g1CollectedHeap.cpp 241.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
J
johnc 已提交
30
#include "code/codeCache.hpp"
31 32 33 34 35
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
36
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
37 38
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
39
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
40
#include "gc_implementation/g1/g1EvacFailure.hpp"
41
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
42
#include "gc_implementation/g1/g1Log.hpp"
43 44
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
45
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
46
#include "gc_implementation/g1/g1RemSet.inline.hpp"
P
pliden 已提交
47
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
48
#include "gc_implementation/g1/g1YCTypes.hpp"
49
#include "gc_implementation/g1/heapRegion.inline.hpp"
50 51 52
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
53 54 55 56
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
57 58 59
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
60
#include "memory/iterator.hpp"
61
#include "memory/referenceProcessor.hpp"
62 63
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
64
#include "runtime/orderAccess.inline.hpp"
65
#include "runtime/vmThread.hpp"
66

67 68
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

69 70 71
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
72
#define YOUNG_LIST_VERBOSE 0
73 74 75 76 77 78
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
79 80 81 82 83
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
84

85 86 87 88 89 90
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
S
sla 已提交
91
// SharedHeap::process_strong_roots() which calls eventually to
92 93 94 95 96
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

97 98 99 100 101
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
102 103
  RefineCardTableEntryClosure() : _concurrent(true) { }

104
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
105
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
106 107 108 109 110
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
111
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
112 113 114 115 116 117
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
118

119 120 121 122 123
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
124
  size_t _num_processed;
125 126
  CardTableModRefBS* _ctbs;
  int _histo[256];
127 128

 public:
129
  ClearLoggedCardTableEntryClosure() :
130
    _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
131 132 133
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
134

135
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
136 137 138 139 140 141 142
    unsigned char* ujb = (unsigned char*)card_ptr;
    int ind = (int)(*ujb);
    _histo[ind]++;

    *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
    _num_processed++;

143 144
    return true;
  }
145 146 147

  size_t num_processed() { return _num_processed; }

148 149 150 151 152 153 154 155 156 157
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

158 159 160 161 162 163
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
164

165
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
166 167
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
168 169
    return true;
  }
170 171

  size_t num_processed() const { return _num_processed; }
172 173
};

174 175 176 177
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
178 179 180 181 182 183 184 185 186
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

187
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
188 189 190 191
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
192
  assert(hr->is_survivor(), "should be flagged as survivor region");
193 194 195 196
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
197
    _survivor_tail = hr;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
222
  _survivor_tail = NULL;
223 224 225 226 227 228 229 230 231 232
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

233
  uint length = 0;
234 235 236
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
237
    if (!curr->is_young()) {
238
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
239
                             "incorrectly tagged (y: %d, surv: %d)",
240
                             curr->bottom(), curr->end(),
241
                             curr->is_young(), curr->is_survivor());
242 243 244 245 246 247 248 249 250 251
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
252
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
253 254 255
                           length, _length);
  }

256
  return ret;
257 258
}

259
bool YoungList::check_list_empty(bool check_sample) {
260 261 262
  bool ret = true;

  if (_length != 0) {
263
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

279
  return ret;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
296 297 298 299 300 301 302 303 304 305 306 307
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

308 309 310 311 312 313 314 315 316 317 318 319 320 321
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
322
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
323

324
  int young_index_in_cset = 0;
325 326 327
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
328
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
329 330 331 332 333

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
334
    young_index_in_cset += 1;
335
  }
336
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
337 338
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

339 340
  _head   = _survivor_head;
  _length = _survivor_length;
341
  if (_survivor_head != NULL) {
342 343 344
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
345 346
  }

347 348 349 350
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
351

352
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
353 354 355 356 357

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
358 359
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
360 361 362 363 364 365 366

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
367 368
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
369 370
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
371
                             curr->age_in_surv_rate_group_cond());
372 373 374 375
      curr = curr->get_next_young_region();
    }
  }

376
  gclog_or_tty->cr();
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
450
// can move in an incremental collection.
451 452 453 454 455
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
456 457
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
458 459 460 461 462 463
     return false;
  } else {
    return !hr->isHumongous();
  }
}

464 465
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
466
  CardTableModRefBS* ct_bs = g1_barrier_set();
467 468 469 470 471 472 473 474

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
475 476
  dcqs.apply_closure_to_all_completed_buffers(&clear);
  dcqs.iterate_closure_all_threads(&clear, false);
477 478 479 480 481 482 483 484 485 486 487 488
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
489 490
  dcqs.apply_closure_to_all_completed_buffers(&redirty);
  dcqs.iterate_closure_all_threads(&redirty, false);
491
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
492 493 494 495
                         clear.num_processed(), orig_count);
  guarantee(redirty.num_processed() == clear.num_processed(),
            err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
                    redirty.num_processed(), clear.num_processed()));
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

512
HeapRegion*
513
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
514 515 516 517 518
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
519
                               "secondary_free_list has %u entries",
520 521 522 523 524 525 526 527 528
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
529
      HeapRegion* res = _free_list.remove_region(is_old);
530 531 532 533 534 535 536 537
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
538
    // Wait here until we get notified either when (a) there are no
539 540 541 542 543 544 545 546 547 548 549
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
550

551
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
552
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
553 554
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
555

556 557 558 559 560 561 562
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
563
      res = new_region_try_secondary_free_list(is_old);
564 565 566 567 568
      if (res != NULL) {
        return res;
      }
    }
  }
569 570 571

  res = _free_list.remove_region(is_old);

572 573 574 575 576
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
577
    res = new_region_try_secondary_free_list(is_old);
578
  }
579 580 581 582 583 584 585
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

586 587 588 589 590
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
591
    if (expand(word_size * HeapWordSize)) {
592 593
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
594 595 596
      // region size, the free list should in theory not be empty.
      // In either case remove_region() will check for NULL.
      res = _free_list.remove_region(is_old);
597 598
    } else {
      _expand_heap_after_alloc_failure = false;
599
    }
600 601 602 603
  }
  return res;
}

604 605
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
606 607 608
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

609
  uint first = G1_NULL_HRS_INDEX;
610 611
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
S
sla 已提交
612
    // path. The caller will attempt the expansion if this fails, so
613
    // let's not try to expand here too.
614
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
615 616 617
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
618
      first = G1_NULL_HRS_INDEX;
619 620 621 622 623 624 625 626 627 628 629
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
630
    append_secondary_free_list_if_not_empty_with_lock();
631 632

    if (free_regions() >= num_regions) {
633 634
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
635
        for (uint i = first; i < first + num_regions; ++i) {
636
          HeapRegion* hr = region_at(i);
637
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
638
          assert(is_on_master_free_list(hr), "sanity");
639 640 641 642 643 644 645 646 647
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
648
HeapWord*
649 650
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
651
                                                           size_t word_size) {
652
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
653 654 655 656
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
657
  uint last = first + num_regions;
T
tonyp 已提交
658 659 660 661 662 663 664 665 666 667

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
668
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
669 670 671
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
672
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
673 674 675 676
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
677
  // should also match the end of the last region in the series.
T
tonyp 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
707
  for (uint i = first + 1; i < last; ++i) {
708
    hr = region_at(i);
T
tonyp 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
729 730 731 732 733 734 735 736 737 738 739
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
753
  for (uint i = first + 1; i < last; ++i) {
754
    hr = region_at(i);
T
tonyp 已提交
755 756 757 758 759
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
760
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
761 762 763 764
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
765
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

781 782 783
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
784
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
785
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
786

787
  verify_region_sets_optional();
788

789 790 791 792 793
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
794
  if (first == G1_NULL_HRS_INDEX) {
795
    // The only thing we can do now is attempt expansion.
796
    if (fs + x_num >= num_regions) {
797 798 799 800 801 802 803 804 805 806
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

807 808 809 810 811
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
812
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
813 814 815
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
816 817
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
818 819
    }
  }
820

T
tonyp 已提交
821
  HeapWord* result = NULL;
822
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
823 824 825
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
826 827 828 829 830

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
831
  }
832 833

  verify_region_sets_optional();
T
tonyp 已提交
834 835

  return result;
836 837
}

838 839 840
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
841

842
  unsigned int dummy_gc_count_before;
843 844
  int dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
845 846 847
}

HeapWord*
848 849 850
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
851

S
sla 已提交
852
  // Loop until the allocation is satisfied, or unsatisfied after GC.
853
  for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
854
    unsigned int gc_count_before;
855

856 857
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
858
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
859
    } else {
860
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
861 862 863 864
    }
    if (result != NULL) {
      return result;
    }
865

866 867 868 869
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
870

871 872 873 874 875 876
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
877
        // Allocations that take place on VM operations do not do any
878 879
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
880 881 882
        dirty_young_block(result, word_size);
      }
      return result;
883
    } else {
884 885 886
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
887 888
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
889 890 891 892 893
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
894
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
895 896 897
    }
  }

898
  ShouldNotReachHere();
899 900 901
  return NULL;
}

902
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
903 904
                                           unsigned int *gc_count_before_ret,
                                           int* gclocker_retry_count_ret) {
905 906 907 908 909
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
910

