRegionClosure cl;
  double migrate_start = os::elapsedTime();
  collection_set_iterate(&cl);
  double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
}

6812 6813 6814 6815 6816 6817 6818
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
  G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
// Mark all the code roots that point into regions *not* in the
// collection set.
//
// Note we do not want to use a "marking" CodeBlobToOopClosure while
// walking the the code roots lists of regions not in the collection
// set. Suppose we have an nmethod (M) that points to objects in two
// separate regions - one in the collection set (R1) and one not (R2).
// Using a "marking" CodeBlobToOopClosure here would result in "marking"
// nmethod M when walking the code roots for R1. When we come to scan
// the code roots for R2, we would see that M is already marked and it
// would be skipped and the objects in R2 that are referenced from M
// would not be evacuated.

class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {

  class MarkStrongCodeRootOopClosure: public OopClosure {
    ConcurrentMark* _cm;
    HeapRegion* _hr;
    uint _worker_id;

    template <class T> void do_oop_work(T* p) {
      T heap_oop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(heap_oop)) {
        oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
        // Only mark objects in the region (which is assumed
        // to be not in the collection set).
        if (_hr->is_in(obj)) {
          _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
        }
      }
    }

  public:
    MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
      _cm(cm), _hr(hr), _worker_id(worker_id) {
      assert(!_hr->in_collection_set(), "sanity");
    }

    void do_oop(narrowOop* p) { do_oop_work(p); }
    void do_oop(oop* p)       { do_oop_work(p); }
  };

  MarkStrongCodeRootOopClosure _oop_cl;

public:
  MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
    _oop_cl(cm, hr, worker_id) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      nm->oops_do(&_oop_cl);
    }
  }
};

class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  uint _worker_id;

public:
  MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
    _g1h(g1h), _worker_id(worker_id) {}

  bool doHeapRegion(HeapRegion *hr) {
    HeapRegionRemSet* hrrs = hr->rem_set();
6885 6886 6887 6888
    if (hr->continuesHumongous()) {
      // Code roots should never be attached to a continuation of a humongous region
      assert(hrrs->strong_code_roots_list_length() == 0,
             err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6889
                     " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6890 6891
                     HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
                     hrrs->strong_code_roots_list_length()));
J
johnc 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
      return false;
    }

    if (hr->in_collection_set()) {
      // Don't mark code roots into regions in the collection set here.
      // They will be marked when we scan them.
      return false;
    }

    MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
    hr->strong_code_roots_do(&cb_cl);
    return false;
  }
};

void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  MarkStrongCodeRootsHRClosure cl(this, worker_id);
6909 6910 6911 6912 6913 6914 6915 6916
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    heap_region_par_iterate_chunked(&cl,
                                    worker_id,
                                    workers()->active_workers(),
                                    HeapRegion::ParMarkRootClaimValue);
  } else {
    heap_region_iterate(&cl);
  }
J
johnc 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
}

class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

6932
    if (ScavengeRootsInCode) {
J
johnc 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}