911 912 913 914 915 916 917
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
918
  HeapWord* result = NULL;
919 920 921
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
922

923 924 925 926 927 928 929
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
930
      }
931

932 933 934
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
935

936 937
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
938 939
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
940 941 942 943 944 945 946 947
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
948 949 950 951 952 953 954 955 956 957 958 959
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
960 961
      }
    }
962

963 964
    if (should_try_gc) {
      bool succeeded;
965 966
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_inc_collection_pause);
967
      if (result != NULL) {
968
        assert(succeeded, "only way to get back a non-NULL result");
969 970 971
        return result;
      }

972 973 974 975 976
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
977
        *gc_count_before_ret = total_collections();
978 979 980
        return NULL;
      }
    } else {
981 982 983 984 985
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
986 987 988
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
989
      GC_locker::stall_until_clear();
990
      (*gclocker_retry_count_ret) += 1;
991 992
    }

S
sla 已提交
993
    // We can reach here if we were unsuccessful in scheduling a
994 995 996 997 998 999 1000 1001 1002
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1003
    if (result != NULL) {
1004
      return result;
1005 1006
    }

1007 1008 1009
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1010
      warning("G1CollectedHeap::attempt_allocation_slow() "
1011
              "retries %d times", try_count);
1012 1013 1014
    }
  }

1015 1016
  ShouldNotReachHere();
  return NULL;
1017 1018
}

1019
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1020 1021
                                          unsigned int * gc_count_before_ret,
                                          int* gclocker_retry_count_ret) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1033
  assert_heap_not_locked_and_not_at_safepoint();
1034 1035
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1036

1037 1038 1039 1040 1041
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1042 1043
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1044 1045 1046
    collect(GCCause::_g1_humongous_allocation);
  }

1047 1048 1049 1050 1051
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1052
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1053
    bool should_try_gc;
1054
    unsigned int gc_count_before;
1055

1056
    {
1057
      MutexLockerEx x(Heap_lock);
1058

1059 1060 1061 1062
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1063 1064
      if (result != NULL) {
        return result;
1065
      }
1066

1067 1068 1069
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1082 1083 1084
      }
    }

1085 1086 1087 1088
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1089

1090
      bool succeeded;
1091 1092
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
          GCCause::_g1_humongous_allocation);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1103
        *gc_count_before_ret = total_collections();
1104
        return NULL;
1105 1106
      }
    } else {
1107 1108 1109 1110 1111
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1112 1113 1114
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1115
      GC_locker::stall_until_clear();
1116
      (*gclocker_retry_count_ret) += 1;
1117 1118
    }

S
sla 已提交
1119
    // We can reach here if we were unsuccessful in scheduling a
1120 1121 1122 1123 1124 1125
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1126 1127
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1128 1129
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1130 1131
    }
  }
1132 1133

  ShouldNotReachHere();
1134
  return NULL;
1135 1136
}

1137 1138
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1139
  assert_at_safepoint(true /* should_be_vm_thread */);
1140 1141 1142
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1143

1144 1145 1146 1147
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1148 1149 1150 1151 1152
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1153
  }
1154 1155

  ShouldNotReachHere();
1156 1157 1158
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1159
  G1CollectedHeap* _g1h;
1160 1161
  ModRefBarrierSet* _mr_bs;
public:
1162
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1163 1164
    _g1h(g1h), _mr_bs(mr_bs) {}

1165
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1166 1167
    HeapRegionRemSet* hrrs = r->rem_set();

1168
    if (r->continuesHumongous()) {
J
johnc 已提交
1169 1170 1171
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1172
      return false;
1173
    }
J
johnc 已提交
1174

1175
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1176
    hrrs->clear();
1177 1178 1179 1180 1181 1182
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1183

1184 1185 1186 1187
    return false;
  }
};

1188
void G1CollectedHeap::clear_rsets_post_compaction() {
1189
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1190 1191
  heap_region_iterate(&rs_clear);
}
1192

1193 1194 1195 1196 1197 1198
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1199
    _cl(g1->g1_rem_set(), worker_i),
1200 1201 1202
    _worker_i(worker_i),
    _g1h(g1)
  { }
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1221 1222 1223
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1224
                                          _g1->workers()->active_workers(),
1225 1226 1227 1228
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1240
        if (hr->region_num() == 1) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1258 1259 1260 1261 1262
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1263
bool G1CollectedHeap::do_collection(bool explicit_gc,
1264
                                    bool clear_all_soft_refs,
1265
                                    size_t word_size) {
1266 1267
  assert_at_safepoint(true /* should_be_vm_thread */);

1268
  if (GC_locker::check_active_before_gc()) {
1269
    return false;
1270 1271
  }

S
sla 已提交
1272
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1273
  gc_timer->register_gc_start();
S
sla 已提交
1274 1275 1276 1277

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1278
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1279 1280
  ResourceMark rm;

1281
  print_heap_before_gc();
S
sla 已提交
1282
  trace_heap_before_gc(gc_tracer);
1283

1284
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1285

1286
  verify_region_sets_optional();
1287

1288 1289 1290 1291 1292
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1293 1294 1295 1296
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1297
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1298 1299
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1300

1301
    {
1302
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1322

1323 1324 1325
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1326

1327
      assert(used() == recalculate_used(), "Should be equal");
1328

1329
      verify_before_gc();
1330

S
sla 已提交
1331
      pre_full_gc_dump(gc_timer);
1332

1333
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1334

1335 1336 1337 1338 1339
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1340

1341 1342 1343 1344
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1345

1346 1347 1348 1349
      // Make sure we'll choose a new allocation region afterwards.
      release_mutator_alloc_region();
      abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();
1350

1351 1352 1353 1354
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1355

1356 1357 1358 1359 1360 1361 1362
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1363

1364 1365
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1366

1367 1368 1369
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1370

1371 1372
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1373

1374 1375
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1376

1377 1378
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1379

1380 1381 1382 1383 1384
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1385

1386 1387
      assert(free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);
1388

1389 1390 1391
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1392

1393
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1394

1395
      MemoryService::track_memory_usage();
1396

1397 1398
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1399

1400 1401
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1402
      MetaspaceAux::verify_metrics();
1403

1404 1405 1406 1407 1408 1409
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1410

1411 1412
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1413
      // sets, and clear all cards.  Later we will rebuild remembered
1414 1415 1416
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1417

1418 1419
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1420

1421 1422 1423 1424
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1425

1426 1427 1428
        print_hrs_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1429

1430 1431 1432 1433
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1434
      }
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1472

J
johnc 已提交
1473 1474 1475
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1476 1477 1478
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1479

1480 1481 1482
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1483

1484 1485 1486 1487 1488
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(!G1DeferredRSUpdate
             || (G1DeferredRSUpdate &&
                (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1489

1490 1491 1492 1493 1494
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1495

1496 1497
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1498

1499 1500
      _hrs.verify_optional();
      verify_region_sets_optional();
1501

1502 1503
      verify_after_gc();

1504 1505 1506
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1507

1508
      clear_cset_fast_test();
1509

1510
      init_mutator_alloc_region();
1511

1512 1513
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1514

1515 1516 1517
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1518

1519 1520 1521 1522 1523
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1524

1525 1526
      gc_epilogue(true);
    }
1527

1528
    if (G1Log::finer()) {
1529
      g1_policy()->print_detailed_heap_transition(true /* full */);
1530
    }
1531 1532

    print_heap_after_gc();
S
sla 已提交
1533 1534 1535
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1536

1537
    gc_timer->register_gc_end();
S
sla 已提交
1538
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1539
  }
1540

1541
  return true;
1542 1543 1544
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1545 1546 1547 1548 1549 1550 1551 1552
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1565 1566 1567 1568
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1569
  // We don't have floating point command-line arguments
1570
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1571
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1572
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1573 1574
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1611

1612
  if (capacity_after_gc < minimum_desired_capacity) {
1613 1614
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1625 1626

    // No expansion, now see if we want to shrink
1627
  } else if (capacity_after_gc > maximum_desired_capacity) {
1628 1629
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1630 1631 1632 1633 1634 1635 1636 1637 1638
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1639 1640 1641 1642 1643 1644
    shrink(shrink_bytes);
  }
}


HeapWord*
1645 1646
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1647
  assert_at_safepoint(true /* should_be_vm_thread */);
1648 1649 1650

  *succeeded = true;
  // Let's attempt the allocation first.
1651 1652 1653
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1654 1655 1656 1657
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1658 1659 1660 1661 1662 1663 1664

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1665
    assert(*succeeded, "sanity");
1666 1667 1668
    return result;
  }

1669 1670 1671 1672 1673 1674 1675 1676
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1677

1678 1679
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1680
                                  true /* expect_null_mutator_alloc_region */);
1681
  if (result != NULL) {
1682
    assert(*succeeded, "sanity");
1683 1684 1685
    return result;
  }

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1697
                                  true /* expect_null_mutator_alloc_region */);
1698
  if (result != NULL) {
1699
    assert(*succeeded, "sanity");
1700 1701 1702
    return result;
  }

1703
  assert(!collector_policy()->should_clear_all_soft_refs(),
1704
         "Flag should have been handled and cleared prior to this point");
1705

1706 1707 1708 1709
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1710
  assert(*succeeded, "sanity");
1711 1712 1713 1714 1715 1716 1717 1718 1719
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1720 1721 1722
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1723

1724
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1725 1726 1727 1728 1729
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1730
  if (expand(expand_bytes)) {
1731
    _hrs.verify_optional();
1732 1733
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1734
                                 false /* expect_null_mutator_alloc_region */);
1735
  }
1736
  return NULL;
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
1750 1751
  // Tell the hot card cache about the update
  _cg1r->hot_card_cache()->resize_card_counts(capacity());
1752 1753
}

1754 1755
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1756 1757
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1758 1759 1760 1761 1762
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1763

1764 1765 1766 1767 1768 1769 1770
  if (_g1_storage.uncommitted_size() == 0) {
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1771 1772
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1773 1774
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1800
    }
1801
    _free_list.add_as_tail(&expansion_list);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1812
    g1_policy()->record_new_heap_size(n_regions());
1813
  } else {
1814 1815 1816
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1817 1818 1819 1820 1821
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
1822
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1823 1824
    }
  }
1825
  return successful;
1826 1827
}

1828
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1829 1830 1831 1832
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1833 1834 1835
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

  uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1836
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1837
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1838 1839 1840 1841 1842 1843

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1844 1845 1846 1847 1848
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
    _g1_storage.shrink_by(shrunk_bytes);
    HeapWord* new_end = (HeapWord*) _g1_storage.high();

1849
    if (_hr_printer.is_active()) {
1850 1851
      HeapWord* curr = old_end;
      while (curr > new_end) {
1852 1853 1854 1855 1856 1857
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
    }

1858
    _expansion_regions += num_regions_removed;
1859 1860
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1861
    g1_policy()->record_new_heap_size(n_regions());
1862 1863 1864 1865
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1866 1867 1868 1869
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1870 1871
  verify_region_sets_optional();

1872 1873 1874 1875 1876
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1877 1878 1879
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1880
  tear_down_region_sets(true /* free_list_only */);
1881
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1882
  rebuild_region_sets(true /* free_list_only */);
1883

1884
  _hrs.verify_optional();
1885
  verify_region_sets_optional();
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1898
  _dirty_card_queue_set(false),
J
johnc 已提交
1899
  _into_cset_dirty_card_queue_set(false),
1900 1901 1902 1903
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1904 1905
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
S
sla 已提交
1906
  _evac_failure_scan_stack(NULL),
1907
  _mark_in_progress(false),
1908
  _cg1r(NULL), _summary_bytes_used(0),
1909
  _g1mm(NULL),
1910 1911
  _refine_cte_cl(NULL),
  _full_collection(false),
1912 1913 1914 1915
  _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1916
  _free_regions_coming(false),
1917 1918
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1919
  _retained_old_gc_alloc_region(NULL),
1920 1921
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1922
  _expand_heap_after_alloc_failure(true),
1923
  _surviving_young_words(NULL),
1924 1925
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1926
  _concurrent_cycle_started(false),
1927
  _in_cset_fast_test(),
1928 1929
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1930 1931 1932 1933 1934 1935 1936
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1937 1938 1939
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1940 1941 1942

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1943 1944 1945
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1946
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1947 1948
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1949 1950
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
S
sla 已提交
1951
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1952

1953 1954 1955 1956
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1957
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1958
  }
1959 1960
  clear_cset_start_regions();

1961 1962 1963
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1964 1965 1966 1967
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1968
  CollectedHeap::pre_initialize();
1969 1970
  os::enable_vtime();

1971 1972
  G1Log::init();

1973 1974 1975 1976
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1977 1978 1979 1980
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1981 1982 1983 1984 1985 1986 1987 1988 1989
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1990
  size_t heap_alignment = collector_policy()->heap_alignment();
1991 1992 1993 1994

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1995
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1996

1997 1998 1999
  _refine_cte_cl = new RefineCardTableEntryClosure();

  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2000 2001

  // Reserve the maximum.
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

2014
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2015
                                                 heap_alignment);
2016 2017

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
2018
  // temporarily think something is in the heap.  (I've actually seen this
2019 2020 2021 2022 2023
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2024
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2025 2026 2027 2028

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
2029 2030
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2031 2032 2033 2034
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2035
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2036 2037 2038 2039 2040 2041 2042 2043 2044

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2045
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
2046 2047 2048 2049
                  (HeapWord*) _g1_reserved.end());
  assert(_hrs.max_length() == _expansion_regions,
         err_msg("max length: %u expansion regions: %u",
                 _hrs.max_length(), _expansion_regions));
2050

2051 2052 2053
  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2054 2055
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2056
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2057 2058 2059
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2060
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2061
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2062
            "too many cards per region");
2063

2064
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2065

2066 2067 2068 2069 2070
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2071
  _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2072

2073 2074
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2075 2076 2077 2078 2079
  _cm = new ConcurrentMark(this, heap_rs);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2080 2081 2082 2083 2084
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2085
  // Now expand into the initial heap size.
2086
  if (!expand(init_byte_size)) {
2087
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2088 2089
    return JNI_ENOMEM;
  }
2090 2091 2092 2093 2094 2095

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2096
                                               G1SATBProcessCompletedThreshold,
2097
                                               Shared_SATB_Q_lock);
2098

2099 2100
  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
2101
                                                DirtyCardQ_FL_lock,
2102 2103
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2104 2105
                                                Shared_DirtyCardQ_lock);

2106
  if (G1DeferredRSUpdate) {
2107 2108
    dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                      DirtyCardQ_CBL_mon,
2109
                                      DirtyCardQ_FL_lock,
2110 2111
                                      -1, // never trigger processing
                                      -1, // no limit on length
2112 2113 2114
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2115 2116 2117

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
2118 2119
  _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
                                             DirtyCardQ_CBL_mon,
J
johnc 已提交
2120 2121 2122 2123 2124 2125
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2126 2127 2128 2129
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2130 2131 2132
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2133 2134 2135

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2147 2148
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2149
  _g1mm = new G1MonitoringSupport(this);
2150

P
pliden 已提交
2151 2152
  G1StringDedup::initialize();

2153 2154 2155
  return JNI_OK;
}

2156
void G1CollectedHeap::stop() {
2157 2158
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2159
  // that are destroyed during shutdown.
2160 2161 2162 2163 2164
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2165 2166
}

2167 2168 2169 2170
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2171
void G1CollectedHeap::ref_processing_init() {
2172 2173
  // Reference processing in G1 currently works as follows:
  //
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2206

2207 2208
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2223
                           &_is_alive_closure_cm);
2224 2225 2226 2227 2228
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2229
    new ReferenceProcessor(mr,    // span
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2240
                           &_is_alive_closure_stw);
2241 2242
                                // is alive closure
                                // (for efficiency/performance)
2243 2244 2245 2246 2247 2248
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2294 2295 2296
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2297
                                                 uint worker_i) {
2298
  // Clean cards in the hot card cache
2299 2300
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2301

2302 2303
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2304
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2305 2306
    n_completed_buffers++;
  }
2307
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2308 2309 2310 2311 2312 2313 2314 2315
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2316 2317
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2318
  size_t result = _summary_bytes_used;
2319
  // Read only once in case it is set to NULL concurrently
2320
  HeapRegion* hr = _mutator_alloc_region.get();
2321 2322
  if (hr != NULL)
    result += hr->used();
2323 2324 2325
  return result;
}

2326 2327 2328 2329 2330
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2345 2346
  double recalculate_used_start = os::elapsedTime();

2347
  SumUsedClosure blk;
2348
  heap_region_iterate(&blk);
2349 2350

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2351 2352 2353 2354
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2355
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2366 2367
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2368 2369
    return 0;
  }
2370
  return hr->free();
2371 2372
}

2373
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2374 2375 2376 2377 2378 2379
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2380 2381
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2414 2415
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2416 2417 2418 2419 2420
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2421 2422 2423 2424 2425 2426 2427 2428
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2429
  assert(concurrent ||
2430 2431 2432 2433 2434
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2435 2436

  // This is the case for the outer caller, i.e. the concurrent cycle.
2437
  assert(!concurrent ||
2438
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2439
         err_msg("for outer caller (concurrent cycle): "
2440 2441 2442
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2443

2444
  _old_marking_cycles_completed += 1;
2445

2446 2447 2448
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2449
  // incorrectly see that a marking cycle is still in progress.
2450
  if (concurrent) {
2451 2452 2453
    _cmThread->clear_in_progress();
  }

2454 2455 2456 2457 2458 2459 2460
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2461
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2474

2475
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    _concurrent_cycle_started = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
    trace_heap_after_gc(_gc_tracer_cm);
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2504
void G1CollectedHeap::collect(GCCause::Cause cause) {
2505
  assert_heap_not_locked();
2506

2507
  unsigned int gc_count_before;
2508
  unsigned int old_marking_count_before;
2509 2510 2511 2512 2513 2514 2515
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2516

2517 2518
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2519
      old_marking_count_before = _old_marking_cycles_started;
2520 2521 2522 2523 2524 2525
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2526
      VM_G1IncCollectionPause op(gc_count_before,
2527
                                 0,     /* word_size */
2528
                                 true,  /* should_initiate_conc_mark */
2529 2530
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2531

2532
      VMThread::execute(&op);
2533
      if (!op.pause_succeeded()) {
2534
        if (old_marking_count_before == _old_marking_cycles_started) {
2535
          retry_gc = op.should_retry_gc();
2536 2537 2538 2539 2540
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2541 2542 2543 2544 2545 2546

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2547
      }
2548
    } else {
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2562
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2563 2564
        VMThread::execute(&op);
      }
2565
    }
2566
  } while (retry_gc);
2567 2568 2569
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2570 2571 2572 2573 2574
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2575 2576
    return hr->is_in(p);
  } else {
2577
    return false;
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2588
  ExtendedOopClosure* _cl;
2589
public:
2590
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2591 2592
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2593
    if (!r->continuesHumongous()) {
2594 2595 2596 2597 2598 2599
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2600
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2601
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2602
  heap_region_iterate(&blk);
2603 2604
}

2605
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2606
  IterateOopClosureRegionClosure blk(mr, cl);
2607
  heap_region_iterate(&blk);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2624
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2625
  IterateObjectClosureRegionClosure blk(cl);
2626
  heap_region_iterate(&blk);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2643
  heap_region_iterate(&blk);
2644 2645
}

2646 2647
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2648 2649 2650 2651
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2652
                                                 uint worker_id,
2653
                                                 uint no_of_par_workers,
2654
                                                 jint claim_value) {
2655
  const uint regions = n_regions();
2656
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2657 2658 2659 2660 2661
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2662
  // try to spread out the starting points of the workers
2663 2664 2665
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2666 2667

  // each worker will actually look at all regions
2668 2669
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2670 2671 2672 2673 2674 2675 2676 2677 2678
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2679
    if (r->claimHeapRegion(claim_value)) {
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2691
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2692 2693 2694 2695 2696 2697 2698 2699 2700
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

S
sla 已提交
2701
          // No one should have claimed it directly. We can given
2702 2703 2704 2705 2706
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
S
sla 已提交
2707
            // we should always be able to claim it; no one else should
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2723
      }
2724 2725 2726 2727

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2728 2729 2730 2731
    }
  }
}

2732 2733 2734 2735 2736 2737 2738 2739
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2740
void G1CollectedHeap::reset_heap_region_claim_values() {
2741 2742 2743 2744
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2745 2746 2747 2748 2749
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2750 2751 2752 2753 2754 2755 2756 2757 2758
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2759
  uint _failures;
2760
  HeapRegion* _sh_region;
2761

2762 2763 2764 2765 2766
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2767
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2768
                             "claim value = %d, should be %d",
2769 2770
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2771 2772 2773 2774 2775 2776 2777 2778
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2779
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2780
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2781
                               HR_FORMAT_PARAMS(r),
2782 2783 2784 2785 2786 2787 2788
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2789
  uint failures() { return _failures; }
2790 2791 2792 2793 2794 2795 2796
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2797 2798

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2799 2800 2801
private:
  jint _claim_value;
  uint _failures;
2802 2803 2804

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2805
    _claim_value(claim_value), _failures(0) { }
2806

2807
  uint failures() { return _failures; }
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2828 2829
#endif // ASSERT

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2842

2843 2844
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2845
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2873
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2874
    uint cs_size = g1_policy()->cset_region_length();
2875
    uint active_workers = workers()->active_workers();
2876 2877 2878 2879
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2880 2881
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2882 2883 2884 2885 2886 2887 2888 2889 2890

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2891
    for (uint i = start_ind; i < end_ind; i++) {
2892 2893 2894
      result = result->next_in_collection_set();
    }
  }
2895 2896 2897 2898 2899 2900 2901 2902 2903

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2904 2905 2906
  return result;
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2932 2933 2934 2935 2936
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2960
  return n_regions() > 0 ? region_at(0) : NULL;
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3004 3005 3006 3007 3008 3009
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

3010
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
3011
  // since we can't allow tlabs to grow big enough to accommodate
3012 3013
  // humongous objects.

3014
  HeapRegion* hr = _mutator_alloc_region.get();
B
brutisso 已提交
3015
  size_t max_tlab = max_tlab_size() * wordSize;
3016
  if (hr == NULL) {
B
brutisso 已提交
3017
    return max_tlab;
3018
  } else {
B
brutisso 已提交
3019
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3020 3021 3022 3023
  }
}

size_t G1CollectedHeap::max_capacity() const {
3024
  return _g1_reserved.byte_size();
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3084
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3120
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
                              "from nmethod "PTR_FORMAT" not in strong "
                              "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3219
class VerifyLivenessOopClosure: public OopClosure {
3220 3221
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3222
public:
3223 3224 3225
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3226 3227 3228 3229 3230
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3231
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3232
              "Dead object referenced by a not dead object");
3233 3234 3235 3236
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3237
private:
3238 3239 3240
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3241
  VerifyOption _vo;
3242
public:
3243 3244 3245 3246 3247
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3248 3249 3250
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3251
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3252
    assert(o != NULL, "Huh?");
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3265
      o->oop_iterate_no_header(&isLive);
3266 3267 3268 3269
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3305
private:
3306 3307 3308
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3309
public:
3310 3311 3312
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3313 3314
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3315
      _vo(vo),
3316 3317 3318 3319 3320
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3321

3322
  bool doHeapRegion(HeapRegion* r) {
3323
    if (!r->continuesHumongous()) {
3324
      bool failures = false;
3325
      r->verify(_vo, &failures);
3326 3327 3328
      if (failures) {
        _failures = true;
      } else {
3329
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3330
        r->object_iterate(&not_dead_yet_cl);
3331 3332 3333 3334 3335 3336 3337
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3338
                                 not_dead_yet_cl.live_bytes());
3339 3340 3341 3342 3343 3344
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3345 3346
        }
      }
3347
    }
3348
    return false; // stop the region iteration if we hit a failure
3349 3350 3351
  }
};

J
johnc 已提交
3352
// This is the task used for parallel verification of the heap regions
3353 3354 3355 3356

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3357 3358
  VerifyOption     _vo;
  bool             _failures;
3359 3360

public:
3361 3362 3363
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3364
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3365
    AbstractGangTask("Parallel verify task"),
3366
    _g1h(g1h),
3367
    _vo(vo),
3368 3369 3370 3371 3372
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3373

3374
  void work(uint worker_id) {
3375
    HandleMark hm;
3376
    VerifyRegionClosure blk(true, _vo);
3377
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3378
                                          _g1h->workers()->active_workers(),
3379
                                          HeapRegion::ParVerifyClaimValue);
3380 3381 3382
    if (blk.failures()) {
      _failures = true;
    }
3383 3384 3385
  }
};

J
johnc 已提交
3386
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3387
  if (SafepointSynchronize::is_at_safepoint()) {
3388
    assert(Thread::current()->is_VM_thread(),
3389
           "Expected to be executed serially by the VM thread at this point");
3390

J
johnc 已提交
3391 3392 3393 3394
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3395
    VerifyKlassClosure klassCl(this, &rootsCl);
3396

3397 3398
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3399
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3400

3401 3402 3403
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3404
    process_strong_roots(true,      // activate StrongRootsScope
3405 3406
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3407
                         ScanningOption(so),  // roots scanning options
3408
                         &rootsCl,
3409
                         &blobsCl,
3410 3411
                         &klassCl
                         );
3412

J
johnc 已提交
3413
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3424
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3425 3426 3427 3428
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3429
      G1ParVerifyTask task(this, vo);
3430 3431 3432 3433
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3434 3435 3436
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3437 3438 3439
      if (task.failures()) {
        failures = true;
      }
3440

3441 3442
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3443 3444 3445 3446 3447 3448 3449 3450
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3451
      VerifyRegionClosure blk(false, vo);
3452
      heap_region_iterate(&blk);
3453 3454 3455
      if (blk.failures()) {
        failures = true;
      }
3456
    }
3457
    if (!silent) gclog_or_tty->print("RemSet ");
3458
    rem_set()->verify();
3459

P
pliden 已提交
3460 3461 3462 3463 3464
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3465 3466
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3467 3468 3469 3470
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3471
      gclog_or_tty->cr();
3472
#ifndef PRODUCT
3473
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3474
        concurrent_mark()->print_reachable("at-verification-failure",
3475
                                           vo, false /* all */);
3476
      }
3477
#endif
3478 3479 3480
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3481
  } else {
P
pliden 已提交
3482 3483 3484 3485 3486 3487 3488
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3489 3490 3491
  }
}

J
johnc 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3553
void G1CollectedHeap::print_on(outputStream* st) const {
3554 3555
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3556
            capacity()/K, used_unlocked()/K);
3557 3558 3559 3560 3561
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3562
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3563 3564 3565 3566 3567 3568
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3569
  st->cr();
3570
  MetaspaceAux::print_on(st);
3571 3572
}

3573 3574 3575 3576 3577
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3578 3579 3580 3581 3582
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3583
  PrintRegionClosure blk(st);
3584
  heap_region_iterate(&blk);
3585 3586
}

3587 3588 3589 3590 3591 3592 3593 3594 3595
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3596
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3597
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3598
    workers()->print_worker_threads_on(st);
3599
  }
T
tonyp 已提交
3600
  _cmThread->print_on(st);
3601
  st->cr();
T
tonyp 已提交
3602 3603
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3604 3605 3606
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3607 3608 3609
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3610
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3611 3612 3613
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3614
  _cg1r->threads_do(tc);
P
pliden 已提交
3615 3616 3617
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3618 3619 3620 3621 3622 3623 3624 3625 3626
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3627
  if (G1SummarizeRSetStats) {
3628 3629
    g1_rem_set()->print_summary_info();
  }
3630
  if (G1SummarizeConcMark) {
3631 3632 3633 3634 3635 3636
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3665
    gclog_or_tty->print_cr("%s", msg);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3687 3688 3689 3690 3691 3692 3693
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3694
  // always_do_update_barrier = false;
3695 3696
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3697
  accumulate_statistics_all_tlabs();
3698
  ensure_parsability(true);
3699 3700 3701 3702 3703

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3704 3705 3706
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3707 3708 3709 3710 3711

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3712
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3713 3714
  }

3715 3716 3717 3718 3719
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3720
  // always_do_update_barrier = true;
3721

B
brutisso 已提交
3722 3723
  resize_all_tlabs();

3724 3725 3726
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3727 3728
}

3729 3730
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
3731 3732
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3733
  assert_heap_not_locked_and_not_at_safepoint();
3734
  g1_policy()->record_stop_world_start();
3735 3736 3737 3738
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3739
                             gc_cause);
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3750 3751 3752 3753
}

void
G1CollectedHeap::doConcurrentMark() {
3754 3755 3756 3757
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3773 3774 3775 3776
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3777 3778 3779
}

size_t G1CollectedHeap::cards_scanned() {
3780
  return g1_rem_set()->cardsScanned();
3781 3782 3783 3784
}

void
G1CollectedHeap::setup_surviving_young_words() {
3785 3786
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3787
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3788
  if (_surviving_young_words == NULL) {
3789
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3790 3791
                          "Not enough space for young surv words summary.");
  }
3792
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3793
#ifdef ASSERT
3794
  for (uint i = 0;  i < array_length; ++i) {
3795
    assert( _surviving_young_words[i] == 0, "memset above" );
3796
  }
3797
#endif // !ASSERT
3798 3799 3800 3801 3802
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3803 3804
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3805
    _surviving_young_words[i] += surv_young_words[i];
3806
  }
3807 3808 3809 3810 3811
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3812
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3813 3814 3815
  _surviving_young_words = NULL;
}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3833 3834 3835
    return false;
  }
};
3836
#endif // ASSERT
3837

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3849
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3860
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3861 3862 3863 3864 3865 3866
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3867 3868 3869 3870 3871
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3872
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3873 3874

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3875
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3901
  gclog_or_tty->flush();
3902 3903
}

3904
bool
3905
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3906 3907 3908
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3909
  if (GC_locker::check_active_before_gc()) {
3910
    return false;
3911 3912
  }

3913
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3914 3915 3916

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3917
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3918 3919
  ResourceMark rm;

3920
  print_heap_before_gc();
S
sla 已提交
3921
  trace_heap_before_gc(_gc_tracer_stw);
3922

3923
  verify_region_sets_optional();
3924
  verify_dirty_young_regions();
3925

3926 3927 3928 3929 3930 3931 3932 3933
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3934

3935 3936
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3937

3938 3939 3940 3941
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3942

3943 3944
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3945 3946
    EvacuationInfo evacuation_info;

3947 3948 3949
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3950
      increment_old_marking_cycles_started();
S
sla 已提交
3951
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3952
    }
S
sla 已提交
3953 3954 3955

    _gc_tracer_stw->report_yc_type(yc_type());

3956
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3957

3958 3959
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3960 3961
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3962
    log_gc_header();
3963

3964
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3965
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3966

T
tonyp 已提交
3967 3968 3969 3970 3971 3972
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3973
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3974
      append_secondary_free_list_if_not_empty_with_lock();
3975
    }
3976

J
johnc 已提交
3977 3978 3979
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
3980

3981 3982 3983 3984
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3985 3986 3987 3988 3989
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3990
      increment_gc_time_stamp();
3991

3992
      verify_before_gc();
3993

3994
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3995

3996 3997 3998
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3999

4000 4001 4002
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

4020 4021 4022 4023 4024 4025
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
4026 4027
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4028
        double sample_start_time_sec = os::elapsedTime();
4029

4030
#if YOUNG_LIST_VERBOSE
4031 4032 4033
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4034 4035
#endif // YOUNG_LIST_VERBOSE

4036
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4037

4038 4039 4040 4041 4042 4043
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4044
        double wait_time_ms = 0.0;
4045 4046
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4047
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4048
        }
4049
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4050

4051
#if YOUNG_LIST_VERBOSE
4052 4053
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4054
#endif // YOUNG_LIST_VERBOSE
4055

4056 4057 4058
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4059

4060
#if YOUNG_LIST_VERBOSE
4061 4062 4063
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4064
#endif // YOUNG_LIST_VERBOSE
4065

S
sla 已提交
4066
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4067

4068 4069 4070
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
4071
        // GC). We also call this after finalize_cset() to
4072 4073 4074 4075 4076 4077
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4091 4092 4093
          }
        }

4094
#ifdef ASSERT
4095 4096
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4097
#endif // ASSERT
4098

4099
        setup_surviving_young_words();
4100

4101
        // Initialize the GC alloc regions.
S
sla 已提交
4102
        init_gc_alloc_regions(evacuation_info);
4103

4104
        // Actually do the work...
S
sla 已提交
4105
        evacuate_collection_set(evacuation_info);
4106

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

S
sla 已提交
4117
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4118
        g1_policy()->clear_collection_set();
4119

4120
        cleanup_surviving_young_words();
4121

4122 4123
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4124

4125
        clear_cset_fast_test();
4126

4127
        _young_list->reset_sampled_info();
4128

4129 4130 4131 4132 4133 4134
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4135 4136

#if YOUNG_LIST_VERBOSE
4137 4138
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4139
#endif // YOUNG_LIST_VERBOSE
4140

4141
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4142 4143
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4144

4145
        _young_list->reset_auxilary_lists();
4146

4147 4148
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
S
sla 已提交
4149 4150 4151 4152 4153 4154
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4155 4156 4157 4158 4159
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
4160

4161
        if (g1_policy()->during_initial_mark_pause()) {
4162 4163 4164
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4165 4166
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4167 4168 4169
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4170
        }
4171

4172
        allocate_dummy_regions();
4173

4174
#if YOUNG_LIST_VERBOSE
4175 4176 4177
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4178
#endif // YOUNG_LIST_VERBOSE
4179

4180 4181 4182 4183 4184 4185
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4186 4187
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4188 4189 4190 4191 4192 4193
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
4194 4195 4196
          }
        }

S
sla 已提交
4197
        // We redo the verification but now wrt to the new CSet which
4198 4199 4200 4201 4202 4203 4204
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

4205 4206 4207 4208 4209
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4210
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4237
        verify_after_gc();
4238

4239 4240
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4241

4242 4243
        // CM reference discovery will be re-enabled if necessary.
      }
4244

4245 4246 4247 4248 4249 4250
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4251 4252 4253
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4254 4255

#ifdef TRACESPINNING
4256
      ParallelTaskTerminator::print_termination_counts();
4257
#endif
4258

4259 4260
      gc_epilogue(false);
    }
4261

4262 4263 4264
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4265
    // It is not yet to safe to tell the concurrent mark to
4266 4267 4268
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4269

4270 4271 4272 4273 4274
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4275

4276
    print_heap_after_gc();
S
sla 已提交
4277
    trace_heap_after_gc(_gc_tracer_stw);
4278

4279 4280 4281 4282 4283
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4284

S
sla 已提交
4285 4286
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4287
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4288 4289
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4301
    // SuspendibleThreadSet::desynchronize().
4302 4303 4304
    doConcurrentMark();
  }

4305
  return true;
4306 4307
}

4308 4309 4310 4311 4312
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4313
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4314 4315
      break;
    case GCAllocForTenured:
4316
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4317 4318 4319
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4320
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4321 4322
      break;
  }
4323 4324 4325 4326 4327 4328

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4329 4330
}

4331 4332 4333 4334 4335 4336 4337 4338 4339
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4340

S
sla 已提交
4341
void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4342
  assert_at_safepoint(true /* should_be_vm_thread */);
4343

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
S
sla 已提交
4356
  // has been subsequently used to allocate a humongous
4357 4358 4359 4360 4361 4362 4363
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4364 4365 4366 4367 4368
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4369 4370
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4371 4372
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
S
sla 已提交
4373
    evacuation_info.set_alloc_regions_used_before(retained_region->used());
4374 4375 4376
  }
}

S
sla 已提交
4377 4378 4379
void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
                                         _old_gc_alloc_region.count());
4380 4381 4382 4383 4384 4385 4386
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4387 4388

  if (ResizePLAB) {
J
johnc 已提交
4389 4390
    _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
    _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4391
  }
4392 4393
}

4394 4395 4396 4397
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4398 4399
}

4400 4401 4402
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4403
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4404 4405 4406 4407 4408 4409 4410
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4411
  delete _evac_failure_scan_stack;
4412 4413 4414
  _evac_failure_scan_stack = NULL;
}

4415 4416
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4417

4418 4419
  double remove_self_forwards_start = os::elapsedTime();

4420
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4421

4422 4423 4424 4425
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4426
  } else {
4427
    rsfp_task.work(0);
4428
  }
4429 4430 4431 4432 4433 4434 4435

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4436 4437

  // Now restore saved marks, if any.
4438 4439 4440 4441 4442 4443
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4444
  }
4445 4446
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4447 4448

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4466
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4467
                                               oop old) {
4468 4469 4470
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4471 4472 4473 4474
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4475 4476 4477
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4478

S
sla 已提交
4479 4480
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4499 4500 4501 4502 4503 4504 4505
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4516
    _hr_printer.evac_failure(r);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4530 4531 4532 4533
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4534 4535
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4536 4537 4538 4539 4540
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4541 4542 4543 4544
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4545
    } else {
4546 4547 4548
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4549
    }
4550 4551 4552 4553 4554
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4555
    } else {
4556 4557 4558
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4559 4560 4561
    }
  }

4562 4563 4564
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4565 4566
}

4567
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4568
  ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4569

4570
void G1ParCopyHelper::mark_object(oop obj) {
4571 4572 4573 4574 4575 4576 4577
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4578
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4579 4580
}

4581
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4600
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4601 4602
}

4603 4604 4605 4606 4607 4608 4609
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4610
template <G1Barrier barrier, bool do_mark_object>
4611
template <class T>
4612
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4613 4614 4615 4616 4617 4618 4619
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4620

4621 4622
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4623
  if (_g1->in_cset_fast_test(obj)) {
4624
    oop forwardee;
4625
    if (obj->is_forwarded()) {
4626
      forwardee = obj->forwardee();
4627
    } else {
4628
      forwardee = _par_scan_state->copy_to_survivor_space(obj);
4629 4630 4631 4632 4633 4634 4635
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4636
    }
4637

4638
    if (barrier == G1BarrierKlass) {
4639
      do_klass_barrier(p, forwardee);
4640
    }
4641 4642 4643 4644
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4645
    if (do_mark_object) {
4646
      mark_object(obj);
4647
    }
4648
  }
4649

4650
  if (barrier == G1BarrierEvac) {
4651
    _par_scan_state->update_rs(_from, p, _worker_id);
4652
  }
4653 4654
}

4655 4656
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4677
  void do_void();
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
4695
    pss->steal_and_trim_queue(queues());
4696 4697
  } while (!offer_termination());
}
4698

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4725 4726 4727 4728 4729
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4730
  uint _n_workers;
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4741
  G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4742 4743 4744
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4745 4746
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4747 4748 4749 4750 4751 4752 4753 4754
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4769 4770
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4771 4772

    double start_time_ms = os::elapsedTime() * 1000.0;
4773
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4774

4775 4776 4777
    {
      ResourceMark rm;
      HandleMark   hm;
4778

4779
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4780

4781
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
4782
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4783

4784
      pss.set_evac_failure_closure(&evac_failure_cl);
4785

4786
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4787
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4788

4789
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4790 4791 4792 4793 4794
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4795

4796
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
4797
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4798

4799 4800 4801
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
4802
        scan_klasses_cl = &scan_mark_klasses_cl_s;
4803
      }
4804

4805
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4806

J
johnc 已提交
4807 4808 4809 4810 4811
      // Don't scan the scavengable methods in the code cache as part
      // of strong root scanning. The code roots that point into a
      // region in the collection set are scanned when we scan the
      // region's RSet.
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
4812

4813
      pss.start_strong_roots();
4814 4815
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
4816 4817
                                    scan_root_cl,
                                    &push_heap_rs_cl,
4818
                                    scan_klasses_cl,
4819 4820
                                    worker_id);
      pss.end_strong_roots();
4821

4822 4823 4824 4825 4826 4827
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
4828
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4829
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4830 4831 4832 4833 4834 4835 4836 4837
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4838

4839
      assert(pss.queue_is_empty(), "should be empty");
4840

4841 4842 4843
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4844 4845
    }

4846
    double end_time_ms = os::elapsedTime() * 1000.0;
4847
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4848 4849 4850 4851 4852
  }
};

// *** Common G1 Evacuation Stuff

4853 4854
// This method is run in a GC worker.

4855 4856
void
G1CollectedHeap::
4857
g1_process_strong_roots(bool is_scavenging,
4858
                        ScanningOption so,
4859 4860
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
4861
                        G1KlassScanClosure* scan_klasses,
4862
                        uint worker_i) {
4863

4864
  // First scan the strong roots
4865 4866 4867 4868 4869
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

J
johnc 已提交
4870 4871 4872 4873
  assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  // Walk the code cache/strong code roots w/o buffering, because StarTask
  // cannot handle unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
4874 4875

  process_strong_roots(false, // no scoping; this is parallel code
4876
                       is_scavenging, so,
4877
                       &buf_scan_non_heap_roots,
4878
                       &eager_scan_code_roots,
4879 4880
                       scan_klasses
                       );
4881

4882
  // Now the CM ref_processor roots.
4883
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4884 4885 4886 4887 4888
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4889 4890 4891
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
4892
  buf_scan_non_heap_roots.done();
4893

4894 4895
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

4896
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4897

4898
  double ext_root_time_ms =
4899
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4900

4901
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4902

4903 4904 4905
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
4906
  double satb_filtering_ms = 0.0;
4907 4908
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
4909 4910
      double satb_filter_start = os::elapsedTime();

4911
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
4912 4913

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4914
    }
4915
  }
4916
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4917

J
johnc 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
  // If this is an initial mark pause, and we're not scanning
  // the entire code cache, we need to mark the oops in the
  // strong code root lists for the regions that are not in
  // the collection set.
  // Note all threads participate in this set of root tasks.
  double mark_strong_code_roots_ms = 0.0;
  if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
    double mark_strong_roots_start = os::elapsedTime();
    mark_strong_code_roots(worker_i);
    mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  }
  g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);

4931 4932
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
J
johnc 已提交
4933
    g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
4934 4935 4936 4937 4938
  }
  _process_strong_tasks->all_tasks_completed();
}

void
4939
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
4940
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4941
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
4942 4943
}

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
4957 4958

  bool _do_in_parallel;
4959 4960 4961
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
    AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
4962
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
4977
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4978 4979
              err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
4980
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4981 4982 4983 4984 4985
              err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  }

  void work(uint worker_id) {
4986
    if (_do_in_parallel) {
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
  if (G1TraceStringSymbolTableScrubbing) {
    gclog_or_tty->print_cr("Cleaned string and symbol table, "
                           "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
                           "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
                           g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
                           g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  }
P
pliden 已提交
5038 5039 5040 5041

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5042 5043
}

5044 5045 5046 5047 5048 5049 5050 5051 5052
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
    double start_time = os::elapsedTime();

5053
    RedirtyLoggedCardTableEntryClosure cl;
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
    if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
      _queue->par_apply_closure_to_all_completed_buffers(&cl);
    } else {
      _queue->apply_closure_to_all_completed_buffers(&cl);
    }

    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
    timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
    timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  }
5064 5065 5066 5067 5068 5069
};

void G1CollectedHeap::redirty_logged_cards() {
  guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  double redirty_logged_cards_start = os::elapsedTime();

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  if (use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&redirty_task);
    set_par_threads(0);
  } else {
    redirty_task.work(0);
  }
5082 5083 5084 5085 5086 5087 5088 5089

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5138
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5139 5140 5141 5142 5143
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5144
                            OopsInHeapRegionClosure* metadata_obj_cl,
5145 5146 5147
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5148
    _copy_metadata_obj_cl(metadata_obj_cl),
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5173
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5174
      // the referent object and update the pointer, while avoiding
5175 5176 5177 5178 5179
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5180
        assert(!Metaspace::contains((const void*)p),
5181 5182
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5221
  FlexibleWorkGang*  _workers;
5222 5223 5224 5225
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5226
                        FlexibleWorkGang* workers,
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5263
  virtual void work(uint worker_id) {
5264 5265 5266 5267 5268 5269
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5270
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5271 5272 5273 5274 5275
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5276
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5277 5278

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5279
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5280 5281

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5282
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5283 5284 5285 5286

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5287
      copy_metadata_cl = &copy_mark_metadata_cl;
5288 5289 5290
    }

    // Keep alive closure.
5291
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5292 5293 5294 5295 5296

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5297
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5332 5333
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5334 5335 5336
  }
};

S
sla 已提交
5337
// Driver routine for parallel reference enqueueing.
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5362
  uint _n_workers;
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5373
  void work(uint worker_id) {
5374 5375 5376
    ResourceMark rm;
    HandleMark   hm;

5377
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5378 5379 5380 5381
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

5382
    assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5383 5384

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5385
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5386 5387

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5388
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5389 5390

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5391
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5392 5393 5394 5395

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5396
      copy_metadata_cl = &copy_mark_metadata_cl;
5397 5398 5399 5400 5401 5402 5403
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5404
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5405 5406 5407

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5408 5409
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5410 5411 5412 5413

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5414
    assert(0 <= worker_id && worker_id < limit, "sanity");
5415 5416 5417
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5418
    for (uint idx = worker_id; idx < limit; idx += stride) {
5419
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5440
    assert(pss.queue_is_empty(), "should be");
5441 5442 5443 5444
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5445
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5461
  // As a result the copy closure would not have been applied to the
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5472
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5473 5474
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5475

J
johnc 已提交
5476 5477 5478 5479
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5498
  G1ParScanThreadState            pss(this, 0, NULL);
5499 5500 5501 5502 5503 5504 5505 5506

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

5507
  assert(pss.queue_is_empty(), "pre-condition");
5508 5509

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5510
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5511 5512

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5513
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5514 5515

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5516
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5517 5518 5519 5520

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5521
    copy_metadata_cl = &copy_mark_metadata_cl;
5522 5523 5524
  }

  // Keep alive closure.
5525
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5526 5527 5528 5529 5530 5531 5532

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5533
  ReferenceProcessorStats stats;
5534 5535
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5536 5537 5538 5539
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5540 5541
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5542 5543
  } else {
    // Parallel reference processing
J
johnc 已提交
5544 5545
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5546

J
johnc 已提交
5547
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5548 5549 5550 5551
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5552 5553
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5554 5555
  }

S
sla 已提交
5556
  _gc_tracer_stw->report_gc_reference_stats(stats);
5557 5558

  // We have completed copying any necessary live referent objects.
5559
  assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5560 5561

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5562
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5563 5564 5565
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5566
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5578
    // Parallel reference enqueueing
5579

J
johnc 已提交
5580 5581 5582 5583
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5584

J
johnc 已提交
5585
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5586 5587 5588 5589 5590 5591 5592 5593 5594
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5595
  // and could significantly increase the pause time.
5596 5597

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5598
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5599 5600
}

S
sla 已提交
5601
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5602
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5603
  _evacuation_failed = false;
5604

5605 5606 5607
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5608
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5609 5610 5611 5612 5613

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5614

5615
  uint n_workers;
5616 5617 5618 5619 5620 5621 5622 5623
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5624
    workers()->set_active_workers(n_workers);
5625 5626 5627 5628 5629 5630 5631 5632
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5633 5634 5635 5636 5637

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5638
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5639 5640
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5641

5642
  {
5643
    StrongRootsScope srs(this);
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5664 5665
  }

5666
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5667
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5668 5669 5670

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5671
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5672

5673
  set_par_threads(0);
5674

5675 5676 5677 5678 5679
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5680
  process_discovered_references(n_workers);
5681

5682
  // Weak root processing.
5683
  {
5684
    G1STWIsAliveClosure is_alive(this);
5685 5686
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
P
pliden 已提交
5687 5688 5689
    if (G1StringDedup::is_enabled()) {
      G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
    }
5690
  }
5691

S
sla 已提交
5692
  release_gc_alloc_regions(n_workers, evacuation_info);
5693
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5694

5695 5696 5697 5698 5699
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5700

J
johnc 已提交
5701 5702 5703 5704 5705 5706
  // Migrate the strong code roots attached to each region in
  // the collection set. Ideally we would like to do this
  // after we have finished the scanning/evacuation of the
  // strong code roots for a particular heap region.
  migrate_strong_code_roots();

5707 5708
  purge_code_root_memory();

J
johnc 已提交
5709 5710 5711 5712 5713
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5714 5715 5716 5717
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5718 5719 5720 5721 5722

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5723 5724
  }

5725 5726 5727
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5728
  // the act of enqueueing entries on to the pending list
5729 5730 5731
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5732
  enqueue_discovered_references(n_workers);
5733

5734
  if (G1DeferredRSUpdate) {
5735
    redirty_logged_cards();
5736
  }
5737 5738 5739
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5740 5741
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5742 5743
                                  bool par,
                                  bool locked) {
5744 5745 5746 5747
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

5748 5749 5750 5751 5752 5753
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5754
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5755
  free_list->add_ordered(hr);
5756 5757 5758 5759 5760 5761 5762 5763 5764
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
5765 5766 5767
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
5768
  hr->set_notHumongous();
5769
  free_region(hr, free_list, par);
5770

5771
  uint i = hr->hrs_index() + 1;
5772
  while (i < last_index) {
5773
    HeapRegion* curr_hr = region_at(i);
5774
    assert(curr_hr->continuesHumongous(), "invariant");
5775
    curr_hr->set_notHumongous();
5776
    free_region(curr_hr, free_list, par);
5777 5778
    i += 1;
  }
5779 5780 5781 5782 5783
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
5784
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5785 5786
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
5787
  }
5788 5789 5790 5791 5792 5793 5794

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5795
    _free_list.add_ordered(list);
5796 5797 5798
  }
}

5799 5800 5801 5802 5803 5804 5805
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  assert(_summary_bytes_used >= bytes,
         err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
                  _summary_bytes_used, bytes));
  _summary_bytes_used -= bytes;
}

5806
class G1ParCleanupCTTask : public AbstractGangTask {
5807
  G1SATBCardTableModRefBS* _ct_bs;
5808
  G1CollectedHeap* _g1h;
5809
  HeapRegion* volatile _su_head;
5810
public:
5811
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5812
                     G1CollectedHeap* g1h) :
5813
    AbstractGangTask("G1 Par Cleanup CT Task"),
5814
    _ct_bs(ct_bs), _g1h(g1h) { }
5815

5816
  void work(uint worker_id) {
5817 5818 5819 5820 5821
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5822

5823
  void clear_cards(HeapRegion* r) {
5824
    // Cards of the survivors should have already been dirtied.
5825
    if (!r->is_survivor()) {
5826 5827 5828 5829 5830
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5831 5832
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5833
  G1CollectedHeap* _g1h;
5834
  G1SATBCardTableModRefBS* _ct_bs;
5835
public:
5836
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5837
    : _g1h(g1h), _ct_bs(ct_bs) { }
5838
  virtual bool doHeapRegion(HeapRegion* r) {
5839
    if (r->is_survivor()) {
5840
      _g1h->verify_dirty_region(r);
5841
    } else {
5842
      _g1h->verify_not_dirty_region(r);
5843 5844 5845 5846
    }
    return false;
  }
};
5847

5848 5849
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
5850
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
5863
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5864
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5865 5866 5867 5868 5869
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
5870 5871
}

5872
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5873
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5874
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5875
    verify_dirty_region(hr);
5876 5877 5878 5879 5880 5881
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
5882 5883
#endif

5884
void G1CollectedHeap::cleanUpCardTable() {
5885
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5886 5887
  double start = os::elapsedTime();

J
johnc 已提交
5888 5889 5890
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
5891

5892 5893
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
5906 5907
      }
    }
J
johnc 已提交
5908 5909 5910 5911 5912 5913
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
5914
  }
5915

5916
  double elapsed = os::elapsedTime() - start;
5917
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5918 5919
}

S
sla 已提交
5920
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5921 5922 5923
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5924 5925 5926
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5927 5928 5929 5930 5931
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5942
    assert(!is_on_master_free_list(cur), "sanity");
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5953 5954 5955 5956
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
5957

5958 5959 5960
        start_sec = os::elapsedTime();
        non_young = true;
      }
5961 5962
    }

5963
    rs_lengths += cur->rem_set()->occupied_locked();
5964 5965 5966 5967 5968 5969 5970 5971

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
5972
      assert(index != -1, "invariant");
5973
      assert((uint) index < policy->young_cset_region_length(), "invariant");
5974 5975
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5976 5977 5978 5979 5980 5981

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5982 5983
    } else {
      int index = cur->young_index_in_cset();
5984
      assert(index == -1, "invariant");
5985 5986 5987 5988 5989 5990 5991
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
5992 5993
      MemRegion used_mr = cur->used_region();

5994
      // And the region is empty.
5995
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5996
      pre_used += cur->used();
5997
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
5998 5999
    } else {
      cur->uninstall_surv_rate_group();
6000
      if (cur->is_young()) {
6001
        cur->set_young_index_in_cset(-1);
6002
      }
6003 6004
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6005 6006
      // The region is now considered to be old.
      _old_set.add(cur);
S
sla 已提交
6007
      evacuation_info.increment_collectionset_used_after(cur->used());
6008 6009 6010 6011
    }
    cur = next;
  }

S
sla 已提交
6012
  evacuation_info.set_regions_freed(local_free_list.length());
6013 6014 6015 6016 6017
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6018 6019

  if (non_young) {
6020
    non_young_time_ms += elapsed_ms;
6021
  } else {
6022
    young_time_ms += elapsed_ms;
6023
  }
6024

6025 6026
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6027 6028
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6029 6030
}

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6052 6053 6054 6055
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6056 6057
  }

6058 6059
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6060 6061
}

6062
void G1CollectedHeap::reset_free_regions_coming() {
6063 6064
  assert(free_regions_coming(), "pre-condition");

6065 6066 6067 6068
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6069 6070
  }

6071 6072 6073
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6074 6075 6076
  }
}

6077 6078 6079 6080 6081
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6082 6083
  }

6084 6085 6086
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6087 6088 6089
  }

  {
6090 6091 6092
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6093 6094 6095
    }
  }

6096 6097 6098
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6124 6125
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6126

6127
  if (check_heap) {
6128 6129 6130 6131 6132 6133 6134 6135
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6136 6137
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6138
  HeapRegionSet *_old_set;
6139

T
tonyp 已提交
6140
public:
6141
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6142

T
tonyp 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6170 6171 6172 6173
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6174
  }
6175
  _free_list.remove_all();
6176 6177
}

T
tonyp 已提交
6178 6179 6180
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6181
  HeapRegionSet*   _old_set;
T
tonyp 已提交
6182 6183
  FreeRegionList* _free_list;
  size_t          _total_used;
6184

6185
public:
T
tonyp 已提交
6186
  RebuildRegionSetsClosure(bool free_list_only,
6187
                           HeapRegionSet* old_set, FreeRegionList* free_list) :
T
tonyp 已提交
6188 6189 6190 6191 6192 6193 6194
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6195

6196
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6212
      }
T
tonyp 已提交
6213
      _total_used += r->used();
6214
    }
T
tonyp 已提交
6215

6216 6217 6218
    return false;
  }

T
tonyp 已提交
6219 6220
  size_t total_used() {
    return _total_used;
6221
  }
6222 6223
};

T
tonyp 已提交
6224 6225 6226
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6227 6228 6229 6230
  if (!free_list_only) {
    _young_list->empty_list();
  }

T
tonyp 已提交
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6241 6242 6243 6244 6245 6246
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6247 6248 6249
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6250
    return false;
6251 6252
  } else {
    return hr->is_in(p);
6253
  }
6254 6255
}

6256 6257
// Methods for the mutator alloc region

6258 6259 6260 6261 6262
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6263 6264
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6265
    HeapRegion* new_alloc_region = new_region(word_size,
6266
                                              false /* is_old */,
6267 6268 6269
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6270
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6284
  _hr_printer.retire(alloc_region);
6285 6286 6287 6288
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6289 6290 6291 6292 6293 6294 6295
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6296 6297 6298
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6299
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6300
  uint n_workers = workers()->active_workers();
6301
  assert(UseDynamicNumberOfGCThreads ||
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6312 6313 6314 6315 6316
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6317 6318 6319
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6320
                                                 uint count,
6321 6322 6323 6324
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
6325
    bool survivor = (ap == GCAllocForSurvived);
6326
    HeapRegion* new_alloc_region = new_region(word_size,
6327
                                              !survivor,
6328 6329 6330 6331 6332 6333
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
6334
      if (survivor) {
6335 6336 6337 6338 6339
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6340 6341
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6353 6354
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6355 6356 6357
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6358 6359
  } else {
    _old_set.add(alloc_region);
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6387 6388
// Heap region set verification

6389 6390
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6391 6392 6393
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
  FreeRegionList*  _free_list;
6394 6395

public:
6396 6397 6398
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6399

6400 6401 6402 6403 6404
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
                           FreeRegionList* free_list) :
    _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
    _old_count(), _humongous_count(), _free_count(){ }
6405 6406 6407 6408 6409 6410 6411 6412 6413

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6414 6415
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
      _humongous_count.increment(1u, hr->capacity());
6416
    } else if (hr->is_empty()) {
6417 6418
      assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
      _free_count.increment(1u, hr->capacity());
T
tonyp 已提交
6419
    } else {
6420 6421
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
      _old_count.increment(1u, hr->capacity());
6422
    }
6423 6424
    return false;
  }
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438

  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

    guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6439 6440
};

6441
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6442 6443 6444 6445 6446
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
6447
  return new HeapRegion(hrs_index, _bot_shared, mr);
6448 6449
}

6450 6451
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6452

6453
  // First, check the explicit lists.
6454
  _free_list.verify_list();
6455 6456 6457 6458 6459
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6460
    _secondary_free_list.verify_list();
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6476

T
tonyp 已提交
6477 6478 6479 6480
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6481

6482 6483
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6484

T
tonyp 已提交
6485
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6486
  heap_region_iterate(&cl);
6487
  cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6488
}
J
johnc 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6501 6502 6503 6504
      assert(!hr->continuesHumongous(),
             err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6505 6506 6507 6508 6509

      // HeapRegion::add_strong_code_root() avoids adding duplicate
      // entries but having duplicates is  OK since we "mark" nmethods
      // as visited when we scan the strong code root lists during the GC.
      hr->add_strong_code_root(_nm);
6510 6511 6512
      assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6533 6534 6535 6536 6537
      assert(!hr->continuesHumongous(),
             err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
                     " starting at "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6538
      hr->remove_strong_code_root(_nm);
6539 6540 6541
      assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
             err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
                     _nm, HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *hr) {
6572 6573 6574
    assert(!hr->isHumongous(),
           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
                   HR_FORMAT_PARAMS(hr)));
J
johnc 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
    hr->migrate_strong_code_roots();
    return false;
  }
};

void G1CollectedHeap::migrate_strong_code_roots() {
  MigrateCodeRootsHeapRegionClosure cl;
  double migrate_start = os::elapsedTime();
  collection_set_iterate(&cl);
  double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
}

6588 6589 6590 6591 6592 6593 6594
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
  G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
// Mark all the code roots that point into regions *not* in the
// collection set.
//
// Note we do not want to use a "marking" CodeBlobToOopClosure while
// walking the the code roots lists of regions not in the collection
// set. Suppose we have an nmethod (M) that points to objects in two
// separate regions - one in the collection set (R1) and one not (R2).
// Using a "marking" CodeBlobToOopClosure here would result in "marking"
// nmethod M when walking the code roots for R1. When we come to scan
// the code roots for R2, we would see that M is already marked and it
// would be skipped and the objects in R2 that are referenced from M
// would not be evacuated.

class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {

  class MarkStrongCodeRootOopClosure: public OopClosure {
    ConcurrentMark* _cm;
    HeapRegion* _hr;
    uint _worker_id;

    template <class T> void do_oop_work(T* p) {
      T heap_oop = oopDesc::load_heap_oop(p);
      if (!oopDesc::is_null(heap_oop)) {
        oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
        // Only mark objects in the region (which is assumed
        // to be not in the collection set).
        if (_hr->is_in(obj)) {
          _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
        }
      }
    }

  public:
    MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
      _cm(cm), _hr(hr), _worker_id(worker_id) {
      assert(!_hr->in_collection_set(), "sanity");
    }

    void do_oop(narrowOop* p) { do_oop_work(p); }
    void do_oop(oop* p)       { do_oop_work(p); }
  };

  MarkStrongCodeRootOopClosure _oop_cl;

public:
  MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
    _oop_cl(cm, hr, worker_id) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      nm->oops_do(&_oop_cl);
    }
  }
};

class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  uint _worker_id;

public:
  MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
    _g1h(g1h), _worker_id(worker_id) {}

  bool doHeapRegion(HeapRegion *hr) {
    HeapRegionRemSet* hrrs = hr->rem_set();
6661 6662 6663 6664
    if (hr->continuesHumongous()) {
      // Code roots should never be attached to a continuation of a humongous region
      assert(hrrs->strong_code_roots_list_length() == 0,
             err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6665
                     " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6666 6667
                     HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
                     hrrs->strong_code_roots_list_length()));
J
johnc 已提交
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
      return false;
    }

    if (hr->in_collection_set()) {
      // Don't mark code roots into regions in the collection set here.
      // They will be marked when we scan them.
      return false;
    }

    MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
    hr->strong_code_roots_do(&cb_cl);
    return false;
  }
};

void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  MarkStrongCodeRootsHRClosure cl(this, worker_id);
6685 6686 6687 6688 6689 6690 6691 6692
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    heap_region_par_iterate_chunked(&cl,
                                    worker_id,
                                    workers()->active_workers(),
                                    HeapRegion::ParMarkRootClaimValue);
  } else {
    heap_region_iterate(&cl);
  }
J
johnc 已提交
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
}

class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

6708
    if (ScavengeRootsInCode) {
J
johnc 已提交
6709 6710 6711 6712 6713 6714 6715 6716 6717
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}